-
Notifications
You must be signed in to change notification settings - Fork 1
/
asvspoof_inference.py
258 lines (218 loc) · 7.65 KB
/
asvspoof_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python3
import argparse
import logging
import sys
from pathlib import Path
from typing import Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.quantization
from typeguard import typechecked
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.asvspoof import ASVSpoofTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
from espnet.utils.cli_utils import get_commandline_args
class SpeechAntiSpoof:
"""SpeechAntiSpoof class
Examples:
>>> import soundfile
>>> speech_anti_spoof = SpeechAntiSpoof("asvspoof_config.yml", "asvspoof.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech_anti_spoof(audio)
prediction_result (int)
"""
@typechecked
def __init__(
self,
asvspoof_train_config: Union[Path, str, None] = None,
asvspoof_model_file: Union[Path, str, None] = None,
device: str = "cpu",
batch_size: int = 1,
dtype: str = "float32",
):
asvspoof_model, asvspoof_train_args = ASVSpoofTask.build_model_from_file(
asvspoof_train_config, asvspoof_model_file, device
)
asvspoof_model.to(dtype=getattr(torch, dtype)).eval()
self.asvspoof_model = asvspoof_model
self.asvspoof_train_args = asvspoof_train_args
self.device = device
self.dtype = dtype
@torch.no_grad()
@typechecked
def __call__(self, speech: Union[torch.Tensor, np.ndarray]) -> float:
"""Inference
Args:
data: Input speech data
Returns:
[prediction, scores]
"""
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
# data: (Nsamples,) -> (1, Nsamples)
speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
# lengths: (1,)
lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1))
batch = {"speech": speech, "speech_lengths": lengths}
logging.info("speech length: " + str(speech.size(1)))
# To device
batch = to_device(batch, device=self.device)
# TODO(checkpoint 4): Forward feature extraction and encoder etc.
if "oc_softmax_loss" in self.asvspoof_model.losses:
pass # TODO(exercise2): use loss score function to estimate score
else:
pass # TODO(checkpoint 4): Pass the encoder result to decoder
# TODO(checkpoint 4): return the prediction score
return None
@typechecked
def inference(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
asvspoof_train_config: Optional[str],
asvspoof_model_file: Optional[str],
allow_variable_data_keys: bool,
):
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech_anti_spoof
speech_anti_spoof_kwargs = dict(
asvspoof_train_config=asvspoof_train_config,
asvspoof_model_file=asvspoof_model_file,
device=device,
dtype=dtype,
)
speech_anti_spoof = SpeechAntiSpoof(
**speech_anti_spoof_kwargs,
)
# 3. Build data-iterator
loader = ASVSpoofTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=ASVSpoofTask.build_preprocess_fn(
speech_anti_spoof.asvspoof_train_args, False
),
collate_fn=ASVSpoofTask.build_collate_fn(
speech_anti_spoof.asvspoof_train_args, False
),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# N-best list of (text, token, token_int, hyp_object)
try:
score = speech_anti_spoof(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
score = 0
# Only supporting batch_size==1
key = keys[0]
# Create a directory: outdir/{n}best_recog
result_writer = writer["prediction"]
# Write the result to each file
result_writer["score"][key] = str(score)
logging.info("processed {}: score {}".format(key, score))
def get_parser():
parser = config_argparse.ArgumentParser(
description="ASVSpoof Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--asvspoof_train_config",
type=str,
help="ASVSpoof training configuration",
)
group.add_argument(
"--asvspoof_model_file",
type=str,
help="ASVSpoof model parameter file",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()