-
Notifications
You must be signed in to change notification settings - Fork 1
/
gan_codec_inference.py
403 lines (351 loc) · 12 KB
/
gan_codec_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/usr/bin/env python3
"""Script to run the inference of text-to-speeech model."""
import argparse
import logging
import shutil
import sys
import time
from pathlib import Path
from typing import Any, Dict, Optional, Sequence, Tuple, Union
import numpy as np
import soundfile as sf
import torch
from packaging.version import parse as V
from typeguard import typechecked
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.gan_codec.dac import DAC
from espnet2.gan_codec.soundstream import SoundStream
from espnet2.tasks.gan_codec import GANCodecTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import float_or_none, str2bool, str2triple_str, str_or_none
from espnet.utils.cli_utils import get_commandline_args
class AudioCoding:
"""AudioCoding class.
Examples:
>>> TODO(jiatong)
"""
@typechecked
def __init__(
self,
train_config: Union[Path, str, None] = None,
model_file: Union[Path, str, None] = None,
target_bandwidth: Union[Path, str, None] = None,
dtype: str = "float32",
device: Union[str, torch.device] = "cpu",
seed: int = 777,
always_fix_seed: bool = False,
):
"""Initialize AudioCoding module."""
# setup model
model, train_args = GANCodecTask.build_model_from_file(
train_config, model_file, device
)
model.to(dtype=getattr(torch, dtype)).eval()
self.device = device
self.dtype = dtype
self.train_args = train_args
self.model = model
self.codec = model.codec
self.preprocess_fn = GANCodecTask.build_preprocess_fn(train_args, False)
self.seed = seed
self.always_fix_seed = always_fix_seed
decode_conf = {}
if isinstance(self.codec, SoundStream) or isinstance(self.codec, DAC):
decode_conf.update(
target_bw=target_bandwidth,
)
self.decode_conf = decode_conf
@torch.no_grad()
@typechecked
def __call__(
self,
audio: Union[torch.Tensor, np.ndarray, None] = None,
decode_conf: Optional[Dict[str, Any]] = None,
encode_only: bool = False,
) -> Dict[str, torch.Tensor]:
"""Run Audio Coding."""
assert audio is not None, "Audio is invalid, input a valid audio."
batch = dict(audio=audio)
batch = to_device(batch, self.device)
# overwrite the decode configs if provided
cfg = self.decode_conf
if decode_conf is not None:
cfg = self.decode_conf.copy()
cfg.update(decode_conf)
# inference
if self.always_fix_seed:
set_all_random_seed(self.seed)
codes = self.model.encode(**batch, **cfg)
output_dict = dict(codes=codes)
if encode_only:
return output_dict
else:
# TODO(jiatong): to consider multichannel cases
if len(audio.shape) == 1:
resyn_audio = self.model.decode(codes).view(-1)
else:
resyn_audio = self.model.decode(codes)
output_dict.update(resyn_audio=resyn_audio)
return output_dict
@torch.no_grad()
@typechecked
def decode(
self,
codes: Union[torch.Tensor, np.ndarray, None] = None,
) -> Dict[str, torch.Tensor]:
"""Run Audio Coding decoding."""
assert codes is not None, "Codes are invalid, input a valid one"
batch = dict(codes=codes)
batch = to_device(batch, self.device)
# inference
if self.always_fix_seed:
set_all_random_seed(self.seed)
resyn_audio = self.model.decode(codes)
output_dict = dict(resyn_audio=resyn_audio)
return output_dict
@property
def fs(self) -> Optional[int]:
"""Return sampling rate."""
if hasattr(self.codec, "fs"):
return self.codec.fs
else:
return None
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build AudioCoding instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
AudioCoding: AudioCoding instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return AudioCoding(**kwargs)
@typechecked
def inference(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
model_tag: Optional[str],
target_bandwidth: Optional[float],
encode_only: bool,
always_fix_seed: bool,
allow_variable_data_keys: bool,
):
"""Run speech coding inference."""
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build model
audio_coding_kwargs = dict(
train_config=train_config,
model_file=model_file,
target_bandwidth=target_bandwidth,
dtype=dtype,
device=device,
seed=seed,
always_fix_seed=always_fix_seed,
)
audio_coding = AudioCoding.from_pretrained(
model_tag=model_tag,
**audio_coding_kwargs,
)
# 3. Build data-iterator
loader = GANCodecTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=GANCodecTask.build_preprocess_fn(audio_coding.train_args, False),
collate_fn=GANCodecTask.build_collate_fn(audio_coding.train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
output_dir_path = Path(output_dir)
(output_dir_path / "codec").mkdir(parents=True, exist_ok=True)
(output_dir_path / "wav").mkdir(parents=True, exist_ok=True)
with NpyScpWriter(
output_dir_path / "codec", output_dir_path / "codec/codec.scp"
) as codec_writer:
for _, (keys, batch) in enumerate(loader, 1):
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert _bs == 1, _bs
# Change to single sequence and remove *_length
# because inference() requires 1-seq, not mini-batch.
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
batch.update(encode_only=encode_only)
start_time = time.perf_counter()
output_dict = audio_coding(**batch)
key = keys[0]
insize = next(iter(batch.values())).size(0) + 1
if output_dict.get("resyn_audio") is not None:
wav = output_dict["resyn_audio"]
# Note(jiatong): Assume the wav is single channel here
logging.info(
"inference speed = {:.1f} points / sec.".format(
int(wav.size(0)) / (time.perf_counter() - start_time)
)
)
logging.info(f"{key} (size:{insize}->{wav.size(0)})")
sf.write(
f"{output_dir_path}/wav/{key}.wav",
output_dict["resyn_audio"].cpu().numpy(),
audio_coding.fs,
"PCM_16",
)
if output_dict.get("codes") is not None:
codec_writer[key] = output_dict["codes"].cpu().numpy()
# remove files if those are not included in output dict
if output_dict.get("codes") is None:
shutil.rmtree(output_dir_path / "codes")
if output_dict.get("resyn_audio") is None:
shutil.rmtree(output_dir_path / "wav")
def get_parser():
"""Get argument parser."""
parser = config_argparse.ArgumentParser(
description="Codec inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The path of output directory",
)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Random seed",
)
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument(
"--key_file",
type=str_or_none,
)
group.add_argument(
"--allow_variable_data_keys",
type=str2bool,
default=False,
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--train_config",
type=str,
help="Training configuration file",
)
group.add_argument(
"--model_file",
type=str,
help="Model parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, train_config and "
"model_file will be overwritten",
)
group.add_argument(
"--target_bandwidth",
type=float_or_none,
default=None,
help="Target bandwidth for models supporting various bandwidth",
)
group.add_argument(
"--encode_only",
type=str2bool,
default=False,
help="Whether to only do encoding.",
)
group.add_argument(
"--always_fix_seed",
type=str2bool,
default=False,
help="Whether to always fix seed",
)
return parser
def main(cmd=None):
"""Run Codec model inference."""
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()