forked from cchen156/Learning-to-See-in-the-Dark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_Sony.py
173 lines (128 loc) · 6.42 KB
/
test_Sony.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#uniform content loss + adaptive threshold + per_class_input + recursive G
#improvement upon cqf37
from __future__ import division
import os,time,scipy.io
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import initializers
import numpy as np
import pdb
import rawpy
import glob
input_dir = './dataset/Sony/short/'
gt_dir = './dataset/Sony/long/'
checkpoint_dir = './checkpoint/Sony/'
result_dir = './result_Sony/'
#get train and test IDs
train_fns = glob.glob(gt_dir + '0*.ARW')
train_ids = []
for i in range(len(train_fns)):
_, train_fn = os.path.split(train_fns[i])
train_ids.append(int(train_fn[0:5]))
test_fns = glob.glob(gt_dir + '/1*.ARW')
test_ids = []
for i in range(len(test_fns)):
_, test_fn = os.path.split(test_fns[i])
test_ids.append(int(test_fn[0:5]))
ps = 512 #patch size for training
save_freq = 500
DEBUG = 0
if DEBUG == 1:
save_freq = 2
train_ids = train_ids[0:5]
test_ids = test_ids[0:5]
def lrelu(x):
return tf.maximum(x*0.2,x)
def upsample_and_concat(x1, x2, output_channels, in_channels):
pool_size = 2
deconv_filter = tf.Variable(tf.truncated_normal( [pool_size, pool_size, output_channels, in_channels], stddev=0.02))
deconv = tf.nn.conv2d_transpose(x1, deconv_filter, tf.shape(x2) , strides=[1, pool_size, pool_size, 1] )
deconv_output = tf.concat([deconv, x2],3)
deconv_output.set_shape([None, None, None, output_channels*2])
return deconv_output
def network(input):
conv1=slim.conv2d(input,32,[3,3], rate=1, activation_fn=lrelu,scope='g_conv1_1')
conv1=slim.conv2d(conv1,32,[3,3], rate=1, activation_fn=lrelu,scope='g_conv1_2')
pool1=slim.max_pool2d(conv1, [2, 2], padding='SAME' )
conv2=slim.conv2d(pool1,64,[3,3], rate=1, activation_fn=lrelu,scope='g_conv2_1')
conv2=slim.conv2d(conv2,64,[3,3], rate=1, activation_fn=lrelu,scope='g_conv2_2')
pool2=slim.max_pool2d(conv2, [2, 2], padding='SAME' )
conv3=slim.conv2d(pool2,128,[3,3], rate=1, activation_fn=lrelu,scope='g_conv3_1')
conv3=slim.conv2d(conv3,128,[3,3], rate=1, activation_fn=lrelu,scope='g_conv3_2')
pool3=slim.max_pool2d(conv3, [2, 2], padding='SAME' )
conv4=slim.conv2d(pool3,256,[3,3], rate=1, activation_fn=lrelu,scope='g_conv4_1')
conv4=slim.conv2d(conv4,256,[3,3], rate=1, activation_fn=lrelu,scope='g_conv4_2')
pool4=slim.max_pool2d(conv4, [2, 2], padding='SAME' )
conv5=slim.conv2d(pool4,512,[3,3], rate=1, activation_fn=lrelu,scope='g_conv5_1')
conv5=slim.conv2d(conv5,512,[3,3], rate=1, activation_fn=lrelu,scope='g_conv5_2')
up6 = upsample_and_concat( conv5, conv4, 256, 512 )
conv6=slim.conv2d(up6, 256,[3,3], rate=1, activation_fn=lrelu,scope='g_conv6_1')
conv6=slim.conv2d(conv6,256,[3,3], rate=1, activation_fn=lrelu,scope='g_conv6_2')
up7 = upsample_and_concat( conv6, conv3, 128, 256 )
conv7=slim.conv2d(up7, 128,[3,3], rate=1, activation_fn=lrelu,scope='g_conv7_1')
conv7=slim.conv2d(conv7,128,[3,3], rate=1, activation_fn=lrelu,scope='g_conv7_2')
up8 = upsample_and_concat( conv7, conv2, 64, 128 )
conv8=slim.conv2d(up8, 64,[3,3], rate=1, activation_fn=lrelu,scope='g_conv8_1')
conv8=slim.conv2d(conv8,64,[3,3], rate=1, activation_fn=lrelu,scope='g_conv8_2')
up9 = upsample_and_concat( conv8, conv1, 32, 64 )
conv9=slim.conv2d(up9, 32,[3,3], rate=1, activation_fn=lrelu,scope='g_conv9_1')
conv9=slim.conv2d(conv9,32,[3,3], rate=1, activation_fn=lrelu,scope='g_conv9_2')
conv10=slim.conv2d(conv9,12,[1,1], rate=1, activation_fn=None, scope='g_conv10')
out = tf.depth_to_space(conv10,2)
return out
def pack_raw(raw):
#pack Bayer image to 4 channels
im = raw.raw_image_visible.astype(np.float32)
im = np.maximum(im - 512,0)/ (16383 - 512) #subtract the black level
im = np.expand_dims(im,axis=2)
img_shape = im.shape
H = img_shape[0]
W = img_shape[1]
out = np.concatenate((im[0:H:2,0:W:2,:],
im[0:H:2,1:W:2,:],
im[1:H:2,1:W:2,:],
im[1:H:2,0:W:2,:]), axis=2)
return out
sess=tf.Session()
in_image=tf.placeholder(tf.float32,[None,None,None,4])
gt_image=tf.placeholder(tf.float32,[None,None,None,3])
out_image=network(in_image)
saver=tf.train.Saver()
sess.run(tf.global_variables_initializer())
ckpt=tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
if not os.path.isdir(result_dir + 'final/'):
os.makedirs(result_dir + 'final/')
for test_id in test_ids:
#test the first image in each sequence
in_files = glob.glob(input_dir + '%05d_00*.ARW'%test_id)
for k in range(len(in_files)):
in_path = in_files[k]
_, in_fn = os.path.split(in_path)
print(in_fn)
gt_files = glob.glob(gt_dir + '%05d_00*.ARW'%test_id)
gt_path = gt_files[0]
_, gt_fn = os.path.split(gt_path)
in_exposure = float(in_fn[9:-5])
gt_exposure = float(gt_fn[9:-5])
ratio = min(gt_exposure/in_exposure,300)
raw = rawpy.imread(in_path)
input_full = np.expand_dims(pack_raw(raw),axis=0) *ratio
im = raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
#scale_full = np.expand_dims(np.float32(im/65535.0),axis = 0)*ratio
scale_full = np.expand_dims(np.float32(im/65535.0),axis = 0)
gt_raw = rawpy.imread(gt_path)
im = gt_raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
gt_full = np.expand_dims(np.float32(im/65535.0),axis = 0)
input_full = np.minimum(input_full,1.0)
output =sess.run(out_image,feed_dict={in_image: input_full})
output = np.minimum(np.maximum(output,0),1)
output = output[0,:,:,:]
gt_full = gt_full[0,:,:,:]
scale_full = scale_full[0,:,:,:]
scale_full = scale_full*np.mean(gt_full)/np.mean(scale_full) # scale the low-light image to the same mean of the groundtruth
scipy.misc.toimage(output*255, high=255, low=0, cmin=0, cmax=255).save(result_dir + 'final/%5d_00_%d_out.png'%(test_id,ratio))
scipy.misc.toimage(scale_full*255, high=255, low=0, cmin=0, cmax=255).save(result_dir + 'final/%5d_00_%d_scale.png'%(test_id,ratio))
scipy.misc.toimage(gt_full*255, high=255, low=0, cmin=0, cmax=255).save(result_dir + 'final/%5d_00_%d_gt.png'%(test_id,ratio))