-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
215 lines (179 loc) · 7.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import warnings
import torch.backends.cudnn as cudnn
warnings.filterwarnings("ignore")
from datetime import datetime
from torch.utils.data import DataLoader
from capsnet_v2 import CapsuleNet, CapsuleLoss
from torch.optim import Adam
import numpy as np
from config import options
import torch
import torch.nn.functional as F
from utils.eval_utils import compute_accuracy
from utils.logger_utils import Logger
import torch.nn as nn
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1, 2, 3'
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def train():
global_step = 0
best_loss = 100
best_acc = 0
for epoch in range(options.epochs):
log_string('**' * 30)
log_string('Training Epoch %03d, Learning Rate %g' % (epoch + 1, optimizer.param_groups[0]['lr']))
capsule_net.train()
train_loss = 0
targets, predictions = [], []
for batch_id, (data, target) in enumerate(train_loader):
data, target = data.cuda(), target.cuda()
global_step += 1
target = F.one_hot(target, options.num_classes)
y_pred, x_reconst, v_length = capsule_net(data, target)
loss = capsule_loss(data, target, v_length, x_reconst)
optimizer.zero_grad()
loss.backward()
optimizer.step()
targets += [target]
predictions += [y_pred]
train_loss += loss.item()
if (batch_id + 1) % options.disp_freq == 0:
train_loss /= options.disp_freq
train_acc = compute_accuracy(torch.cat(targets), torch.cat(predictions))
log_string("epoch: {0}, step: {1}, train_loss: {2:.4f} train_accuracy: {3:.02%}"
.format(epoch+1, batch_id+1, train_loss, train_acc))
info = {'loss': train_loss,
'accuracy': train_acc}
for tag, value in info.items():
train_logger.scalar_summary(tag, value, global_step)
train_loss = 0
targets, predictions = [], []
if (batch_id + 1) % options.val_freq == 0:
log_string('--' * 30)
log_string('Evaluating at step #{}'.format(global_step))
best_loss, best_acc = evaluate(best_loss=best_loss,
best_acc=best_acc,
global_step=global_step)
capsule_net.train()
@torch.no_grad()
def evaluate(**kwargs):
best_loss = kwargs['best_loss']
best_acc = kwargs['best_acc']
global_step = kwargs['global_step']
capsule_net.eval()
test_loss = 0
targets, predictions = [], []
for batch_id, (data, target) in enumerate(test_loader):
data, target = data.cuda(), target.cuda()
target = F.one_hot(target, options.num_classes)
y_pred, x_reconst, v_length = capsule_net(data)
loss = capsule_loss(data, target, v_length, x_reconst)
targets += [target]
predictions += [y_pred]
test_loss += loss
test_loss /= (batch_id + 1)
test_acc = compute_accuracy(torch.cat(targets), torch.cat(predictions))
# check for improvement
loss_str, acc_str = '', ''
if test_loss <= best_loss:
loss_str, best_loss = '(improved)', test_loss
if test_acc >= best_acc:
acc_str, best_acc = '(improved)', test_acc
# display
log_string("validation_loss: {0:.4f} {1}, validation_accuracy: {2:.02%} {3}"
.format(test_loss, loss_str, test_acc, acc_str))
# write to TensorBoard
info = {'loss': test_loss,
'accuracy': test_acc}
for tag, value in info.items():
test_logger.scalar_summary(tag, value, global_step)
# save checkpoint model
state_dict = capsule_net.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].cpu()
save_path = os.path.join(model_dir, '{}.ckpt'.format(global_step))
torch.save({
'global_step': global_step,
'loss': test_loss,
'acc': test_acc,
'save_dir': model_dir,
'state_dict': state_dict},
save_path)
log_string('Model saved at: {}'.format(save_path))
log_string('--' * 30)
return best_loss, best_acc
if __name__ == '__main__':
##################################
# Initialize saving directory
##################################
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
save_dir = options.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_dir = os.path.join(save_dir, datetime.now().strftime('%Y%m%d_%H%M%S'))
os.makedirs(save_dir)
LOG_FOUT = open(os.path.join(save_dir, 'log_train.txt'), 'w')
LOG_FOUT.write(str(options) + '\n')
model_dir = os.path.join(save_dir, 'models')
logs_dir = os.path.join(save_dir, 'tf_logs')
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# bkp of model def
os.system('cp {}/capsnet.py {}'.format(BASE_DIR, save_dir))
# bkp of train procedure
os.system('cp {}/train.py {}'.format(BASE_DIR, save_dir))
os.system('cp {}/config.py {}'.format(BASE_DIR, save_dir))
##################################
# Create the model
##################################
capsule_net = CapsuleNet(options)
log_string('Model Generated.')
log_string("Number of trainable parameters: {}".format(sum(param.numel() for param in capsule_net.parameters())))
##################################
# Use cuda
##################################
cudnn.benchmark = True
capsule_net.cuda()
capsule_net = nn.DataParallel(capsule_net)
##################################
# Loss and Optimizer
##################################
capsule_loss = CapsuleLoss(options)
optimizer = Adam(capsule_net.parameters(), lr=options.lr, betas=(options.beta1, 0.999))
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.9)
##################################
# Load dataset
##################################
if options.data_name == 'mnist':
from dataset.mnist import MNIST as data
os.system('cp {}/dataset/mnist.py {}'.format(BASE_DIR, save_dir))
elif options.data_name == 'fashion_mnist':
from dataset.fashion_mnist import FashionMNIST as data
os.system('cp {}/dataset/fashion_mnist.py {}'.format(BASE_DIR, save_dir))
elif options.data_name == 'cifar10':
from dataset.cifar10 import CIFAR10 as data
os.system('cp {}/dataset/cifar10.py {}'.format(BASE_DIR, save_dir))
elif options.data_name == 't_mnist':
from dataset.mnist_translate import MNIST as data
os.system('cp {}/dataset/mnist_translate.py {}'.format(BASE_DIR, save_dir))
elif options.data_name == 'c_mnist':
from dataset.mnist_clutter import MNIST as data
os.system('cp {}/dataset/mnist_clutter.py {}'.format(BASE_DIR, save_dir))
train_dataset = data(mode='train')
train_loader = DataLoader(train_dataset, batch_size=options.batch_size,
shuffle=True, num_workers=options.workers, drop_last=False)
test_dataset = data(mode='test')
test_loader = DataLoader(test_dataset, batch_size=options.batch_size,
shuffle=False, num_workers=options.workers, drop_last=False)
##################################
# TRAINING
##################################
log_string('')
log_string('Start training: Total epochs: {}, Batch size: {}, Training size: {}, Validation size: {}'.
format(options.epochs, options.batch_size, len(train_dataset), len(test_dataset)))
train_logger = Logger(os.path.join(logs_dir, 'train'))
test_logger = Logger(os.path.join(logs_dir, 'test'))
train()