diff --git a/.github/workflows/self-nightly-past-ci-caller.yml b/.github/workflows/self-nightly-past-ci-caller.yml index 142399a6366ce6..46d811d4a43394 100644 --- a/.github/workflows/self-nightly-past-ci-caller.yml +++ b/.github/workflows/self-nightly-past-ci-caller.yml @@ -21,39 +21,6 @@ jobs: echo "$(python3 -c 'print(int(${{ github.run_number }}) % 10)')" echo "run_number=$(python3 -c 'print(int(${{ github.run_number }}) % 10)')" >> $GITHUB_OUTPUT - run_past_ci_pytorch_1-13: - name: PyTorch 1.13 - needs: get_number - if: needs.get_number.outputs.run_number == 0 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) - uses: ./.github/workflows/self-past-caller.yml - with: - framework: pytorch - version: "1.13" - sha: ${{ github.sha }} - secrets: inherit - - run_past_ci_pytorch_1-12: - name: PyTorch 1.12 - needs: get_number - if: needs.get_number.outputs.run_number == 1 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) - uses: ./.github/workflows/self-past-caller.yml - with: - framework: pytorch - version: "1.12" - sha: ${{ github.sha }} - secrets: inherit - - run_past_ci_pytorch_1-11: - name: PyTorch 1.11 - needs: get_number - if: needs.get_number.outputs.run_number == 2 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) - uses: ./.github/workflows/self-past-caller.yml - with: - framework: pytorch - version: "1.11" - sha: ${{ github.sha }} - secrets: inherit - run_past_ci_tensorflow_2-11: name: TensorFlow 2.11 needs: get_number diff --git a/README.md b/README.md index c748e675066202..42403f84b885da 100644 --- a/README.md +++ b/README.md @@ -249,7 +249,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta ### With pip -This repository is tested on Python 3.9+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+. +This repository is tested on Python 3.9+, Flax 0.4.1+, PyTorch 2.0+, and TensorFlow 2.6+. You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). diff --git a/i18n/README_ar.md b/i18n/README_ar.md index 8160ec908d4411..c7249ac23d2e7f 100644 --- a/i18n/README_ar.md +++ b/i18n/README_ar.md @@ -245,7 +245,7 @@ limitations under the License. ### باستخدام pip -تم اختبار هذا المستودع على Python 3.9+، Flax 0.4.1+، PyTorch 1.11+، و TensorFlow 2.6+. +تم اختبار هذا المستودع على Python 3.9+، Flax 0.4.1+، PyTorch 2.0+، و TensorFlow 2.6+. يجب تثبيت 🤗 Transformers في [بيئة افتراضية](https://docs.python.org/3/library/venv.html). إذا كنت غير معتاد على البيئات الافتراضية Python، فراجع [دليل المستخدم](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). diff --git a/i18n/README_de.md b/i18n/README_de.md index ccc9e6111a25f0..78447af41a7a82 100644 --- a/i18n/README_de.md +++ b/i18n/README_de.md @@ -246,7 +246,7 @@ Das Modell selbst ist ein reguläres [PyTorch `nn.Module`](https://pytorch.org/d ### Mit pip -Dieses Repository wurde mit Python 3.9+, Flax 0.4.1+, PyTorch 1.11+ und TensorFlow 2.6+ getestet. +Dieses Repository wurde mit Python 3.9+, Flax 0.4.1+, PyTorch 2.0+ und TensorFlow 2.6+ getestet. Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, schauen Sie sich den [Benutzerleitfaden](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) an. diff --git a/i18n/README_es.md b/i18n/README_es.md index 5d5ba1b3249785..57eb8117fc0d5d 100644 --- a/i18n/README_es.md +++ b/i18n/README_es.md @@ -222,7 +222,7 @@ El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.h ### Con pip -Este repositorio está probado en Python 3.9+, Flax 0.4.1+, PyTorch 1.11+ y TensorFlow 2.6+. +Este repositorio está probado en Python 3.9+, Flax 0.4.1+, PyTorch 2.0+ y TensorFlow 2.6+. Deberías instalar 🤗 Transformers en un [entorno virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). diff --git a/i18n/README_fr.md b/i18n/README_fr.md index 97b11166b301a1..02714d52bff39b 100644 --- a/i18n/README_fr.md +++ b/i18n/README_fr.md @@ -243,7 +243,7 @@ Le modèle lui-même est un module [`nn.Module` PyTorch](https://pytorch.org/doc ### Avec pip -Ce référentiel est testé sur Python 3.9+, Flax 0.4.1+, PyTorch 1.11+ et TensorFlow 2.6+. +Ce référentiel est testé sur Python 3.9+, Flax 0.4.1+, PyTorch 2.0+ et TensorFlow 2.6+. Vous devriez installer 🤗 Transformers dans un [environnement virtuel](https://docs.python.org/3/library/venv.html). Si vous n'êtes pas familier avec les environnements virtuels Python, consultez le [guide utilisateur](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). diff --git a/i18n/README_hd.md b/i18n/README_hd.md index 17efdd21eb04dc..1541e4df66fcbd 100644 --- a/i18n/README_hd.md +++ b/i18n/README_hd.md @@ -198,7 +198,7 @@ checkpoint: जाँच बिंदु ### पिप का उपयोग करना -इस रिपॉजिटरी का परीक्षण Python 3.9+, Flax 0.4.1+, PyTorch 1.11+ और TensorFlow 2.6+ के तहत किया गया है। +इस रिपॉजिटरी का परीक्षण Python 3.9+, Flax 0.4.1+, PyTorch 2.0+ और TensorFlow 2.6+ के तहत किया गया है। आप [वर्चुअल एनवायरनमेंट](https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें। diff --git a/i18n/README_ja.md b/i18n/README_ja.md index 3d417098ea314d..fc3d4ae945cefd 100644 --- a/i18n/README_ja.md +++ b/i18n/README_ja.md @@ -256,7 +256,7 @@ Hugging Faceチームによって作られた **[トランスフォーマーを ### pipにて -このリポジトリは、Python 3.9+, Flax 0.4.1+, PyTorch 1.11+, TensorFlow 2.6+ でテストされています。 +このリポジトリは、Python 3.9+, Flax 0.4.1+, PyTorch 2.0+, TensorFlow 2.6+ でテストされています。 🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。 diff --git a/i18n/README_ko.md b/i18n/README_ko.md index b9502db5dda845..6d6559398e4d17 100644 --- a/i18n/README_ko.md +++ b/i18n/README_ko.md @@ -242,7 +242,7 @@ Transformers에 달린 100,000개의 별을 축하하기 위해, 우리는 커 ### pip로 설치하기 -이 저장소는 Python 3.9+, Flax 0.4.1+, PyTorch 1.11+, TensorFlow 2.6+에서 테스트 되었습니다. +이 저장소는 Python 3.9+, Flax 0.4.1+, PyTorch 2.0+, TensorFlow 2.6+에서 테스트 되었습니다. [가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요. diff --git a/i18n/README_pt-br.md b/i18n/README_pt-br.md index d9248f9a151c36..f865f1b6ed9ca5 100644 --- a/i18n/README_pt-br.md +++ b/i18n/README_pt-br.md @@ -253,7 +253,7 @@ O modelo em si é um [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.ht ### Com pip -Este repositório é testado no Python 3.9+, Flax 0.4.1+, PyTorch 1.11+ e TensorFlow 2.6+. +Este repositório é testado no Python 3.9+, Flax 0.4.1+, PyTorch 2.0+ e TensorFlow 2.6+. Você deve instalar o 🤗 Transformers em um [ambiente virtual](https://docs.python.org/3/library/venv.html). Se você não está familiarizado com ambientes virtuais em Python, confira o [guia do usuário](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). diff --git a/i18n/README_ru.md b/i18n/README_ru.md index a359b52d2ccc73..c153474f339000 100644 --- a/i18n/README_ru.md +++ b/i18n/README_ru.md @@ -244,7 +244,7 @@ Hugging Face Hub. Мы хотим, чтобы Transformers позволил ра ### С помощью pip -Данный репозиторий протестирован на Python 3.9+, Flax 0.4.1+, PyTorch 1.11+ и TensorFlow 2.6+. +Данный репозиторий протестирован на Python 3.9+, Flax 0.4.1+, PyTorch 2.0+ и TensorFlow 2.6+. Устанавливать 🤗 Transformers следует в [виртуальной среде](https://docs.python.org/3/library/venv.html). Если вы не знакомы с виртуальными средами Python, ознакомьтесь с [руководством пользователя](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). diff --git a/i18n/README_te.md b/i18n/README_te.md index a9795e9ca326aa..791ed6414f73d2 100644 --- a/i18n/README_te.md +++ b/i18n/README_te.md @@ -246,7 +246,7 @@ limitations under the License. ### పిప్ తో -ఈ రిపోజిటరీ పైథాన్ 3.9+, ఫ్లాక్స్ 0.4.1+, PyTorch 1.11+ మరియు TensorFlow 2.6+లో పరీక్షించబడింది. +ఈ రిపోజిటరీ పైథాన్ 3.9+, ఫ్లాక్స్ 0.4.1+, PyTorch 2.0+ మరియు TensorFlow 2.6+లో పరీక్షించబడింది. మీరు [వర్చువల్ వాతావరణం](https://docs.python.org/3/library/venv.html)లో 🤗 ట్రాన్స్‌ఫార్మర్‌లను ఇన్‌స్టాల్ చేయాలి. మీకు పైథాన్ వర్చువల్ పరిసరాల గురించి తెలియకుంటే, [యూజర్ గైడ్](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) చూడండి. diff --git a/i18n/README_ur.md b/i18n/README_ur.md index cc37b5cfc4223d..2d4d7745f68eaf 100644 --- a/i18n/README_ur.md +++ b/i18n/README_ur.md @@ -259,7 +259,7 @@ limitations under the License. #### ‏ pip کے ساتھ -یہ ریپوزٹری Python 3.9+، Flax 0.4.1+، PyTorch 1.11+، اور TensorFlow 2.6+ پر ٹیسٹ کی گئی ہے۔ +یہ ریپوزٹری Python 3.9+، Flax 0.4.1+، PyTorch 2.0+، اور TensorFlow 2.6+ پر ٹیسٹ کی گئی ہے۔ آپ کو 🤗 Transformers کو ایک [ورچوئل ماحول](https://docs.python.org/3/library/venv.html) میں انسٹال کرنا چاہیے۔ اگر آپ Python ورچوئل ماحول سے واقف نہیں ہیں، تو [یوزر گائیڈ](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) دیکھیں۔ diff --git a/i18n/README_vi.md b/i18n/README_vi.md index f523c282b680c4..4f7f67bfce90ff 100644 --- a/i18n/README_vi.md +++ b/i18n/README_vi.md @@ -245,7 +245,7 @@ Chính mô hình là một [Pytorch `nn.Module`](https://pytorch.org/docs/stable ### Sử dụng pip -Thư viện này được kiểm tra trên Python 3.9+, Flax 0.4.1+, PyTorch 1.11+ và TensorFlow 2.6+. +Thư viện này được kiểm tra trên Python 3.9+, Flax 0.4.1+, PyTorch 2.0+ và TensorFlow 2.6+. Bạn nên cài đặt 🤗 Transformers trong một [môi trường ảo Python](https://docs.python.org/3/library/venv.html). Nếu bạn chưa quen với môi trường ảo Python, hãy xem [hướng dẫn sử dụng](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). diff --git a/i18n/README_zh-hans.md b/i18n/README_zh-hans.md index c9ac0357f18f1b..b4d121df0d3200 100644 --- a/i18n/README_zh-hans.md +++ b/i18n/README_zh-hans.md @@ -198,7 +198,7 @@ checkpoint: 检查点 ### 使用 pip -这个仓库已在 Python 3.9+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下经过测试。 +这个仓库已在 Python 3.9+、Flax 0.4.1+、PyTorch 2.0+ 和 TensorFlow 2.6+ 下经过测试。 你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。 diff --git a/i18n/README_zh-hant.md b/i18n/README_zh-hant.md index 87c623ee84a61b..dcafd4958ed1d1 100644 --- a/i18n/README_zh-hant.md +++ b/i18n/README_zh-hant.md @@ -210,7 +210,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換 ### 使用 pip -這個 Repository 已在 Python 3.9+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下經過測試。 +這個 Repository 已在 Python 3.9+、Flax 0.4.1+、PyTorch 2.0+ 和 TensorFlow 2.6+ 下經過測試。 你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。 diff --git a/src/transformers/convert_pytorch_checkpoint_to_tf2.py b/src/transformers/convert_pytorch_checkpoint_to_tf2.py index 3875879f0e056d..c3431ad5b2e0ac 100755 --- a/src/transformers/convert_pytorch_checkpoint_to_tf2.py +++ b/src/transformers/convert_pytorch_checkpoint_to_tf2.py @@ -106,7 +106,6 @@ XLMWithLMHeadModel, XLNetLMHeadModel, ) - from .pytorch_utils import is_torch_greater_or_equal_than_1_13 logging.set_verbosity_info() @@ -279,7 +278,7 @@ def convert_pt_checkpoint_to_tf( if compare_with_pt_model: tfo = tf_model(tf_model.dummy_inputs, training=False) # build the network - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} state_dict = torch.load( pytorch_checkpoint_path, map_location="cpu", diff --git a/src/transformers/modeling_flax_pytorch_utils.py b/src/transformers/modeling_flax_pytorch_utils.py index 8bbd8587b683f4..8fbba8a1651364 100644 --- a/src/transformers/modeling_flax_pytorch_utils.py +++ b/src/transformers/modeling_flax_pytorch_utils.py @@ -63,8 +63,6 @@ def load_pytorch_checkpoint_in_flax_state_dict( else: try: import torch # noqa: F401 - - from .pytorch_utils import is_torch_greater_or_equal_than_1_13 # noqa: F401 except (ImportError, ModuleNotFoundError): logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" @@ -73,7 +71,7 @@ def load_pytorch_checkpoint_in_flax_state_dict( ) raise - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} pt_state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.") @@ -246,13 +244,11 @@ def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model): def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): import torch - from .pytorch_utils import is_torch_greater_or_equal_than_1_13 - # Load the index flax_state_dict = {} for shard_file in shard_filenames: # load using msgpack utils - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} pt_state_dict = torch.load(shard_file, **weights_only_kwarg) weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} pt_state_dict = { diff --git a/src/transformers/modeling_tf_pytorch_utils.py b/src/transformers/modeling_tf_pytorch_utils.py index 7f1367481ade62..8ec24d6e1872ef 100644 --- a/src/transformers/modeling_tf_pytorch_utils.py +++ b/src/transformers/modeling_tf_pytorch_utils.py @@ -180,8 +180,6 @@ def load_pytorch_checkpoint_in_tf2_model( import tensorflow as tf # noqa: F401 import torch # noqa: F401 from safetensors.torch import load_file as safe_load_file # noqa: F401 - - from .pytorch_utils import is_torch_greater_or_equal_than_1_13 # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " @@ -201,7 +199,7 @@ def load_pytorch_checkpoint_in_tf2_model( if pt_path.endswith(".safetensors"): state_dict = safe_load_file(pt_path) else: - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg) pt_state_dict.update(state_dict) diff --git a/src/transformers/modeling_utils.py b/src/transformers/modeling_utils.py index 9dcd6d758ecbe7..8c97f240ddd1d0 100755 --- a/src/transformers/modeling_utils.py +++ b/src/transformers/modeling_utils.py @@ -54,7 +54,6 @@ apply_chunking_to_forward, find_pruneable_heads_and_indices, id_tensor_storage, - is_torch_greater_or_equal_than_1_13, prune_conv1d_layer, prune_layer, prune_linear_layer, @@ -476,7 +475,7 @@ def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True): error_message += f"\nMissing key(s): {str_unexpected_keys}." raise RuntimeError(error_message) - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg) for shard_file in shard_files: @@ -532,7 +531,7 @@ def load_state_dict( and is_zipfile(checkpoint_file) ): extra_args = {"mmap": True} - weights_only_kwarg = {"weights_only": weights_only} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": weights_only} return torch.load( checkpoint_file, map_location=map_location, diff --git a/src/transformers/models/falcon/modeling_falcon.py b/src/transformers/models/falcon/modeling_falcon.py index 8d5a224f4f6654..e0e4ff424cb47d 100644 --- a/src/transformers/models/falcon/modeling_falcon.py +++ b/src/transformers/models/falcon/modeling_falcon.py @@ -38,7 +38,6 @@ ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS from ...modeling_utils import PreTrainedModel -from ...pytorch_utils import is_torch_greater_or_equal_than_2_0 from ...utils import ( add_code_sample_docstrings, add_start_docstrings, @@ -815,14 +814,6 @@ def _init_weights(self, module: nn.Module): # Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa @classmethod def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig": - # NOTE: Falcon supported SDPA from PyTorch 2.0. We keep it like that for backward compatibility (automatically use SDPA for torch>=2.0). - if hard_check_only: - if not is_torch_greater_or_equal_than_2_0: - raise ImportError("PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.0.") - - if not is_torch_greater_or_equal_than_2_0: - return config - _is_bettertransformer = getattr(cls, "use_bettertransformer", False) if _is_bettertransformer: return config diff --git a/src/transformers/models/gpt_neo/modeling_gpt_neo.py b/src/transformers/models/gpt_neo/modeling_gpt_neo.py index 6763695bfba036..ef23b5d208fd79 100755 --- a/src/transformers/models/gpt_neo/modeling_gpt_neo.py +++ b/src/transformers/models/gpt_neo/modeling_gpt_neo.py @@ -36,7 +36,6 @@ TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel -from ...pytorch_utils import is_torch_greater_or_equal_than_1_13 from ...utils import ( add_code_sample_docstrings, add_start_docstrings, @@ -56,9 +55,6 @@ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. # It means that the function will not be traced through and simply appear as a node in the graph. if is_torch_fx_available(): - if not is_torch_greater_or_equal_than_1_13: - import torch.fx - _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) diff --git a/src/transformers/models/phimoe/modeling_phimoe.py b/src/transformers/models/phimoe/modeling_phimoe.py index cd54b226e1d85c..8f6b092da6e6ad 100644 --- a/src/transformers/models/phimoe/modeling_phimoe.py +++ b/src/transformers/models/phimoe/modeling_phimoe.py @@ -33,7 +33,6 @@ ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS from ...modeling_utils import PreTrainedModel -from ...pytorch_utils import is_torch_greater_or_equal_than_1_13 from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, @@ -51,9 +50,6 @@ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. # It means that the function will not be traced through and simply appear as a node in the graph. if is_torch_fx_available(): - if not is_torch_greater_or_equal_than_1_13: - import torch.fx - _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) diff --git a/src/transformers/models/superpoint/modeling_superpoint.py b/src/transformers/models/superpoint/modeling_superpoint.py index 1075de299a9f40..dcdd85460b39bd 100644 --- a/src/transformers/models/superpoint/modeling_superpoint.py +++ b/src/transformers/models/superpoint/modeling_superpoint.py @@ -25,7 +25,6 @@ ) from transformers.models.superpoint.configuration_superpoint import SuperPointConfig -from ...pytorch_utils import is_torch_greater_or_equal_than_1_13 from ...utils import ( ModelOutput, add_start_docstrings, @@ -314,7 +313,7 @@ def _sample_descriptors(keypoints, descriptors, scale: int = 8) -> torch.Tensor: divisor = divisor.to(keypoints) keypoints /= divisor keypoints = keypoints * 2 - 1 # normalize to (-1, 1) - kwargs = {"align_corners": True} if is_torch_greater_or_equal_than_1_13 else {} + kwargs = {"align_corners": True} # [batch_size, num_channels, num_keypoints, 2] -> [batch_size, num_channels, num_keypoints, 2] keypoints = keypoints.view(batch_size, 1, -1, 2) descriptors = nn.functional.grid_sample(descriptors, keypoints, mode="bilinear", **kwargs) diff --git a/src/transformers/models/tapas/modeling_tapas.py b/src/transformers/models/tapas/modeling_tapas.py index b74a27ae5ce589..2ea0d38a23f933 100644 --- a/src/transformers/models/tapas/modeling_tapas.py +++ b/src/transformers/models/tapas/modeling_tapas.py @@ -31,7 +31,6 @@ from ...pytorch_utils import ( apply_chunking_to_forward, find_pruneable_heads_and_indices, - is_torch_greater_or_equal_than_1_12, prune_linear_layer, ) from ...utils import ( @@ -46,12 +45,6 @@ logger = logging.get_logger(__name__) -if not is_torch_greater_or_equal_than_1_12: - logger.warning( - f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use " - "TapasModel. Please upgrade torch." - ) - _CONFIG_FOR_DOC = "TapasConfig" _CHECKPOINT_FOR_DOC = "google/tapas-base" diff --git a/src/transformers/models/wav2vec2/modeling_wav2vec2.py b/src/transformers/models/wav2vec2/modeling_wav2vec2.py index e4df2e6ae3b718..5168904a3579d9 100755 --- a/src/transformers/models/wav2vec2/modeling_wav2vec2.py +++ b/src/transformers/models/wav2vec2/modeling_wav2vec2.py @@ -38,7 +38,6 @@ XVectorOutput, ) from ...modeling_utils import PreTrainedModel -from ...pytorch_utils import is_torch_greater_or_equal_than_1_13 from ...utils import ( ModelOutput, add_code_sample_docstrings, @@ -1590,7 +1589,7 @@ def load_adapter(self, target_lang: str, force_load=True, **kwargs): cache_dir=cache_dir, ) - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} state_dict = torch.load( weight_path, map_location="cpu", diff --git a/src/transformers/pytorch_utils.py b/src/transformers/pytorch_utils.py index fab1b9118d18d3..95c8748375ce0a 100644 --- a/src/transformers/pytorch_utils.py +++ b/src/transformers/pytorch_utils.py @@ -34,9 +34,6 @@ is_torch_greater_or_equal_than_2_3 = parsed_torch_version_base >= version.parse("2.3") is_torch_greater_or_equal_than_2_2 = parsed_torch_version_base >= version.parse("2.2") is_torch_greater_or_equal_than_2_1 = parsed_torch_version_base >= version.parse("2.1") -is_torch_greater_or_equal_than_2_0 = parsed_torch_version_base >= version.parse("2.0") -is_torch_greater_or_equal_than_1_13 = parsed_torch_version_base >= version.parse("1.13") -is_torch_greater_or_equal_than_1_12 = parsed_torch_version_base >= version.parse("1.12") # Cache this result has it's a C FFI call which can be pretty time-consuming _torch_distributed_available = torch.distributed.is_available() diff --git a/src/transformers/trainer.py b/src/transformers/trainer.py index 4d90c13df825f2..c878d2b345cc31 100755 --- a/src/transformers/trainer.py +++ b/src/transformers/trainer.py @@ -75,7 +75,6 @@ from .processing_utils import ProcessorMixin from .pytorch_utils import ( ALL_LAYERNORM_LAYERS, - is_torch_greater_or_equal_than_1_13, is_torch_greater_or_equal_than_2_3, ) from .tokenization_utils_base import PreTrainedTokenizerBase @@ -2778,7 +2777,7 @@ def _load_from_checkpoint(self, resume_from_checkpoint, model=None): ) if os.path.isfile(weights_file) or os.path.isfile(safe_weights_file) or is_fsdp_ckpt: - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} # If the model is on the GPU, it still works! if is_sagemaker_mp_enabled(): if os.path.isfile(os.path.join(resume_from_checkpoint, "user_content.pt")): @@ -2899,7 +2898,7 @@ def _load_best_model(self): or os.path.exists(best_safe_adapter_model_path) ): has_been_loaded = True - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} + weights_only_kwarg = {"weights_only": True} if is_sagemaker_mp_enabled(): if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")): # If the 'user_content.pt' file exists, load with the new smp api. diff --git a/src/transformers/trainer_pt_utils.py b/src/transformers/trainer_pt_utils.py index 5f78860fe6c115..da95329e184567 100644 --- a/src/transformers/trainer_pt_utils.py +++ b/src/transformers/trainer_pt_utils.py @@ -56,12 +56,7 @@ import torch_xla.core.xla_model as xm if is_torch_available(): - from .pytorch_utils import is_torch_greater_or_equal_than_2_0 - - if is_torch_greater_or_equal_than_2_0: - from torch.optim.lr_scheduler import LRScheduler - else: - from torch.optim.lr_scheduler import _LRScheduler as LRScheduler + from torch.optim.lr_scheduler import LRScheduler logger = logging.get_logger(__name__) diff --git a/src/transformers/training_args.py b/src/transformers/training_args.py index 6b141cff39e1f7..6950e8e66d3ac1 100644 --- a/src/transformers/training_args.py +++ b/src/transformers/training_args.py @@ -71,8 +71,6 @@ import torch import torch.distributed as dist - from .pytorch_utils import is_torch_greater_or_equal_than_2_0 - if is_accelerate_available(): from accelerate.state import AcceleratorState, PartialState from accelerate.utils import DistributedType @@ -1157,7 +1155,7 @@ class TrainingArguments: }, ) dataloader_prefetch_factor: Optional[int] = field( - default=None if not is_torch_available() or is_torch_greater_or_equal_than_2_0 else 2, + default=None, metadata={ "help": ( "Number of batches loaded in advance by each worker. " @@ -1702,14 +1700,6 @@ def __post_init__(self): raise ValueError( "Your setup doesn't support bf16/gpu. You need torch>=1.10, using Ampere GPU with cuda>=11.0" ) - elif not is_torch_xpu_available(): - # xpu - from .pytorch_utils import is_torch_greater_or_equal_than_1_12 - - if not is_torch_greater_or_equal_than_1_12: - raise ValueError( - "Your setup doesn't support bf16/xpu. You need torch>=1.12, using Intel XPU/GPU with IPEX installed" - ) if self.fp16 and self.bf16: raise ValueError("At most one of fp16 and bf16 can be True, but not both") @@ -2056,11 +2046,7 @@ def __post_init__(self): if self.use_cpu: self.dataloader_pin_memory = False - if ( - (not is_torch_available() or is_torch_greater_or_equal_than_2_0) - and self.dataloader_num_workers == 0 - and self.dataloader_prefetch_factor is not None - ): + if self.dataloader_num_workers == 0 and self.dataloader_prefetch_factor is not None: raise ValueError( "--dataloader_prefetch_factor can only be set when data is loaded in a different process, i.e." " when --dataloader_num_workers > 1." diff --git a/src/transformers/utils/fx.py b/src/transformers/utils/fx.py index 101b34182a7309..45fa3d9ca68c51 100755 --- a/src/transformers/utils/fx.py +++ b/src/transformers/utils/fx.py @@ -60,7 +60,6 @@ MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) -from ..pytorch_utils import is_torch_greater_or_equal_than_2_0 from .import_utils import ( ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, @@ -635,10 +634,9 @@ def to_concrete(t): operator.getitem: operator_getitem, } -if is_torch_greater_or_equal_than_2_0: - _MANUAL_META_OVERRIDES[torch.nn.functional.scaled_dot_product_attention] = ( - torch_nn_functional_scaled_dot_product_attention - ) +_MANUAL_META_OVERRIDES[torch.nn.functional.scaled_dot_product_attention] = ( + torch_nn_functional_scaled_dot_product_attention +) class HFProxy(Proxy): diff --git a/tests/models/aria/test_modeling_aria.py b/tests/models/aria/test_modeling_aria.py index d3458530ac349e..b6f1da56c6782e 100644 --- a/tests/models/aria/test_modeling_aria.py +++ b/tests/models/aria/test_modeling_aria.py @@ -45,8 +45,7 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False + if is_vision_available(): from PIL import Image diff --git a/tests/models/falcon_mamba/test_modeling_falcon_mamba.py b/tests/models/falcon_mamba/test_modeling_falcon_mamba.py index 893132f4337dd4..f02e8f167636eb 100644 --- a/tests/models/falcon_mamba/test_modeling_falcon_mamba.py +++ b/tests/models/falcon_mamba/test_modeling_falcon_mamba.py @@ -43,9 +43,6 @@ FalconMambaModel, ) from transformers.cache_utils import MambaCache - from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 -else: - is_torch_greater_or_equal_than_2_0 = False # Copied from transformers.tests.models.mamba.MambaModelTester with Mamba->FalconMamba,mamba->falcon_mamba @@ -246,9 +243,6 @@ def prepare_config_and_inputs_for_common(self): return config, inputs_dict -@unittest.skipIf( - not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" -) @require_torch # Copied from transformers.tests.models.mamba.MambaModelTest with Mamba->Falcon,mamba->falcon_mamba,FalconMambaCache->MambaCache class FalconMambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): diff --git a/tests/models/gpt_bigcode/test_modeling_gpt_bigcode.py b/tests/models/gpt_bigcode/test_modeling_gpt_bigcode.py index 1db484c4062c35..281594492500b0 100644 --- a/tests/models/gpt_bigcode/test_modeling_gpt_bigcode.py +++ b/tests/models/gpt_bigcode/test_modeling_gpt_bigcode.py @@ -37,9 +37,6 @@ GPTBigCodeModel, ) from transformers.models.gpt_bigcode.modeling_gpt_bigcode import GPTBigCodeAttention - from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12 -else: - is_torch_greater_or_equal_than_1_12 = False class GPTBigCodeModelTester: @@ -504,10 +501,6 @@ class GPTBigCodeMHAModelTest(GPTBigCodeModelTest): multi_query = False -@unittest.skipIf( - not is_torch_greater_or_equal_than_1_12, - reason="`GPTBigCode` checkpoints use `PytorchGELUTanh` which requires `torch>=1.12.0`.", -) @slow @require_torch class GPTBigCodeModelLanguageGenerationTest(unittest.TestCase): diff --git a/tests/models/gptj/test_modeling_gptj.py b/tests/models/gptj/test_modeling_gptj.py index afc741cd502dec..50840bbcfaa6dc 100644 --- a/tests/models/gptj/test_modeling_gptj.py +++ b/tests/models/gptj/test_modeling_gptj.py @@ -41,9 +41,6 @@ GPTJForSequenceClassification, GPTJModel, ) - from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12 -else: - is_torch_greater_or_equal_than_1_12 = False class GPTJModelTester: @@ -363,15 +360,9 @@ class GPTJModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin test_model_parallel = False test_head_masking = False - @unittest.skipIf( - not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+." - ) def test_torch_fx(self): super().test_torch_fx() - @unittest.skipIf( - not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+." - ) def test_torch_fx_output_loss(self): super().test_torch_fx_output_loss() diff --git a/tests/models/idefics/test_modeling_idefics.py b/tests/models/idefics/test_modeling_idefics.py index 12004cc3c8ad89..94229b13d2cbfe 100644 --- a/tests/models/idefics/test_modeling_idefics.py +++ b/tests/models/idefics/test_modeling_idefics.py @@ -44,9 +44,6 @@ from transformers import IdeficsForVisionText2Text, IdeficsModel, IdeficsProcessor from transformers.models.idefics.configuration_idefics import IdeficsPerceiverConfig, IdeficsVisionConfig - from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 -else: - is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image @@ -327,7 +324,6 @@ def test_eager_matches_sdpa_generate(self): self.skipTest(reason="Idefics has a hard requirement on SDPA, skipping this test") -@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required") @require_torch class IdeficsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (IdeficsModel, IdeficsForVisionText2Text) if is_torch_available() else () @@ -594,7 +590,6 @@ def test_sdpa_can_dispatch_non_composite_models(self): pass -@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required") @require_torch class IdeficsForVisionText2TextTest(IdeficsModelTest, GenerationTesterMixin, unittest.TestCase): all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else () @@ -818,7 +813,6 @@ def test_sdpa_can_dispatch_non_composite_models(self): pass -@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required") @require_torch @require_vision class IdeficsModelIntegrationTest(TestCasePlus): diff --git a/tests/models/idefics2/test_modeling_idefics2.py b/tests/models/idefics2/test_modeling_idefics2.py index 83e125c07c15bc..974628c8b4324f 100644 --- a/tests/models/idefics2/test_modeling_idefics2.py +++ b/tests/models/idefics2/test_modeling_idefics2.py @@ -48,8 +48,6 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image diff --git a/tests/models/idefics3/test_modeling_idefics3.py b/tests/models/idefics3/test_modeling_idefics3.py index 5bfd4c3f3c0e83..c25fa1180649fa 100644 --- a/tests/models/idefics3/test_modeling_idefics3.py +++ b/tests/models/idefics3/test_modeling_idefics3.py @@ -40,8 +40,6 @@ Idefics3ForConditionalGeneration, Idefics3Model, ) -else: - is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image diff --git a/tests/models/llava/test_modeling_llava.py b/tests/models/llava/test_modeling_llava.py index 3d08ab35e0f630..b4a959a00d2a0c 100644 --- a/tests/models/llava/test_modeling_llava.py +++ b/tests/models/llava/test_modeling_llava.py @@ -43,8 +43,7 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False + if is_vision_available(): from PIL import Image diff --git a/tests/models/llava_next/test_modeling_llava_next.py b/tests/models/llava_next/test_modeling_llava_next.py index c258ce96b94e48..14b0fb8cc07db7 100644 --- a/tests/models/llava_next/test_modeling_llava_next.py +++ b/tests/models/llava_next/test_modeling_llava_next.py @@ -48,8 +48,7 @@ import torch from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches -else: - is_torch_greater_or_equal_than_2_0 = False + if is_vision_available(): from PIL import Image diff --git a/tests/models/llava_next_video/test_modeling_llava_next_video.py b/tests/models/llava_next_video/test_modeling_llava_next_video.py index a6fb341ff9bf56..c431f91bf5102f 100644 --- a/tests/models/llava_next_video/test_modeling_llava_next_video.py +++ b/tests/models/llava_next_video/test_modeling_llava_next_video.py @@ -48,8 +48,6 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image diff --git a/tests/models/llava_onevision/test_modeling_llava_onevision.py b/tests/models/llava_onevision/test_modeling_llava_onevision.py index a217eee2c70671..6965d2033ec730 100644 --- a/tests/models/llava_onevision/test_modeling_llava_onevision.py +++ b/tests/models/llava_onevision/test_modeling_llava_onevision.py @@ -48,8 +48,6 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image diff --git a/tests/models/mamba/test_modeling_mamba.py b/tests/models/mamba/test_modeling_mamba.py index d432dfa93df487..455022140f7c5b 100644 --- a/tests/models/mamba/test_modeling_mamba.py +++ b/tests/models/mamba/test_modeling_mamba.py @@ -38,9 +38,6 @@ MambaModel, ) from transformers.models.mamba.modeling_mamba import MambaCache - from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 -else: - is_torch_greater_or_equal_than_2_0 = False class MambaModelTester: @@ -239,9 +236,6 @@ def prepare_config_and_inputs_for_common(self): return config, inputs_dict -@unittest.skipIf( - not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" -) @require_torch class MambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MambaModel, MambaForCausalLM) if is_torch_available() else () diff --git a/tests/models/mamba2/test_modeling_mamba2.py b/tests/models/mamba2/test_modeling_mamba2.py index c2ef68f2614ea5..17cbdc1e8d51dd 100644 --- a/tests/models/mamba2/test_modeling_mamba2.py +++ b/tests/models/mamba2/test_modeling_mamba2.py @@ -37,9 +37,6 @@ Mamba2Model, ) from transformers.models.mamba2.modeling_mamba2 import Mamba2Cache, Mamba2Mixer - from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 -else: - is_torch_greater_or_equal_than_2_0 = False class Mamba2ModelTester: @@ -214,9 +211,6 @@ def create_and_check_mamba2_slow_vs_fast_forward(self, config, input_ids, *args, self.parent.assertTrue(torch.allclose(outputs_fast, outputs_slow, atol=1e-3, rtol=1e-3)) -@unittest.skipIf( - not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" -) @require_torch class Mamba2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Mamba2Model, Mamba2ForCausalLM) if is_torch_available() else () diff --git a/tests/models/paligemma/test_modeling_paligemma.py b/tests/models/paligemma/test_modeling_paligemma.py index 5ffea7ffe55087..f973e1211dc081 100644 --- a/tests/models/paligemma/test_modeling_paligemma.py +++ b/tests/models/paligemma/test_modeling_paligemma.py @@ -40,8 +40,7 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False + if is_vision_available(): from PIL import Image diff --git a/tests/models/pixtral/test_modeling_pixtral.py b/tests/models/pixtral/test_modeling_pixtral.py index 0c36cb5a4e0554..3e5667caf45e3e 100644 --- a/tests/models/pixtral/test_modeling_pixtral.py +++ b/tests/models/pixtral/test_modeling_pixtral.py @@ -33,8 +33,7 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False + if is_vision_available(): pass diff --git a/tests/models/qwen2_audio/test_modeling_qwen2_audio.py b/tests/models/qwen2_audio/test_modeling_qwen2_audio.py index 4806ec2c72d339..8974d6923b391c 100644 --- a/tests/models/qwen2_audio/test_modeling_qwen2_audio.py +++ b/tests/models/qwen2_audio/test_modeling_qwen2_audio.py @@ -41,8 +41,6 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False class Qwen2AudioModelTester: diff --git a/tests/models/qwen2_vl/test_modeling_qwen2_vl.py b/tests/models/qwen2_vl/test_modeling_qwen2_vl.py index 93ed33ae774458..2c27e1a03a647c 100644 --- a/tests/models/qwen2_vl/test_modeling_qwen2_vl.py +++ b/tests/models/qwen2_vl/test_modeling_qwen2_vl.py @@ -47,8 +47,6 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image diff --git a/tests/models/rwkv/test_modeling_rwkv.py b/tests/models/rwkv/test_modeling_rwkv.py index 5e82956e3efa6c..0bc5c2de070135 100644 --- a/tests/models/rwkv/test_modeling_rwkv.py +++ b/tests/models/rwkv/test_modeling_rwkv.py @@ -33,9 +33,6 @@ RwkvForCausalLM, RwkvModel, ) - from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 -else: - is_torch_greater_or_equal_than_2_0 = False class RwkvModelTester: @@ -231,9 +228,6 @@ def prepare_config_and_inputs_for_common(self): return config, inputs_dict -@unittest.skipIf( - not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" -) @require_torch class RwkvModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (RwkvModel, RwkvForCausalLM) if is_torch_available() else () @@ -440,9 +434,6 @@ def test_left_padding_compatibility(self): pass -@unittest.skipIf( - not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" -) @slow class RWKVIntegrationTests(unittest.TestCase): def setUp(self): diff --git a/tests/models/tapas/test_modeling_tapas.py b/tests/models/tapas/test_modeling_tapas.py index 4ee159d6bddd1d..05618f4a4efd8c 100644 --- a/tests/models/tapas/test_modeling_tapas.py +++ b/tests/models/tapas/test_modeling_tapas.py @@ -60,9 +60,6 @@ reduce_mean, reduce_sum, ) - from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12 -else: - is_torch_greater_or_equal_than_1_12 = False class TapasModelTester: @@ -411,7 +408,6 @@ def prepare_config_and_inputs_for_common(self): return config, inputs_dict -@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch class TapasModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( @@ -578,7 +574,6 @@ def prepare_tapas_batch_inputs_for_training(): return table, queries, answer_coordinates, answer_text, float_answer -@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch class TapasModelIntegrationTest(unittest.TestCase): @cached_property @@ -930,10 +925,6 @@ def test_inference_classification_head(self): self.assertTrue(torch.allclose(outputs.logits, expected_tensor, atol=0.05)) -# Below: tests for Tapas utilities which are defined in modeling_tapas.py. -# These are based on segmented_tensor_test.py of the original implementation. -# URL: https://github.com/google-research/tapas/blob/master/tapas/models/segmented_tensor_test.py -@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch class TapasUtilitiesTest(unittest.TestCase): def _prepare_tables(self): diff --git a/tests/models/tapas/test_tokenization_tapas.py b/tests/models/tapas/test_tokenization_tapas.py index 0a911f7182b4a0..9a3a2578fd16b3 100644 --- a/tests/models/tapas/test_tokenization_tapas.py +++ b/tests/models/tapas/test_tokenization_tapas.py @@ -23,7 +23,7 @@ import pandas as pd from parameterized import parameterized -from transformers import AddedToken, is_torch_available +from transformers import AddedToken from transformers.models.tapas.tokenization_tapas import ( VOCAB_FILES_NAMES, BasicTokenizer, @@ -45,12 +45,6 @@ from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english, merge_model_tokenizer_mappings -if is_torch_available(): - from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12 -else: - is_torch_greater_or_equal_than_1_12 = False - - @require_tokenizers @require_pandas class TapasTokenizationTest(TokenizerTesterMixin, unittest.TestCase): @@ -1048,7 +1042,6 @@ def test_token_type_ids(self): # Do the same test as modeling common. self.assertIn(0, output["token_type_ids"][0]) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch @slow def test_torch_encode_plus_sent_to_model(self): diff --git a/tests/models/vipllava/test_modeling_vipllava.py b/tests/models/vipllava/test_modeling_vipllava.py index 4f501fc10a028f..8286b3c94fb9da 100644 --- a/tests/models/vipllava/test_modeling_vipllava.py +++ b/tests/models/vipllava/test_modeling_vipllava.py @@ -41,8 +41,6 @@ if is_torch_available(): import torch -else: - is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image diff --git a/tests/pipelines/test_pipelines_table_question_answering.py b/tests/pipelines/test_pipelines_table_question_answering.py index 9481ab200063f8..e2141dc7cc2f66 100644 --- a/tests/pipelines/test_pipelines_table_question_answering.py +++ b/tests/pipelines/test_pipelines_table_question_answering.py @@ -20,7 +20,6 @@ AutoTokenizer, TableQuestionAnsweringPipeline, TFAutoModelForTableQuestionAnswering, - is_torch_available, pipeline, ) from transformers.testing_utils import ( @@ -33,12 +32,6 @@ ) -if is_torch_available(): - from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12 -else: - is_torch_greater_or_equal_than_1_12 = False - - @is_pipeline_test class TQAPipelineTests(unittest.TestCase): # Putting it there for consistency, but TQA do not have fast tokenizer @@ -150,7 +143,6 @@ def test_small_model_tf(self): }, ) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch def test_small_model_pt(self, torch_dtype="float32"): model_id = "lysandre/tiny-tapas-random-wtq" @@ -253,12 +245,10 @@ def test_small_model_pt(self, torch_dtype="float32"): }, ) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch def test_small_model_pt_fp16(self): self.test_small_model_pt(torch_dtype="float16") - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch def test_slow_tokenizer_sqa_pt(self, torch_dtype="float32"): model_id = "lysandre/tiny-tapas-random-sqa" @@ -378,7 +368,6 @@ def test_slow_tokenizer_sqa_pt(self, torch_dtype="float32"): }, ) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @require_torch def test_slow_tokenizer_sqa_pt_fp16(self): self.test_slow_tokenizer_sqa_pt(torch_dtype="float16") @@ -505,7 +494,6 @@ def test_slow_tokenizer_sqa_tf(self): }, ) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @slow @require_torch def test_integration_wtq_pt(self, torch_dtype="float32"): @@ -551,7 +539,6 @@ def test_integration_wtq_pt(self, torch_dtype="float32"): ] self.assertListEqual(results, expected_results) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @slow @require_torch def test_integration_wtq_pt_fp16(self): @@ -606,7 +593,6 @@ def test_integration_wtq_tf(self): ] self.assertListEqual(results, expected_results) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @slow @require_torch def test_integration_sqa_pt(self, torch_dtype="float32"): @@ -632,7 +618,6 @@ def test_integration_sqa_pt(self, torch_dtype="float32"): ] self.assertListEqual(results, expected_results) - @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+") @slow @require_torch def test_integration_sqa_pt_fp16(self):