diff --git a/docs/source/en/model_doc/idefics2.md b/docs/source/en/model_doc/idefics2.md index 5b91fcf38cd7b5..a66fa03a88fcea 100644 --- a/docs/source/en/model_doc/idefics2.md +++ b/docs/source/en/model_doc/idefics2.md @@ -27,13 +27,18 @@ images, or simply behave as a pure language model without visual inputs. It impr document understanding, OCR, or visual reasoning. Idefics2 is lightweight (8 billion parameters) and treats images in their native aspect ratio and resolution, which allows for varying inference efficiency. -Tips: +This model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). +The original code can be found [here](https://huggingface.co/HuggingFaceM4/idefics2). + +## Usage tips + - Each sample can contain multiple images, and the number of images can vary between samples. The processor will pad the inputs to the maximum number of images in a batch for input to the model. - The processor has a `do_image_splitting` option. If `True`, each input image will be split into 4 sub-images, and concatenated with the original to form 5 images. This is useful for increasing model performance. Make sure `processor.image_processor.do_image_splitting` is set to `False` if the model was not trained with this option. - `text` passed to the processor should have the `` tokens where the images should be inserted. And `` at the end of each utterance if the text is a chat message. - The processor has its own `apply_chat_template` method to convert chat messages to text that can then be passed as `text` to the processor. Example of how to use the processor on chat messages: + ```python import requests from PIL import Image @@ -56,20 +61,30 @@ messages = [{ }] processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b") -model = Idefics2ForConditionalGeneration.from_pretrained("HuggingFaceM4/idefics2-8b") +model = Idefics2ForConditionalGeneration.from_pretrained("HuggingFaceM4/idefics2-8b", device_map="auto") -text = processor.apply_chat_template(messages) -# "User: What’s the difference between these two images?\n" -print(text) +# at inference time, one needs to pass `add_generation_prompt=True` in order to make sure the model completes the prompt +text = processor.apply_chat_template(messages, add_generation_prompt=True) -inputs = processor(images=images, text=text) +inputs = processor(images=images, text=text, return_tensors="pt").to("cuda") -generated_text = model.generate(**inputs) +generated_text = model.generate(**inputs, max_new_tokens=500) +generated_text = processor.batch_decode(generated_text, skip_special_tokens=True)[0] +print("Generated text:", generated_text) ``` -This model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). -The original code can be found [here](https://huggingface.co/HuggingFaceM4/idefics2). +## Model optimizations + +By default, weights are loaded in float32 (32 bits per parameter). However, one can speed up the model significantly by leveraging Flash-Attention-2. + + + +## Resources + +A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Idefics2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. +- A notebook on how to fine-tune Idefics2 on a custom dataset using the [Trainer](../main_classes/trainer.md) can be found [here](https://colab.research.google.com/drive/1NtcTgRbSBKN7pYD3Vdx1j9m8pt3fhFDB?usp=sharing). It supports both full fine-tuning as well as (quantized) LoRa. +- A script regarding how to fine-tune Idefics2 using the TRL library can be found [here](). ## Idefics2Config diff --git a/docs/source/en/model_doc/mistral.md b/docs/source/en/model_doc/mistral.md index 0ab214206165f1..b2c011c19f18bb 100644 --- a/docs/source/en/model_doc/mistral.md +++ b/docs/source/en/model_doc/mistral.md @@ -18,7 +18,7 @@ rendered properly in your Markdown viewer. ## Overview -Mistral was introduced in the [this blogpost](https://mistral.ai/news/announcing-mistral-7b/) by Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. +Mistral was introduced in [this blogpost](https://mistral.ai/news/announcing-mistral-7b/) by Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. The introduction of the blog post says: @@ -51,39 +51,39 @@ The Mistral team has released 3 checkpoints: The base model can be used as follows: ```python ->>> from transformers import AutoModelForCausalLM, AutoTokenizer +from transformers import AutoModelForCausalLM, AutoTokenizer ->>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto") ->>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") +model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto") +tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") ->>> prompt = "My favourite condiment is" +prompt = "My favourite condiment is" ->>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") ->>> model.to(device) +model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") +model.to(device) ->>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) ->>> tokenizer.batch_decode(generated_ids)[0] +generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) +tokenizer.batch_decode(generated_ids)[0] "My favourite condiment is to ..." ``` The instruction tuned model can be used as follows: ```python ->>> from transformers import AutoModelForCausalLM, AutoTokenizer +from transformers import AutoModelForCausalLM, AutoTokenizer ->>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map="auto") ->>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") +model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map="auto") +tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") ->>> messages = [ -... {"role": "user", "content": "What is your favourite condiment?"}, -... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, -... {"role": "user", "content": "Do you have mayonnaise recipes?"} -... ] +messages = [ + {"role": "user", "content": "What is your favourite condiment?"}, + {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, + {"role": "user", "content": "Do you have mayonnaise recipes?"} +] ->>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") +model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") ->>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True) ->>> tokenizer.batch_decode(generated_ids)[0] +generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True) +tokenizer.batch_decode(generated_ids)[0] "Mayonnaise can be made as follows: (...)" ``` @@ -104,19 +104,19 @@ Make also sure that you have a hardware that is compatible with Flash-Attention To load and run a model using Flash Attention-2, refer to the snippet below: ```python ->>> import torch ->>> from transformers import AutoModelForCausalLM, AutoTokenizer +import torch +from transformers import AutoModelForCausalLM, AutoTokenizer ->>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto") ->>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") +model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto") +tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") ->>> prompt = "My favourite condiment is" +prompt = "My favourite condiment is" ->>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") ->>> model.to(device) +model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") +model.to(device) ->>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) ->>> tokenizer.batch_decode(generated_ids)[0] +generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) +tokenizer.batch_decode(generated_ids)[0] "My favourite condiment is to (...)" ``` @@ -142,31 +142,31 @@ As the Mistral model has 7 billion parameters, that would require about 14GB of Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods): ```python ->>> import torch ->>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig +import torch +from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig ->>> # specify how to quantize the model ->>> quantization_config = BitsAndBytesConfig( -... load_in_4bit=True, -... bnb_4bit_quant_type="nf4", -... bnb_4bit_compute_dtype="torch.float16", -... ) +# specify how to quantize the model +quantization_config = BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_quant_type="nf4", + bnb_4bit_compute_dtype="torch.float16", +) ->>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", quantization_config=True, device_map="auto") ->>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") +model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", quantization_config=True, device_map="auto") +tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") ->>> prompt = "My favourite condiment is" +prompt = "My favourite condiment is" ->>> messages = [ -... {"role": "user", "content": "What is your favourite condiment?"}, -... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, -... {"role": "user", "content": "Do you have mayonnaise recipes?"} -... ] +messages = [ + {"role": "user", "content": "What is your favourite condiment?"}, + {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, + {"role": "user", "content": "Do you have mayonnaise recipes?"} +] ->>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") +model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") ->>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True) ->>> tokenizer.batch_decode(generated_ids)[0] +generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True) +tokenizer.batch_decode(generated_ids)[0] "The expected output" ``` diff --git a/src/transformers/models/idefics2/Fine_tune_Donut_on_a_custom_dataset_(CORD)_with_PyTorch_Lightning.ipynb b/src/transformers/models/idefics2/Fine_tune_Donut_on_a_custom_dataset_(CORD)_with_PyTorch_Lightning.ipynb new file mode 100644 index 00000000000000..439ced746b70f1 --- /dev/null +++ b/src/transformers/models/idefics2/Fine_tune_Donut_on_a_custom_dataset_(CORD)_with_PyTorch_Lightning.ipynb @@ -0,0 +1,22471 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DNMqJ821yNVo" + }, + "source": [ + "## Set-up environment\n", + "\n", + "First, let's install the relevant libraries:\n", + "* 🤗 Transformers, for the model\n", + "* 🤗 Datasets, for loading + processing the data\n", + "* PyTorch Lightning, for training the model \n", + "* Weights and Biases, for logging metrics during training\n", + "* Sentencepiece, used for tokenization.\n", + "\n", + "We'll use PyTorch Lightning for training here, but note that this is optional, you can of course also just train in native PyTorch or use 🤗 Accelerate, or the 🤗 Trainer." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kWYic8VNyDNU" + }, + "source": [ + "## Load dataset\n", + "\n", + "Next, let's load the dataset from the [hub](https://huggingface.co/datasets/naver-clova-ix/cord-v2). The dataset consists of (image, JSON) pairs. Note that it doesn't have to be JSON, it could also be JSON lines, plain text, etc. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 524, + "referenced_widgets": [ + "9b0fe2691d7041fe8841d87beed2bf7b", + "f0d43f6407674c12b85a6292284b4ba4", + "99bcc899c1d54ea6b6a95fdda3d4e54f", + "9c138abac1894ebebb334b8044ee6ca9", + "26bb592b09c94ba081cd1f913c318f73", + "6412ab45ef6c45fd88462f76731675f9", + "f09e42ab2e9f4560aa68de42fbc4d4e2", + "cbf0235e60724033a400c2cb38b3971a", + "90d6691af3fd49899b196ff7337d71b3", + "9aaff87ef6bf4f71b67dc13553aa73b2", + "4ebee50caff240aea9377fa4a2d0d7cf", + "5e592f3705ce411dbfccc726d2348933", + "749592c5ae004de4a5f31bab3c2d31f3", + "548572561a0045b485ef9dde63326446", + "674e652801844a33ba01395ebdb40263", + "d06409a05ec640f9a6a87a8925dd23c1", + "fe66b6883afa471eb687430534bd0820", + "2b8a201c62c241a89625630f550f6c02", + "e30df53a96fc474da072e8692a0d1d58", + "8c3fc7e7b9354d0fb59602100bc5ab1f", + "835bd092bfb64a47b104d20092d61a14", + "91d8224cea5940bb9858f43b42869729", + "0459618abd954a9a95c3eb137954523c", + "5947ad0e06a54e38b8d09d160bffb0d2", + "5cc9c7f2db1846b6905452d7a9568919", + "dd0b6870c8b6435691009ca66fa71b09", + "c663b10ffce1432c89a3948e324571b0", + "ebeb73a097574a8597d3592329674e44", + "81255865450c47ea8a9de6b7996514a3", + "507d4fec2b8847d79a884853b4d81dad", + "ef6284ce29684d8b9b16875076cd579f", + "eee6b3f385774227b35fc4d83eb0171f", + "f20da578968f43c3ac44efa032dbd6e2", + "ad251dd399bf4671978561773be7da7a", + "1d3f96ad71b74c31b18b50d0dafefb6e", + "6ff5e86e93914a9ab2ac20d2a32a206e", + "986ff3190ef14c5c907d83383571f267", + "4c06e9c680b6471c8305042a7e3757e3", + "fe170e9c276f49b6927ffcbf3809de3e", + "07acf858ebad4351bfd3cfdb339dddcb", + "330b85404fe84761a72a8cbfb696eae1", + "8030efae633f4b018e7863f46267e575", + "f59a9d0b14c348d6b9c221744c256afc", + "4fefc71218894bd4a6b2e95ff3a882e5", + "565a3479b2f140c4bdba43ba99d71c2c", + "fa5080966e724cf2901654c57dbe8abd", + "6394dfa7856b4bf49a9325f22dfe1cc1", + "baa432ed76ae437e8946ebe41301453c", + "6ce260c95cfa4736a22d77f5faba3888", + "cf862b504d86425f886ed6d19b55b05a", + "12636a29bb09482693911ac3c6ab429a", + "95594c0d3f7d4aafb3f61b21b823b32f", + "effb0f0cff3c4cc6a8321d0c411a86f6", + "1df30bb3175541a7b7a6541b38d51b89", + "e563fc2ca1ef4b668604bea1c50674e2", + "90761ecf88ad4a1c8dc190928b48fdba", + "f51518a3bf3b4a7582dbe26fca21ca6e", + "09c44c23e97c4293bc1d30f234634c42", + "561abfbe2ed9405d8bc9c67f3a4c4c8a", + "c44ea4249c324b7cbbb69798e034cb85", + "54e45826ac5f44d3b315e59391fbc347", + "f0b290d10e694b4c86355bdba583261a", + "00d41781e51e4adb823c44a68727693a", + "d56998a0695e434bb7fe3857f5075083", + "259d56ea4f394fe591b26941164dcae9", + "31d2bbdfa41b451eb71eba642b3db4e4", + "848f3079a55c475f91f8efd0f02d72e3", + "1b07db1c1be94ffe98ca2e23ca97e187", + "9f4c3f2e2b17443b9f104bf7e1bc80ea", + "67446ba01e9c4922b041e4ef36ff8774", + "5253bf28cfe948fd8520b5aefd5cdeff", + "ed76219299d54f908eff9c9678e1e00f", + "76839f93896d43dabcb10f14b031c037", + "d75985c018114da8943c9bad0c61869b", + "fc88c486f35747cd8a3e0eeaf67ebfb6", + "33a65dc99580418cb494e29ae5a0fb9a", + "c419e4cb99994a5bb0cbccca9c0bc5c6", + "d643c6ffb4964990899a47cc02a63b9d", + "04fa08f418e74bfe8d274620cd07e448", + "ae8b189059e94a7ab73fb256432c18df", + "5915cae6f7ba4d5caa52ff5c8f854b38", + "3db9e9823c2d4f418cd6707058ff07ba", + "d1837ece0226413489f3df0dfd7f3279", + "b0095f1cb2364fc991f05f312656947f", + "0098775e311344f681335445edadd72f", + "632cbce9ea2f4cc5a87028463a877a5c", + "487685e439f647efbc2350f87ae5d275", + "ca6fcf9c01fe4f2db382b6b0f8cb169d", + "15f7ce33a6304293939d23084881a33e", + "414f4fac280c49db98080b31e3facc69", + "3752aef8ee5147e2b603a691f233cc24", + "45ce4745da5840a090620d59ce4eb1e5", + "c3f54d242da14b689f6e213867b81cec", + "ba402e291fd94f8ab8f1a74c5c1ac551", + "fe92ba127a624524bfe051a6040b4c45", + "618716c2a7dc4557873d08a9ea2b0b22", + "663d883b5cbf4a6998db3319c55ee3d8", + "337672b1b8894951810dc1c645f66dbd", + "2b1ecdea6e49453588fdca19fc19eaaf", + "f2d79a145b3c45389a473ae2fb94e0fc", + "e347c9815ff64f93884e65d882c8dc64", + "df11ed2a5b2f4264b82cfd95724e7a32", + "35560ff2bef140aea29689440aa8f741", + "36c149d0545d43d7ac1cb34f4e3c33bd", + "293e17ab3b4a462ba7d4adc2de35aa05", + "36c215478b2f415e904a24de4b91d9d7", + "dcaa8093d0194d76871523cd07347bd6", + "8544e6360d83437cb03e028051e96be4", + "f794d85eed554a6ea4dabf8420da0160", + "f6679d2887ae4c759e6fe58b01a9d546", + "24d1c38ed9e241c2b13abd30ead9a8de", + "eb5f6ef011b44f7d8a62a35ee66899db", + "0bb2e5d6e3544a44940c79b7a5543407", + "5517cbf80d8b448d9a511070dfb4dc1d", + "107117ee9e3947058cf7586eba69cf6e", + "61223d9e086a42ab94927964a4455894", + "aeccbc9b9c3e4038874656c34f12d9f4", + "8eda879a6d224fb091f538c2806d7890", + "c34474a8f453410f8f3dc39c835e3a2d", + "1a457a54c55f4aab95a9c3cfaa2a23b5", + "fe52a9c056f843068d5588e488f490db", + "fee13e5677e84373a18a0f68feb13ab5", + "7982ba1cd95e4347ad3fca29f38d0638", + "f75aeb7b8cc74ef488ac24f02b208535", + "008e77e9b3cb4cc4b37e875cab3f3d6c", + "e0da7e4a45a846c0ac14269e5bbb77f8", + "3c7e904af22f42dca56b6421d35412ff", + "efb2989e68d844bb875fbdbd5c79d780", + "d5667dae1b4d479db3745879a34b9ab5", + "0fb032afb0904c358aaa984c8556d0c8", + "7d77a9f92e984ac7b9350addc57cb577", + "2d476a17141343508bcac54393555e9b", + "012b26d0aed048628e59dbb0c02f76e0", + "b132e3a6f07e452382eadbedff054b94", + "3920ef1a0817495696b874cc61516d7b", + "24d17f7c48fb4d41b02ec4731d629758", + "d91e67e21bfa49888bf6316c154bcf77", + "bd0e4a5ac7b5440a8b403a36fdaae181", + "fd3d2e91c7a64c2782727d2c29020fbc", + "be37899db94d4c15b8e194c03b057a45", + "4ec3f7acd47c476fbf7e030426c51a7a", + "3335761da6f84b2bb970a32f27f5abc4", + "69f55ea05abe4ca9b21135169edc7a71", + "d494ec40fa104f16ace482fa5738e771", + "ba77336ed8a64ce1b7b3a561844b53ef", + "02700c32e4d64a66818ac92209384b14", + "9e5bbac1661d4385b06a3caa40cfce63", + "bf2d692c9fd24236a6a760a293cb5a13", + "ee9f3bdcf3814bbbac4e053b4c169704", + "cebe7c4bb7e447949431cf58deedef30", + "2d4f64a23cc846a48f0906c74d1502b9", + "c6e2d6abd785494ca143b5978811c326", + "a867c537beb34cdf905e80246d31dd97", + "ab41966250404933aea9736461583520", + "f5449d2c5013488ab7396dc95604be0b", + "1105d8a1da0146e0963254b901f6fd80", + "c61132d2ccbb404ea969d7701fbc3ed7", + "45684f2d86954453b3f7059f847028c4", + "053e5fb5ff954b1bb8099c07ad77c35d", + "439674cf49124161b3783a681b407ed2", + "10153cc99ab24f089bc2c964eb5f4806", + "1355cef1e865410182443c3b8ba73fd2", + "ef4bc97031ee4e798ec0ccb3c1b76e2c", + "cc2651a0102d49c7b6a9ac6e82db8c9a", + "3a78f6a7e4814c23b19458c6f2857754" + ] + }, + "id": "5hU27XC2yEot", + "outputId": "c544eb62-6501-4733-a939-3df24824cdf7" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/env/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "from datasets import load_dataset\n", + "\n", + "dataset = load_dataset(\"naver-clova-ix/cord-v2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1DYk7tDBy-ys", + "outputId": "154174a2-1bf1-4dcc-efc8-7f27f9e72874" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 800\n", + " })\n", + " validation: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 100\n", + " })\n", + " test: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 100\n", + " })\n", + "})" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-kFsrrh3jObj" + }, + "source": [ + "Let's take a look at the first training example:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 405 + }, + "id": "nHVKQMQvy_uU", + "outputId": "8364f84e-e909-4015-cc28-6445eb97dfbb" + }, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGEAQMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDjPEglh0v7VEPngYOM/l/WuNk8S6vIpX7WVU8bVUYrVv8Axn9us5rb7AAkilcmTJ5/CuWC59qmK7ms5XejJEuJkQosrKp6gHGaRG+bJJqSOEOcZANdJ4UsLSXVWS6iSQhcqGGRnNNshK7NHwZLGsk0Qxk4au9vIwdNklxnYu/8uazLnS4La4gu4IkjP3G2KBkVvRYlsyh6Fcfpis3qbrRDLWRWtgQflIzWPpjGW7KHHDuOPQE1Qt/Etnp9l9mup1SZAUxyeQcU7wjeR3+ozshyMsw9s4pdQudYsYAzipFWpQgApwWqGMWP5uakC0uKcBQAgFOoApwGKQCCl70tHFABThTadzQA7FOxTQeafQAlApcUYoAKZIgkjaMjIYFSPrT6OlAHz+9ykMrp5aqUYqRjpg1JBcSXkwht7VppG6Kgyat63p6Qa7fqvUXD9/8AaNS+Fboab4ggdyPLlPlvn36frirMeo3UPDOt2Nm169kywAZY7gSv1FYJSZz1r6GiZJoCrBWUjGCOorxzUNNn/tm9sLGxlkMUrBfLQnAzkfoaSZTVjnlteQWbFbs/i3VBZrbwzLGirtyoGSOnesq6gu7WZoZ7aSGQdVk4NUxFK5yQcetMk9e8Gal9u8PW5dsyR5jb8P8A62K3xIIrsqT/AKxQQPpXkGj67caJbPFCFbed2W7Gr2m+L7+78TWRu5FMW/y9qrjAbj+eKlotSPYAQwzRVUSnAwOKKmxZ81bSTwDTljYnsPrTlySMVaLoFwSv6Vrc5izo2h3OrXLRQyKmwZLGtyPSbzQNfsmmIaOVtu5Rx9KoeH9fTRrqR2Rniccqo71rar4vTVIYo0snj2yBw7OOx9KjW5rHlsegTRmXS29VG78qnsAZIRj0zTrXEtiR/eSl0o4t156cH/P50jQ8f8XW32XxXepjAdg4/EZ/nmui+G8o/ti4izyYN35ED+tdDqem28niuK5liV90GBuGeVP/ANcVf0+0ij1zzo0VT5DLwMdx/hVX0M1HW5u0oFKKXpSNAxzTgKaGGaeMYzQAUZHqKRmUjAqPFAEuR60bgOpqNRk0Pz0oAk3L604MD3qvTlODRYCyKeKjVuKUSCgCSimhgaX8aBBS0lLQB5Tf6Pb3/wASb60upXSORhIoQ4LEqDjP510epfDvT5bAyaaHgvE+ZHZywJHY5rL8Y6XqcXicaxZWryRRJHIzpjgr1469BXfaXdC5tI5FOVdAwptkpFTSpTNZQuRgsgJHofSpI0jgvJsABpCHP8v6VHaRG0vLi3/h3l0+jc/zzVHWbk2Ws6ZKTiKcvA/1Iyv6gj8aRRW8d6ZDd+H5L0RAz22HDY5255H0xz+FeVTuWTzAreXgcheK942JdWjxSKGR1KkEcEGoY7S2ksPszQR+Xt2lNvHp0oTsJxueAnzJDhFNT21rJDPHOSoKMGGfar0lncQ6tdWlvayymKV0UIhPQ8dqzrxbuGQxzxSRv/ddSP51RmdQfG2pqdomjAHYJRXHbJTzgUUWDmZT2ccE/SgKAeRXo3g3wvYzWMd7cxLM0mcBxkAZ9PwpPH+iWljp0F1bW8cREgQ7FxwQf8KVw5NLnnqkA9DUwlGAMEfrULHjnn6mkGW+6pP0FMk7e18fXNtaxQR2aOyqFLyP1P0Fdd4S1JtQ0sTSBQ/mMGC9Bz/9evH41k8wLgKR/fbaK6Tw34mTRFnjmDyIx3KI+ee/9KTRal3PStQCfaoJCQCCVH4j/wCtUtlj+0cj/nmf51wo8YNql/axC18pTMPmL5Pp6V3GmlTfgZyfLP8ASlYtO5rl8dqTfntT9gPamkBT0/WmMaPpUqnjGKZx6Cnj6CgBdoHrRge9L94fSmZOaQDvujNM60/OR0pAOelMBMD3pRj0P508KMU3HtQA4MB2o49DSfhSj6UAKGAPQ08tgZxTQPapNoI5oAFbd2p4poAXpS5pANY5k2HB3L0rJ0gfZZJrPoIJCFH+yeR/PH4VpysEnjPqDWZdyeR4ggbotzGU/wCBLyP0J/KkBB4wvrjR7FNUtYVkKHY4Y4AB6H8/515nrXifVNTjh8+SPYjiVQiY2sPevXNds/7U8O3dqPvSRMF+uOK8x0vwBqmp2PmvPDAGGVByT+NUrEO56VoN6l9ptvcqeJYw304q8CEndT35Fcf4HM9nZ3GmXQ2z2cxQj2PI/nXV3D7SknYHB/GpZSK7yW9pNIWCJuO8np9a4P4h3dhe2lsbaeGW5jc8RsCQpHOcfhW14+tFufD7XGSHtmDjHcdCP6/hXmC3q+Xh0zj0FUl1FJ9Cntl/umipzex5+6R+H/16KZmejeEILzTIpNPvAA0TZXByMHn/ABrS8W6f/aehvFzkOjcf7wz+mavXvlw3luxwGkJTPrxn/Gp7v/kHyt6IT/WoubWMfT/Cuk29mI1sYXIHLuu4n8TXlWrebZ6reWcbmOOKZlwvHGa9usW3wgjuM1xlz4Mg1PxZfy3MrrEWVwicE5X1+oqkyZLseaZ5Pf3NGcV3HjXwpYaJpcN1ZIwJlCPuYnqD/hXDjpyeKpGbViSKVkdWXgqcg+9el+C9fbVNcNuYioW3ZixOckEf415h5gHArsvhnJu8VOOebZ/5rQxxep62xI6VHkk81PikxUGpHinoPUCnjApaAGZOcYFDKB0FScUdcg9KAIefSnlflzjmpQB6UuOKdwIBmngU8AU4AUARYpdtTYHpSYFFwIgOafkg0/A9KUdM0AN7UdDTsUhFIClfyCIQOxx8+38xWB4n1G2gtIJ/PjM0E6SBQwyRnB4+hNWPHKA+F5ZCzL5ciNlTg9cf1rx+eRHPA6dMU7Et2PfbaUSwgg8MM1W0wiGSe36COQgD2PI/Q1k+E9TW60K0d2+ZYwjEnuOKW41W3h8UQQxzRuLqEg7HBwynIz+BP5UrDuXrzThb64NRi4W4jEco/wBpT8p/IkflVi6j+0WMsO4qXUqGHUe9WbiP7VZNHnDEZU+hHINee3/ji7tDLAunqJImKP5sncdeBRuF0jir+4uJGeKe6mkdGKOGkJGQfTNZu1M9yfapLhpbieWZtoMjlj6cnNQvFJ17VRkO8mPuW/L/AOvRU8F8kUKo1nbuR/EynJ/WigD13xN8ukmcEgwSJJkex5/TNZl14u0l9JlQ3SiV0ZdnfNdFqluLvSriI9JImX8xXgYDKxB+8Dg/WpSuaSlY9w8NXIudKtpM53Rj+VWJF2a4G7SRfqD/APXrn/AV35ujIhxuiYof5/4V0WqHypLa47B9p+jcfzxQxoy/Gtl9u8OSRdDvQg+nzD/GseH4e6THZqZ2mkl7kvgfgK63Ubcahpk9sW2mRCAw7GvNLnx7qMYNqtvEjx/I7SZJJHB47U1cUrdTB8QaXFpOry20WTFgMhPoa3fhs3/FWKPW3k/pXM399PqVyZ7hwzn0GMCuj+HW1fGEHOcxSD/x2q6Ga3PYW3ZG1gPXIzSYkx95M/7v/wBenEgUm9fWoNxMSf3l/wC+f/r0v73H3k/75/8Ar0odfWh/uEigQuJOcMv/AHz/APXpQJP7y/8AfJ/xqOJjnmps0AH7wY+ZPy/+vTgJMfeX8v8A69JTqAGlXz1X8qdh/wC8v/fP/wBelzSjmgBuH9V/KlxJ6p+Rp1KSBQAgD+q/lS4k9V/KkDrTwRQAihx1KkewpSuaAwp4oA5zxpCZvCGpIPvCMMPwYGvG47cbPmQc9zk17rr9s11oN/DGhd3gcKo6sccCvCdQjvrO4NvdQNDIADsbsD0qkZyJxdLBB5KySMg52b/lz9Kq2d2bPVre7Q4ZJVbj681GkTSdW/Kplt41wX5I9TTJPZv+Eh06CHfcXkMQIz8zjOPpXk/inU4bvxDdzWbrJA5GHXoTgZNUZZ0VSqgc9feqjBTz/PiklYpu5F5pJ5JFbPhmxs9W1mOzu53RHHy7RgsfSsxIvNYIgLMeiryT+VaUOia1pjR6mLC4SKBhJvZcYwaZKPTR8P8Aw+QM2zE+pkb/ABorbtbtZrWKUNw6hh9KKjU1sBIaHHtXFaH4Y01tVvnurdJWSdwFcZABOR+hrr7dt8Q+lVIIhBqlwR/y1KsfrjH9KEBVisINJ1QpbRrFFMu7aowMj/Iq/qoMukzY5ZU3D6jkfypdVVfKiuCceW2SfY8U5HVocE5BFIZy6+PtHihVXkld8chEzj8a831me3vNWubm1DiOVy4DLjGev60zVrf7BrF3bAcRysF+mcj9KqbxnoatKxjJthsJ7mup+H3yeMrTJ6pIP/HDXOwwTTSIkcZLMcAZruPCfhu907xHZXdw0QVS2VUknlSP602EVqenvjucUzaP7wpzkHvTQV9ak2F24GcinhlIxmkBBGAabgKetAEi7R0pd4BpikCkOCaAJt4NL5i+9RClAyaAJPMFPVw3SoSmO9OQhaAJx1oIzTd4NAcZpAL5Y9acBgUdaWgAC808U2nCgBW5Uj2rzL4nadJJc6bcwRM7uGiIUZJ7j+temkcVj6t5a2K3Uqgi2YSfTHB/Q0XsxNXPKIPBviGS181bHaMZw7Lk/QVzuJnlMb/IQcEHsfpXtz+KtHgixJfxA4+6p3H8hXkGsKbrW7y5tVP2eWUupIxnPP8AOqTuZtWKv2JFQszkn06VSkjMZzk4PfFXfJmBySB9KilhJPzsSfSmIveFr0WXiG0kfBjL7Wz6HivWtT8RaPb2LJc3kADKRs3ZJ46YFeKHbGODg/SoXfNJq407HpWi+KbKHSLeKVsMgK49gSB+mKK83XeVGFOKKLDuz0fT/HenQabE1zKxn2fMiKSc1c0fxFBrerS/Z1kCpGPvjHc15EZBnoK2/C+srpWrLLI22F12OfTuDRYFNnsepQ/bNJuYAeXiYL9ccV483irWwoiF88YXjCgD9etdxJ8QdIiQopmlPqkfH64rzO/kiub+eaBWWOSQsobGQCc0kgk+w2aWS5maaaUySNyzE8mmYHehUBGCW/OporZS67mITPOPSqILGnzLb3cExGPLkVj9M16/aFWvrVlxgnj8qyLfwlof2EbLRWZlyHZiTWhpp8qW2jP/ACzbZz+VJs0irHSMu7vTTGR3oYKw+Y8fXFJ5Sk9/X7xpFj0GD1pxXdyKi8tM9D+ZpwWMYB7f7VAEgjpdnNM2R917Y6mkKxAbiBjHXNAEoWnqmO9Q7IiMhQc0oWLP3F60ATlQe9G0etRBYSuQq/L7dKVfJxkKvTpjn8qAJAqj+KjCg/eH50wLGSQEXP0p4VP7q+vSkA/ev94fnS+Yg/jX86iZkjIBUc9wKVZEKbwMg9OKAJPNT++v51IDUHmx+h9uKlByM0CH1nOkd1aTW8vKOGRh7Hg1fzXjuseJtVg13UbVL54oo7h1URgAgBj+NFribsctPusr2aDPzRSMhPrg4pTfSn7zEn35qeWNZZWkdy7udxY8kn1qMpCPQfU/4VZmRG8kPGep9hXbaT8Pb7UYFlvL6KBWGVCJuI/kK4kxRuT5YMhHZBk17B4I1E3fh62DcvEDEc9eOP5UmVFHm3iPwpNoGoC3eTzYXG6OXpuHf8RWL5KRn19zXsHjnR7vWILCOzKLIJiCznAAI/8ArVy2ofDXU4rJriG7inkA3GJVIJ+houDRxHmAcZopfsh75Bopkmafn5OOPQUblXtXfS/DN4rKSVtQMkqqWCKmBXAEKDgKKSYNNCmX0FAdj2NKlWI34weaYhkMU00iRomWcgAZ7muwtfAGsyW++SS3iz/CWJP6CubtrkW9zFMMZjcMB64Nenjx3oqQqDO7uRnbHGTj+lJtlRS6k/h7zI9Kit7n/Ww5jb3xSsRDqKgHguD+v/1qztD1qPVL69Masq7gw3DGQeP6VdvyY54ZP9r/AD/KpLOjb54yuQM9zUjrvGM4qoW8yNlBAyO9TnLpgNg+tMompkihnUlwp7e9ANMlUOVJcLj9aEAqQ7cfvATg9utP42iPeNwA/wA4qKOIRspMg4zx0olRHfJkAyvSmArW+9izOTn2p6wDOS/JPYU37KgQhSMnjkVMIsZG/uD0pAKgSNfLyFBFBhjXkORwR1H40xxHIwO4g9B2p4gjAUiU8gjqOaBEqAKchicgDmpA1RIV+4G3FRz604UhiM6cMd3BIyB0oUxlA4LbT6nvn+dMIVWGS5yxIwe9C7Cm758dME8k5pgP3RD+E1YBGOKqb4iPuk5qwCCAR0oYD814X4ntg3ivVCJNqm4Y8KT35r3LNeJeJrwp4m1JAv3bhug96aImYhgO7kuyD14pZdmAFtVUAg7i5JP51J9sdjgRfpXS2XgbXdSgEvkw26MMgvJyR9BmmQek+F/sMmjW01pbxRpLGDhVA+opYtOi03UbjyBtS5fzto6BsAHH5A1j+CorrSYrnSLzHm2smVKngq3II9s7q6fUR8kU46o3P0NQaIjv5kjt45WAAVxyfc4/rViE74+TWT4gXzPDl8AcEQllPoRyP1FSaHqC3+m21yp4ljDfjjmgDzLXPDGtDXL02dkZLdpWZGDAcHn196K9beEM5PHNFHMLlR53cfEfSljKxQ3ExxjIUKD+ZzXmNxskuJJI12IzEhc9B6VACwp2WPYfnVJWIbbHKme9PKjHf86taTpcuqahHapIqF+S3XArv7f4cad5GZr2eSTH8ICjNO4KLZ5sNo6CpY3Cn0NPvrX7Df3FoRkxSFMn2NQYApiN/wAO6xHpmoNJK2InTa3Ga29Q8V210EWBJThxlmGAOa4TzAKcs3BAByaVhqTPcIyXgUg/eUfyq4FLxABucDkVzmkXrzaPZu2NzQrnP0rSilkaFV3jgAZAqTY2V6UyRFYgswGOBn1qlHM6qATnA61YEyvhSwU5zz7c0gJ/KYgDcMZJ+760ggG7BfjGCMdfrTRADtO77pzwOtSNHv3HeQrLg4FMQLbqGJ8ztjHoKniREZmU5JPPtVeOCPAYScY68VNEiRn5SD60MBEiiBOGwdx6gDmpY4I/LIB3ds5qLETtktjDd+Of8ipovLhG3d1yeTQALCqHK5p1LkMAVIORmkqRkUhAKlgevY9PrSAoyhxnbjaBTpNo2swJx6Gm/uyu7aRjjb+NMQgaIf8ALM88flVlTkAjpVUtHjiPOeKsAjAI6dqGMkzxXiXilI/+Ep1PJwfPava68Y1yKObx3eRzMwie72sQexxTiRMwZFRef517T4H1T+0PDtqznLxjy2PuOP5fzp+neGNDtIQI9PgZv77ruP5ms3w+sOl+JNV0uD5YgyzovpuHI/MChu4JWNTUx9l8T2dwBhLmJoG/3h8y/purYkX7RZPHnG5SM+lZfiYFdKF2o+a1lSb8Afm/QmtK0cPH1z3pDPF9V1nWnM9pdahMDG5jZFO0HHGMDrXYfDq+87R2ty2WgkK/geR/M0l94AbVPEd/cPe+TBI4fYqZJyBn9c0ui6FJ4W8SS2YlaS2uYd8Tt1JU8g/99VV0SrpneA5GaKjVxtFFQWfNOVHfFG5expYtsZyY0f8A3smuo8HCG41+MSxRcRkqAnfitDFK5neHbiaw1i3uTDJ5e7azbTjB4r16C43wipLmCK5s3hdBsZSMY6VlWcpVNhPK/KfwqG7msVY5DVfDFxq3i66WGRIkcLIWYZ6jH8xTNc8CJo+kyXq3jztHgsNgUYziuzEgXUQ2OWTGfof/AK9Sa7H9r0G7hHJeJgPrincTijxsFCpCwoM9zkmgPs4DYz1rc0/wfquoW6zKscUbYwXbnH0rN1fSJtHvzazOHbaGDL0INVoZ2Z6B4cff4esz/skfkTWtEMxbVYHtkVieEsHw5bj+6zj/AMeNbUajYRuzknmpN1sW0baoXPQUr7WA3PtANRxqFQDOaVwnBY4ANIZpQxK6q2/ndnOKsLGBEULZBzyBjGaz4I4mT7wBLbs+tXIVjiUqrjk9zTJHLFGQSJCFYdz7+9SKkcA35JGMZAz/ACqNI4yqp5mSV9sn3p+6JV8otjaO9DAUxwk5Z8/N0yPypyQxgjGePU1AVtwSS/Vs9e9T+apQupyB1xQBaRFwG5Jxjk0MOeKhtp1chQeSM4NWCM1LGRlQeozTTGmRx2xQ8gQgHqelMEuY923B6bc0wFfYq/cBzxipFIKgioDOCMFM+x9anUggEd6AFNeM+Joj/wAJTqTFgP35Ir2fivFPFcjDxTqYyeJz3xTiRMlm8Uaw0HlC/kRcYwny/rUvg3UZE8WRyXEzyGZWRndiSe45P0rm1DueBVu2jkt5knSTy5EOVb0qrEXPdbvyrnT5oJACrxsp+mKoeGbsXWkWr7txCbCfdeD/ACNeQahq17cR7Jb64kHfLkD8uldx8OL4No8luT80Uxx9Dg/41NtC07s7tm2Xw9HX+VQaxaCWOC6X79u+4fQjBH6/pVPWNTSzuNP3HiabyifTIOP1ArXRxLCVbkMMGpGU0OUHNFc1eeJoNMvJbKdZvMhO0lYyQfQ/liimF0eRaZpd7q1z9ntYVZwMks2ABXU2PhLVdFu7e/lkg2xuNyoxJweD296zvBV+LfXkjPImUp+PX+leo3oE9hIg6lTim2TGK3HxS74AK52ObydYurdjgEiRfoRj+YNalhNvtlPcrXJeNJZ9PvLa9tm2s6mMnH4j+tT1Lbtqb88gjv7ZvUkVqE74sHkEYNeWWmt3s+pWzXNwzqJBwcY5+len27b4abVhJ3G6MQLAR45QlPyOK47xtp013rVoLdcySIV5OOhz/WutsnEd5cQ/7W7H1H+NUPEx+zRW1+BxBIN3+6eD/MUJ6g1oReHbGfTtIW3uNpcOx+U5GDWmirhgDnJOfaqmk30F/bu8MgcK+0keuKuALlsEk55zQUtiWEBUCq2QKdIAVySRjnIqKDaq4Q5HWpmI8ttwO3HOKBk0McQhKCRVOcknGatBEiIPzHcevXmoAtuIvmYgcEgnoassyLtyCR1GP8+9MklhMS7dkhPYc9alMS7y2DuPNVYxbx7WHbO081OJ48ZJP5GhgPEEZ5K8k5696cEVQQBwetOUggEHgilxSuMjSNI5Q4X5h3zV0nK57VTYVLA/VG/ChgJNsGCyg+57d6ijkQxbiqg4I2+1TTHaVwqsSeATz+FQB12Z2KrYOF6cZ/lTEL5w/wCea89/p/SrAOQCKq+accKPTntVgHgdjSYyVa8i+IFmln4oeQDAuIxKfr0P8q9dXtWXqOjWd7q9tdXFvHKyRlRvXOOcihOxMlc8WDlIg6xsQf4scfnUcjTlSeB/sg8/kK941fSbfUdAubPykRWjOzaoG1sZBrwWIgSYbj1qk7kNWHRQGQZffz2Xj9f/AK1amnX91oyyC2nWMSYPQHGPrWXJdDOF5HbNQkyPyAMflTEaN7rN9d3Ecs97NL5Th0Vm4BHfHSvZ9Lv47q0hlQja6BvzFeFJbSSdSB9BW7DrepWVokEd55aIuAEwDSaGnY9amFu8rM8KM3clRRXiUmqanI5dtTu8n/pof8aKOUfMj0HUtL06xhjntrWKFomBBRQO9aQfdbZBryu48T6rexmOa5Pln+FVAFej6XcCfTom3A7owf0qWik09hunPgvH/dcisnxvatPogdBlo5FP58f1rQtmCalPH3OGx+FWdYt/P0u4jxklCR9RyKXUb1RwFv4L1WWD7QTFGANwGcn9K7vSJS9tHv8AvbQD9a0NPxJYxHHVAf0rPhX7NezR/wAO7cv0PP8AOm3cSSRHdsbTXLeQfcuFMZ9iOR/M1a1m3W90W6hIzujOPr2rO8YI50M3ELFZLd1kUjt2P864F9c1KdCsl/NtPGN2B+lCVwcrHU+Axu068XuJR/KupWPDPtBzxmua+HqlrfUDkFd6fng12SqBIw2kHue1D3HF6FKJQpIX15+tTYARt/3cc1ajVDnaO/P1qbyVKn5AR6UdSiNfIMPzA4xkjJqdPLlOAMlakEcW0Ex8soO3r3/+vUsUaEEooGevFMkroYpMEpgjgA1IixO33CSVBPHFKvlgcxKMc8CpFZVYKImBx0AFACfaFVmVlIxwMd6ergkD1JHWnR7JGYBBkYPIHNTCNQegH4UgI2XioGJVgR2q6VprQg0hkEkg/dsFUk+vampIJEDkLvweByMf4UrB7Z14yjHnjJp6yF0DhCHI6YqhEXnPn7o/L/PWrIXIzjmmnzeoXA+lWUQkDKkHHSkwIwvNUdTn+zyWT5wGmKH8QcfqK1PLI6VxnjPXLO2tzai4X7ZDMknl9xgg0gZ2ML+ZHiuT07wXosV5M8tqsr+axHmEkAZz0+hrodMmE0KOpyrLkGkkXytSJ7OA349DSEec/ErRrXTpbK7tIUiWQGN1RcDI5H9a4iKVAMk4r2zxZpltqOnQfa03xRXCOwz2Py/1qXT9D0e0i/0ewtk46iMZ/OrUtCXG7PDXvix2oufw/wD10zFzJwE2j3/wrd8ZWkGl+KbmO3VVjfEgUdBnqPzzWL9sbGNxx6Af/qqiCuYpgTRUhfJyM0UAZ6o2a1YNd1G2tkt4rpo41GBtAz+dZqrLI22ONif5UCBjJtkkVPUk5x+VAHV+FtReTWH8+Z3aSPq7EkkGvQJJVa356YxXkNs0FhcxzwTvNIjZ4TaP1rck8Z3bR+XHBGg9SSxqWrlxlZanoWkSCSzjK9MYqjrlwLHUbV2wEmyhJ7Ecj+tV/C155ukwOWBY5zj6mjxzEtx4ckf+KJlcH9D+hpdSr6XG6nqmnTabNby3kIEkZUjdk9K82jt7fZukumDf3UjJ/WoBKoGMUvmjsKtKxm5XPRPhyoFpqABJHmJ1+hrtY41ErfLyRyfWuK+Gx3Wd+2DjzFH6Gu5iCCR8LhuMn1qXuaR2FREJO0d+eKmC4HFNjZWB2jHOD9aecgEjH40iiRZYlC7o/mKjoM0/zY1+6hyT2AqqJhlfkBfA6fyq1bzo2cKPU8UxCyARlcRrjr0pd+VL7M7ep4qRJyWAK5yTyBjFKJnwPkycehFAEYZVBk2YJ96tCMUyQv5YAUFj1oEkhOChHPp2oEP2LnpTtgHamKzYy4APtTvMUipGJJuAGzOc84FCvIU+ZMPyAcU2QM6/u2wc5pw3rnvk9c9PemIXM2O+Pwzj/GpVyVG7hsc4qDy5D/Fj8akQFVAJ/WhjJK8g+IsYh8TyEj/WxJJ09tv/ALLXr4rH1LQNN1TUI7i8tEmkWPYpfkAZz0/GhOwmrmT4MvRdaFatnlVCH8OK2dTYpJbyjoWKH8R/9asTSrNNI1O8sY12RbxLEOwVh/iDW7qI83S3cfej+cfhzSY0NvIRqOjT24OGkiIB9Djj9a8mTxvrUCm28yKLZ8jHZlgRx3rv4fFmk29t+8vYQcE43ZP5D615FrTi71y9uLUHyJZmdCBjgnNOKIk7bE147X9wbm7uGmlbq7f5xUPlQr1YD3/zxVLypcdwaaYJOp/MmrILpWA9CP8AvqitnTJ/Dy6dCt7abrkAhzjOef8ACigdjN8aWy23iedY12o6q4A4HT/61YJITtXpuv8AhpNb161LytEnlMGKjJ4P/wBesTxV4T0/RdGFxbGVpRIoLO2cg1KY5Re5xZlJ6ZpMs1KMU7zFHaqINvQ9ek0mNoyjSLnKjOMVe1Lxfc6haPbfZ40jddpOSTiuV870FGZG6CixXM9iYKvoKeGUelQCKVutbGg6EmqzSJLOUEYBwOpzQJK53Xw6AbR7tx3nx/46K7BMb3woBGMn1rG8LaZb6Tp0kEBYq0pYljk5wK20I3sNqj3Hep3NkrIdEysCFGMHB4pzsUQsOSBSRsHUlRjnFEjFY2YdhStqMjFzyfk5Az+tTxy7ywxjGP5VWFw/9znjpU7F/l28etNgOiuJlJ+Un6irKzyuQNoGRnOO9UhLKf4MDPcUqzynGOcg44xmgDRjkkMhVxxjPApMTBm285bue1V1nm2/N+QAzViRXdF29c5POKBCfvgAWP1ximljQ6z7eWAweme1JSYIG+ZCvHPrUkRYE4wenftVV4yzZG0cYz3oUSKSQ4YkdKBlwxEn749P/r/WpoxtXGQee1Ulxk7nA+tWYgFBwwNDET5qOVwpU++KXNQ3RxAWHVSD+tIDO1eErdW90mMglH91PT9f51at5VeEhumMGlu4ftenyRj7zIQD79q8/Tx5FbboDaStKpKtuIUAj/8AVQlcNjh9XQaXr15bRn5YpmC49O36VX+3K3Gzn/Z/ya0dRlN/qM160USmVtxH3sVTMTLJvR8MOBs7flWhkMaSUJvNu4XGclcfzra0vwnrGtRJLBAiROMh5JMAj6cmsCZSx+d2bHTc3SvVfhzqIuNCEBP7y3cp+HUfz/SkxpXZysnw51iOQp5sLY7jOKK9iznmip5mXyo5KfiaKTuGx+YrE8aoJfDVyMZI2ke3zCtm5P7gnuvP5VXvYI77TpYH5SRCppIpq6ON0jwPZ3NrHPdXEpLqG2pgCsrxZoVrozW5td2x8g5OeRVmw8Vy6VCbOaEyPESgO7HQ1n61rsusqqvEkaKdwwcmq1uZvlsYYYelPEnpSiNaeFQDgZqiBokdjgCtHStQk02684AsCMFc4zWeZAPSk8454FAHsvhG+bUNHNzIgXdKwABzwMVvRkfNgAc4471zPgRSvhO2Yjl3dv8Ax7H9K6KJyQxIXr2qTZbE0biRMgYHSlclUJAJPtTYpA6bgMCldyFyoycgYpDGfaG2Z2HOOlPidnLbk2gdPeohO5XIQA8Z4NTOWO3axHPOKYDN8wHCk89xSB585Knp0xQs0p25jPLYPHQVYoAZEX35YEZXn0zUqPKrHncueB+NNFOBwaQFh/Mb7h43c59KYwwcU6KTPBp0gyM96AIXAdCp6GogjJjbsyF4PfNPboRnHv6VCkbJtJbJUEdKAHsmSTuHr/8ArqW3IiYjcDxjFVypJ3EgHr+Pp9KEXa2d2eKANQMCMioLtgLSYnshP5VFHLtOM8U65/e2cyKfvxso/EUAMtrpWgGCCMdq8W8XBYvFN+YQAjSbuPUgE/rmki1nUZUMUl9cbcY2o+P5VQl2bzuJZu+Tz/jTSsZt3K32mYj73T15ppnmbgyZH51KTGfQfSlis7i6cLawSTMTgCNSxqiDrtD8CPq9lDePqAEUi52onI9q39F0hfDHiR7KKR3guYBIhc87lOD/ADpfh3cTR6bNY3KMkltMVKtwRnn+ZNa/iWMRXul368eXP5bfRxt/nipvqaJKx0iSoUBNFUo5lEYzRU2KOeLb4SPUVQs7oPbbSfmQlD9RxU8Mo8sZNeceJZ57TXbmJJ5FiciQKrEDkf40JXCTsU/EsPk67cFR8sh3jHv1/WsnLmpWkDHJYk+pPNN3j1rQxYgVz3rsfD/gtNUtIrq6upERxkKgH8zXIpudtsalj6AZr0jwbeyf2cltMrI8R24YY4PI/nSZUEmzK8V+FLDSNKS4tA+4SBWLNnINcegUdq9U8XRG60CeNepwfyOa5q28DKYBJcXbEkZ2ouP1oTHKOuh2nhEBPCungDgoT+bGtlGHlkhQBzxVLR7ZbPR7S3XJWOMKM1bQqIs7cLycAUjRbEiSB0DDoac77ULZAwO9MRgy5XoelI7lUJGMj1oAGuSuflBwcdf1qR3ZQpA6nn2FQtc4YqBkjr70+OdZMgduvNAAtw5IBUA59DU8bblyc5z3FVjMysAfmJYgHpil+0NwBhs5/nQBc4oziodzeVnHzY6CozLKMqUP3TzjvRYC4GqZJNy4NUkZy3zDC9uKlDUgJZkxyKphCGU7AOSc56VeVt6bTVAxShuT/F2P+femAFXkAP3SRzz0pURlfOQB7fypjb2IIBHbr0poRw4J4A9+g9KALOakifnaeh4qvShipFIDwiSN/tksYbaBIy8845pk0MiMQ0mR+VWtRhddYvQCBi4k6/7xprwlgCW4+lWYFWEiKZHI3BWBIPeveNKlsksY3g8tIigI6AdK8M8pB71JJNJ5YUyOVHAXcSBSauUnY9RtL61XxzdwW8sbpNArExsCNw4PTvzWx4pRpfDd0yffjTzF+qkMP5V5J4Tufsvia0c8KzFT+Ir1bV9c0220yZLq6iQMhXYWyTkelS1qWndFm1mSe1ilB4dAw+hornvDuqwv4fst8gDLHs6+hI/pRQO5zv8AwkMFujwzyiOaNirLgnp9K5bXby21K7SWIudq4LEYzS+KFEOv3DqPllw4/rWP5p9KaRnKXQdsjzwD+JqVVU9FH4Cq+5ifu1v2HhDW79EkjgVI2GQzuBx9KolK+x6P4XtrWPR7Vo4owzRgkheaXUIY4bpJkGC3yn3qt4Ygn0+zFjcMDJCSuR0x1qfxASlg0w6xOr/hnn9M1HU6FsQ6jJ5lsAPQ0Rzb7cEHsKgmcNENvTbSWrA2ykHtQJnT23FpD/uD+VOUp5QIGEx0NMhOLeMHpsH8qVSghABOzHc9qYyRGUqCv3famyyeWm7GeQMU0EBRsxt7YpJJAibmGeRSAX7QigkoeDg4HenxTLIWCgjHc96r/aIGOMbs8kYqRZot3yDqcEgdaYEomIbbgdSODToZvOXcAV+tRSMEI+UHJ5OOlCTkHGwgkngY6CgRKLkqVDDOc8ipo5fMjDYxntVVbsMQoRsmpo3MiKxwCRyM0MCfNFR7sUu6kMnibDU6dcHIquGwRUjPNIj/ACnqMdOlNAMNROGMikdKdNu3YTPBx07/AOFQETZH3uv/AOv8OtKwE5Bo7UZp2ARQB4lrbeXr+oLjkXL/APoRpttFd3g8u3tpZW9EQk1d1xBb+Lb2Q4wt0WI/HNes6bOhhUx42lRjFU3YyUbs8SuI5ra4eCaJo5UOGVhgimiJ3PX8q6/4k28cOq2t2gAM8ZV/cqev5H9K5WHzTAZEjdwvJKrkAep4pktWdhywrCA7YB7HvUFy+5M+9N8x5m4GfrwKlW1LDMhGPSgAgv7iGFY42wo6UU4wwZ56/XFFINSpfahNfyiSfbkcDAxiqu8DvUeyRv8A61KsJzhmApiJRMteweFr4Xmj2rj+4FP1HFYuj+EdHWGOSSLz3IBy5yPyrZ02KO0upYIgFRWyqgYAFS2awi1uWJx5OrE9BIgP4jin6lCLqwmiPR0K/mKTVflkt5B/e2/nUucwD6VJoeTNrmohfJafaE+XAGDxXVeH7jztJiLNuYZBJ+tczfaJe3OsXi20W5RMe+OvNbmjWFzpMbQzup3HcAO3rVGSvc9AiceRH/uj+VKu0xAbsrjqT2qCEkwR/wC6P5VIqkRBMk8YzSNSZQAgAPA4FNkC7CXBIHPBojAVAozgetOZQ6lT0IxQIgP2cFsgDpkc1KdioGVAQSOlMa3Rshs4JyRmpdqldpHy+lO4AZ4T9/Bwe46GnO2xlwikscHtTPJiPVO+evennBxntQAwXEIPQA5wOBT0nVjhVNJ5aADCr+VKAEBwoH0FFwJd1Luqv5gz91j/AMBNHm4/hf8AKkBYDGnC5dUcKwypGKqm4C/wt+VOW6YA4RuntQgZLNc5+7178e1VzNOTyCOew7+n0oEjc4jb8xTw7f3D+YpgSBmqRWbFRg04UgOJ1TwXdanrd5d/aY4opJNwwCT0rZ0BpbS2S1uP9ZEfLJ9cHGa2o2H2h0NZ94og1MdhIu4fUcf4UXElYdqtra3dxbS3MKSiMkAOARz/APqrRtlt3smtvJjWN1KsqqACDwaydYl2Wkco6LIufoTj+tXLF9w60BY8ZuY/sWqXFqc/uZWj/I4ptxNJuAZWUH7oIPP517BDpGnJqs8z2kLTO+8uyAnJrC+JtjGul2l6qANFL5fA/hI/xFO5m4WR5vhzzj9aKjE5x0opklQ7z0FAVu5pS2Fphf0FAjobXxVqVpbpBC6AKMBiuTW94R1W5vdWnN1MZHZAefY1wA3mtHTL+bS7tbmPBYDGD3osUpO+p6/qvzWe7P3CG/I0sTbrY49MivM7vxXqd+hiaVYoiMYjGM/jXfaTdLNpcD5yWQZ/KpaNoyTehBBGE1K6OPvYNQ6iu1kf0OD9KnMqjUXXuVqLUgWtnx12nFCBm/b/APHvF/uD+VS5xVeyfzLC2cjBaJTj6gVPmgY8NRuyaYaTOKQEpbimtIEGTn8Bmm7h60x1Ei7ScfhmmBIZ0QAlwAe9K0wX1IJxxzVV4o0BLOwzxUg8kLxtAGOlAExuYlI+YHJ28etSCZWICnPODjsaos0acbjnIxz0/wA802N4FOA4HzZ+93oCxolwKiZs5qPdQSDSAb5mUDcAkZwTUX2raeV525/GnsqgZCjgYAqIyjAGwEYxg/yqgLQnXblSM8de1HntjoBkZ+lQrKoi3hBnGCKct0xIzGBnoc0CLyNkAkY4p4NV43DKG9Rmp1PFIZUMmzUj6YFM15kitYbtiFET4YnsDx/PFV7tjFq/J+WRAR+HB/pVzU7UaloN1bEf6yEgexxx+tAjl9a1+wbRZoVukeZhhAhzyK3NEuRPawyg/eUH+teRRyKIypAyDXo3g+6E+lxLnmPK/kf8KbWhMZXZ011mK+jcdGX+RqzqtrDe6aROiuqMr4YZHBqvqB+S3b0fBP1FaEWy4sWhb+JNufwxUlMox2lkEAW3gAx/cFFeVz+KdbsbiW1e4QNC5jOU9DiinZkcyOgs/AmjxKHm82Y+jvgfpXGeJ7KCw16WC3jCRbVKgfSvSLO8MsAPqK5vWfDzazrcbCYRKY8M2M9D/wDXoT7hKOmhwu5R1qMuSa9AvPA1hZ6PczCSaW4SMspJwMgegrgl2qOgqk0ZuLW4Rglgc8e9dHpfiNtLtfJ8tpcH5cnGK5xpvSmb2NAKVtjtdK1uTUdbBkCoCh4FdDPIrRnntivM7KWS1uY51cAqeme1dG/iKExYUSM30xSaLUtNT0W2wLSEDoI1x+VS7qpafP5um2smMbolP6VOWqTYl3YpN4NRA00sFNAE4b0NLvHc1W870pu8nvQOxNKwdce/WoFhUSbic855pd2e9LmgBroinliMnPFRgRMVBYnBwAf8+1SMFZlyenOKTyVxnODuzmmhFtTmncVAj+tPVqQEhIIPGars8SkcDlc/hUuaYUQY4+70zTQhiPGI/Nx1GMf0p5mAchYtxI7d6j2RjkgAAYp3mRH5QofjPFNAW42DKGHQjNW4TlaoqwKggcVPFLjj1pAUNe+SS0kHQOVP4j/61aFlLvtsVk+J5li03zCfuspH51Y0qXfEPcf5/nSAwrHwnpZu5GlgLkO3DMcdfSp7K1TSdXuLaMBYnYOgHQAjBrVU+VqkynoxDD8v/wBdRaralTHdKDlDtb6H/wCvRcVkaV0TJpTyAElMPge3NMtNShWDe0yKpGclgOKk0mdWjZH5UjBrx7WIjpWv3dpkskUp2g85U8j9DQhSdh/iQRXfiK+uIZUZHkyCvIPAzRVX7bB/zzA9gKKsyO+ibybqWLI+U8D2PSnPKVvbcjoSQfyqhqkhtvEFuc4WaPafqDn+tTXsqIYZCQNrg/0rM2OmdBPbMhGQykH8RXA6V4BN7uee88tAxG1FyeDjrXfWjb4R9Kj08GG5uYuxfcPxGaadgcU9zyzxPo0Oh6qttAWaMxhgX696xwR3xXofjLRf7S1iwIcoHV0LY9OR/M1DF4DsYot01xLK2M+gqroycHfQ4LzFHegTZ7E0t1CLe7lh6hHKj86YjBTVEHrmiSb9CsG/6YL/ACq/k4rF8PTbtAsuc4jx+RNam/jrWbOpbErPgVEWzURfJ60gYUhk2adnNQ780gkwxyaAFMRLMwbGT9KUQuRhpMrS789qUNTuIaIDzhhkkHJHvmneTjODyeuacGpWdVXLMAB3NFwHBsE808NVRngxvLAjPXPenIYGTeCpUd6YFsPTTIM9RUQRB0VfyprGNBkqAOnSkBOJE/vD86N0ROWK9OuagMqR44/ACnmZVxxkHnj09aYFlWG0bcbe2KeGwc1CGyODmng5FAHI+PJi32GMk4O8kZ+la3h+7V7GBg2cqM1h+NGtmvbVZmk3LGSFXvk//WrG0/W5tOj8uKJWAORuOMUPVGfMlLU726vFXV4o/wCJoyfyNbTr9qsXjB+ZkwD715fb6zcXeuW8s7jg7AFGAAa9IsLhfLAJzUvQpO5h2PiLT7VSs9yqyDIZOSQR7fhXH6xcWuo6xcXi2zSK5GCxIzgYpvjCFLHxPc+VwkuJR7E9f1zWSNQlPbNWkZylfQmcKXJW2hUdh6UVH/aM/wDc/SiixOh1fjdGW0t7lCVeKT7w7ZrjGv7iUhpZ5HIOeTXoniWAXei3KLyQu4fhzXK6T4Pl1GFZ3uQkRGcAZNJNWKknfQ9C0ScTWcTg5yoP6VZkcQ6krf31/lWPoC/Y4xa5J8v5cmr2rt5fkT54R8E+x4qTZFTxazwaYl5GMtbSq/4dD/OuauvGolszFbxN5hGNzdq6vUil5pE8Dc+ZEV/HFePMHRipBBBwapK5nOTi9CeU+bIzueScmmhEqHc9SQRTXEyxRjLscAVVjE9B8Myf8SKAA/dLD9a2PMOOtc/oEE9lpxhnADbyRg54OK1w/FS9zojsTLKCeCKeHB71nqihsk5x2NPSJQc7iaLFXLwYEEqc49Kb5isNwNMh2xrgHPNLtWkBIsi44PHWpNwZevBFVtgznJ9OtSAqq47D1oAdbOq245yBnnPvT2eKWDcX+Q4wwqLfGq4GFHsKElhjTaDwOvFPzAcU3A7XyEOVc8545poAWzdpMEvz0/Kni5jxgHAHoKT7Umcc9cdKLgTtMsduJOWAA6VFcEFkzvC4yCoyc0ecjLghsZwaX7QOyN6dKAI13oVdgWyuOnPXvT0DxcbS2Vxx2NL557Rt09KPMfjER6UXAsRnYir6DFP8w4JNRoSVBIwfSlJqRnBeNLkf22qd1hX+ZrmxPID8px9OK1fFzhvEc4znaqj9KxRIBWi2OaT95liORkkV9/zKQRXUWXi2aMBFg3NjqzcVx/mGnRyMGGBk0rApNbGxqd1NqV61zc7RIRjCjgAVSEcY680xnuHPK4+vNCRsXBduM80BuSfJ6UV3EHgzTXgR2aZiQDkP1opcyL5GXpJEkiKsMgjBo8Pr5GnJEeq5X8jWatyCvJq7Y3KGI7DwDUFrckmf7NqXmD7r81a1Vft+iXCRth/LJXH94cj+VYWu3620SSZG7PCk9R3rEh8YyQy7HizEeCVPIqkricktGZp8Q6jLCImuyqgY4GDWazbiSW3EnJ5p1xHA13KY5cRFiVwO1RBUz1Yir0MW29xdwqxp9wIL+CRugbmpdMs4brUYIpF/ds2CM9a7+Pw3plvBuitUyR948n9aTaHGDZSim3ZqcS8dao7TBMYz24qQPUmqJ/M5p6y1SL4alElA7mis3vUglyOtZyyVKsh9aB3LvmHHWjeT1qr5uKUS+1Ay2GGeQDUylT2H5VSElOSYg0wLoIHYU8GqyyZ7U7dikBaDUu6q6uakVqBk2aUc1GpzUgpAPFITQeBUYO+QL2zzQByWteH1vPE0od2TzIkkGPpj+laFp4E0w25MjzO5HBLYA/Kp/GE5067sNQA+TDQv9Oo/rVKPxpZJEwVJXbHAPAp6mdo31OCuITbXMsD/AHo3KH8DQkgUg4q5dlLq8muGUAyOWwT0zUYijHpV3MSQzq+D7c0BmY8CpIo4u2Pw5qV7iGEYQZNIZt2viS8gtYovJ3bFC5ornDfvnrRSsiudk0OqSJEFbLEd81ZtteltkcCMEk5GT0rJCjFRTSBOB1o3ZPMybUtQmvZd0rZbHboB6Vn05gepPJptWlYhu4uTSgtnGDmhc7SR0H6VZtJFW7iZ+QHGSee9DBFrTIL/AO1RzRW8hWNgxbbxj616rYP59sAfrVSxCS2ZQAEMKNFkwWiPVcqfw/8A1Vk3c6ox5TM1aDyb8gdWXeP5GqG4g4IIrW8WuLP7HekHYrlH+h//AFVz97r9jPAqQ72fIOcYpoluzJ2bmgPit2ysbW6t1LRg5HWs+704w6j5KjEbAEUXHYqbzThIafd2jWtu0wyduMg+lRRo0i5UincCUSGpFfisy51OCym8qYkNjPAzTU1yyJ/12PqpFAuZGyrmpY2y3NZSavZEf8fMf4mrMWpWRP8Ax9wj6uKB3Rpbyp4p28mqf9p2Pe7g/wC+xTxqVl/z9Q/99ikO5cRyT1qZWqqsqNyrAj2NKtxGWK+YuR1GaBl5TUoPFVBIByTgepqwsi7Mgg/SkMcz4FVvOMd1GrZBPPPpUdvfLcXflqpAVsEt7VW8ZzzWFta30Cg7XMbZ9COP5UuthN2VyTxgFuvDUwIy0ZWRT7j/AOtmvLfm9DXQ3Pia61CAwzsixnqir1rPM8WMDAq46GE2m7ozwHJ4Bp6xylgNpz71c+0IDwcU4yLwQ2c+1VcmxtaX4M1W9wS8McZHVmzj8Kq+JvDsmgXMCGYyxypkORjkdR/KvQ/DGoLcadbvnnaAfr0qt480+TVbC0jg2h1m6t6EGoUtTVwVtDywRjHSiumTwJfsgP2m35GejUU7ojkl2OZdjVQHfJk+tFFOJDEcksSaVPvUUVYhU6OParOnWyXNxscsBjPFFFJjW56N4edjaoCc/LU1sdmuSqvALc0UVkzr6Id4yjWTwxcFhkrtYfXIrykMQcUUVUNjGp8R6hoEjNZwZ/uirOqDFxbuOpyKKKnqarYW6iSawmVxkFDXmS6vexoY0mIH05oopxIqFKSR5XLyOWY9STTcUUVoc4UCiigBwJHQ4qWL5m5JoooZSO00udzaqxOTjvVPTrl59YuS+Oo4AoorM27HWzANpr5H8FRaUA2QehFFFSX1GyxrDqjbBjJBP5U3xb+88L3IbnAVh9ciiijqhP4WeW1PaQrcTBHJAJ7UUVszmRuzaJaQS2oXzGErgNuavQNK8N6RbqsiWUZf1f5v50UVlJm0EirpkS219dwxDCJOwUenetnUgGtFz2cUUVDNUJExEQAxRRRQUf/Z", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAGECAIAAAC9BtL8AAEAAElEQVR4AYT9aZNkS5rfh8WWERkZkftSe9WtuvvSt/v29DI9g5kBwTFBMpGiGWkywoxv9Cn0cfRGklEGASRICBA4RoDEoGemZ+np/W6175X7vmdG6Pf7+4msuj0D6mTViXP8uD/+7P74cvzU/6//zf+5XmsMBoPz87NXmxu//vLLW9euX5pf7I53Ou0O59ZYq16vnZydHZ6fff34+Y//+qe1emOs2Zqdnry8uNgZb2/vbK6sbZyenu0dHB+fndZrtbFmvT3WbjaaAG02641ardFo3nnr5sfv3JnpT/a6E2PtVrfb40GzUR8Mh/XG8OXL1e3NnaWFxfHxsfFevzU2Nt7tNOr1RqNxcnZ6cnz49MGDs7NBtzfZajUpMhwMFhcuD2vkqA/PzxsAajSHtUFKNJrNpk+ouAYMzv7naDZb5KkNuawDo1au6vVmqwkTuBUceYFLwWaDm/MhMANgQKkh+ORm6E+DWmq1wdASEGMpUKNmntWHA+/rHGYCMmePYT3VBwtQ5JastToI1GvD82QTBLdgyOElXEqtXHvLNQwYUuEQsmGuFXor+amNG+kXNgwuGFituEEYHBsMB4UW6k5lA6pPJWZSJGBh/edhirfDAeiZZxAy2+Od/+nf/fv/7l/+q874OFDBpNWC80BtoDOtRuv8/DxVAg9GDs9Oz8/Ozqx5eE4SKgdx8EPmg4GIUsP52fnZyfERJdCZk9PT84GomldiJZNTc2zsH/7oB5+9/8Hk1FSj1QQI2ToTE7/8+S+ev3j5g+9/f2FhHjTQQJ5xFo2axKytr3e6nfmZeeqJYtfb7THwHJwPW9BArgaCqDUmOl3YtrO/P9WfpMKzYX1jb29QHx4fH0P88dlgY3cbToAY5fYODx8+e3p0fIKmnolxRK+C1E/PBmdnx9DSHvMemTVb9TaGNd5BF4EsO2oDEYVjA5RiODM9c7h/cg4vKB8RpCDIq4hQOzbePtzaHzs9g0LMloKKFMGDD9fwEmNAObUCpQHro0XVj6yoNUBRDUVD8gzuJqfKU9RJ7FEDJQNSIClMeTgYaCL89wnPcvbCS/hRq6ElyVw9AYhAk5WnyQooUsVMPFRiyE2OYkbg4x0VwpOQRnUkonqALrioruCDvCCB0uGe2FtMO4gRSAO0kAdY4iVdnD0o7c9rq1WelMQoSw4lmSyCoqzoBh/tFmQG5D3n5/z86pWrs7OzzdaYolR3ZRKKRSl85VhrzFoGIkBuXdBwiDGcnavZoICX1HQlYoAaAZALlGmA+Z2RN0jwWO3nX8Vo7vBP29vbR0eH4xNdhAp6m9vb5+uba1vbD5+++Oijw+mZwUR3DDDWM8QdW0vBcW9nb3Z2HlqpjXQygB46qr+nRqupaR+tsfby5k59rHN8erqyvrmxvX18dqZgop3QUtTh8PiE+jFuGQyk8CvikJtwhGv8QmdsDJgyjuPsHJdRPKjqgIyVOvBQg/r4+PhEr3N6ejzRGwf5QbglbqqKhorFH69sjWOqOiRMBn9MvZKIleZSswJPhSUTK8HGIYEUKeQCojkiFFLEI2inoFZHafyf9KaIQAAWghoCHaLBpEmkTEtFMEVauPGJBaHK4j61QnCkEAdwSeNCJFI9dZUCqrwH5wK4ctYlLxA5eABQmY1XRS9lRRgEWgCNhZtGDg9sXkPALCweXMRBFeNJAyYUDH0mVuQODlwLIdfiEsdRAQAJ+JPi54O5mRmMYWdnl5BBEdM4yx1pQ8+4hG8oT7M5htMiugDifrO5s7tLOvWRfzA8HRyfn5wc12u4NdxU4VDQ9wQMKJM8bsQxomi320fHp2tbW9sHexs7exubW8ur669WV4+Oj2HQ85evFhYXer3u+ekJGFAI8gpPsb2jQyzoqNtpR0lqNActDKI5bI0EI9+JSbr9/sN7j56vb+HrsdCCSCGuSFcdCdsBml8lhdxVBrEtByTr62kcavXzqd44Gotun56ethutZJTLirOtZySlMcTvNw+OT0gXjNwM9eqXGQbnZ+sbK93eRLs2RgPUGKMtxoxl+phRilwPLaUsCcD1kOlKNsiFqYVkzIlHQlBeCMEi6lChR4IiAZ+Sp2gwjxWVD2lQeWBCNAhRB1GaJrHVE9vOWiyQKxA6bWEAEBgIGvmHF6TKbGBaA4/kw+gvaJqURKVqdBGq6k2dbp6o4cKUhlFmqyhqJALR6QJGPahYEnAaBffwCsyDUoEZJwhu0f6AVTWBSXDVxHNubm7u7R/YaMt/XL5tIxpOCEBcg98S92jk6cnJ2Bi56p12+/Ts7ITQ5+wMhOEVyNCW1M+BcC4iMi3oxKcrCQUo/uhsp0MwVlvd2PrJz399RuRMIzMYHB+fHB4fUQiR3H/8+JOPPiCQkdmFlcCT3bX2eLc1hpYdj7WaIaFeP4M4wqe6yqSqDBtEQc3GcGZm9ujsLiTAHloTuFEpVPyPYIMR6aIqD8NYagKY1/DIBz7yCb9UWTs7Odve2jk8POl1JuSO6ckDhYpqYNvRGd9Z25iFm4Mz2ibdPsokOOpCNvXd/X1oPqfJs9UbpD1Q6o0WbAoanuAqblCsSaRsWEF+6yQVuhEGmWJHphFNqdDkLCoo+iluQoHLuRArOA/CCVqe86KMVU0VzWbhMkzlEtTSekawPhKDwiVNjVYiGqluBQ5Zwkuw5F7ig4JQS45izJKdjKmMWko2fkA0WAaifMmdpVV+EQh8Sfbw1sJhtEnhRKAGJfModDlCcfEhh4E+ALvjXUoSHeOoTmidhrXT83NkR6R0dnCEiaZpx+3CqSFSIkyYIJ5pNlr1sc3NbR4g4QgPuAQqaZNVOe64tVdm5marPTbGU5Jx1vZBZE5t//AQ/hBsYAzYFUyXjNrw+asXO3s7ExPjrXq8PeUIw6R9SGPSneiC1cnpyVizSaNEEeQIEi2eSz1/8rA5Nz3V7YzTB0gapQu/kimKFWZFQkmLsQlBJCREyaFRVIZ5Dmvn7bGhqtZsnhyf7h/sz/T7MIgQET6aXodB4EDThDG0dnZ2jo8XOm2Q7IAfGYK/cSTyIoKiGsNMZZLub4wuIrrA0wsYFM9YFFy9LIlcRKPj+iOCPJIw4naB5qC4lKCy1Cc0CCtP+LGjkfrVUijwufSrGXl65g3670lMrMKOsXCSBa8rygK3qEeBLxxSKGcN4lBaTOCKg2LWhcYGwgMAmAnqhAgQkAaAZQtQknBqgR57JNVsnGOjopcDR44sMPALrLBfqyWxZOCJII34ww1rqdEsk7h7cNBUOVFa46vj0xNbA9sDUJMEdAH8Udj9swNgLi3MT0z0lmbn9g8OltdW9w8PUFi4QU78Le5PUPQn0aKzM5BHfYvq6xnTS9QdEoDhFmkUznGPokSKSttobu/tPV9evrS4QP/SbLXzquGF8Aa21MJwjk9pCcaN3BrDs/PTVmMMCtDSFrDAptasTfV7U/3+3v6+rXzMoPARUqyocLHSv5IQceJkVRFSFCr/FBTBVaMFEw6PjtWTs7Od3b1Lc/NU3B5SIxJF0QGJolgIRT86Odrb3+2Njw/aFD/D/ItkIRlWSgNuJPJp2Brb6YE4Ho3qrXQiyOonQVr4ykSpWJn4SgelcmF6tCfYj0g2R+GthbjmqUogo+KQSEMw5KEKnSoI5prMXmAkKWLt5aD2gc0DPgyvJshycEFxKwdLqxQb78is6wVxb1JgBM0AhrQIxfIjaAVoyezT6j4AycRhYkmFJESg+7NCuGFVGo4Zkqfk43lBNFRZGRckkb/JIMjly5cfPXsG/vjX4zygAHInH/ZQvJZk1Yc42bdv3nr/vbdvXb82OzNNDIAlfP3g0T/7H//lweHBOP4Px2+bDysVDhaBSsQqyuCPaPBUftH70NjO0dJWvdU2ghjsHx1iOSB3dj589OTZpx98yBgmvVPF27R5CX02NXRsZuemAUAVOqeBQym0PPwR06vLgB9vteZnpp6/eqVIQnt4JzMKywpfRpwSZ/gmjmqbWkHGkgg1tlzHUVX61rXa9u4evW9GvMiDOTdbE1RpXCt3B5A9ToC0s7swOwd2KlzxjcPh6ckpGQBHb2d8vAuvsPLi1YKXIgQIR7DVvQV/9V5UjVAGxF/iGa1KNrInoZwsDSX+ceSRJUNRpR+USuekREcQrPL4DFXigj5fCtsWjgqGCee06WIWhVAkPBeuWkgRnhCaWhbnWRyz0IDRNISmZxu64hfLYE4MngIFy6o6S8hMhxO4yv9ypfYXWmAU6fI/uQUvBvWYtAQJs4Kq+M2VlKCfMmbiQdSKU6/bRTqgDWhEhoIy7kO8RD1UA2lIcXKy9947t7/10Yfv3bmNF+h2O3ZSG412Z/L7n32LMfJ/9W/+BBVGrNSVvoSdQERWKizaDyiq1URyxp96j2RxtQcHcA7fDxboOwMzyyuru7s72E1LM2nVTk+JODBegdfrL1+96k9OnLZODTpsB9NvpijgbHYU1LDTql2an6Nxkh8j1hSEUm9oU5T+IcSKLfzaX+KOUhaFtb3xLkNs1y9fhlTSXi0vn9BFMmyyIHTCObud8ITC58xCtBbmF169euEw09lZo06XC2DhJzylrmbt6JjQcFYWWQl063GpmAv5kpTIXUmTJSbiBTQXqdPwSg6StZ3hCljk4j4EhRlmEKpnHoEqBxBKLaTDM6mFPwoLo1RRZBmZeWKFNjUykMctYj/1QmUXI+nPIxwQzSY3JlGX5Xgm8DRiXNFsOt4qWGvyeXIK2IukiH85oErgOUgRZnDjApghFl9OulRzXxWTfJPziGSylmwFggZTygs4Yi4AGSxfXFiALSoEDoswA9Vrdlrj8IoofLC3v4dZLC3Of+vD925du0oVeDswYUIAVAmakduPfvg7OLh/+6c/hhrG2ell6NrpuQI2fDY0FrxoIARueUI8dnSIl1V42gTjH+TWg8Dm4f7e/vr6Jg1Th5FICvIMPlNZIqpnz18sXZqnP8PQppF73XEjR/cLXzDeMbIPGrNT0+PtsZMzw5ARV+UAFXEru0xFMdUCZVEeQV69hjniZXrj7Xdv3rxz/caN61d6Ex2Ywljxr37z+avlFXoqtEe2P7jQRovOsaAwTKhotaampx89enh0jOOfoK0iHegJBDENx9oGwzGsBHE7gAD/jZXsFkWiekqR81/cs3evSZCzYK5uhIqMGFh1MZ3KufuYYqE3P7lnOg9mkTMEN7mCcBouRyM1CGUTZlhQkeQmVFodleL1OfPntAdVgCzu3iCHv2QXkPoXQJbiIizWR1EDUKiW0oqanEHMehzGMaoOegUAl7lL3QUkZ5DEaZQHnEt68BMBbpNYwUk2UZPoHKRwLQj7b3leq83Pzxthg7VMZ87LGSp4isDI0umMNTqdw4MjDIT6Gkb/OgPcH2SgGFLUbP0nf/QHa2sbdx8+pLie0c4AVsZYI76zOKx4e7TLkGLAiBFaZE/8TG2iaoDDB/jFD7yh97CxsTXV6ci1c3puPDnD3ZO+f7i7ubP94NHTmelZhn7xv7Q5dEzjrhRMiWzsSk+ght3u8c4OiFJxaJQTcgEx223xTOOGUpLqLIEWjO8z1Do/Pb9x+fK33n//0sxsd2LcYQIamkHr9vWre7s7YA+bhEVorekb9VzoTr/fI+Xw8LA7ftxu02m2vWNUmDnmsOb8+OxADzGsddrjugM7M/FXuGSC7wg+eMoQdQoRoWBFIQCtvIqCcQYOOlQuirQVtc9TzKJRDkglyewcKjqKCLs0Qm7Bn9EN5Bt9rfKJCXACK8QGYrqbqYm8pRILoRnC0apsIHxibWp8apXAWBfoAMxzsoRztKe2hyJnGf5LOJlMNF+V2WuOZONXeIEmvSSSfwSzVDDKGHRSheBkVwogF0s1ml2i1e44GKMtQYQCSBZx0SQ4JkO0sb27/fT5s5vXr5EDzW0124zo4/7JghmgY51W63uffXrv8aPp6WnQZnKNDJgBKOnmaHozkIgDVSJQQS+csVPiwNxKc0WCiMjFen1vb2f/oEeAWTuqb+8d4Dk2t7ZfvFphdPXl6vrxyemnH31k49N2gpwOeOvwlOm9o5jW4Ohof/fg8OjcRmrswHkQbDu8FbRcQDhwln+q8znMA9GSQVwgv3ZOkzM7PcsA1NiYcQgZ4BE6s7g4f2P32vGJClT8AobEwBHhIUYk44d1RuXwAHQn+hP9s/EuJDVrDczgcG+b81h7bG/7ALuQvaBvwEOnx6YDVMWL1NEBslR6kRJJk4HHJa+ZqdR6U7Dk5FwuzDd6WkCWJ5GFUIzoVGK5XlR5xBoq4EGK4/UlNlW+gZsAAeTZ2q1HGCSAcNIq7M0GV3lIFvMRKaEWZARqDjiQ+lNakJJcoJaLcn1h8I6OBJaIedjqlML61NeHYuVp4VvJM8o24hiPB+fzszML83OMF4EofwTroEAvgckaumWoGgSh659/8dV3v/0d+oHYx1kND4hfP80wkbXgxudmp7udDjPH9MLRMhqDYwdamOPSweK2j06OiZrVMDQGd1qctOOI4WG4T/cDHNS91tizV68OTw7Rxr39w/XtXQAeHBzsHTCZ4Pgpozirm5u3p6bgLWQDsvWv/8NfbO3uEqhRq3Zsb9+BECoL/ZU+yfnIPH4wPgUNp1VGF5h2wCzOTqGHLrzz5mcM+2BIKaT7IeOw0e0uLC4uv1yNt3Ay8vzkrNUdo5XAEqyO1RkMILQ7r5ZXF2fnTvQKJ2PjzeOjw/39nc2tTYkf1pj8diUUIKsISLSCKmc1Bk0gIx6KdG6TAnEcFffAnsRSpDxVs9QhVVrrshFQUS7Kcs1hrdHxokXe6Brkm1QKgzszUjA1mBGhJdUHQraZRZtBQMU2yCplrM46cmf93HqjZts8cAVygAj8kmgB2O5D/ot/wdluPPDAMJhw0ndwoO74EMGmshQkpwVjVKkxGSlLeooUmCmfnILhENiA5Wn9Xu98N91apBwOME0FRDIkbjX31s7ek2cvp6enqBpVTvMhVQ6NNBvIlMVLvV5v9dnzVusI5WHR29ERjv98b28/Yrc61AvN1BagQl2AOi2BLhycp0ZCHWL0lqs86hs7+1v7R4QgomKP1DEprn1aq+Hwv7738K0bt4i+6DCT0vry0SM9NJdwGgCcVKZyw6/6Ec9X5ZFCsZJlmGDGvhzuhecnx8dAgTt7B3tMIA7pGzEZnNCiOdaGnn5vcrO9hSzJQyUgQbOKEcMz67Pn0JydmVtZfr69u3t8eDw4P51dmj89Zz1SY3WDYeJD7OXg8HCyR2tD/eAixihbZBbpyh+f8YvA+FfyiLPXRZxmSKlS3DMZIvvSysmOpKh2pRAIB0jULuRzi5aDhIy2LvJGSbyyXlXdczHI9AGSWfKDW3hq+wq+KDkEkV5o8sr6KAAIqybTyJFbj4or4nTO1PL8Cw7WXpAODpU2+0gAQVCkXvcuSlpVhJtyX+rlGsjWHgbmoaVLMmSg0xMTE6w9IwP+lFYgho/SWIQlSuRV4PXBvQcP3r1zh9gFtWEdGjyg04CmQjY5ibFZmuncM07x8BC3jfQJ608JIpj1RQWd+2Kss4luw49MxCELbQ06Gf8co69u7E6KJ6mgjaKbQQZ86gnLhmgYMIc01MPhw8fPsQd4B/9wq86IGFpBWYiWSkiv5FE4XCyFZA+yqvfoNzc2f7KA/qu8cbjgDHfHvMH+0dHUxASjJuSUztYYDQXzi4yUIkL1ADYhfHjB40ptVZuZmZm7d79C69dOT1+uLO/83EUfdpxOGYan+ubswcHkRC/2JbH8D+6VpMUptlzRkacmvqaPx7phNct0ClK9eJpJ+iSlHJa2oHmSuRANRag1xVRAkBdQlNbr5Cws9UZ9VWvRaXpRgCOP7kygajsXyhLm2XmWIWJjIijZMQUBSoBFELCiYnXRtWBKGQ/5rPC9ljCD0gptnwSOmPqfsCdyCTqFETzwz6wSX2i0ulIm8At6elCs32xIllXDnc4RMYXutjk+jlukGT89PDwgQ4dFmM4CnRHhrKyubG3vNOr0YxnZRE0oXWhz2AfjmJ2ZOTw8wpJo7BevXF6cnZ2cnDw4OGJBx5MXz5FMm5Jj7YIgmn1ywrKiGtGT2Kj8cpBr0CuqZRCVJWzhTLDmoXm83tje3N0/6E/gjZuwtPQyeVBAlFqKmakZmomCg8VyibYMNoBo7QxO1sswWLrdA5YeKodMdhDSsXhvcXoKRlFYAwZVKGnX6UMf7NPr9bAXAGTw1ySoBNnXpiYn9o6Pv3z8eHN3d21jCxVos5CPobVm45Cp/POTmZ29K4tLgvOwqEhSA/gZ16o3Cs8UgSpMFU3BlSKRtgLOvarvEWMgjasADsVegRvJ6lkAluocWhVCAvcUMYN5/E/lqmuqBYL9XeoLtoFOFvAxX0CaU1PhJkcBJHAbdwiD2MIhQZIvSg+CBoiizwVluPKp2pXaQhdQyCIschWelXypmyxyb1SxOQUjLvwW2YUjirDAgbYACCE1ApLmWIelEKyIbLLkgSU9SKQz1ulOTBDUYgOkIDYQYEjw+csXHcYtmfBi2hf4DcZzsHYNDDQuLS2xZP/alUsfvvPuu++8vTg/M94dZ+R9e2v7L/76b3/6i18yKAJq1GJ3oUbM0aHriPlxIA6GasRZV4BW+C+HyEYUMkFKZYUJdJ3pQy/MTDGGaW8EJDjIZD6AhHGqFIX4ATg8kWoMwiz8STYtEF6L+ur0C3DbTpxBMNXTWSImW9/ewh7oeNNK0OsFUXSXf7QJ+7t73JrTpRNnzTEtMgKg8sbU1DSL8e49faY47YdIJ/6GR/yB3+HRCaoB7iHKB1HWogQISbaCLanRYa4K5dJAZqgClLzSb6sFjr3xCCqj3HIuqiF8//KPC92tWICYtNPGqjJqDcQUuzM/h75DkF5bu/GRlXpE/YWZmzwWJy78KfAgSuCZabKU8KhP6+EmRQNWaFU5G43yoAgL1aKIdYyONHpQKv6ULkWJbmxjSv1BhjIph0yKAatbWrKeQlrEsxiDNaEJmGNzZXUdVxWdJNwgO8l1lJi6UA+l7Bq24atXy7euXqFGAmMaCwYxXfcW4EgL1f/RZ996/913b9++QyVkAFJvvDWxMPaP/9E/nJ6a/l9//Gd7B3aCWX/RaU8EE90/4+xQp/qBtKoFzVqCpMs4TZqnPBN/9QpWo5PDjc2Ng8U50EV8vlQhKuWopEcBw7iiHYFX2Cwj6BtTH00YIRcYGLcQIDHODxusQEmjuVubWAKDvvXBWWVUaRYajM9WpDvswwJVbCAyswsvGgxbMcqUYTi5DsDzc4eVMS9YABPgK43eESujIhv8HFxQOqGbUwopW+CV9FEGa8aKTNQYJJCeq0oK5iQDi983CQ7QIOysNocloxB5wiltjUbKoZ/XvJS6dXDIsGJ7EQp38DVmCiZiSL3ceukBfFU/B7cl3TseRUReAZFHEg17Qmhgc+k/yXLOeIQA9+a3L5HLKHSeFjhCESgHMkcIguaMMod9+iMj65GSpC5VypoE3ZifmVP/HMw4290/3Nk9WF1e393eZXQVpehPTHQ6HTPW6itra6E90Yvd5QpIMGhMTfZvXL22tHQJrWUtBhDREApiYSyi/ge/94N//Md/bDsw1obDrErmwJUrFJd48laDdo5hSgp8zcEEBYNV9rV57KC8CkpLK77DAetXT494u+yE0UmHLy+IpNqwLe5SJOWVP4VmmURjUeRoCIIwAHjGcOoZLNgnq+aJpdRqOzt7mO/CDApMa9CCU7gOKnf2u0XgiKqfdupd1FxGY67ymnKEfY1LCwuyRo0LQqgprPPtH1se+j78wy0Q3mWQN8WCZyB4G+kCwTgb4qNGBX6EpwB0oiBPzlhGVMravBcPaufsvermDwkhHWaE0WYSTlAVrkwmX8FHwVuczDzy4NdLM9DSEh2MIGodwkznO7UlZzTdgiXYA6zAAFGqKEIBrUIFUGNSPC51VdlG+FgO3YjDNOIq6Kjr1Q31kBhtiJtAdRyw9SmHapCyYmBiXIcP6jqvw/2j1jir4xvtVnN2evqT9z4kyLl27Qpj3+32+JOnz/70L37y4MnTF69e8WoXPttJpUBkgEKShFPrYzpdFhrpc8I2q+EaZ8GgEGP+P/yd7969f/+r+w/brTbDTePtNm6YrgWecsQEVjrZJw47US5QPj/VEoRXeT+wj3BxynQ2Xq6svFhdWdveNkDiAdqV1VLyQtrR8zSvYQNcANNwGJTz3F9YY1RMfEQbydJyBNki0sD2+GNNFSMJIuIrf4kfogf0ren3nB4dWZjF4TQKafybNdAAKBrYnJ+ZhaeFP1QEFQ4QFPdQbzCg4IJ4ZytBssiIXzVSLHWyagxJ6qm4c2ldZs4B5l77wMRK90YPw3w6MI5z8hhdCAiuxCicIN0aKIgSx6RSOOB8ImhrqGrBX8RgwEizs1iI89e8JR/y4bI8ov2EP1XzUvLaVsHoCstQZA1A47+AAocauQitXlJjKZAKuS1Ih3xrBdmQSS6qE93S3qlMAuef4ACU21QE8Aq+z2TsRG+C13nhxNzczEfv3Pnkw/evXr02MzXVZqkPgOr161cv0wf4p//iXzx9+XJre3tpYc6q5af1VCQ4otCamZ1FuSfbkyg068S4ZuIutWgb443hJx9+8NX9B7hbIgX6CBVa+Lw0YHlPLqvU6gOmI6hFHqE/dCQwZLCF/9CY7g2PHjx9wnuXYjCst4jiQEed4Qhakl5xQD6GP/JQAHAk+RL31lkOem3x0tRkb2l+fm93uzfRf76ytsNq0v0DokMWtDqLZkvtsiI4Atm8E4fhn/pSBcy3UryDvMACEIdj+bXJqUnGmPYPj6zdYEPsYUSaFJcq7RzsZxymaICAgWNmKVBf0Cow5kJGx7nLdGkxm6wIubEZE3hINjEpmWAHOW2TEJdOoQpNCiihCAeIYYf1FkWidNUulAeBJg7iH87JBFS8DAqVvMkULAqOoQRAEKC3KE/ohQknt0IQJE+SF7TN7kGJ/MoJc5mcYoYQHiTxrECNfSZJ7KuKtNmIWQ3KnzFfnkeNvLZM4U3e1ZxjkKff293bm+73333rrUtLlwhhIgqXiZq1WXv/3Xf+yX/5X/0//uk/W15Ze+/tO+KHHIwpfAc9OCKCGr3E42NGI60FjShRMU9RDikY1C5fuoQBYCFt1nGw1P/UNxOQI1aE8qTLqj6TwSZM+WXtGsPwTOLaFKBMZK6Pj7EIqHF8wjJQono7S5aXM8UhewHr9K9FS1RELxkMY8S2QZyO56II077cvn3t+qfvv7M4P82SWijDbV9+sfLFvfvpJJ2yqhTbBRQaRiF4jUsEdLfb3d7aAIgU8r4lK+tAEbNu4u9PyDHZn5js9Rk+gyHlRR/QcL1UC9awKHXI20lgD6qqgNpQyTiSVvOBpjKr38QD5JGPoc1rjYNXgPJAAMpZEJzhTq5UDCSuiXmp2ABFHjVMaAxWOFJRPaq4FVwCLiqk+qiwFKOuFC/Vk8/qKG9mf6PLnioJ0AUqrWLBQ4lUT0hIsSpK9Tr/rEoOc5QQyCtryWEhaTRRkCYLyYvkomEng7AsFZZ5XW4FkUSNgmpKUUso2CFhBqN7Z7zWsn9AoYyZsr6aDokLkAiGqRbtwRj+i//s//gXf/kTx1XUigELceCl1YgDGoBWosf0AYmpxvhhXIiFrgQRxDmKplabm8Hqpl4sv0LFURjCY+ghsMEeaCcIm0mnUvCNqfEQvWIJKlEb/WHsAFds5wJ8eEeCkISYBdtjvqGMHWmOyCwaKXlUqo+ONqG+DHeCE6LjBUxZMaR/7Lv687PTC3Mz05OTtD7dXpeVIG93++yHsbL+5/sHdJgdNBgx0TeYqZ/CvLAMfvCLw5fozk/r7QlsQZbZmTlniHd6avLl6gpLzykuauEvlGJaoLGzvRvIrBiBOtyt/QfF6E+RNIYHP0RVR3ChqWbjiKJq8elIKn+yhrKUx4ZKpQHCUzUMZkTTiFcNQK3anoYXujANj8uAz6mqAwwQcjCRkRlhiyKqXOS5UK7gPyKAbIArd0GOp9RHCmX0G+lAk1j0w1QOzkWPKShx5jPd0S0yqN8FQhKrk1j4wBritZJOPss6rpZWEb2Sj1SQ/LIW4Pq4GmvA3KgB7WGE/+v799+6cwtdR5WB5zA/4weK3ZdsP/ngg6++/pqoocML6ahGKzESxhTvRcVoHR0JQKNvAEHXmVzLrDCVw+7z3niH1xseP3sK69gjgOWvZ8dnLFKCPrvFYURxB1hVkMS+AIYbHWOug6oYkkJe9J6J36mCf26ecnLSYq6C8pSJj/UtJOwBufrHgK/00r854/WHwlaeQjQNDFbGNHtvoteyoQGEaoG/v3nj2vtv3/z60ROmmUkhL9AZ9YSlXMIZCHPyAf2lM91hiWKNAWkNr8Y04RjvbtKXWFpc/Pze/YhQC+ftZzDRrHWFQ4aoj095B7xvBv4iO66jrJhrhKh8lR3F08WIGHNVSd4f/VqhSxhkjTKDijxVawJb9Qpwmzc4zp+FvZZujxEO5e6NczTGKkDDIjQPRZc4B1g4LMbccQ5CpXy5Kylc8wxbSkZxthWHZP9rJBaJ2FQnmAk8rNQ8Psg/8qROU3Af3qagvTgISZCgulOq5JPXBodpMKiGR+Jh2yi2Fuc0YMJ0fmFh/8kTRhG/vPfwBz/YH+/o2hgWwRejbAiO3JgSM2PXrl5dXVtdnFuQo7FqnuiEAhbtYtAJBhN9oMpER2BFn4CAAEyiBUNecvj3f/Znx4Oz3vj03NI8jhiF5KWfx0+f8fYc7QNWSXUoGbrmcGNWgMMUQwFg5sUGbrQBKvAVU3dnIXZq0kREQyAbb2dvibEq2AHX4RHU44khMu5HJYDhJE5P8/bBDFXBUmrgzMwAnQKWfL//zq3j48OXa7tMXjDxAhzwo5g+VYVuOCt5eARt0EuNDBbAWfQNOxmc0p42r1y6wpYzpEz3+gzSvfPOO0i235vg5df17c31tTWdoqLgv39FFWJOqhMsrpSjEh5JklOyUkYSLE2aspUm78FPTKIkaoFe1XsLoIUYc2UESeEBj6r8/HL9zQPIowSH5OOYS64CM0VCQslnqgc/Sa3OBcprYCKDDQd1i2gOhd5CS9VSgXzI4hHSAVfvYh42eNBJxEYsoa5DZGgLI1V0LAPmyx5ZHIzklrWEkoIhvUVZwLxvH4dIzFFvsOnJr7/4gjcnWYlNVHPWcoGZzUIOJoEWFxc+//ILfGs8fYFtFZEBIZDvIa4srxBxUYoogyEphurtbygOMg5u37j+wZ236I7/8Ic/vHr5MvtuESDwQsKDh0/+9C//ivc2IdzYn0pllO0MCmh7DF0u9vYgHnIOwB0n3C+LBU0t5gNYNAoGqrhBFiyh56Fjob3Dnni1AqQJ2ihLigLBmAitsA3W21Bi2Gg3XUBE9dQEHBZVwBWWuO7s72HfjOWyNhvgUAILQJS4DUugjggZ/Og2RVp6Opjf4N2O7nh7brL3we07169dX7q0xMAwL8Kycdh4u8noQFHhhPqKR1bmjLDVZ/la/H3F5DhHUhFxdMCnXKkBakkOIQSSyk0aGU03F+k+qTImd04kYj/lvvx8I0uSOFGadA1RMKNzufwGsIsbwUgLP/7/5iGepEJOgNooquXgH2/lBVKwjP4l2pp+f9yunFBoYuPZW/7D+DCMa4qi00BEGaTbCBPphFvM/yQ7OcggHnjAVoMtVbhA5dqNsbv37n//u5/1mQLAEk7dmcrGX2MgQKDLu/SzX/yCoU+CEZSFCAONyUvLAJYAPOnPf/31tevXWKlG0oDeBCSQMzEeBE5OTvzv/uj3+1OTMzNzhCQg2G620NHJb33Y7fX/2//uvz/SaxMPudKOKIOtNGgb9vZ3ME5qhD7el4RMo1zErwvAEjKEjSJiJVgIKh7aCnnGV1wRQrFBDHoPc2kcEhoMCLYODg6/vnt3e3uLVUEAIOCK9dgI9fr9xaVFAjQmGegE+z6hNKuhviEkmqwV0XKcInB2UHQ8zKaxTfcnUXred2PFL++CaOO4HIar28xSj81MTWZ2XDxVidEBgNxKLWm5VgUBK3xkZ+aIn6K0dRDsXAb5K30jF1d24Wm5qNRcOkENNTdi9/ceJfk/8rCUENib6P69cP5uoqRIT369HlUiscWKC9icVSb104rKOUUggwTtwqfQgi5oLKZqUWiHrlBXoQisJVRDbsmYWkXBWiOjmAQptk+sHU6NwBisb2w+efLYcfkBE8y820xHlrlXwZNndmaSIabtrS2VECcqWbgn68PpUP0UXcRXK6xdZW0NKKCXPMF7g3OhBLVcWlro9SdKIETIxMpVfCuW9947d959+w41IlYOtJqohFj68GifuzCLxXg2CCYeHjoxzBI/BvoxfuKiVIG84ZFk4wmIl0Cdg/JkZn0VZMiydPjIwBPeyXy18pLdKHZ3906ODhwYJfH0lGkEUugxMwrAdnoUR60snuDVbjtvanR4hU8nRkXYrKEbLM4B8dhLv9fnpW+Q4zUQznCe7OgmY2fESOw5AJpUBxNloFIb/XiJIP3JEQWOciBtNAcKoVSI6oMX8let0Fr4ByDopCy/CY+IAaxCOSn0Krd5U8wfj5FOJqv3SeVktmQCpppmJRx5kMflsihieZQ8ZktiChcopWCBCZwEMcKoEC5CUzzWz2NOwSNKqBKLiWTpyDNFA51wIVwnpwwKegXHQIBFMIfhCp7QVBR4GAy5Ma/iGZnuBYRdyGS+9/ARlsCfhKDv6csCm8pYfXfz2tWNtXU8rATKJUGiUYqgXgMUZH3x9deoMo/wsSCPspqnsLHB5g9dpgtQJGDT2gCHeiGHYaIb168TO2gH7kTaZE8XOrNHR8e7TH0fMDKfgRzABX/Qoy7UHX/tdC9AUAdFpHKoOvQ1oAubw31TjTy1CZF4Ayl7DrYO+JXVzXXUfXJ3ZpPx5P3D7d0dBhBOj08PaUlOThkl8C3QZh17yEI9qaY4LSO3Mp0FdmPMUO5DicxFV+UMbU5jkTmK/W13RzUki3xQRjd+ojQTzIgHpDiqIZ1RlgBAA1CdXJYf3RFxjoBUWX7x9TBB0esC/C3p5pdDVuZ1ckRigiyKQHYfkBDdqgpXOFro4kjO6g4UINNhIY8KP8DkbnRb7nwuylU9arwF7BvpjLLmXswwTdUFLuRcCgcrMKYwtiCa0TcepoSEh5TkBmx6RE77hIDq3tKVTmjAprKMxjz8WtyC+TVtst8nmS3osBiePXrynJ0mukfdsX4fTXEcCXKIwKNCvNX77OkzXjthcpp08qNfqDE1gCkvKuDy791/+IPvfpteL54Tw0br0GzNDHFjCQzE726jumDTZGcKV17H5IZDJjcwcmJ+vPLZ6RhoH7Bn0fGhrESqGq7KDzR0Go8BS/VvDF2q2LLR9h/SHVXKHguE/ITyEZ6MkBWhmzftAVNYvLl7+NPP7wGRCW9eRgNMe5zFp4KBMCAfaIKuN6R6DuyHngeAMD0Mmi5LWyQMfcJcK1EuEtu4tLh4cLADZpqhrkhnbrtc581Yd0HjisgmvzBIrShH0e/oXJUCEFiQG+DEL1qRMqVdtNxF8cIwHRtUwKw843kpXXighhbtoKh4gW6YQyaBk1rwST7xDPeZUFcjSbQ+CpY/knKIxujwOvTEgM3toSCLeXIlgKR5QoFMqvKlhlIR2AX1ADNdlFjun1/Lp4zlCIrS6FWFq/rDB5SY/IXGqgrvpVS4mvdCFsiwkMYwaFAjKFjf2KAvC+2EKM4W836VC6op0mAqmh18d3d3+5NTeGc8LkJEQEIDWL1xeXHpi7v31jbWOpfpGNOVPWFb3FhUKnVgvMkijoO9/ZnpaSJ2EJAfeJnBcHKK7aVbJ4cHRNRw5JD3MU/OaZ3gBN2YqAHkGPFCioCskSktuipyyjEixnyBSNcWfPr9PsXsFWAXo0EPrhE6xDCJgZJEoQZ7h4wOARZQDBAxTMwG1y6IKO4XHTaIYUhYYzB2YwSVzIw4YYMEkd3zCfrxtEFwBNsAuHokkvWZqRkQBgU62YxIh4mIQ27RLGi4XHvo4fhRObjC55olUn7jxBMfg0RJ5Ndc5LMumGEh/qP/jG5FYDgcPVxVErnHXEpdwhJQMYiigslo5VUVFRKwhgGRqmqhcai0qhcQuAgcGVsQMDF15XGph7TqyL1PxF6ROcgoiNSap1WRcDGgCksslP8xXS7VWWGQiGZQp9srxZAFX2W2muJFqCB1pHJyIuLUSzh9tjg3+1//l/85w6msN3v48MlPfvrTJ4+fvf3WzRJxJJqIYCJABH39xvXnL54RcSF2q+dlz1GvGXVaXJgHHVYrsQJt0B4HMw68SYUAA75jTYIoXvWkmUdBkJ8KjJINh5P9cQb3ecORfUV19M3mwtxcb3wecnk3c3t3H4tyiMhaIRGN990spwWK26N/CMlwlAJYyeEhPQz5i3QM4BAXOpRojDTEn9Adncea5QaFEQm10psxH0dYSXeFgqwTbHQczWBazE0etUWGe5usWyQ8YRiKeAeba/kOk5qcrs45/QF6QbBSb0QtKrHI8kPFWGUqgSBttaDBU674Bz6K2XTylwwi5LNgVm6SvyhkEnzMoVLwA+a5zcmsecrZ3wJopLql3Ovc5uVZzqQGXClhHp7Fy1bVJSnAR+Cs6w2QliwJOedJsChoIsyomnCqoyD+usZRsrYsJWoVrozyaD4y1g6wKm5kK7V49omMR7RSUGoMXYBLDtEhN7edTuvjD97BGzKo8d7bbzHj9eIlm/rYMZ3oTqBBOC4UKTE94mBHjNmV5ZcMtdPxozQQdA9hCI0KvWqakS+/vP/pRx+zywqNCRCIk8AnY1CiRv+Y7DQ1mBCyFmdDrDozu7O9yb3e5Ltvv82W7zPTUzeuX52emjo+PNja2nr49OXdR49X19eIR9AiDYGDwvZl3bCSG3ecpL8LTjCD3oyaZABZCYXcun7uLKckFYNz3RSFifAAC+JFbCFgE2mq7RDv7e1xhlwAosq+NeqkhlMUbl7E+89nLKVydo9/ZAlWNIJnjAd0x8eY/QO6PAIXJUaTYnuAKVI9dan2IskNZQuKEZMZAFrJNVyODlWlyrXlR8ebKZTL1p9V5pS2FsmW/mBDweryDRBwxnQf+TR3FhFS2Bm0TS4PYWUwT+434FSXyUjZKrO5CthcjQgclfuP/EaKQUD0wxPughU4xS7gadEnMQY2kOQuV2Q3Wo18kqyRWHuhLdkTTTgA2kYEc/Ozv/d7v/uv/79/srGxwdJp8hGzj7lfenlLQSQZmp/odenC8kGMCL3YoPKiRlZpsvCMhassUmKVGiGAIb/7IGW0HXxQBXrDLCY9PWPLX3BFlSmLItOF+NH3vvfph+988P77vAl8dHRANqatHOG8cf3dd969/fD+P////Juzw8zTQbzdgSG74KvXYMZMG2/707vlH6vM3UFDCQGfpwZVTNxhKpwM/7EKMbERoCUgnWQuyUoLJdd8t5ZoCwRra5uMEjCOS4UOh2H5tj669wEVstOx3XibnRwU8TWgRFDsxjc7z/wH1QVLAeOdyg2aCgpRJymQgSBVhCOrrcKfHN6+PrgWwyQqUS5kf5XBR7k13Vy/dSR/BcEs/o2O18kplNKBIRu9K/C+CTblq2c8Kf8sH+ijIiZ4lMRcgqVVY/A6l9HT/P7dE4o/SuQC9bcJ8Aj2pdUtGSocC1XkMVvYW1hUUUJe7wvQDDTHsvRTaMH1Kzfevn1nY20DLSe4ILzgQt/qYd2oE9sNsdkErQZBATkgBtFzhSqCLK+88V2auw8e6pSxRf6Xpowfuyhq2nh7nKdRGfFABVEJdPHdd25/+N77RvgNFrmNO1Tjq38oaKvT7b37zju3blyjRlECqhGK/UxmvFTKMEqieSB7VC3XX3iNOhv6yOsqJs9jnYp6bYgGLD2KgU0qqLr5lKi9ePVi7/ZbmDVca3UdpT9hlCsTEIy0snt2f1K3w0FDQd38C8cwwubU1BTMcsRC66lwA2ErMWjEB5AdTMVSfBQDt9Fk80tIKNJhiM03DyHm4Cnw+V/AQJS3FJEVSSz5quvixwM+FYiCj6qU3FQn0RqBqfIko9nfQAk+C6PEYxXWakxBv4J1wQHSi2j8VYoU5pRsVZlRkb/7qziTGQLpCsExFV0QoRgdEJj3QCxQg4gZrCNMVjm9L/8BKfYEuseMiaMUiPmtWzd/+cufM0DEW4qM9eFcWfpWVEXSeZ2Zzu7Tp7t7u2yEza5cW6+2V5ZX2TCYGSqCiK2dnX5/4tGTJ9/7zqeu8BvvOC0dFymdYIJ+8MZlYa/ajBk4HYHDZkCFWYL22DgVucTBVZ52pjV+5/jGbt+6/cXX91nZxfAS/UJel0CBWwQhmC2Q7HFq/YmKwggA6TwcSCmeGHV3RZ1JuiHURccCaBoEDjAreskoKg0ZhgSYrd2DlY1tXms93traOz4hVmO6jfBxY2OTVm5p6coCkZArDdVvZ+CjH2gJdTNXDUlQi4HhRWLDrshg/z9N1EM9iDj9KQe2Xj1UcuFb8uaulIuSK/nQXHKTJ8L3Rz0DtPYjSxR5kjjlYamsYDCqmLw6i0DhzEMhFthxcwWwOUqESgYQsKawkbOggoPdR3E0pObCPLaIHOoh8s6d+kdzSiLzgD4sVWrVpoWTgBNjC5JdvQk0U41+fRI8ZaM1FsgQolFSK//ijn0iTAcmWO9IQWMDtchSwVr4EGRONJ5dIvGliLvX7xHTI1yCGELiTosNv4Tc7To19uDRw4Ovv372cvnly1f4b5wk7xafuBBBlVzZWF/d2CDW7zYmiA7Gum3Ul8jEsWMUD50gZDo/74zxOod8ABWUBC1iTIhLdJKKQIkfkHSNBZp0dr40t8AjhpUQhMKgKjvX9pG5cGLC0V5qyEvJMg8IAcWPJJZ+iTAz7GCLJS+ZLOAkQ8LXYhSJVayA17l/fffer+/fX15dY39wctErAALgMSDX8bK8z3ExFp2Duq6+CIEkukqEXnYzsr8dGGt5CsGojF9ow3CxQ8DyLxIpopEO6+BvdJRrc0FC+Rtd8wulxoNhHOol+dCeI7vK+l6E8EJmMoqJHJAh5OTMv3JwAe2g515wJMkc/0YHZcLrwJOHpZkuGTBP9vcPF8wfOkBGMwtCZB/Bef0b4kp5HovkxbOCW3VLYSOR6jAjwuS/CHpgfISjNu/ippaUy9J0CCrKANlmVs+KPVEQ/jCyjwc0QmbT9S5DpezUe/nqZRqfQo4qg14mGiGYmZ9b+Of/47/Z3N9j0oAv+hnetGtMHjcYaTlj3o1VomcPnjy7ffNWaNbf8zoCm66CNbWzYBNboCEqy7ZZ3wmXGI4CDja2v7fHBJw24OpSZcmADTApSn5mLfZPjhLCSCj7k7lIEJVKTUxy+QJA1ShQAqU05ilSCJ/ggK9zVYwe8VNO8r/iKzgSvdQGp251ZoS3tfMIDNBXRpbAiRXiLAWhSujdPzikaPoJzjmwmj1FWARijxVjsPXWo2Lrkm8tIGxQZEulNBDGSIpikOsqG9Qru5xHhVOkSlSldKCCtSGpgKUKyHbwiac8Byort0Y6XSlHHlWlzSUcG2BKkopVR1ksLcc4J0cwsqj3ZDWVw9/Y1ajGVFo9MIONu0qXguVscg4QV0zUoUQK6FSX61xRHb/FRkgdHeSGkzjs4OeJfzBCOOb3sSeAq/MWsxZ+kIFnCbUYBhabd34sBWimbt64+jd/+zOmms/GkT6ejsX8NhcYtdxoDJhBu3r18ta9+67dJBWVdfhxrGstWJav0bCNJDp58a5mxTYrtgkm4jraPWYSzUjBrq8KB0XAIa7WYyIGvpeZ1ayukGIF3fEhPXhUMaRIHxWDdOYTDBjlI4cPdD/SJgfCGUhObk0gailTSmbZIcc8qJQ/2HqWAJTiIOKiWHruFsNk7eOKLQ0BkxJn57v7e3QPsrOT3YNIQuNB7oHfYBE5bR8mDiZx1aTTQnqMmGLt3gYRMRftcuIiRJRnEFQeljNPzJjM/JTf5CnXoalkMHTkNmCoIcVUFa5gIslV7eVBlU29tS31qWXNY4aqLnAOciWpqp98gjRj+RuVKQ2UaRa37JtHlS6QQLDGqmTAwx6eCFZEvnG8vpejF+WS10oMgRSG+BiH0yZQRN5Amld5wK90+sJJWXQsWLY8pAfLMoeJbh8lcAQpS5LDMaMSxoi++51v814yFaEG2KOjiMMjwNuiurFgc3VtnX0A+EAOQ0gYFRBY5kOkABrOh8WGWNXADBOt2UgQWJRvfrLnUgkr9vcOWM3KFy+P9o6WV1d+/eU9rIuEIRPUvgphj7iF6YG1Fm8P2RUWvDMfUmusxkD7JBcGSLTkgSJIaME5ijaQQEY0Fa5hiLyTQW5xhVu8ik9xwjuIRNmjHGSV1Y0GmzqxQormAi4AlPRUJpz0SQZkYGiZ3QHZYBAcFIPDfrawVFpwKGdulJwq4K8S4ly8YO7MXx6OzlUOSylbz/6leHnmmUO0qucloWQ0jRySkuRSb7JG9cTVB4E4yuQ95Uohyhe45gso6y8YWJLjNWLeVDXlyW+dUrykBabZQ35gaAxBpipVblQnRIkKeYwggMCookRKBp/qgF47th24YqobxkhsFhAfr40VOOoHG7RM9JcWF1Y31hcWlwCOInCm6WCJMxUgazLdvnV9ZmZ6fXuba1YHoYK81M8GYXSj2fqQgx1X+SzItcuXCfKpyulqViqkU4pPtCFhIyw0Xh9PtVFlMCV8bjXW1taIP1jtc+/+fT7OiU2yLyr/MiDJBgITIbkKTe2GyoCoHl1niKOjzsuTdB+6+TIcr0pu8QWQc1a6MiSAWxcNxEPvxyEv410BcMhLtd9djIo2KkWIBsP4EzKQDUNH70lB8/m2J1t4u6mAu/kxoSF3GFsloqMPQAjIbmqMstlS8j06DIadNGxbiUdZWtgO38spogsObyTq5F4fXo/u31CK0WV+JaVKqBTHO+kYlSwXURXdQJI5Jdub8NEcnlu7MPPcm5Lz7ySWRzlfVPRG2ujSiir0qqQA53r0O8r5d34vyklMdYA9fwoojBpRPnqcXzMjQKIB8pRaEjRYFnRiX5iTvTUUwrABd+n7LuQdXLm89MWXX6D0jqA4wJjeNs90pA5+0J++dvXK2sYmwziECag7fg8njVqiWrAQm7r/9PF3v/NJ/3yC1zALU3lqv4Sza9jarCo1NkNDlJNYoUV88Pvrhz/98v6Dg31WwPmxQ6alMS07CR3oBf5FXw3aBi3sA/1m8J+9rednpr/9ybdnJvs3b107Pjpih7GDfT5Z9epvfvX5i7U1JvlAn1bMgSEjGGxAHeFI1dIe2VecjhHAPO2AzMTZ5mRP8BqrCJlp4a65s3f4cnllcrxD5mbPyR34gI1BDYyALzCCjVBnJRsc8SgyHzJAgFsBAjFocP6PHWCFPVZaayaKUPDvHmasUpWz2agFy7dWcXijiKSW/Ektuh6DiX6ZE/SsdKRAqbPA9xzQVXXS4ZFfri30jSPIBGCQ8KmsTZ7kr3Kb9Pp+hHBVZgRdOMEOIFx4kCC2ufW6emyKluK6r+S0NSZFRQo0ipZKfPkW5SISt2F3YIcx09PFxcVf//rXfF/Prbry9Z1GB/+FomsSqAADrJcvXfnrn/3S/jKgXf0GfG0AGjmRtrrKJiy7LNTv9dr4Rr+OY7XiDAzK2Qmhq5BR1CI2nnc6zLmNv1pZ7Yzx6YLkcuM5xrE6zEJw8A6ytucLxs7XOorKIOVsf+pDvn91eentO+9O9PgajhPgoDs9Pcmrlcvr69u8YH/ELnyooi0gZNDxxTeAb2Efqu61iDCP7Soju+soLuMJDtLi8h3pg93s5Iq6s7SDho9wjZfubi4tsg/SWbusYi/OQEugK4EWHhwe42zYGRZjkP68xglAoME8KkVQMiaigrnhYmRdEhUk2qwgk1phya3dEeRa0oGTPAFVwYywA1lfQ4nq7IWU5jfJYKUWJY8/CqmYRWDYzSqpwRI8qocW5ijoJqs5zVR0rwJYQTMDNakrcp275LSq/PeOazNUYPNjfqjz+qKi0QW/FCrZZaWAZZiwC41cqpkgZJoZfGRe73M4hhl06gQJCIVE14fWeINnkq9xvHq5PDU1g9Lq2uoNJhkwDCRCT5Eg/fLlRRw23pXP0HKaZDvdsTHdfN5ZByxRCXvsXbt0CYdLhrEhXQU6DChVwjOMrjWGZrMxXvAKemmXvvXJx3/1tz/jNTrQpSDbUdJYYUsqMa40X7HhXRoXVjOCT0eE7uB7t9/6+L33+CgiNoD1ZiEeYQir3M6mpmev37j167uPaLrgkBESYY3sYNqijcMOLyvGKW0ZxFiBoubahoNghspxFbqSwWmT/WJhl4vqUOjVtbXtvV2GtU5OsXVWrLB1BX0Hhwu2t/dpNztdVh8Nxugns98wHxY9p5vjSBkYAF+H7QtH3hKsMVWIa7GbSnjHAxtAwjXXnJqkOCM/7srBxYVQjROBab6RLnFFkbRmPmL4q/SIYm4XQJK/lFNRUg+va1lX8qTS1Ot9uXjzJxUC3bqRrn8XuYH9jUOLijKWVOGnStPU+KgyiUEntXvpXf64CsHm4IjSqlLasaMu0Xi5JDxISSyazBk0idNJVCIlYadEJhziG69jhBJM7oIDLbquha+5zsw9ff4UD1sG36hV+uyH81RhXZpfYAiVtwe4R8W3znbQQRSF+lSeEPX0+YtPP/4QDQyqQSxdDqRKJWjRzsEBryJwAZEiHtu9eunStz/5+M//6q/pQDOF5RfJj4/RNJSHqIz5um0mt5jcPWI4dUCXeoytp6+xVdPcPGtBmJSg0wx+4ZNtT63RZv9q4YuYXx9BVtBAfIS+VryUK5Xs1Hc78Y7wSAhlQNYN7EmEBY6Z0ny4cx6mNtba2t97sbIx3u1t7O+t72w9efKUDhNb9LHjAJEcjuGd22/R/DlKDTLUJwoc8F//RA78SqmJThLyiRoVQfLcJ/6ki26x+G4BlEM5khoLiTukRLSlgKxypQWyYcEPoAcCjM75I0yrSx7vUsYnJr8BJtfcV3pmLclcmiVLlSTu/VaRJUdFQLK6DTxK2iREa0OpMJO9PA4BwAYxcppX2FyYEoMYNYY8yGF6zCKqLiKpg5OypnI4CBy4Swb4oCAzEcFTYKOChEs45+z6fj488bVJBI1yLy7N/+bzXx8c7vOlpvG2WxUhSuoEAKXQeD4weePq1V998SVNfKfZuIEuXuZF6DkaCraI/tmvfs3yo2fPntOfZrKZ4Ri6rAzIo37Uik4iOkIM8CW+IF2YHCqbz7776bf++qd/SyckT+QIBkjfc2/9kJVIaCYRilsngTsNA4uc2EuC+CnD/YDCEHDZrpQmBwNfC7Oz7Ly3t48DCT+lQf3GgsOmim9FB2BMLtQCnqKXxP3y02SQdrash/myMLtZZ6s81tj94u5XXz166PcRjk9wJgBnypyhYjjM1hWsvgIIlKiBsIEOtCF7aM0INHISepwMeRQYIos0kUR0I9I2JRpP5pJacNU2Rn/kCaKlQFHHAC8JGfsKIYAoWldR/UYx8SnZOV/UNUqxpt8+kqa2V8gGiSoTSW8WSeGQ53OeSFSyWlN1UzJVALwJCUl9A1i5Dy8uIHgn+hUiXltHMgk8/TfFn2tcG44O+LgsDIlmkLaMawhBPaiW7Hw9BK1dXlnp8/2+TpvN3idaXfwcoz3Slde22K5i+eXTd2/fYSH39avXrvltQtezMfo505/61//23/Ea2ObWFnv/tIcdwvBWh/7qGa6xCAHPTS+YV8OolPcWlD62Rqf67JxvMszNzfF9HSYM0UNIYCwW5bdqd/462dnzIygYlTNraCe7tdiLzdpstCe8wwVrYXz1Cu3tdft8y0O21/NKh5GHk2XhtsF6pGibhCqbCan4zy6R6sgNveH22NLcPJs38SLDsxfP6AaBCigRAsHqYtAYJ6P3FKEszoMLv3eFvRo10s6wMwcvRsFuqrJy/BMH1Yo1jpkZEnsKCp9KdVvJNlIGoEqcMvIohUzMn8/M4I1MFovqKJfe6hHtE5bxFHNycMuRy+rEzTcTvH0TJrdm8Me/ERzjEyqvoPFAMkSp/H9Nzig5difBpeJkrHIDpHpQgaeaCvAFRBmROsJDBUqZ/PkEqPlR+Y2gcECmKF68a17lMJeJgyHv6U/0x3GghB+EwegaqayhmJubfvrs+Vu37xBcKkfKc2gt4ocWsXPei0d3v/XuW+99+BFL2XqTk1ZGB7fT+ew7nz58+uQXv/o109W3bt6gojJYQtxLab9MSuW81pvRHWaOKWjVtgzE/yf8Yj/3Hz8hcgubme8aHu8dYBU8DlcEQBjNfAKrUO1JuAuRy35odYDsIiL+M4RJNvQRcMMnRQHKalLbIEeQEFoGVQzQ4gfsEGPOYw22smOpaXu8w/rWA2b2jg5Q35X19RevlnmRDbCoFC1P3Lo88b9SgNFqtsyya8FXnOkzswF9B2nQWhluggL50w5aCFJGPxc6RNmoSOTkSesQtH9efuNA8oAp5qRU+fPgLHSO6qdAsTowtNpkLJWXjNXZJ6V0gRQIpcQoXx5UquoTcIur9bnIjPL9//0Vt4JfqdQCVdr/NhxZB+46jvyjSkxcqkq5kAkimiXYcfgyuln9Q3wXqCn5hDyYAUun206vRTcYoGm32Sb1r3/+SxZIHx/3UQ7CfZY1iyug1IHhpUvzb924Yed1MJyZm6FbyCv6KATKObcw//3v/c5XX919/vzl+XcBT5yCDoASYzG4Rl0deKBx9C4HuzvlA1YolRxUic7Z6w5jw/oASBItAJh3mFZzmg/aGa9Xkd2jhkEuApPJ/iSI0ZcFQ9UMlwciznHZ0k32JlFa6tSW3aFoyOisnWtiNDv+p3t7uzCyNz7OFpm8bsYnP1i78fzVGn6CbyCygIRi8B2cgI2xoNPotYioA0UPw2OkAIW43YwzoBt8N+7lyipBJjVR3P6WSn7RN6Ksf6YpWhms0FRWrhVWORexkUB9o8Os5DdxlORvubF4YAHBN2UVDU1Csr+Z22zcj/4HQGUppaZgKFAgJlvwlOygBlSe4UJdr0OmMOV1BSmX21L8Arko7ChflSs/5ii5qmIALZiM7stTKqJG6ixqLiusGzrBBdWhTIzT3ld4XlXGY7jBAAzBs0kU1P+byDfBOlO+d5VbCQcgq/GODg43Nrcm3TZ4koAeNcMtEvGCCPJGuDMzs9TntFXQwEJABqDsr8dXRd55+86zF8/5AnmXb676Ir/dlcJFSWMMlL5Ho84ro8xAEWNv7dgV3t8/2N7ZfvLsFS5eq6EA740ZUajhpTOMsUA/ODCzNmT/MKqZnurV610aJJtnTImgKuEgNdFCTE1Oyheaw0bz6tLSnRu3PvrwQ0ZnXT94era1vfXTX/7iwaMns1OTfAHn2auXewf74ERIH6OyT9Ns8RoetSq/LEJnFMtYXzrgF1z05DipA0S876/PMeQH5eXl1ctzs9rcOC9tsC83mREPbLSZLn+AAb6ggAlVSGhkG9ARMZH/QiG8BoqCjHIXDycWpCUjKcmdNFIFaYLomof6kpZ6KsCBR3IeB3Z1LVgoewOBPDWjQPizqBLitkLMFGsyj39WGZTIEbblmShxWMoMVXFzhgcmvXGU26R5iVMh2sh66ZAhV5E+Vdkak6NglzpSp4giNd1QUCqgS7jE17jZ14dofgoPCr4YGdk5Jnnhf2L85fOXbICHOM8H7GJtlGI3MAdzEXOLi5vrq6Tz6jsDmC6poCMRRNHM3//dH/7f/u//z+XVdd/pRep8TCMf5NRxyxsUps5mR3/2V3/78OljGhYSNx13OSZ+4LVijIfo2zBBSmQIcQzOmhSuy8FiDFdlO8711g1CmnTDna1Qa9GriI4Ya2Fxbqw5Bk5vXbvy2Scfs5fGRG+Sh/rn8xojUnxO6v7DR6tbW+z2dXRk8IP90Cty9Ek54eLtXnOty8lvNBe/YAaS0g8WVSwEhyHG4BBzdNn6zhVW5w5PhtlAyU+dw2mMANhYhaGQqMD5iz+g/tYhcGv2iFyrG9mDYHgmah52BuilANZWMS1hZKr8xVUtYEbFaROHbit9EQ6HWI2qSUYzpyA/eCIo9f0McopE/sjApQpEIuqgr7RMMWHxNjko5IZrb17Xw32q8IFlZUh1VAVfPw62BgwZA2RWxoCzZK8ygYzCMUOEVZIrltk9MDdtOiyLTxUX2njC9M1tQg1adElWQIrVDyyw2O7ps6effudTwmSUIrhTqkKRsnNzs6vLr5gWoOuIJcD2bIqrcMn/3nvvXL929fmLV/SqtV6OCCULQCKNGtvDsOHF7vrWDu8xM8rEYC79W0iQ2+nTh2MRQDhASOWzYgysRaXjwPTvq9WVvd09hnVBjhaqXfcCx0Al0t0Y0s+d6nXfv3Xj048/mJ+fY6QVEAhMh+xUV5M9iBh9YjU5y4wwpLSwUFFpve5wRDfdCzjEExJQtKL0eQgkkmELpThhjba/PPIzLex00G0NTxtHhye7e4cfHbsNXsZTgcNRGTcgYxAVi/+eH1Xy4lAUI7xUNnt5ah+aBG7iaf8MnzBSLLleHRbVFaQ+MnBY8ptHNPqiCFRJI1pEDeSOFShULzwq3ISUS1PL/2+gbZrPR8UsqXZWxbm9OFK6oOZlOaLZFAZ1E3hcgfcB/73lnwzQ18iiSMTrjCJbHxwvQhQN+c8n6Jkp9oVbAgAC9YohGonbe359/9H2zg7v7Uz1ptB4pnQZm1TUBlp0rCd4y+fg6GBy2k8o4JFt7lUIInG+vjf1D//wD37853+BdmXFRaaM4GGiAHnPjG177NOPP378/DlBBNESXVXwcqEnRMbmNSm6M1aoGZODRa7MBKD/+GteenDja8ZndvZ25hemCVnw5ShB/E1xTTJlqtdbxGwnp3g3lE8gAEhtZRx0jInBITsjM0bGaierILW8QKRHYSGsr0dXovDHpbN0t7RsIaATYMZEQbgZvsc24KxvBdGikIdiT16t7p+ebm7tbGxu0z7/oz/8Q4pIk3KQuIrvlAGiqd84zJjcPvXGY/Rb7qoUEgVnFnEqWblVO0uWPC45BMFVpUlq9BvHqECVKWB5rBOiVJAMly+QTaVWVC4KCpxNMKngEiTeqCaAUiQFxKh6GkjRkgvMAnn0/A0ghboAKKnWmD4jlfsXBMDNAZ8Ysa1BKtBVRtN0t/Q+WcGAXulBEJ9+RQFNz8yg/byOMz9Hf8CQjLJclK4R+s7IJrtOsz5uuDhgdJ7VROzO0pnAI+NYGU8ffPqtT7766quj/QNmJUDBiCWIga4kisTw9p23COPZWYiqmZAlfHD2GEzSkUA1dUBxWozZYANYCD3diakZ8Gz9H/7wD/n2+cOHj9i4C4yJnzAasEwXO82b2tqguZifm2M82JFNIcqamAPDYPBsjN2SGSCSfvvp/OkJ5Bo4h2HhprYI5CJUbAY8+UeFsj/0JEBBtUdtt1Tyf7iyvvlqZQ0eMqjV811Q1Z90inExUsFvaOJIpN/4Fe9K4IFQ6ZeAOHwWBnNGBkHc5NEFRZLPnMlfXVwkv4lAlVV4Id5zXCDkWpHnqtoKaHSYJwWRZErJYJcSPkrmyobKdVHVXHsKhTKugCr8Hz0NibmJjhdT/21UM0cpd8GPAopTmQo74QRYiQdaZfMWnMyd+phVGLYdWVKFkg/rSBQ14G3MDz54jzUX7OBoK4JXiJoCCa3q9aeWCZBOz/K2JxsFMVDh/Nmgjs9u9Hvjv/uD77PH0exwRpSylFWPHVzEkM2OJifpivzqN1+g5YQtjJMyL0WI7gD84BxTpDpyUlp3jZL5HYwB2zgy5NP63mef0Ga1a+ds+QjqhMsZCz7FrKmMKhP/8LpQ6/r1KxgjzQ51O/HQIBEjoI30K4tMz/X7vbX1dR9TiatljZHSINjQOeClrkeEPHYMFK9DnlipWqdowm646qgzUChH82FLwwAevWiSWIfuuqnKnJRDhtJykVMR65s6abIyfZ0n1XBbVfjGsyoT1asDb5b7LYggqXe/gFBQf11FAHkiSyC9rsSEgpA//gU3YQFlhGnKjjC8gPbb1QS+ZYLKG08raD54M9UqUhsigHOBKwLfOAKPRIMCqMxthBBUza10YscpGvps4d0tjpfC2MPQXsQgEQihP5tFnNHPfPbiBctzuoS54+7nxVgqCmenVGD12bm5ew8esiQU8KgNL0CzGHmcTWLUQ0yrduPaNTZBws2zizDAKUQXoHREC4p4rCW+UNy8Sz8BrNGTY77jgedFVoYr+G4IAhgjSI5mJjm7CLNJZbvTnZmpX708//jJS19wjtSoO28UF6+i7qL5V5YcCwMOd/HZLBZvg7GT56y5bbLCZPbh48dwTfYRYdMDcVvhYoKqsi8Ga5Qe9BCiwQabHmWfbbNzqPClr6Hdir5uSQFqFP5CVTmAxOF1BS7QI+sUEZn8F/EcgVPl8ifp1bMKaHWXTOXxqLDZZVEpCEulxhQr8QGVvlm6yufjoKgKJZf3BX4KlsskycA8SolANWFU3op+m4S/U2XAVTD5AZx4cshZ/1L9CMwI56BkPakh8QaX8bsmhs8KnzESBIUIQr3ML3xAB+iz8n0aPIQhbrPOnOnyq+X1zS32k2aIgx0c2D94ZnIWFOgTs5AMlBiwwSWCEt/exNsxkjnd75HZaarsiIoK0AlHD9jwgvFWjK3bdWESg4xBw7YbEsAT3SLH/iFz03uG/iyMY0VDbQxP7VgRGulnQOz6MppEcAOn8cTwxDYB7Kni8uVbe7tYqQsZmBcWS42Oud7wDX1s1nhtCI3XQPXX8ta67VDw7gWwzmenpml04DGPHYG0lCE+6k/7SO1SpvFGcPDP9Xx0bHytmU+DyDsyYbiovhZQMd/8qr7FHTXj3QauAor0iJmzoqZEMDM1B0Uvnit8YFOQRymYX4We/yk0Si/FzQBp/Fhq9Ay0AlQczCBD1RpYxfBDGQoLOtKAgMwvDP6bsaLKlIsjILlLFYFeHhMamJonARKtKykXhQFbKnijeFVqlEfkC8TgXl2HpeF5eXUxhXjGX+gNPFAIBwqoYhUIFNrisMKEmD+qgPKtbWzT4URJnjx7jrahFbxFSTsA6TQU9ASev1i+c/M2fp2KgMZIqfIADF3KRuPy0tKzZ88W52cbjTaDSGwJR5e37bdwrJnM/X73i8/v5nNWeUkNCRPhiAWEaAqigbISkLjU7Zw9gdV+WKZe+Q6MhBji8cqnWxRzU3bP0jRYb9Gfal+5fmN/ZzshTCW9eAZZGPpx0iooRsLrQdLgfgK8PSRUm4x6nR3edTmFMgM4ESDmw+rZFAqzYFEdxgdjE/7BcMo6RS8E1YbSSl5UR24GJ4Epm5PuBPZ2ehYTI0fJpcxKZmqz523tnPIjhzPApfmRi+p4aF0u2ksWCfF1p8CLRCyd4kJOi0UhcCZ/qcsKrCt8iekWI0cMCJ2JRUctig1WOiRqPIW4VAqVcFJUAlCLr2oWstc6lFRIwVQHSskmzhSkRJTVZ4AVfzSAs+kxDCoSkmhbRqBJjwYX5AIF/4JvzUC20xkWK/mrmoVcisckVLS8ks85mJhf0egQXAaMiH/5+RdZ79maHO/yDQTyMWriduv4u5OTh48f/cGPfkR0Sw+ZlLAF7ylKIHn1ypUvv/qat9tbffSbDsOYoVnleRX0zOwMXNze3JyamQQvNWaQiQJUkiOfWguOfGODpRYyDflCFpi7gA10vHbQkYeFcPZNev+dt2kiWKgDvTVmuY/cZp6gRQzJTroilIOCwhIMzx14Fy5oULVeP+EmQmd5hbcUYZV5v08TwRd5WSXBppkYHBueff3o/v3HT8lD7x44qdaVW2pK5FYECQGg6AsPGQbmYbBiSAzmM+yAhjI65txNWWIu9nCF3A77wihFV2lALqiISiJmFCpKRp4c1CRxoblKkjoRCUo2jILzIMUmJbrKrU0BCLkkvBo/H8zMTNF6ybkUhmkVKsgTbDXmGEcyCFALq3RazM3PUV1ctGCpefQQQoODaBT4/MKjrE3Io4gsj3kOtxWiwb5khC7hc1iObPTDyl6GUGfUEwJDMQXJYS3JTP4YpEy2bVbJeRwTgQXMwA5rs7NzrO2kx4g7oIUkkkE7mWeAdl4co+D6BvO/u52ZaUDqwm0MgpZuZ+jGFq3mc3Z8uf0Ws1uE63R8icBZsiFijNe3xm6//c79B1+32o3aBEsi6JCgHb6hDz54WPbQkihHpajNZ9Aei3B9HUDQHAIbMlCrdkimVp3VcEzjqV3oEIOtzET4Ep3bfDMRaMwTJMmL5/BdO+ByyC4dgxNPehN5x8Gk+vzs5CThHW/8fPjeu+y8x9Qi1dPqgeL+/s7YePvBk+eM2GK8KgHiE0eew41ICzCKPXNM8l8zD7rmVA4exJ8lWEIORa2jQJRE2OYSJU7A4cS1NyVF5x7BVjiXZOgp6kVhag80ipSjUoZgJvsoroKAGhcUyGS803DUZ0lH4K2YaouVFPy5D6SCn0DMgj+BmwL0tthA0Pb+4iCloA23AKOFFACpBaGGObCIpwFK9kDkJ3TbLw5u+ily+FSCTCUASEUqwYhjbzCxqqg8MqN1Qan9VSBxFM54TXWzfOhmdpZAgI1H+WPEBhGepdknbqckO7izLnVuahLmqEqoHTwvWHmuMf7z1b37t2/d4tUsRntgLHCatA1yU0+0sDT/4EF9e2MLgGyitHt4tMHnGDY2V9c3Wdj07PkLTE6WYpzpFSsRTQ5iExQgOOrL1hNp1ljYdv5Xf/tTdyouwkMloZFFG436pFpOUM6rZ8Qtunm1MxEFmkmfWwUFaYwweqx4CMz6vcn52dnFmanPvvXx1OQ0i8xhgq0EER6uuNWf4z0HWY8XpTZA8r/SDH5tbOiLgbOiIgeWSLvKO29UR5KaZZ9HnLDeuGJEIokeoGhjl7LEF3prwUCdf1UmH3tp5RRJajmTRAVJHj3MA4yugLAU10JSYJTOfxWTf1Eu8FLzBBIqKhJTFby1ZPRQUF7wvCiBakWJEjIJvwAHlOwxX4p4Y0aeWg13nPjJlY+kulQaaKTb2wNriyQrRcQ7J20g6yALNuJeSA4BwPNW2AXxAkWulkejzNJaECRzvz+JuI5OjtnJKkpiLsch03pq+CxoePr09o1rvLmJ23bo8HzA+jWeuFphyNLRqR//5V/+3g+/P9OfQKL4ZaJy5I4DRHVwWUztX7l29ec/+9n9p89WN7d5nQ3vTTuDGWB4hvtYl84UrWELGsmW0RmARKNY1Y9zhagiTQZy0EaWSyVEJh/tAtW2WkfHezQf7NsH74jxLV+ehtHsZNqZYB0g7AV0mnzZCjAetyY6EzcuXZqdmmAXR7bGxwbojTBFQs8dTvElHb4TxfAWrw5ZO0mqEHn4J7/p5dt/iAbDP5ps/IquFySUheqmCYUI5gY1XBfqeJCZHPAxZqLGcFjQVInmmmzxATzlzkfV4RNCc5k2sh+vhJszDJWdwqeofxYAm6oCM2reeiyDParyiQRq9kKxupAsl0NhgJhHRDRgs5vVI6VLjakr2DLuoKlripUZkDPan+pSMLXLBVECZqlUcBKYurjkkXFatV4TIOIgNSMEDKU8uBcjnnjkXknDkNyaZdQQmRfmZx2ab587in/Oin6GD3kNN+/lOmEv+3jzZndnp9WcIbZmzF+4blehkAAy0e/x7al7jx5++sH7BFrEIGgOgX2jY8cU0kD+0uVLK5tbv/ryKyayxjvjrD81ZCZ6d8cAw7aIo9bJgmrII6WwVtOzhWCfDRQGQfCH++Uzl74wGSHDQvqj5+evVlaYQWPjmazF9mWdKKzREXEOVRC04emxO0UdftF/gC80IKy35eWj48NdgjksE3RIB6YUGkqdYwbs4THYNLyx1mgVXS0sHnyIt2gNKQRKEb2oKotKGpVCU5B2gRYwmVA77Vtl8pyhvXhY0A71lbkKhOcVMMWb/ApPU9cIVJei5CVfkb2s4t4GULhkA0YqVdW0SyVYFMKc5q2wFx/4GtAAV9TyzMo4l3SKjKq2g1GAB4zpQq4w9xqAcfkCyC0J4CW0ZKvKSTeZxRflBybm43AJVZrTy/Phwe7u5PRkCLaekFGV99YaYjlcYjM+F/PkCPxRhbrQsEWjY+lRZ9xXJO0HEjvAFgIKBcdRTkQ5breyu8dnn1i8zeAlYNEW0MtaY/f0ZbT0F7/6zQdv32HIUQtBla1Z9vJLPSz9/IPf//3Hz1/S2x+fGGfTI+ycPVlQOIZkOBg7wn6IYlRBVN2XW7i0LIugiPMByt4wvEc/qGWFN4uQyEcOsOQZOs18+K0b13mnP6MbDgrxWEplBSZ+yiCAfreEquGO5eN7iPdnZqee721ZBKSjQ/xY2Lc37BAsLSw8efaMATATSQY+UZHSZGCBJYrBgxLGP/wACeXWD1E7lSIdiIEf/nlwhkFJkxIVS8lFOZIBBmjMuS5IC7Y84kK1rm4C1MyCG1WuNkGB9sSD4EnpNKwUi+kEOfKQTEVcFJ2H8bphq7YWSfHS2qzUw0tKCNnGgy0JyU/lAjF7ubABJgPisxNo1hwFbIBUNfJIww63eCrs5E+lXlJhatZue5N97hjHTkVCpQoYaDYxdWBnVJynHty+WXWeJsW6CnGsr+7iB7EEg3jA0VOI0QMNMhTQcMCOQ+w+ND051fTbU7y2frCytv5ieXlvj0XUu2yuzqtvL16+ZKMkl+K3XfqF5uIk4SfSlM/1JjsQv3XzBntFElEgF3SXwSL2iADHZrvZzmgYswj4fv7sibJmI3sigRFdYVSOtyKZgAZV7AFW+X4C2Mnr89rszPz07NyjR49mpntj7SkbJpfBVX4La2PJtySlkeNcRmcrBkXeuPwShKE8OB6MEthRZRdxYLmT3a6qRwNte63tYYD2rIKxCkdsJ6kqt6ofAajdtKSQZ4gEtqKkfqZSxJPmDxqK5nHmkU8dDIiAlaS9EACUPEnwZF1AyJWVoggqPBf8C0DT9CjB1ucSUEqC9qg5EpDFwC9tsbeqtfAqWPbvPazSF391KNwCPDagE6UMXtOi1kBOwJEn1VEkkXSBQGYxkcAU4hSMY63mLxMdpSj3IEdi9JJLbCEFimXwQKRiBMX1pMIko+LkDAB+in1yC5HpgAqIgsCh4iHjM25CxRsCemmfQGJGwAmNypKkVgN9Xd5Y50uAfKZzeWX5+YvnzKb5brHvFBxrhbymM2RG4tmta9eBQ638K6Oi8i3mRApfSMASKFM7HNIM0bDwXiiKjd7ySgBnUqg9K0fcg4u2Aq9rUnBLjzcbRLKNBAtApG3ECIai+pOTd7/6zdu3r9P1obPSais8ZKZK2fT4KoLiz8IkOj3WhzbLKUfTeD8IThIdKiMdjPCLJGEJsnHOQSaZ3e7vGYvztBC4BhMBZVCJpfF9FMBVnXW4nTZSAahc2BAvKAFwpGOKUbWIPKtx8QheB+mhrvu8kj6kmFmSonyUDwmqVcmTXx6ajzOYg7DZLUBdZuM+9eKGDTKFVmwgXw2zm5QCArS2lKryARLmiI1PMH/hIWOYwWVFZrAyT8HJh6k1KZLMhfnBSDoDw8oEA+9EtGoFhQnTcAyy3iqqI+SYUUChqghX1megxiqoNyTzvCRadcZeBI+z4AHQQSDjjQgRr8cdDg6GYCBwD9myfQuvrFCABXZ8Ru3Rk6e8LIkD5O2FSd51dt+7E1b4iAUiHAy/uvvgR9/7ASJmhCmeDjypyH+JF2pzs3PkRaF5Y2x8anxrh5nsIyqEGVLuqgUXXBB0eOv6VBejcgm4E7sciNWX17p9X2suu5ODt0oAm/j88W9OzlmhnWVS+vHR+I8mD8St7T0mmuGOcol05QuHL/TwrZQuIdnB/sHs7DRNI8kKD8jpDHDFGw7ME1MZ2j/d6xEsLS0szs7OMvRMxp3dHV4yWtmgidwgi/ofuVKZoJAHxDlApNiVfWr20qPIEiTjbk24QA1c1QDZ6E9UTrQtb5q9KC6zShgNCH0UqCBQTk+AtkWJuI084C42kIBYzlAv6SSRDaUOVF2nRkw/jfauogK4edco1otkqM0FJdq+TTnZI3NjGPwouVGtyN5kcRJtAJetbkTGlDQvIRqzpI0FJpgEZXXRtv2irSlsK2qtDaSHDYHqCav2wTU5wj7QozsaAgVn9bCKc2By6Z2UhRxfyWo2s4qu5TdSWanPe8zzc35n6pQPB2Ad5+O9CXjLwEx3nEF2sjd2d/ZYmlSGcdAuagGVl8uvCJDoNrScvCYF/hD3y0fqJO7pT/J58j4rkWr1fZZkUz/9BzqQ+FdmkAsHwBOiIIuksyO+OA6aLl8DMTYSu3ntGqNY8/MzrBtqFaciIdIzmJthA4Jx5seZLu01WeEd+clthnKOcRjMnDPn4Nd5M8oDUB4xhIp1UB9vqfK5dhw2iaqGK0b0+REcEgc+7zn0UfKbV69979vfvrTIe6oLjBHt7Gyy3Aru7u8dPnr2/E9/8lfMvukKgnskDVGxRccu+AiQa7YVSgTANSxeX98CNSYmXWfOKN7wnIXkBII4IZg3PTW9trYOVqy2mpjs0xZTI59qhLGOUQ0H+d4Rm2ae8V7qRK+/s7GN/KbnZ6CWGSKQZ0wMYBmq85PSfD0SJjP/f3LsjCP4segFsEwGsUwA3BE+PSt2T6MTScTMMML4xMTe/h7+llHz5CTmQxWYdjwkP8tpAMQ8Og06soEV0MK01OERuwEdkMKYHMPcFEAz0DaYTOzLtg57+e41XzSDdFZrItOJ/gSf12M4rj3hflZwg1eieIOFVS2UwjkiV5BjoxF0Ynd7Bzi8XWAjzYjd+dnk1DRrk8lJjayEg73qvkpPGmdtm60d4Lk3eg6ea0ao9czUFBPJfECe9w1QYfbbevb0KW4dhWAsx/cO0TBCdF00b9kz9ctWvrxcps8DCKTBK8SEFj19/vzGlStGIK7E5EODDQZ9qIWMGATxkiIgBHcjbvaTJyLCY8X1gGw0076ymumaN7QUHWdN0eLi/Mfvv/fpx5/yogEdgRDllw9tcqRRf+coGJsi7ezvbm+to/xYuK/JMfF9hkmzhENWsbk9HGARCJraSvwDLNHD9zSatHUonwzj3v/O0rq8AF6x52SnPdWfmFuY++T9D69fvYzZMM6Ebk9NTbOSlgJsZ4l7Y8b+xcqKpS8OngUELKVeURZnKBYsagpfL11aUCLKhsnO6Yxp1pm2JI/UMpl/7Qq/eG1YTt+uNDh5Khw4MNF1X8rArs/OzwJLpasHmkzASIBGbc4MttuzVIUcuhM6xWjCkO98cZHa6vVJBOYeuoxXkJOQFexQPjAG7PTMpG22TZDeXR46KlK6rSQ3+aR2aGR4pDs7N41EycDqncKSzrjGT/uOu5mcJGd4QU/MZQi84a7gIBnV5JGLQxEB2/tkgxMwBBp6A6ZYyOz8DHlQZBYHyTs7Ki2GJqECq5a9QAwq/ALE60KvxIVwHaoHaom/oCbYyDK2kxqLmn0tscVaA/b85EuTfkubGgb7+y5oAAdaC8pmAQSicaQVUoCKoJ4+fb733ocMxDOthMug3dAAoweoAS6DFByKqANTTfASXxJsbSZlTr8HWIM47GRQw8PSknzw7h22VGLuAmWQpUxTqDkhFEC0py6UHQ42tzf7E82N9Zfocb83jU9fX1/e3NzgczjsSsSqpgXsjM39nPVIu6FTgLOGQ9Mz0wxAwWiu+W/TpLMw8mSduaO/U1Oz/enb12/CHNTXejVWtv6FSvP3sYaJcSFIGmA80H+AJMiQkbh5Eq21CrgTCQDLOinIH0zLnKD36hCsTZdVbGJjYgincl2eRx0IXQrmaqxWUVhM5QgzddpEA0TcEwupo14gotRNAVxQijFoD3zgBFs0DBeWAWh0DR21AERjGGKloMQ8r7nIMokSATmhHSF+dFtmAJxdoYbsRWIWJiD54QAAzJRAnBQL13hmXtCTGCkVPkoh5r4Xpkk7bhLceQaG4KSd5MOqMoomE8ggQEkQiNOROrGiKh8mF79A4cU1vhZoiyBKvr6O53clv8sT0cyjvR0WM+CqCb/VeZTU/7AC/eGdBHEDXDAY8kme7a1t2s8OozN2Q/hkvU0AjhAC+X6f/JSK0KgxUi7MUXXyf8jiTl+bwfDBB9rZd3Rzc3t1fePa9dtkMXbNXxlEk0fAptXG/vhe4vLyM149YrXe7hFcHt/e2yZ85/Pj23uHfHCX0WBaNIpH9Z3ucINGvJqdFVYL2twQQiASVIZWAtaCB3KlShhEBlqeRAW2kGKMyEMnBDoY3GheXrx879FT2zpoUw9ClRpAXr6bQm8s3y9EJSOHyI/SEsvBBfBCoYNUalt0V2jlf7mwLEVUOHRCDKnJ2qoHMIVLbvgH02ON3gs5TPeJapc85BbPFBGQXAVkEU0stsC3MKpmK64paE2U1AxAw5g8r78WJAJf6GJiUpARRf6AHNUHTp6QBCyqVVMY8nZY1gT+FwBUF+cdMs2D8wvFghermKa8wUGEgeFF6rWsfgoZSBFZo0U0SvRtip6BBX6F7x8TyGEBqBOhFxZki+fgDy+yswGMX5oCJcIkQk2/OsmoiYZXkIIQ+abqDoZ7B4db29uY07DG9r3DI5aP8l2ytY3ldb/PxHpv9hHVCecALFGAyoLDDEdksuNCDK5IHJViboMB3z47/slf/+zddz+YGB8HTYZtcNMOesi5UIVmk7S4uPTl3bv7x6c4/988XTEudpSaCmCbvdWdvX0U0Z60PoHijMFXqzbIRT+enGDMni/YPVOD4EO2hBmgxMtHNOUYmOConIaFRLuGjv0OTo7o6wywRqyEYST4wiFBMl/uoy38c82F9KsfitFs3Pq/3PrQO7NEbVI+BRAoSaq/yOcnbOI+tYiPyUW/VW30FD7yXB2pSObeS2uXeT7kqdUnZ1Ae1g4OjgmLSYWB1id2KqDgbeWsMckVAbFGHnqocD60FL+WtKyEcKLpBk/lUj0nrzdK0wKGxQaRFjdhhF5uhENWqArbZKyKTi7gF+dhjYZJAKQa6yxAkGMUpkCNHaMHZHXyAAGeEx0hOxSJ9ydhNA0pMQyQ6T+j9Qx6ko3wGmGjTgyZYzPQZUCvlHmHxtlY8IA2Zh5era0cnR6wuGhtfZMtdAlQD/cPN3Z2zG1UWRQPZGhXhSPLpIuzVxGNHNDxeJiTguwb9PX9B/RSGVsywjTKdb2e7xaH45wbS0uX6IuxzNxBLqeWmZOzPkSZ6YUhnWbUkG5iZxxsGaihffCg2YITvi03xipcutfWgTy0OcvLZvL3ev0Xz18cHhzRcmpO6ghMpE7YSNeVyTv2CDvyG6Mj7oA+2RQvf9DBF6NZbSF9ystHkbdSG9GPPgAuUTKMSaOvsAuLBKPIo35eAsojxhUdjVAqcIV/4AgvefFbRhXd94LS6Jvqon1xGBeRAihpTgeAaq2E4A++KYwsyhCOR5DxgtsAABbPzK39UFbEVVKzhAjDEqopGZWyV8KlgkAhm9Rp8aFE8EAwD0dUXIXnMZzHzUGZGayOsYfUZUXJXHFVFQke4R1FJIoUS0qV1SkINJtHhI5sAYcl2Lli1ze6DKo5D1BJwjFWRoAGn8PIkDmlHUMac+v4XXrq1osSO9H0888/R3y4cUyN7hBvgx2zDUync6wj94OuSBmoEi4mBSNNIjA4gRtEvnY6eaSxs/z7u9/6pDlBiG4Y2dKPkEx7hSiV6GB+dobBUPZrgTYMBUAYcVTKQT6qwrJx5HCYRMI94yL5UGO3YVBGv2kaj9jw1Ak/Jw2gCp7BCOjESNgVb40+x8amsVHbOI82F4yLduEU1tZeLS+vQJ024o5MkKmphNQIhHVUbnuPT9Q/CT1MQB+KvOMWNZ7CEShUifgf52ZBFUxmWUTUfBj4XsES+pK0O6M8lgYG45ykoOM6QbSZmwvIMiBqF1RGKPkeIwDLMUoEE4uWxFGlghd54wudvbCB51mi8pcSluaiYGuVIbk8N68WmcMqoETemqdKLFpOrmII+vuCTAEIaM24FLC0gOGvjEpd1uBVIUYqjPKoSA3PQfeWkIGxnN2dUzq6aCEZ8I/sfuUYmrZqJw7gjLAxJOSShyGfEDjFvYkyvtLBDIrQ6WcpEYrB6jVniFEtOg4ooRMIE130EIcriywEvGBqQxnJZH5Gr2ksl8Da52FcxP/k2dPllVety5fpEeChnMqAMqhBwnKN4Z1ud2Z6+slLdsugc1ZEgn8iApOzWC5tlnjLGybRztgJn/qAAXHwDIwZrdvd3iTiR+1hCozAmTpeYptSZw6B6PDpi+eMG43zcv6Qt5PO2A1gk33L9g93dre/+OKLnf3jA1IZKKSoYrQujnJJbQDHQhBnrEj3qQjBPjLiTHW55kK60iyQkoNcqgsU8JQblYI6yjMTOFQATLCkCgQo8sqRJB7RfMtV1cZ6df4i6SM9sywNf8L7ICYaZABVSSLDhRsjJ5TxNABSucU8LrJRJPWlrA6iPOc3FIiKICq8UxDVKCZuFmqETLPlEJz6Xd2ow2DhHUjwR+DKbehXZQPPukijGjNKYCjJtdCUhOsVehO9paWlbp/PJrxC0KxCwidDGkxRWgTkZFafBjvHe2BIEoED/Ub2x6JvjXvFY1K1fpOgwuEyX06gBHjggsnOHUEBw70gZ9gRxUXEIBYiaJdcyx0N0UoABduFEcsImTW+8ff4+dNFRsnP2II7aGlS6AotgkM3BPT1pUsLg89dKRikVRfqAg8RGg43d3YIkE5O+5Sza+GkAXvDuHAVphEizsxMrq685KVVplVo4ViXyCO8BFjCrevXrrGL092H92dmxoebzeXV1fsPn24yuk+XiplyaohxSoBDIrbdFBd7WxU3LWZhLQ7CeiNsVUDd0iBLNugpPPEBIBBgUfbwXUCaCk8kjGtSuOGWJwVWuCbnyhMyB2alTGSzVGF7+IJgLzJwUcAhcDXQG85gQVbBh4upW33ysQCpyiEHwlW9DwcXljRGF1+uo7tBMmnxU9phNKF6rrVxma6NSPrMw2uBaDKFKMCat+S3IhdIyxawKsZr3T5IYS4s77hwaghMrkKrxplBdIanJ7osNeUzgUhcGclDetWjCWeRtiiPGD5xaFUY6ilu39pUNaIlR5wcInZ+kF3AGgNGZBkt4ns22UKOAs6GORashQAVOzR4SY2MIGNSTJiIKepEx5Xxg4GuEPsAZUgkqLr34PG3P/6YWQH6csQe6q4aAsXZcRI85mfmsUxQVGwqDRnkeLhSZ5qGd7SX5uYYMI6wsHAlx9ImzhgVbQLsZrPV6ZlZQj3HubItK3aGjjCn8r3vfuef/Yv/4d/++V9tbO9iU3EDdkVsB9ncBj5pDsWCi+BtUEBHdgdhuMw1ObThLFUq0iVL5CQwpZ8zV2kDuAMaPJSSPPQJOPvAy4uzpJNqbQWuRpIyo3tuOFKAJ4g1oOCV/CJFVPlRjuJApeSVFisb1ZQ7T/6RHCSSWNUrxQnfU5sYwGoqK3lCAyfBOvOu9lMzIsBrmlmtVxPUlTBGcPyLpZIWnCgndtRjU0b+ICOSHsG5KouuVA2PhoJ6YRpWLa8CN1xi8zk6xzt7e0yYggDaqSlYINAJuYmfUHI1jj9ZpYNLBpTO6bZCoPaI73fRZ0GDMlQD+eCFznjt/EybwIQWQAsSDbTIkIFQiqc8sJVhqcX4OHmOT7EE8QlldYJw4puJ9hmD+y4WyFAmz9jekE9QGX/zwg0DTPt8C9HmqQDXk0iMHmLITPi7t264nsJvOmjSlMJ4TMkyrPF2l5W3DJO5mErxmAEpinytxi56ExP9B0+ewCEnXorHTS7seGR14V3YTK0AkXhZjs3VXBIbfEiHn5mh158pF07UU8kTnKnaG8wGJvE42dAPxgn44yADR9gofdwXTpnG/+o5qSaLlQRZTfEOJFW8jeKZLSIrkNWSCmgQzmPAACsKBMYZbi5VgTqYospF3XVHxt/iEO2z8hEOYgC2IXgUdImkYCVWvawQLVWBJ+yUUGMZK8R28ksFiNUUKLGU1cnYigafq7hgbc4gTx4AeuY3BTmDDCGwr6Dg8lpjdJULCnJAUupYAbTBKM52FiTUyMhx96Cl8+azIGyR1MBpAmNsutNmqJIlenheYyI+Wq7PBKAg0TrGabgCANJlTBaIDkw69cmslBgSZvtCiwE6r0KApI8Bx+oeNhXmEw0YDC+JMuUOzSoZyhGW8SJBhzXivASk/sBt0aJi2gy6CU4ZHjC9z/T26Qlb+KURzFtFEufbM5h4rz+5/OIlQSIjCIntIB7oVASXh73u+KVLi3cfPmSuH0SpOg0ZTQ9rM8L+yCdiwIIVHdwbZiU5aGDcWIKAKKlgI4rgipWYWP4UkWU5k6icHbXxh6PcpopSo2fScTWFx9x6JLP5RzeCMhVEZFoBpKsmg/UmJ6J2cMfCUb2kcmMBWzx0oMABFlpb1ZP8IYtpoKJwNugFB7QGHwlMaje/mXkSAv3hQqmnOS2AtE9UoSBJVu8uqJAGMdY3cFHhBVIchbHmT11WhfRQICpJC1NwE1Nr5leURJUivBbwez/4Ph0EdkT/i7/5GWutQYlHTnVyQv8venfQAnaMTbBRV7EJ9mWZyDS/4zR0iE8OD9lml4jIIFybd2yKyVxcLpaD22XwEa7IfGItshBTheIhvcxzhvJ9pEDZOebS4iW2Z+2j3OwDOTj76S9+/oLB1LW1OzffolXJ7pNyxyk+HbTyJdSb4G3UtY0NFmsgkdiAX1qActSaGjZrvDp9RF3wgHNnnC3N5ApN28nZIQSzcOXxw0es4p7o9+OfZC+gEAz8YLiIb0b95G9+mls+FxXdYotIWS9naVE5F7wiAPSGzggjV1okaEAzZ/hPpbn0Rf8iQn89ZH5klWxWAWR474mz1Ui2N8oGKBEoyQUNslNZJcWgwgnyGcKAIUJOjzFVga0YBq4VWL0VjtRdyKmXc+orlXr2HhyCU1KRAtqm1IcOcItDecqXeAEIevoGsgoKV0oGwSQX1ZqFIjpYilVnAYRyf/lfqi2ACxc5lzzi7pFsVlEKxleaQzClDaQeO68AQybIFYLpFZwT+fzv//gfHbGAn6HB8Yl/+a//J57zJ8QYkh1SPnHTZHsUIhd8KwNsdvtY3MU6HbqgjDJBFGQ6zs5WoyxTarPOigXXLCHFR8AGNI2WhLYEVBwJRkwM+qsDdnXUEZDjhhfrWdRz++aN9955b5aXrKf7CJpNh9hfYro7/i//5N89efzse9/5Lt48K7iFbXRFG+FPo0nYtDi/gM/2AWLR/AaTLPBC05k+5Mu7Jydb27t8Ky5jALXO0N04yBlllkEMIACKLyjyHQSCecpFBqoL/EBnLi0uMn1GACYrVR2qojzPIQO9RNt0lqgCy2q5xuVAQ1TQOIHVIwpFijGbOLaIiduRuF7fc+VN6qgeR9CkUXc0yssc3vFfLD38KXnya3haKs2zYgCUMFFVCj4FEGeokTRg2QIEcorJqeBh9spgxM6K47UlHy5ayuLC5gAbKeFGzgRvYgP9NNUHos+kNMD8/eZRajBNVggqQJLJqkxKcX6/WTIJwQd3KU3UiLNCPGhLARSHXTwUwz7D/iRvIY99/7PP/uanP3v+6pVrRGQTRClFPAmYO300ZHrKmSWKU2mjTZvBgis3O2KQxQWsjh/aHKEzlCTEQBdxoLgktn0v6EI1wYiRPHaigGx5yE3wcvPmtc8++dbbd+4wYjvZ61ILAQsmenZ+8tEHHzx49JTdA/jMAsGO8wn2KholSsEK+XqaKxzZg2nCT4USDdX4JNQH773HNjAL07N7ezss5f7iy7vs1Ur7hUisGcHaRhmsaRK8lDzWYs3t4cEhIRpAaDMdBYN42E9OZpG7ncX5uZ2nz4uywV6lna4SIqHHwx02LdMoLiNoi4p8VAjYwBk+kq1oVzlHUUQnaiUML8Llb6qptfn/9WFOjpKA1slfjbLK4SPV03pypN6CgGJUH8THzodlkieLTUAekihmizgKhMggL8pm4CkYRJPNeqUh0AIJ+NyDQC5gh2rE4J5uy0BB+GJmZszTfMFMtL55BAxJYDP6H4MoGMYYvlng4s5sGVgRFwpjgyVMIOyxmUK7S53kKlmGZ9OTvbfv3H728iW5IQfyOaA8cwOsu+EFN0I+ixNIM956vMuyPDfUh7AiOvQbnlIRRKL95CywDQTAx9VEek2qBoGiMGGCfGapNoguLi3ivln3IcrOjxnkU7jVrn/n2x/cf/RwdX19erJvI8NybpZL4e1YIBu1kaVsE4+dXr00f4k32SZnfvTD7zPNxsI4PlTCqlTWpa6u7qDl/GNVMBiqALQ6jLCJKyMAbRZObWwsL+wfIBfXY5Es86IrmGZ9eO3SIq+iFv7A5YQ3tn3yQWrkt02fLzmrhfJac4dgVUfxJ5hGByiShWIKy4rISxbLm2Lh6pA0H1wkjB6MnvOoQLZ3hYsr0qWYKJkp/hi4VQVBtNQIZYIVgzhy5ox4iSRajQ6kSGrhkgIlnYGvQA1vsoRCK4JJmFwIlO6UkhXaWO4g34UvlqXWwPMGSgM4DKv44E/KjDhRgStAR6DlUeyxehpKKCfhVRI0OK9qiVg1P/pXozV5DHrSTpvGDzLC5vHKLL+/eXP44z8vQ5+OfHPQvDv4MeA7gsQauH1Ej/OFANsGF03wOdpqMwdcfyiT4VgFq3A67XEQ29/fsxOc3lhaJxoQZq4KtmR2IyS2dHz5ctn+tB7DMUb5hUllZQNz6exCxIrgx8/4SO5bNCB8Lxr9A3Nq1LA0sUFtbro/1ZtcmJnl2z79bh+aWCjP1EenN9E8Hbty5fI+02uUJHwhfGI+gfEyVjeUbpOQBjNz0y9ePtrf2+lOdJhv5g1rlChy4RdnT4C0wMsczORSOyuU4DB1RzHih+0PyfcIiSeYgNpdNINwy1uFQJ6i/UXgpZDF4ihSXuFVf5EjJw91xKL55VQOKxUlIISztmFwEnCgDWHRNSm0ZqrHPdvcASkHFVEQVWDj8owHqKcklrbFTPo7DpIhIWpPXWpGypNDuDBWsZoBOnxCMVgNaFErUNTdSutTjMxm1WMkyKSKoJnyKGtwVFlM9dfMnqoMSRJdVd3DhJLPC3GG4aCaWkiQKyUjjwJTjlLC3CDPslPGIVmKz3pOanWyi44W24/yGk+7wyqMBOgsssXfE/C46jPIOH8JkzAZZwZcwOPh9IIMYaXPCQqAwqI20qio4iDFBTQoisKziO104/SUTWWuXr6MilILLzlT3n/Ii/mFFuNLLfYtFg26odAAFfwnA2cqozpeM7i0uISh8ImHxSuXiZIkzoiXFVN11g6hxAxqWQG1unSPIO2c0AybElptwD6qvIGxsb7WZ/X8YNDvs0RCA0hINWC9CSvgLy/Ob27vOWOddjNBp/YACnQQihOS3zImuEFEKPepyJAo7YZcYT5SUAdJVdwRkteyz5KVWHOjlsTUTM2DkotbAQO5NFDcuJyEIIRs0Vc5yT8R4Z8KDNWCCP9yawaDQCgpoFWhchm8IJDianYOcQl6pnvjgXBJs1L+xU/hDrzXDEyGUyGVypyUTQWcxE1nhnYAikrNLkwzyxgfc8UZnUl6eUxEgUMLBslFgfRDRC1GqVjhgNepHwKjmhYXH2GKklUCx77EGS+KMADD1lxIFafucARL8Hmwt3/OYiTGA5kqRQujAGID/Ead1cq+7RRUuQKYnjAElQX5kM4gFW/ls1jD8RUoCscjFkkrLSsMfvjo6WeffooxhRhplyVUw7Z8h7ysdcpXnze2tthaXqcCGhIQRMxap5o2W9rt7Gw1G+wV70yhxZ2EZoaL9+56vO6wtbVbDEm3ngEfoz4B2YprzO32+vrK+ETr2G+jtfmQKHEVbSK4s5s3o2N8hY5GTbys3d2/qFoXmyE3+Clc8ZG/EQBJjqiwZBXH0BlzCknKFJ8C8JL7HP4iOAoquGIzPpZZksq1wsPRk6EQ79BEihc4yoX6PUkUf4FDqmEo7bb1mFyOVM8lhmmaaOAEq4ep0dwFS9e5VQVFaQSfEgJICnZCXnEP/gEQHAKRK/yevsNq5Y7mYknvChUCyr15zMBZkkKWdY44XJANt61dFMimKfpLNpGVEqHZfIEb/joO2vp4EELJoh7Lz2KJZ6eT/e7S0iJvCwICkcFuRlP4MA0v0PAi8nR/khGhrx48oFdtlzewcIU0AET5hCFAxloxgwzVtHhdgarJwEIklgohAl/0ifONEEFTfEhBB7FGZnU3t7c2Njdnp2dYDRu/ROfd9odOLIvf2KFsZ3ePngydhPMugb7b2xMXR3PCNWyQj4Osrq5gvbAi2qk9MHKFoNHx2bnF5ZXNfJOdd83gDnjhpzOsphkwguarg7/54sGXz16urO+w5wChH2jaBzJkK8FPNMPGiv84jRgFxoAtwIOorDKEuf7kgmgZHbAuqbWk4jJIU3WgMmdT9anRDbXr9QEY0OBEdYDCHVVqKRur2kb1KX+uOVKGW6sAAj/qSG69MEMpzZWxsnqm3vmgOqr8oyTSuRSa5wLKq6RwS/HwJf6Ahin+2baB/PplAGedSzYQEUZVH3WKPiBhiS6eR+W/Blzy+ROM9VzlkIiQAxgLUAQACgRM4umTLw9IALBNDmkFI+pEQXUlKAGVwiEe1NhMZYzXhb/+8i4LTecvLd68ef2Dd9+9srTEzrnoOmrCq1/vvP/OP/3v/wcu0A2Exn+VhMVFfB2HESjeT0DzWL80POZ1VoASFKGxmqPqRF+FCIMDgiQc7G1MxF+CGMBc31hnbJfXBJiW4OtkK2sbv/78l3u722xqv7V3SGUPHz1s8WVzLEGrYoD3Ndk2vLRrcWnApBq9LxdMrGGIEM3OTaBNT4h1h6zI9iF+IYwFb1iHSc7OLz5f/guCwag5JJW3qMiER6FzVOShjVLcdtemUxrS5kITGSTNn+DGABo54AA8sl5Xi4Tc1M1l5OKPhyYxui4pnEud3jroXt1bbFQUO8TWU21qrkpSTUGl2BdKFZQtWP3xOPUpgwrrlB2hUGFqWpJG6eV29NTUUi9XjrUlRIpWAVjEYKbGAcvywhj5yVXwVQoUk0bhFDZyqUnCDQVkRuNYjwoPkiyYt+HIaWmq0cUATWdjWaHZ8ApezyRELlMfD6U45eiY6pXKeI6+bTi8de0aWzt+/9OP3nrrxq3bt5k+4LtpVS24o+bkt6Y+fPT02b/9X/49kPG51Ee4TLeTNRBl8RH+Gu3v9ybYD+b4kI4yrQTfRmADdlBiDYV7cbN5DMySRbZLTlxjJCgu7+Q/fPxkbX2NsIrtidfWNnjBZn1rE2MCB6qnH/JyZcUP56R3PvDFIAiGUnykJPrxUPLReYcjcA1SvQyTSOlOjNMBYIaCLQYwOJhL3XBHtsofIsjG4sJlWo/DVElJibTpBHs1zfqozhEJgMJd2+I4HzWBR1p5xEEGiygdW3CiWWYfMcLhsIs2F7kAjiPusAjYstyOQFjOHHKqpPJcp2Ky+UYn8+TOC9HgVjTM4B9YmWye0ZGqU2qU8ubTi7T/rYuL+t8AO8ovBlzzE+0EiQuEYGfY5HB9ODZ6JMYUKCiPzoIJ0ZQ3Q2m7EDX5vM+/MLIiG6hhIiesLZSjCYHMKbLiN8xAMmYonMz2ROx2muhqcO3ypbdv3Hz79u0bt27w+rg6GjVgminOCDEMvvPJJz9miMntzxSz4/t1dzFisg2jQMSUYeMTFJI9tbC1M8ZgfH0Wl48R+KKAxcoBf9yUEfRcGY1S/+yXv0aNsYpEDlZH5xhDURejjQRIoOrryNDpgC3qht/Ao0dBeM1yotejGhLlsszwB55h6nxEka/HZdrPeARLgJ+0WbACMKSAFTtZECPissCxyIWicldGCIeDUSmwITd1AoHGlRkToAlUORTiJNLKQUJ281R7JTGo8UQJWKA6vCTN//7jwoTy8zqPAlavOXw+OuciyCWxpFcAqNJIjqpHz/7+3wLv4ll07OIuF29AeANWlfGNFJngkfyC9RYx4HTiV3KnNym0mK2inN8KUTKTGjjKByJgo7mACu8D3DAqPJSZ1lKREA6WWsPwvKKdLOSwiACjTwiHFPiDR0YTEJJID+sLs7Pvvn2HYSCUGIWmTYh43YwoaKg2c7MziwuLkkBQdHpMSIOCY6uoGYM3LEDi64EMwLDKlQWg2CBdCKYfWDi0Tz62UdKnQZaqbQfVr4Bqb+gNnpbZOZfxOBLjWqdcGYJBqZomM3lTh28RnJ2AnA47Ybr8Ql0HdprpZ9gnJpMKQ11pffy1zzAzM7Pyao0R0s6Az7LXOtkIDENNZogyRuTbWHcfPGCkmMpAgTc0lRO4gHVQV70Nwkg1B0NszIgU6YAhTaS5rLCUoEei7OIPKhBFIMgNzIv0yA+6f+/xjQfGB+lDUMDqv3F4e5HExaik3DBjuS/2XK6tlqug9SaoqiTpb4AhW5XH/Dn4KRWaYlaPi3zwiMjjDbiW0ie40IR8cKUENEFCtyWAQpaOJ7AtQ2LawoCK7vFIpbXzjXJYKZAViCpuNq6JnUoymdU64OAxc1OwFbAKxF/+2XcjfgM0236xuzVLVUBQ5dNG2IwANRM4Ka46qw3ZSvTRk8eMSRZ9pU5mFY6OtskDSigAH65loTeKu7+7R7QEFWpFzR17UWv+yQV5oITy4zuuDjJKTGJ3VTMxXlF/KCnUsrIDDEgMLaSSCTiqKQQAk3bNb6vJpyz+dtl2uK4OuVEKzQblwVTjJp/luU0FgDgfXL96heWHkF54CgvNQz81NbF4w85fvc72rii9JeET7iRY0OQTC0ITBCKxNHDO9kvnUDdgIwdksa9EYLnRYXKRWVIiPZgkX3OWLJp4cBcX0kO7JzEsOfkFhA/LVewQ+VF5OUaV8Wum6lwuc88pcAO1AltlK0IQHf/b4r7OTIrpOUj3mgpR1uAjzKLQisqtrMS35COr6OMPFWiKkZmngYXglKCKhU6a0SCHQ5plbGqN5gQDoSnxEXLmj8WZLsJoiQ7LzwMETBC3gGxNpb6lxWtoB0e7RDGs1bGU7w0b0VGeUSI2xSUSuHrp8s9qv0rnF7n6jPjKdTqJaugnsPIoiGfNAnO1IshAbckr51HCsMEkqrZ6FVVhCc734NIchTLebjG5hBpndSeYQdvWCkebYayKM+bmg+SzGyqbB/No7NUDS+yIwEReeGuNMRjGLDmcyEs/4Qr0x3/r14enlxfmWOC9tbdr9ENNPvMURsDShpuTDXjRW6W2g+VhHtvJ2oC3QCUqEqK14/vnjHF12YZWGavI6h//7ILH7SknUpUwgPzNUV0GemRYgNr/iWqlClYNaP88R4mKFI0p4xeEAkN8GNu100qFo+p5qqJ6lJz58VJ55dcMcRdVUslc2jqFJSrRrkAtlVJbssk6kyNRL7iFegt4wz80qTSkSpZn6T7AEouXfJZJ/kinQsVYxhzxZsk3UhphQ1F+qCOVpxOoycJsHpMIm8lmn1BMLAAypSXBqflOJAmAZO+f1XuvUAT6ygWdsyYvzkg0Ck4KrpSV0yAPwyUJYug9Zz93lMFtrxm0VTaFGhVCBoTS4GnRoOVqVQ5GLrEdlJsAnlXTVsE8hkGbZoY+k58UMC8uuMUQb7s9gSVEkyQNDCSR8MfRUro3fs2B0S4KA8zZYgIgL8nYoi+xs7M9MZho1vIVIHbN5yU1VoHnrR3moJlfu3JpaXNvTx9VMY62gvFc9ztQCJ44SxdBW9gJqmFF7Ib1ICwLuXnjOnDYqwlrgXJmRDAaycEgQDToKAylkV/5723Exa83HIIu+ThLLLeerZCn7LVgagCZWWiaJEeUz5xxPGbLQQ4Sq8pGxmAt5KwyjC5CsDcFXdnsIhfIZydZK0uNZqBSbgIhoHxCMp0ozoFMoSqHV3kdEDMmWkpqNEmegluxKQSGD45kU88FeoVYdUwuKhLrDyHBiMTCMFJtmyVVMzIQMjP/ICEhh0V9aB4e4V1dM8SykXM2dOsQ35+dHI7dZC9dvmTfRtKoByPA9ghOTp6/fPlyZZkoHfpQOZSZVTzBl3oMAPWO0h4HK3dkiPL3nQQG+pkj0EBdpMHOLuytwraCDpGP1ghGq93BUEuTwkCDROxBobeyHUvXezTVGKYih4rZQY+RnzQohnHUYB41AasCknTz0jOjV7u72zOteYY2MRwAttplPyIjS8CwmO/zu/fKOEX4Li+Vs3EJcB0ZCPvlGm0Lk4uwAhUpVtsbH//2xx/R38AewAHa2Pm+1WBfDQBQumClmdtpD3cKctQAmogkAhJdj9xTdy5zx41NqKAoWDwNgCTRbJVyFBSFXIEtzLTG5KvAj6opZa3wt47qQYWBNcCDVBNAr3ObLHRO/ngEJXE2q7z111wBWp6WFGL4uG0yV8nWI8oXFQvA2oVAJdAtHL07R6hV7XjCgZxieGS0fDDwqbD1rClhDZaQGk/IgwxxVq7IZIPNe19/gTrxrZCx8T5byDG1y1eheGOecUD2i0d8bBXMML3gSyVAohr+9Hke6LFKaOTlxq/cZuECSBpQg6bbitkTN/xWhzVRXRlqEzSJGfhigitZyF9Q5Yc1F0QZCf0lwjnw8WbbSsgiBpyt278E+sVno3JhlVkwXix7bX9tYnyi3Z0gmKOt4cuiclnu0Tc/ZfNJ7MlwClxr2mh4x0P5iqMyuUzGMYlC7OVrTTxweTqsZQBrbm6eKXfqEynbZtcS4po1JHW9cBuAXuQfJ+UlKcorVHMSqqRFLareVZAQD6hReGQxl4fZU7QCJUySC0CL5JBbRVG89bn58ijl31TlFI2cq+dySX2LSlbVVY8qEAFvUoEs9NTgT7IExYITSQWbkl1CqV2u2ZCSscIrGIRdpglPBCykZ8Ex2YvgQC6RI/lVcVFIldxwa4ERBv7yHwn4yNbH1064jRpZcHp29umr1bXtbTR0fXuf3U10/GyX1+3QMx5jp9l2kzt0MuM5DihxgY9H3HGMDcaIiF7REFpSwJKB7jC5QN2u0pgj/ugbA1IqP/G8PfNCFiG/hIAHTygMhvHS9m9ZAjXhe8yE/MDKW8ToAXqMdqe0hOMh8PHn512eEKBTNzoKVaRLJIMF2sLY3Xt3eQ1tfn6JZSVaKjErlekV6P4f87od1LLlE26eLdCwN6TDqkMGgZWIZqAuAJa3MersjdTwq8a6fNCvN2b5UJW88MYQjpFgXhnFsEAVHkQUyiCCiRQK8SOpy4tKPFqoWSsBmrkkpIkk24XGVznyVH16fXiNPag5I6h5fpHn4uJ1VQXJi9pKpZYC0Eh7Si3RxwoCPyNMvYzfGNX5+tFrzEJnwamcBR5CKgYUuILQsZVHsN1OhaiIFu6WdNJQIa5ESiAA0I+FatJ8otL7lJ8ySh6USAc2FZjOyJFRt+rELTtm0xl88OBpAPmSZyxOEKyJmJmeYRdJNkvl/WFqp5VAt+miofUiS5+hVutPTR1nBo2CR+yX1Wqxoqnj3NlhWUaNFz04YptUxxVQqUID1VE851ABPYw8oEkedvMxA3K0NjY3Jsbp0DPFhnKBg80qh0tEwpEM5dDaQDY2c9LIYDAmEO7aP2U13qu1Naz0A7bE7U9jSdu7L5kLZB8/GLG5ufn0+TPX2KWbD4lyjhixWk+RZTMyV2MovAdLmwZnJw3EiCMJH3nHOo4B5tosjg2ZdQckmPLLBUUVGYcmEYWR5FFi9QgekKp0qwLcah1owGsdq/IC8c3jzSpKeslQ1fpm1r97nUpJfhOfkgaNxoav0f9G4REOqaTkGSVJ2cV1KaShF9JfA4EudQLNiDbAUajVT/seK9TLjwAqsGRdSSFPeFndibv/R1XKwTiWIE+h8EdYiImT/VIq4+U74xH/6FLeuHnr2fKKE0iCIQZxv8dxPlPb6Wxuba+dbyBuY4ri7/iSeQ5yM4WMGvB3Sv+wxasvzurigknHeMCL2lFRZhZo0+huqgIYgp1Pha1d5pK+pW8FqWDOyoEFCkQbAn6tR8+ezc9M0zXHQZOFcRy0FKLVQfZjOmad0iFjNVgIdkJr4zCw3EorSIW8ybA4Twj2nPnrw9/s7Oxv7OweOggAPiyyiGxw+TGvMJO6wcemKoE+18WL2CaAGMhBFQfIMMLGaqY0ee7eod5LgLvfGRnl0HnJiJQObp7ePCJBTjJ/JEsdEfWMUmMaPFQ3SjaufZh8PvDgN65FIKYUiIUTyVPo49KjgkMuS6amlBiVrSD6A2UOIJdSpZznUTHTuQEhyuYyP6NTECvJBURMO/XmHsgGiLrYaIP48M+1ZGnWrV+6SAxuRWQyNwk+QdzBsnhZoQYXSlWKIMCCLmgqx2gj1uZYy1jp7+B+P3z/3b/4q7/GFkEoWEj8wQFvbLq6wrCYjql7W8h31Joxn4QhhgauOFIF2C7g5GD/0A9JsVCCMaLxjg4TJ82bnwd+ftMQu2zDjP7E8qFUZauxn4BvjKI6WkNJAmGKs6Hy/SePbl+/zpwFqovGsy0lQ70wg8EdJiXsgTOQeXgy2T+vsRG/cGEHeyNx2PhAJOtn+R71L37zBd6e2IvBJpotnuobzBQnJKOgghErO/sRKvjQ8DmkTU7YSDNatMLbNCAwFJbxSVPemU6FtDGuSyGzEPKPPIo2cqhEqUCL6vFbHeR44wAYhZRYZQ+xQOAFTdWEqwg0IhZ+qcViwrFYBRJ+jp6KRDDhXOUsmcxcCvCruhWw5uawXmUPg2SuFRdKyFgqAgqlUlHQKlBVpuQNFPEp6Q7BUYOOt/zpdNKXiiUgEz/gJRpIwiyFcJUmmOlKgySnAtp0eEbOMC6J3BqhWmuRZy4AiJBIIZA9PyE04rlaASjAv3PnNq8KvFxepgJHF61el8dQEn1D8CEo4ksRjH6iplGkNr9UhEnwiQmDY976KlvIZ1gf5dzc2pqbnuY7CH0iJcyi033+/BmJaBHYMvQPVSzepqhkyiG75JLDgUN1galRCtvr7bxYXZ2dni6dRVA/O22yipXFTyfHh/sHh/Txx8fZ05fMgKqiw0hGCHAHM7u0tFD7nBYHBoCqRkaFMtk4z0TaF40m3XmduU7I3IzACbHkBlctg3vMyE0KyMEjvALtDd9BpK5iBgJIRULwggRSEio5mmw3n6PIGYkViSoTs4mQpaxUrxa2aLdOImiZESnnHDytflOAkhYJDHLmxlMuzUgGahndepe0Utjn/nFXoeEtxaVBbqm+8dQGjdGzFIw+BbiVA9FrqbF0ElKLtlLVp8rwCHrt2HnhNakkUiIsjyUkW3lOOkABDfeEb9YCBTJCibw2OXLkbHUmmETmSN3EUntpclBlUszVrPPm+rWrlx8+eYzqo+i4RoDgXtn4uvTUyYxHZ0CSVLx+eQ3NqQR3x3M5HQ0C+6KW6trj7VtXr1y9evnTjz+ZnZq6cvVKJvdaX9+79//6Z/+c/VXxwuy8hINNB1NLYJSZ9UAljihYxbiQQqNFD+D5y1fX+Yo4E2fdHuHQ8ury1/cf8j0RrHP/4IhvV/2DH/RhDrbOCBcYU3hQ7ZyjoGm5rl++asAu7CJn5QTXYAmVO5FMN9l3enR5YQ1cl+GWMdUG0+XfIwgFiue4hOW1dXpKRIcwlIaliIgwkfxwMmekqB5YP/fFyiIzBUZdrjsBp1KDlxqxsveaG3ZbKPzitghOQQvRQA6JR4tMuTiiCWqf4iQVVRM9TllFTLzrnvjogUd0QTgSZbeE7OwW5Y2paTgBQFVoa4HHhfoR8QYH0vlnLQb+gErZ6L7Pc+gDBCAonyN20qUgfaGqCOnmJhu55FtBjAvKF4CjGq3OzLYTdo1BMBiKTOVPeGpFhfWOplhbjf1zmapqMbTfZC1P5l4hiNFwvTVfW3Nkxy8zkR8VInpXJxg1cSJZnhDGoB6MDtEgMHvLDKxYcpyfT/Yn+PbmJ++///47by0uXsKo+GASdlKs5eMP3/vHf/yf/qs/+ROA4KZTwgVOHMES5BS+vLWiIW/LmJMo/PHL5/Ty6eBu7ewRnNm66ZIxJgWGBoMzZcCeDgw3fiNarsA0gyHa4qWlyyyT2tnbJQ+wocdmhxtHoux8cyZogueM/vIwSDAaoPwNiizBpROloGsA67QMhKlGUMKSWt6owBKQhhIVGT+pwtNSob9Ux8lozPGKoumKOOwLycjY8gA0q6t4HMUq4tRUJKsI0scUUS0UiuiJtu2MBg4E00t1XnOnIxSyNVAEcYs5paDdnNZpTiE5+G0hrpLfa8Fxwx/JucmjNBcmmLdKjksOSORiw5lCFgcO+ME6+oSAZGbJIsUhiXyIAa40+QeFSSMrCMkQwJkO05QeHUBJDhBxC3Jg76sz3HAbNMRAEG5tgnWLKqrCy5ldv2YyZDUcKDH0j1wX5ubJzVCPfOSgvA19eFjw8iVPasBUSISpdAfYdJqtpG3q6Qyjb+wh+a0P33v/nXcnp3qMpgCGqNszU2zIfqz1wx9879Xq6k9/9jOYDwTGSX2/0iFX3/ZEy8L/BhVpKu4cN2i5gdfuyS+++MrWCl3HnWqiOiuwhwWUhCN0QuA4jh2CWvy5OACK1A6q503/pflZtlyFbLvVZc2CDOVdTfobERGKRX0EeUy/0ZHQLA2NIKxgRlMjzVlqSxIixUkLcHC+xyzMztbc7DRRJXIRMMw8Za2iVxyaBxlRO5kre6OPYB4bLsrql4tQZgZh1f+UIneAgSKCp9OmCeH5ijT1gHluHoqCHqXIgP1bhf8AEAEKicq9LpBVCUtRI/+EE1DgSV1okG22GMMrO0hAjXhUpAT6qBpl4bPuAlDcCLpUyssZ8gcIMg9eEROOsUEcz/GLIHByvE8ptmEHLN1W6KJlZggSlOiTMgYPZ4g4qJpdmVFrAmwGZwBGRVOTk+zVTE5cDyE7nVb6o5evLEms9IkFtYZJMhvuSJ2xaxQmrQYeDs1C8yA4a31sSpAmSLPTNS8sOiCj9kodjNPeNF0MTxWgWl2U/5SUexlBpnaPf2b2lk0AWNjHCk/Gclix2SSWASz9V7fCOx/Svf7h9773688/Bz68J6DIjrt2bPQLLNWOR+YhTVBRBufzyM1D8RCIrZXyIf4RDWWwtbtLOkAMshSuBMcrgCWX+vu3rl+7//iJ1AGFcAyzc8BBQt1GXmHLQrJDpNbiIlMjKwjDzKqQiREDaVahQQOvH0uwuvX19VvXrwHF6Ei8/Ec6l8DC/gCG3mD4ppy7j4jmpG+T30jTEu4AO3QcF6+Jo1KrMWn8CG2j29m2QKaVzQyZd+x02JMQP0cuwk1aSzBneABkd/e2cEUcyJq4FfNlK1ikBcAEtW0GGagI9aJe+jnQjtoR45KBtZZU7ScMWX05M8PKeL4TOdET3M42G+ecT05NwAHGTbCOycnpg33g15mQgXesMeERG4+ywgXSxzsMszSpl8K9Xt1vBNaYnAK+e5jDEFTkDKOB1X4Pzykz9EJZjBELygFEPDExDn+0imZPM3MLliZfSYQbsBdl01C9hJUI1CtkAysoQv7IgLSiCFHnyJl0XBVkticmQAanhsTRftRpeqp/vo0qwlvkgw5w5BSlJwV54zHTuFivQVl0EamVQIOdAH71+defffsz6FGEWgD6HPRVCQMtdhJg3wm+P0AyPWnIBxum8KiEyTfygA/co5kAJmiphMIw2rEfq+Zm2sFaHRjw4cuVNeYHmvWJxjiblrgeG8xQO5ohCKG7j9uhYlIgT7LgOEyWFBURUfAGBprhkVidGorL5B5doRGnCNeABYXJid4MH2Pji9CTyKPOi6qsSmc7HDwBDEJrg6U5NS0QDAdl0rDG3oMAhMipqcm9nT3Qg8DOxPj29i75mcbEIzIOgO6yEkZP4afiGmx9iZpCLH6Ffc9Y+A4tsimLO8ImeQF8/ril6UJ2aBJN61mDUPiUV4Z8KQQDwxRYWjvRRaWgxtrRV3nSYHW+zI2G+X0tnjUac61Z8qNlPGLcg8s8h81QB7whH2WM8RedYDst+d/vXQYb7AqsZmemoy0s5febL6Rz+A3CaAmTttQim4a8UtIBeaACHIGrhixpbhMLOK7h5KqFSWcWFgEJh/A9lVCVqoAdkAi/cQQ+tn2jmG4bgGnDSwbc0xAj5/Op7ePT/YMVWp4tviSwsflqeRVBwit6xiCmk4sEOY8OgckSNc1rOvjaX2nSccnR0afPnq+urvVu3oShsSYijCaumqdwneYR7i7MLT56+JgNidUQvbMGwDDqORPAaInz19ommg9zXM4gHZGEAaA2hmOiJQJPgCqarZ2d1bWNCV6W8+OQYyypYNgXX0lnCDPHDEiZmuTLrj0GmqgAlwzmPOEsEpo+0PhPdCFxUC8X0F2p0gDIRl6Gwz7+4IOrV69ev3yJYG1qepoOO591Y+uB9bW1hENqGGRZwu544TtnJcIJtUDDuIAKP0ghWL3GJKvHQzBs5cOjVExi9NWVi9Ab1YzrYwPjxRnA6WqClaBxwF3JFxpvynX99CAQWKHIZm8Sa5NiBjlrEGgPBwjQx4XqBZ8jQtEwfpBkDgRmBkRhNOWGBkkuRTDGQmYpJCyVzw4MvMVWpdlehyoqGMcES40+kOv8hM8iIhoKVSR5Gg0wXFH6SSGHD8QAKrwQqneGhVYAFMLxSj3UV6vTHvlxvbfocINtNJq/uf/oGXvjst1cPnrAajEeAQw1UJUKQIFzaW9Ecoxe9BZAJKwwvwtIT2pt11bIMnXSyTrM96t7925evwkY4n88OpNuTmeDzNBvb6IGfMcM5cFf0XyxAwVG5IuOLHsmtIvCx3mG82wvSRmeUoWk8tjGyhq5RaLaDe9Enw++enB/hnewJ9AA+M5T9mZyRWEpBR58RvDSwry7OA3Y/SXrbOWPAO082os38CAAYaUtYQ+MDp1wE9Lc8Ybj+pUrH7337sLivK4bHTF+bQ9Z68EMy6SbJaOGGJ6yxNwM5WS7/2VxQu+qexMV0RFwSEuJMs2MBvDfdHnOlYGcQnD/PhSKS6IJJMBBiqIQtlZndh9oJD72GjjCgwoqAhQCgPWCT54KQ1iu1nL2lAPCRYyzhfODW6PbVXALZNulKMdIPS0hyOBOtBLwnJgBEOFUITzHHrBwMwAoVQdXSCLF0mbSHWQtdwwJeYOH8DlsEsM++UFiiawoooHE96MdJViiajAgv3DDDNWaLsLdh09W1tfd2Gh8fGqyi/Apopu080YXhUY6HJCfvvdcuOlvEEb+IGujzfjp2aDLOBQNLt+iRV/RoNOTp89e7B/s14YTOBOiFWhhuwtJC4+Az/JRQ/pzvlPDe/wnLOXkS1L6hjE2WaST6aJXRmfJT1tKfMzOFAAJe+UCMrZrwqWqmEkuLOjh8+dv37o51ppFq0k9a7rnF3N8jLLSm2e0dX1zB3pI5FZW5gi/1S5kjZbARSL24OnaId1hDAX20TdmhJkIl3AVcgGFO8z3GRqENHwz/Ohk0uUlDLyBo+j5irdIR9NVAvWgSkAqVO0jDzWVgzvOOkXvSeceGcp/UiCbK89F+YsSmZg8lZgAaNkQRzH6IURQ1gLHdVX8ty7A+CMCVmkZLM6LKrMZyAlbtDUdesEWHVA/bFTlHU/t6gQLMwQsF2hSiBBIaXYqlCgDLErgRErtnPNCDgrMM9kNWB+peoBKx9WgIk/9UVVSJYzSkrw1p0QAGgBe2boUYs1L80LLYoozazhzXlc0EuW1R3SMInQY2AAOhTGGYs7K6CT7dsk4kaas0ZLfK6MNcWpZg3HndyD45UI2BXKZ84BPV7kemaxr6+trbFpxiXmF9Akd0ZE8sdR+G2xEhN9ksu3yzNzt27du4miXrtBJ2Nze+fzrLz//+i55YIn40k9wHyWNEDMsXIDLwAqx6J0uwOuNzfWHz55OjI8RWR8eO9XlDhlbW3TX6BPyjXi2FsBQNQQ1DDarXjg5CmOx8BEyxTAC1sDi73ha5ArXeMyn6GkZ8WcgRGMoBDWMmHKM131o6WhPQJUicINxMXWcm8RaomnYQEXiP5KfZmmbg+qo5tLCARrQn9/QHT8SwymSL7kMLLScPA2HgesR+0Wtqc54RkYyJpvBJeuwpgJcfIpkSkGYoKKkoxUm2+qCORQGviyCgeoxKgIRtkVOhOn1Q6DmR81KCcDUQnKqKLZUaCOn/6ybf8iWbbbRLXQJ3eZj16jJ8QHt9jnfv6G4fzHl3c2dbm+cwJo3hhlK8uvug+H27g795t5EV25bq5gEW0/Uw0lbFgYOVR00BZ9nCzBgKoln9TZuGJHV+r3+1uaWDBqcj7c7fJUQzw0U5nB3dreowaGIjEDgFYnpM7/GItQjDMLmtlH302YMwtbYEHKfcZT52XmHwPiXgJTQCv22nRoMFmZnPnn/zqcff/jRRx92x7uMT8S0m0zZffLRez/+67/9D3/GNpVndlr4vA21yWacA9yNuMJfOK2JQhQTC+BAa/Ll/Xs0dnSdd3Z2j/iag60kZNu1gj8WhWwtSr9BYcoqC/kid7gmJ4pKAorMc1od3L+Kq8g0nW2+9ry/z54amcKzaZK1GcXCw5AVuzVuijfSAgIU+Aoi1ZlQEiOigFXQ/AWTFBGTqkSwy3UwlIkZuSJHQYneDt95IZFMUiE+jEPT6BIIqQABRiJDJef0C2Eo71fIhqBSOCNuFZZWHadQMEnVsELmEdom+6CO00L2qCmr1hS+W6LR3g53trdmZvqwl8yMhPT6E7JtdIidlNrylLTwJfaMaZ0z3M6mQadEzQxMQZFr37soTcxpWN/d2UMdOPf6fTwygwdbG9u00L2JPlOsJ81TvocQRloLTCishq2FndVPEJIcU20l0F6wpT3nH5SwcgaN7PZ6ztmi/qyt2Dwi+EAZZ6dnmSjA3x8eHTB9xAAJ7NBpEiOiKWNjh3vHfBk5EfgAZSCk4ttOBvBRLL0GDaSRuJIismLi+fvf/R0WQMzMzUUC7AzjwD2udXZs+o//6A/g0p/+2Y8Z24RrNiuOtYRzBD4VV1VdrRZMCMjQW/jFd2lZMFgRVwbUQcHmnpxYjjSrbVEp0JFTOQKnKCLPyRDEqRzzszsPUdoPB6OEz1+8XJif5yO+vHiEnehv6c2wen3AXvyOxzEhgQnAU9pKBoNxFMAsmmrWWn139wBTIaCq+BP3E4sFB3SI4cWCjOeIMxcmwly+oHxEMN2b7G1ubzOYCHztVNlLGkwmI00BVU/Yb4YK/TMs5F0TBIYr5SswzGjZ2c3oLXm4gEbiARwKrgexUi+WTCL8d0ibzcP7E+Qin23qoD4/v4DyoA00tOjL7NwMasoHJ1EUggwYRXhB/sTYAguK0C9uwtHybU/458nX3ltT0/1XL9dQcRwhmxHC+57f/pJq26nzQW+agdQ69owR4ppxuoAAW7DSd3baykyaQ/fIuXBDOmGWBIejIYRMdeIcqrfDh3Jwqvv9G+x8ZWODQoiOV+H5sgdAGY9mYOZo1Y9zyqLkp/nEdBE0DRqN5sLc7OKVBUZmIJbQ6NHTJ69WVlAQdbhJ8D8eRiAjamZneD5+wKghewDPnR6fwV4GdnD9KhSRebs50Rz7o9///fsPH/ERThbDWmdGxFj8ZNOJYUmowCJ3f43+VVZ01iERpGVTTgKhOjZPjsSHmIJtesyRXwYx9ByqDtDkkRKBzshGKNRDh8UqERwCxOnVamzX+u6dOxMM9XBDOU3fQAqlgrC9/T3GbfTT2QcSYAwlq5uVBKwCS2CmrxQXQjBm1xD6bUeHx/CdxMAWfojU0ydNSGDCnEa7i9R1c+vrW3gK9iBh7Qk9E9owxnbZcR/XUuuyNl4zUD3sVjVnpicNOrGKbb+sNT07ubm1QwBEezY7O7u5uUU18Ac2YqhEILylwrov2AhWijdIlAh+fX0DTLqLzG0RUw9x1azvR/vhG+6WwIGlkWRXZMoCjeVXJhebh+/4KNAy2IqfBktIIFiHlwx9zMxOUwUahvydS2EADVvQLZ5l9yo38sV4KEssAmLO96vtIsnBRfDNTTgA1TjwCiHjQ/uZkbLL4HANcEna8QO0AG1nbmgQ/DhTOEZytEXQjm4TaOEB6w1m9y7fuH7r5s23blx/9/YtBscn+pO4m4cPH/23/+9/ymdkC0ZqrgGRMgMNaocXBrZIJetBqR3BMAxVmEJ2qO2Oj33y0Yfsle2MEurV6zJKXV/f2mYUNkwLcJUYxoqejkrQKEp8I/c26ExSuiA2B0rPrIDxCg1UwUPROPwiDlz6v8IPJMsKC7q9ZSTKEVeva7Xl1ZXdvV2+1aAjYvAO9wgSebEOCQlLTXOmBu9I/kDHGIKbbqkxNT2JG6EUiJkhKOPpMy/Jppw6ch9FfuqxGYBj3hA9xAzQvMjGumnXj3tEg84PqGtMmXU6+OkQqgQEyOP4VcSvs8b58XGkw5M0btoqrp2QmI+60MtjuTHBOpChhA5hf7bPqEawYjLYZhxY7K+D2TOdx6JliMWfGuXQC4sL10+LuThrhuil5cqBBLAW0OI/T8KEaAh+vTvRo/nwqzXM6J0zP9Pb2d6D4ddvXMU8sFU0nk2u9thG6PAIa8H2drd3J3p81SZfwBBiugLKH0jhQViAyokACQgIW200mat++PSJgzOqkTpJCM7Iz/HgeHggv+GmJWyKee+eHqA+ggnNibEmcRNsv3Hj0meffPTZd77LsOX87DS+l1dA8Ze97li38+4/+oM//J//13+HrIf0dlAgbV5w1E6MihHqm+bmMG++jEMrSqNKDwGl1WCsWg5iYFRqcIE+0SpxJoj0cUjLBVrhnwwOJeJduItzQCbo46mr8SRSz4089BlIEfGUiCiqQwbzlAM+UhXcKmIEWdp6sde5KlXMnS87XLtxg+aHchoRgqUdxXeN8QKn/WkwsrOaVVWoBHmYEQd+GIGctIrqECbYDFlQuL+3z2ACxFBLcaLWVzouapJaQwpVoKEEZvhs3BexIbO/WCkDIQ7FHRJnu9eIHjQxodzB/xmPgLyzqng7NA0x+Ape3gpAZQgyYdcGbvj8jGiYbDh7fB4+EhaWQV4AARVmoX/bO1vsMohET09YC8yu0QOmkHe2t/f3apcuLTFCAUBU2NkM5SrmSqewAEHELgrfZQVawnxfjzkhZ8T89mu9RicYJBNxMc86yLZcxggg0Z/qwzTYzt5DcwszxfF5RnuFZT3hk36uMFMUUDEr45KHTTo5pHCATErwgEfeBF+cpsMbtFH4YjZOX1pcghm8GsAgERuVLrM2u16/89ZN5vXJYNPa5RsDdM9c809b8aMf/uCru3fpWzJpDSBw4g+7x0mEDZgan+eZQAoTvmXggkgcYPiEhtCusgrkZHqStUuTm3u7LAHI953AESxQB3OKdtSXBCrIIAvYRytpGIiCHNxz7yMcuR6gkEu4A1PUKWzD5UOiJiP0ESRLv2Chnuo8y1KGgBpngR0eYZGsnSKx0+lDg0NwYqEUkSVDTER7YAp3URrNl9YFwFRLPpqgs8H25hZhzNRkj1KApBa4T3TErpUEvr6JkciBYpFZOKMax6loUDgVqutyz7AGcQ5BAlZPVG1Tw2bl7dbq6jpo4bR07U7ASTWBNWvoOXe6bthGmlM6LEnI0AL6TreGcTBG1hn2O9w/orlwIBwnTFawkHH8Qtn57PwUCFEY/ly5ujCSyuDa9SuQCKH9ye60MT3ctVcgcnEX4bOAKOgBVxx9MgE0iA+LeHW9Y2AOpa4+IOSAAKpmNIIyGLj0sOdNVn9pzJXuwkgHbUVWJYk8w0fv5CYeLZJGHYcEj+NwxoqT26r92BJz3tqJSzDkMG9gdudn53iDmaHVlbVNeEjbRSVMk9MwVGtY0hKCE5LlrFgboN3/T/7wD+y7gqJSMzIHMlqB0nMGNUjgC1V6+bwiJ8cIrVFO+UVWJqzG+fza8+VXKlpIgICCaswWkNRGfZALcE2IXFgF71nbwlFNoQ+iVEPMT2chP/KvdBK8BkWeWgXEAZA01wMCWRWHWZg7g0X0nHjKOBXjYqy3Q8mYIMTCeE8b8KBvd6teY9uA3Z1dWlE0gEiTyZB2jbXZgC2tiuYwPdNHt6zWmq0f4memJokoiNdBG/Wx7iCFefKU4hWO2X6wlJye7oPS1WtL4I1qkDg5Se9Fw758abHUKMkAlOZBGeohH/AXF2fx4lbsc6f8+GWFD5SCD+NAdF5Jt/1UXFwWhFMNK+foceUxaBXGkpd6KYukAZUmKFbLOD6aS3K6CuBBNvVYz8AjYLO6RmNQgvHfukUaDRtyFmGWaD66bstMcy0ryCHjsBIIgLsJhrkHfjEEMlmR6V55yz8yOsuL1OwwsJ4Cz50BYlc3sd8PIxD0o/gczsbGFjmdYD0fMBx0cPiKVtfoMt1FEKBy5H5UG3719b13333PhpT1pCfHjCCp4j5mMm74zp23Hj16Rj+EoSdQZfDF+If55qNjcANh0CLyoZFhFJ5OEX4Q94mdUAWVsSqRRpc1DX/zy5+z1DVSELROmz9AyMBkFTeKIFQJ5Z/6q+JoACTABxBwdqYgTyHSOdD0ALNIMQbxiu0iy5nJqSuLl2/duHF5ceHSpUssfaFVhhG8K3r3/r0v7j0kkmFPVTBSTcWAcIX5bJyW2y5xKIGM2FB7OglBhzpc9+YGMJQUYXsLXtiiaQAgIQkk5CG3qhf4B0iIEG8EaScktFheIuSNCdIMf6DKOuU3VfjAC/gmYKNHeQhoSkGDGsYKIhLNLBokkxU6kq0US1kqEznruTiZQuZMAZkqZHht2VxzV0FK6USbkFkAMKdPzENxXkBkvI0PpRJg8FlUeEQoDxmxZOnZ390HMI0nSG6sbxFaEE3ReWDcn1Cqkqk1SikUkI2DggojzOFRflVB3sthveLERA/N83WX/X0+oEFHH6VXrK6zykYqkkasgvW70AtUaYEVq5+lqX359b1/+EcHjHfx0iVW7agMFbtIyj9WM9K9wYYUCaOCTNLTnjiKUzjGJV2Og8npnvIYDMZ9P9nV3uInHUQ2DV4C6/GND24spO9RPhifox9QBklhJa7DNg4wJjvcFhgg6W2Bya93wY6nFOCOP6YFIAx3TkMvPDcRYySr+e2PPvn0ww+Id+mIsZCJ2um9Qehha3jzygJf9WQqxakDtuB2x3mes0O+M8r2EytH5SwlTiUIkMP6QNGnHhYhiQPkgyVP8X8kmg6mPoWDYayGQnKRZR4WNdJH+kjKhEn4HWQA7m8qUjuphUAHtaSq1CyWaQcopOvNDACcA2D47HixS0aLT6UOGoozFtKe03XeY/txJr8AKPzSPTUfysPbHciH8Iyohuqpg1NVpc4qmLjq00bPRw6xD9fW1pgjwzdjBiC+s71vLXt7xvGxw4iWkaXDQjWjBfTFWAGJDjGtgWfRrR4d0yBTXI4WXkEb9x62iuE51wYOWsqwxluaaPTewQG5GPhHFeIJ3b+6FEEyarRFLIW3JpAE7YzcsnTc70FtH+x/df/+78//kOZDY+HAlZSuAL2sNiPL4xub29njQvL5r4MAEP7OQZ3Wq1ev5uZmaQyoDoHzBlD4o6Aijtqty5f+L//kvwInXIIEkgpOYEk+MuHrMs/AJy8dEiKHVKtGXGlz8gDhKOni4iyCs0mWJIZIyAKsViQFTB61up0JXmbli4iwhtYJcKgKI3AUHJ/oz80vXF7adsL6jG5+FwOw/6IAwMqIHMsqISBvdAhTeasnsABIIA+2DETggJWTj8QbtGmL8DRcgYz2YvOFhhXlNZe2kjCIbwXRYGOiDEMxuM4ZSASsJ0eHjOsDltqknvHy45O1yBjPRCQAjggbFGCqZMswoBoPEdzBZzYGpf8HpvAWnS5DusID6eFwfW1zfmGWPJ3OOR/Qg1i8Jqtr8U0wimumoqqNaMFa2AB3SYLIxGYKK0q9kA4anCIU7moMGOAajSXoKDQYh6VXw45DDlvBKIaGoY6L4/0DcKc1ODpi0oZpkwnyw2l1NMqmwy6ziqqOhXMoDdESM7AxL+P0Y2gel+IEjqCENLnzT3HwdRBGF7x2FRBlyYANMB5AiA9YKmCl3fe/8xkdMTMAV2qBZm+GgRRH1VfXKcLLGBYXI+rjv26R6WO61Hw7hzicle30PFl3DHAQExv6DHzFsNu+c/M6X6GttQk8sCR7hawFwRClD2CqOcDUJhHyvy9tamo2E/zh63ixgsUkoQ3uALeUgWzo55+ejVEItxjTYngKW9mmxlu76BoJWsIzaqVX0Bnvsp70xasNuqcQSZRR5Bomigr7Uh6eYB4udwum0QYFA5oQ32RBP98gQjFB0FKSwtQHLsEojhtGhKSEhljafOyhkMABooHT6LPJUtNZNma3jo83cIeEZ4wD4DixTLSE4tROnxjy8bh7u7sA2N1hgfr5DNMIG5uAnJmZYkxwbW0Tb7e0OEdox/gPk+UgT8eatZOwBiSVrisutXle0wUs7QxDyuwIPTvr2DmqTDc/+sUAA02lH58U5ZgBjAxZGJPMVkzSB0fD7oavRkAajQSQ93Z25+amKdi7ssgAFDKnSCyNbiSDD04RcoEjUniIjzk1MMOAu0oZ3qRma1Qzwr6i/sSw0kKKOdAOPlHpH7MH5kJwkI2W2/fTwGjP8WgoA3NrFNBaWOvpdtR0F8dQcKyBA9QfP31GkzI/O8MKNNzyuAMJajDiZhQTWwMyn4NlICL6wMNYRMRK0MXk5L2HD3hXARZACjji9M2k2xNbKGeGg/kUxKRIKoWIwlc0h/nSZANfdIVLCKOnB9mwGn9jSooDAv2ia0sJlRzdhzjlwY8yU04809a1EN0EOHFt30fwHOJHc8ygM9sWEFySRxaZXqkv2yfv7hBjOPNPgCRwrTgoWxXuk5eZmKJ24pTKoyCyAxcI2k4b2w1QHkpIrDnIqNlwD3/AkBdZad4Y/udLAEQjh0y79hq8IkFvjSZCI7D9pW8jDisr67w0wzBpmb7NlFlnembKQdWjk7n5GYZimUNg3trdQ1Qv6rBa5ATdyk/FYorTbh9BMqPp6IlvuvoWOO8DMWLK2OssdKE94psD/gd5b3IdLnhd/A+lpZHBX6qYmXGaj4r29w4QGp+WwV/SShwespnn7tLSPDOGvMGLanIx1jrn+63Ts1NMzbJhI/3KMvBKRRBequNSBVHvObCQ6kY2wlgcjR+o7/LiJRZA48mstjbFuxx5D4SpRhSeqTVky9uOOGEUutP1bQoMT5NQrOoULeGz58+ZtdRvnqGr7Kmq0WuK+M5Wq9/t4vgT7MlbSgEEzLBx6GfJwq9/85vf/f4PsDyKYIE8QhNUVH2fUnCMj34Jqci+cJGOIw/IoYYjavxnLAlzsbyH67StSeE530nADhc84idgFBdRzRRR52I18ksITCxu40Gp9bzpSkvKGUAbHyBmg4aTgxpb4OzvDVgu4lNRY8gpZ1+QMzvelPyZjCOPxYFORTDHoNz2IkxRbnS6aQ3xbeyelJXkZC4CBIalhEY+D3RL62VSiZrxSSBI5JPlCM51zM9PIzC4QS2pTQ+KUMtLZKwLZBKXd24ZroWNsAHl1vn5KYk2ArZJQXhjLReKsFDpjLGCIlOGckA176Nt7yEO+JPmHnJ8yw9JAIdxM1SJj7qiXeAJ5hUZ8p6EQkF+c6v7k1btHYsFVflyzvQivUw7qWBCRs7IERugAx2505cdW1iap8GD0+yXTqI9DlpvPYa8q7xG5A4i1k2q6IiElxDjIKwvt5wcHpNKJIaPm5qcZpU1X52k/1BCIDjJvDENJu6TkUNkCkq0mfDHWgiCWeD94N4H77/HRfAgkT6f1IMPvhjftMIHAQ0SdJGUspz8kUtsRsp78Lxk76LmbgfnxOfUcDfMlYglIXdiGT7vM3AoEw/W69OxgCn447sPHzNzg3eklUT1o2ZyGX5FdSFXpggHSbWKm4c7jouhinT0ZYoxeLijIHS/FR+bTZaL7L91ozkJBxGHm0wqLZwAe40dHWw8u9862j/e66E6TDkiAdsTQcl4VbBRY1kjbSjaZFkrCS5A8B06PMoRn33AB1sm7QyvoTG37+wYXUAWusQly7CokPQUHyMc49RdJq2mukxtruxuvHixzyQrYSbRDgxBm7EN1qjB62jz2erKCvE9qK2tbIAd86BMijlO4JrK7traNssHOrOTiAr2OqwkMe7lD/p8mTi4E3k1bK/aLWoB6/NTLAFfzLI3pod6OrBabWlxnkq5BAIk4wokcEQ+KRUbeGQNUC7PL1+ah1BMgMFqG2s8xfkZ40LoEbwlG6PD6jrOljV20WoSycjUKURV/dQyMkA7H6dhIGorrdApgmSoK6xOxWTiDdXjEzrNvHrITvH095iVP9o5XVlbJx8Tl7hYWm+kCQ/pjOGMgEUnCj7TfriwCr+C+dp9rS2vrOA6WCzj8iHfqkeJHewRB2YMu132S+JDVLiIwgLQRumCSo05O+LN5y9oVaaZUwEmDbiqhl/MDxykVOuf/J/+C97nunLpEjaGMBi4ePnyFYHEoxcv8/UqAwwKhd8MY4dyGYAqFZOCAf7DTAprkBPGCZOopnhaisNw0iMFO7WPnj396N3bCJo2h2E23ABD6AABSzDcPTjZoAWv7Swdn44b/IGoXOYRrpGAGkd7sHdISIVeWlfaJ3iKEqvbdacUEKBCQr8No10UxLod2QTLEWppvmKcgC45yW4wVRvOzk1On/cRMPpx+co8/hmloS/DWBakUs+oBaVHOHblal51F8PhtRuXQZV/TAui8KgA4s26/Bovi9LWYlHUBSksn5GqwppIDx21eocR1ePuVA+K0vg4qKDIfDlbqeWfYChXJDMiAOT1FmCCAagIMp4TI2wwQSeCerhaTM+vzMhM7EeW6CHV2mdTtj7yKQ9oSjmzLIg00LPa4tLMJQk8iH7oKLFXMeM/3KOffT7c2tpWvvRuIYwkPj/AfnU4JuS5a0ti5OFUKS38GaNVtdomw1bTfmaBNw3p4g9W1tZWllc3NzfYe3c4nMD9NTttYDJ7AC5kI4CcnplBadmFW8zFHR76iH/0GJmtuv/gwfvvvp9Gnm1dztB2GxApAQM6APXWj773HZKMUGNDRJP93vjzlZcPnz2jNRAYhMESKBSu/It7MmoKw+zMKxVoTa+fQCL2orsij+GKYyBlKw6XEtBSbO3sPnjynCVAdB939vdWVjcY6CYexROzRmp1eXln76DXP7n9znu016CgXNMNUn51lv20t7d36A4wDILxwEcpKiiEszTC0QfMWFGBMhKQBkgAuaIejiARF4UI1Se6DHlkQTQZh4AzAGe/D3VBZwhFyRaYnKiXcoXrMXtdW5RMnVAkjtj0+M67FHBQJuqqthip2CWlBjAhLqRuUYoiQleFs+6cwJgnEKkhF0lwD10VfXkcdVf+wIEqLkzx1itQ58ViwDIOcXZ6kHe4z5g9ZPRC4oTgNnBgw5Qz3tdZ+ak+uKHKIEBYCCvICYOL+YVMmCl0VQNOULEU2kRAOZqNdjIEQutHpEQDeOoLEkbL0cDSjBBE4c5UEqKSpYWFm7eu37p+/fLSIjLgBQb68H/+l3/zJ//z//L82YsrS5f82khUkSF0ohHgWHO9xnbzdDZoN2gWQAgPSyXhgkudiQbpaRCW48sYKYIJdCXhPq6/8If8bPyISfnOG3YROpkO7C/ML0oQ/6ROliukFCJfyIYi1nkbsrPfSrhDU43p24wTj1oAWXPwy2L6U8cEAaDgGQgZDn/51V2muOkwbW3vuJ2lTTNe02gUTFpj44cnZ2wfOzfAfEuNANK0wAq7IhvtJq8IigbmkXXjVErtOhiA6JyQbpEQlAiGVhJCwZhzoUrKPBRuHilHVBTdtLUxfHBoRU8ZvqrGkTvESbXxt6JEJCyPpQKkDizSQVVv7NtZZ4RWQcYODI/ITC1Ahh4WBm5tbZC4dGkebtHHxhXZTwAIWhaVEXUGiO3KaRCgyof2UGH4nDz66dCAGpoBHBVzXgwgXbosK/cIN8hDOMEA9j6fd0n/EoZwwbIFVhbCUt4/gRlsXr29u43I8KkYCnH9zAzzDwUe57CXc1Q/RlD0wuplplmzcxFbvceVci/nCt/BO0Gv5AyMzz/96IPf+ezbV5m9n59TiI6WuQoaf/GjH/zg8aMnT58//95n3z47PaaTVDUIVKFfECaYEy3T+6JRQHYRlkjyFIPktfuNrecs5CYmhEMyoZrT08dRHJ3RtaOcIkRHOyBoa+YXlsCZB2SLi0J7QgHl5Fr4r/dCaYlvWOOBWtrRkenMgmEbgctJLmfhKViRh9EDRvthFu0gvYXkEg9GFl2RQnmYSCOQmQFiH0UvOfxgtrxtxNIdsMVfuthGkqi2NO/U5C6zZK8xyMO8dZQSaFogdBjjaDTeqYV6SW45LGJcRONuvFtjCzQaVBwYopiZnWFkk7aLkZbNjW2CpNmZKeaeYBxLx2mpmdZhBRFBLEMu3LIYBhUEYXb7wSugQ/R26K/DIWpkngSlZEWdLUk4yoaHszNz9F6IjRlZ5A0VhvSYOmCKF0GwlBKSUVn0hnF9sKBlt/M2rD179hLnzQCu5ho2waQQpMqFQC48QCbSJGZrMyJHZxRVKzpkvwXnqp3rOxjzBTSv0NC5xPqIImGNFoXXNqSUUcBO8MWV6kG24gfhMOrDTf7krjj4rrDaRSoiJgfiw4Hpb4iXuEH2+VYs36i9fOnS4sIc2t8kJB5m7ymngBjBm/nud77zH/7szxjTVqi8M0Mg0IpTpy0BNFPFvI0w3j08OXRhUtZriarhnFqCkbD89sGTx9evXYMUCkCOHhMCYE1O9g4BpYeNdfGITHTaWCEj9XbvyMhADShpz5GfCmRORvpYC3LkZ3zsOEMZCuIgCA41T1hyyWOP7DNsB1enCB9a+FAH4wmeUWS6EJhUulA4QF5mVbo1XtdMPaCnnCBScWQwAVlar80Ck9OYmKhyAXCGLHd32cRKwwgvSKbv5z5UmBZqBAnlkFUecgLAagyYCR8IDP/sgxidJYpofjUXtFIJmNG+IRJaM6bbKEpPdH5+FqHubO8S0arWJycvX60SBAIBoLzmCp+3Nne2+OAcM2VneBNBcoKjz589W19jL3XmhlWdaA4MYVjWDaDZfpxkVonR6ScmZKU2uIL/5cuXcVYs2w764C6LUFYZRL+IbaKlSbIkMD0QMjCvRBRBcTBkESaPabWoglwgQyJrH1E2Rx2OjmMGDdZHwPkyFRVexR5gW4LM3FAaiYG8rswa+e9giOKFxDi4aCwiiQYgKmSBX6AWPiPLWCJ9YiyfcQKYApMxGQqgFNzihng/gQpZrIGg9WNqUcQtrZBnC0x/7HBvl1Uk5MG8ecw6BcIKNkaBLCKOR48f+3bX8SlCQZUoakUxJE5+EcdpIsc6NWK9JUt32mNEbGubGygtpJKbVPlMtTjX/CjEPOIOt5c7+MFMjd4XiycbfCGPxqGz4s4Er3kMARmVC5+4Vf9QWVdZQb+feRusb26gvDDU9gZyNSHrpwHCThgf6vcMTdyVTzvVUHkt0dfG0ybWGWoMQWDDY16fZVCLzgluSpIiQ0pJodR5by35Q4L0WakLN7yPnsgXvR/IgD/ixAYwAG7ZsnNnZwcdIASanZ/BHxwyUsTHlFhdfHhMN8f3Y1hVMja2fbaHkiGlcIbXKemesgi5c+3alfiKI4pgB7w8yQI1/B8xAkaIMk32u8wxIyBIpSXkGtWkfVf5wNqmPM20HBA2/1VNBWYKGktZXBoRP8rHKCGKghYwYkFmAK6ubjEmg67TT2M8h409mW/e3t5eIFBpNhiqp2PW77PbnJ4lXIL9ytJ2QN0gijP2QgjgTIK3bhuBKcAtVQOaMTnwQX78V89hebRK5jdqd+/f/Qe/97soLF+eAixwWKVLLv7BekY1mRZ4/PjJnbfeQktUF7r+RICUFSKWYIBEa7a8fNrp7rNX3drq2vNXr168XGaAGwdMdwjPBVGIAp7HbxpL6HcU/RAdUq/EkZcipUA8Od5+6+bXjx7ixPVpMpR/qi9HeI0bhsEm5p8ZzKfe49tdkSgL6G0m6oB09Ji8jgfToShWJSsI8DUO1IPAihDIlxBUOfc44P1JRp2H9Q6QeAp00imCzVCb7/Xpr8/c1YhhRweRAC4cutA0ghJl0yKduhbXz/DKAQ1u7FtkPUKzJxUoaFOMd8oASrtGLsCivmKQtoWzpqVBgrwdA5a488GU8zGHaIQzGOzt7mP/aALsBRlsm7YFJQNhxMCbAFQENxAjNsBUF5ybnZumwOnuLvPT4ZvTDsav1KZuD5jbohHlGnzAlQ/W0zvEX8YLSAyZpDS5Iy+FbEU5A4mGnl4rL2phG5NT/RRk7Ij3h/oUR22JtcSKdbU9XqHmbVLBLszPIjIICQdKPamu1BWhpOrCQaBqHhSFM36w0lfGIBSmgokCikQwFyxZ9LwfDtge4sXLV9OsD2ejClfRuS8fHodF7iwvxRSvXbn6+ddfITtIYHIGKQBAI0elkHCd3mPn8PT8z3/yE9atsb6VV/hBmEAXZ4p50v8Bq1crqwvzCxKuukqp9SsHljfnEwzKDM2266DuMoXAomhGs6kpntiTReWy0UXROaWJciN9+s52GOjn+C0StJC+Usi0DdKOMghDUC8UmALcAAGOUWQ0mAcgoyx9gwkLpA+3Q4N49dI8I30EU2oryyayg4avz6NErNQ7PpkKUIvbe7YxoRPSGYzhxgAtzdjJyRlZGebnIxSstQwf4OCFbYOk3CGFC8YkEtRA7JDAnX/HJ0dMMKF8tK17jIK3Gkw22NCD8fn56sparz8Ox8CInpvGzyakzBV0eQ2pgbvFXWFLU9MsuOctZxyZfECjYQ6xPqYBD1yCVavxmiipMKc33oW3eCzaE+2Oz1e6264DLxDIa7eM8oElCgoktamSTmG3NCcxD5IDobLps7PveRnI/EmnAAPtIBBeyRjw15DCOTwJPq/wSQUit5qbbLrjMIpTNJ1fS5tB0BiBzQKBPeaVB9gT1oGnMDRyVwGURBAQStfu3oOHb7/1FosL4lwbp0dHlOJtJuilbbl27dpf/e1P0XEsttap01/im4DyxZEedIbWi4HyxWcvltFKPESb9VQsPp3o8GYebSAeERHweaePP/wAkRGUYwTxyxWLdFoAtSc3OEer9g+Pltc3X7xafviYBoGICsVUaY0nJBECMRVS6MByEcMBXf2OswG2L0YuZMXi1aSRskEPA4tGKT6VqbI4dzpdARLWuNUm0DL2nIb72atXtOZsZNg0OGGq/HRvj71INp+9eLW+ujXV69nPUXP8xwEcTv0p2npHqHRNig8CGiwHQjARllhQIhkshm/QoHNFfpa42G6wtW2PBd58BLpHXuhaXJqjVxMHqaNm8RDULizM6g2koN5mAgFhtxjAqE/Ba/ji3KrGzjg64Ol/USkDToBPIyd3UfFgpSUjIZ7wlF4TbJIu3Kh0iZ04Y2b8mIdGDxx5KMTwGTyUDomQzG+5tmA4DwkRlEBQAmm0PWbUWFYADAFSOEJlYRwdTceSWd0PdfBTnw8l4hDIYEL5MD8IigoX8IKqOaMhZCfSx0WGDCqk44OmSWJ5HdT+HUf4/+jRY1wYhdhFzsXV4GbfV1On1itXLqHrDIbOT0+jOjTJbI5jTEFVeAc3pBveuHqNf09fviJJJBlmHGufsI5ZpbfS9Y11zIB1MQzQMu7w/6PqP547W7IEzw8iNCKAgAr5VL7MfClKtO4R3HAxZlxxR67573FF0ozWwyGtZ4y0ac70dHVVVlVXpX6ZT4WOQAiEFgA/33Pxsoc/RAD3d69f96P9+PHj7mfb6zIW+Dn1yy//cPvuAwcUPH7y2ER0m8kALJTDJenIfBeG096C4ULZaSicWEVqsdTIhFTx+IsD69IrJvrIGN08jZqqru6Fap4sKiU5J/6V7IqAgXD/0cMHj3fWDk/xk4w7Le0FoFleBl6FTw6fT3XFPRtdAbbo4cr5jfYkRonsH+lvAxXiSpzTRtyK7xU2XRC3gmjYm7yFZs3P3MnyreJeoNtRfNgMEXfSgcprNtJr1LuVHO82fH3v1oRi296iOXgvLf1yr3pt+T0ghc7yCmEdEg05CXpwj+gvz5eKAZaULGpQh/19e5mA0Ky+YI8ja9wGYQDbWm5vX3Yyhg119q/seju5SqxXXjx/ReMl8LDZxuLe517PqsZa0ZtVWw6nj8ulZm0kd4M0inflPzPXDLk4Fc+QNbbBXC+qh8lDs+ZPlB0ftgrx4YGkiEcyuJxX29a0vEEMmoo1cWQJmyCBUe9f/vmfJaFoq7+KtV5PqvwyRf3TL774+rtbTIo6Nc0TQBwdEZ8K3+ypUbB4/ywusKH22gaFrgtgp/7P/7d/Y2TNAgEaIwM2U5RBqpPk9ZdMUXw9r2WeLlSgJyxi/n0BI7oSjehoZEfXBgMoREaGiwmc+/BCq0p4E6wkyB1guY60MTUpmVrsb/n+/sGT/+mvf1FMQ7xl+g1ZbpYarZ4rq0LyNBh61391D0GCcj54373+L3WbkgzEEbAprq1eHFLOxfIuAKkWYOhrBJ76Q6aP2yP4ammc0zy38fFJ89NUWE6xWkb+EPfP9tfvZuW+2wlWdChYfCxnBku55nz39CoeJ14Jfw46KU4LRsbUnDBVYcB4ElTTYr8DLgXwr2K+dhEKENfhrF+9du0xu/j+6HCSant8UmFbbZN7zdhzioHY2d5++OjAIJPaMJ+M1GzRXrXRdH5ch0UkHWosIE6Nyhn0Sy8iV67znmcPIvXbMFp5TrRRBKYungEwX719ffvOnetX9ye2FuYJjbZCoPHMDz7//K/+6j9IR4T1EkYvjXrBekoJ+nzxxY//+//x3/Gg3669m5HVadHLicWEqmTE7777bn93l2Eg1YhlQoov7BkrJQYPsOwlLfF1BBgfwg3/iFpC0E+dEkySVIMagduleUyqqemtRxHpolBJmo8DRL56Fe/XiH5crjuIwVPZeNseK1pqGrrzzNp+OCl//VZHKRRTalsu2UBirCgIy4OXthmKNRVkw/xVPbtTr+uUtHcCsT+j5iOBmDVfje287K1oEb6e+re6oua7d+zwLCQ3elL9fabwUGiEnp2wWVnvRh6gyq7pFAKB1Pbi7Jo62/5f6EHfefTo4IlcaOX/BJX3BIuMoe0Fb5z34MHBk8dPWUtTFgVk2/efWWgMCkcvBm7N1d6QMCPiYrnpUt3+RdoTZak85JWXBPXyxXOpPcDDQmgANYWrN808K4oGuOCr1zMEZB13zAJVjU9wVHHgNKYawtCH6LywQCHvqLFh40SPQESREESShdqW/t/YoFlnOy9BMq5Ttw8OnrIy2KWGSvPQJ2hjFIxN/vTjm4oeSN+Y4Tt6AkOFYM1QM3Rr9okSZdpLtAQ8pNDZZ7/ZlwX6ZMCmxUmacaza24DQpxoYszg9qCVPUE8rQhhNKUw3CVRWAHLwditcEzniP5la0Q/RDNKjXc9XHJFQVUoBqsKIU2WAc82lWloN3kUp+DQggpWXWws/qZlK1lhdO7nK/4GxI4kAs2Jiu+itUPTQZWJqprSq9+i14xytO9ndhsaoU5GKmeEy0y566NTdREcESviBJLRCNFMaWkMKE6uO+pLWcV7A+/nzA3htbW5Sj+hw/KH5rBE+HB9Mss0Yev/BY+4vK6DRChqxXLI87R1TY5nPeBHO+DDjtmUJZaKTPEGS8nUt4iQUyxuRmyfkQq3ow56Nu3uaVNZPDVNjRIQBbB9VTTXkkWSnDNpfCK94JYcPZvGYI8ti7T/HqJRaafrl3dGTp53SQmhpiLIwUD8/wjX9NJ+t3Pb2pq9LnVbRENRm33Q+NUAMFjxCaLmjVW1JH6B4bNbps+1FTWBY9PelxzfNt3VJVMbqjm1lvrt1+7u7t++3mUO7gIjwwqUcf1VHyBDed0L99o4jEa5dLdcLmtOyikMfksAzaynVXGKbVLu2tBY8ffJMaHuSp4xxV52IXnrfJLPQEdHp5MvquaSY7CBKmy6GqULInkD4jAcYwcgoLFE9qp5QnwXSvRDeEXepdOUJFv9BM5MXxg/Dqu8VQnzstKN0VaBUCpcWDtNYbwYgSZmaxqDNW9Qq2UfrRQ2CqKcRHhDPX714cHDQ9tzjn5O/FHh29zdBxJI1gszVocvHghLilRqScb24vFXGHFYfZDUO7hhJstA9OjSd915QyEZtnlkDJGqpNB6bckHAbEGmNInuWrLwhFw5pr66TbbYRRGhB48OEGTr8iW9KSqds1EoJp9IaQ2jAf1nwMZkHgvtm8oAVIo69lsTsSTag3d+ey129HGxcGwhjnIJSrj1lkoQ5/69h6h+uP5MwApSxglykF6/NunIKBoSnNcHorNMWnUBQCERLRbEoL8lozAKTql1GhRsLK4Kg4Rm7IgCiBhkfnOZmiVsUMs/WXFwCmjW16ztu7q/s7+/98MffGZGeeviJsWj/L/67e/+2//u3wq+PXl6IOgncZFMrqBx9kKdYYcLUo+++errfzJDBbdRcqIsNeorOIxLbP+4+suMAteOVVIAE8GmEqbUdK0tBTYuXTh95hIe8bgDeEltjWULkcnool5EddYDDBHLYWpMPDIpQw63oj1OMlKhDlxbGh7bOIwHL47LfIkbUkTPnhWEfCnxg2GYCrKRRCRTrWF9KGmUP6PoApHf8ZdQCQsUeUgPuhEpfehr419Ie3r69KPHj/WAJtFSU8RXFlor6zwToq88QMkDwnjl9dMX0p5piGLTYGHKVAs95oCSqlW6jq22NOp1/diZD3IFGoT5yvukSBiMZt5lIQ4ePTt7VqJloIoGynA3cUH9vOIfNlsWoxJWED+8CHrVJ7rA0BgaDv3Pnjvz/NlLq0YnLULIRaMhPqQO3iFMd0bmIDvYLfenuipSoV896vdIQFdAvXHjipvK+I2oLOa82mCU70HGZzUMy6PJ453tzYyyOK89PoI7pgdBPVN+0dDZn6krBak5GqGFSqFbUZp3axPE83Tr0sUvfvSpDQ5/8MlNK3ikBgPJh0ZZnvgXf/bzr7659Yu//cW9ew9vXr85bsgE34bKKE02hZU+/ujG//A//o+IScZQZ0w7Oiz/4jtRkvZCQxZoGXXOf8ANfGa6aPuDg0f7V3exnbbIjlcJbbTryYkQ5k3lWKfKBCI7EuY5O1IUhnMNioNdj+FuykrEAgPndi/vfXrzptGVHSsM4eXTmhCxh9e//5v/+Ps/fk1029qa3WNBqx3Q6iG+mKSu6lMxcGkuI8pudoXlpi8Gmn77F58ThDzJEiveWdshfWDtuDA5eU7q21/1w8HDA2K0KQI7YUHtGC2Bs/GHeMJqhwN5RCxZduD4qzn2Y3TbLnHOm8iL5a6Y6iLNViDYu8WmG/grNLrgDhgGzOCGzMjhtU1Hq3LbbnEj6oGm7t3s7PHG6nmDvBiSm9O0SI9yQYvJnDlziajJdWMyR8KOze96lJT5P1ysxbw8bw8lkrz5P0/dnL+jJIt/G20VGEVStmHrMC60T25iyFmjztMmXnJBp71h6/fdCX86ji+ED5KKYFZAVL/qtbh81ULoeNz9+NjEWmeNn3L6zFtHJjsc45OPbvAz3VNMvk3st8zQbpmXt/75P/unv/7Nr//49Td/+Zd/xlrZcR5NigGOEgbg2uqVK/tGEQJA1xx8XH5KUqJBjA99GKyufPLRR+bksU+7V3d3lfz4I7q3YYP3X/zt30nmY5jSdZBjG70tQiVPAVYLXdKAUekGPCEY1pEyOYH2OEpjco+sb8JOvfbqxXMXPv/0o5/95CfX9vc///wz4x4OgN1EeIaGQ6Tk8bOnf/zm1ugouAVJ+4yUR0CAj8ZFaZD574KsLkRWotJlRmWkgbSQn/8gQCdkRZ5MQptFv9RBEvjxYWSNUq3cuLk/nrVhX6MLMnnWgU6OjjIro/0Uclr0CAmyo/SBRwS1pM/Ceb7BUHb12vX9YB5CbJioZy8Shu4h3eXNs/Zt0h2xInpB6w+1pUNIcxclTvEDPtJrSddhGC0tbzYYDsE/fQJEJ1mHo5WT24P0YpIHD2COgUrzFYmjczEADcHyErtF05abCqR+g8P8Nj6e/Fkc19YYBc3IOyrF3UwGZ8LQn2YyV+I/XpZZaCHWVFKrKDPoiIyFJojcS2Sng9WUkgqAJA8khxnJzb3sImzsW2/rCo6L11SgoALXr+6aNHjw6AEzdEEy4JlzBhbIUd3JYsO5zcub7Oy3t285tqbeSJN6+xMSJMqmF67u7vzTP/uJHbJ/+PmPrl+/2aT+BWuzVm7fuvfK0jVnzD55okoAUPGBPOnS4wd2YkYvUjC2sfFxlAuXRLNvpDAjHuKWYM+QPXHi8P3lz/7s049uXMi3e8+hfOWYEyPicR7kg17d3YMT50z9C4Gi4lC079hFC2qETa95hAsWn+5O48vvrFbqH1lKYmlpny8A6tii5QuVnXab0pnJQLURLG8iYvhUZyjlxhK28Qah1Xh+5s7HxhgpOaeoHX6mB1rG3EVCtHwyEB7QtVEtUM1QV53bXCuwEI6ApZwaT+N9Rg0azlot0dZ3izqFA1e1oZYqTtAbxHtDhZ4PcshSFXwwktRgSBjNg/Q/KiUFis5n7gSQOntQdcZmH2Ta6eVYBmkXjguz2l6qJQKO1lWAC004pDycpMZKm7XqlXpYbvrmrYmIgTCpBAxoFjin1bk1DO2piySl7g6wKEH2pR+ao8gw9WovGTDF/XnBPdMVJjG/+uYbc/mbF7hkGgD+IgYjNSv21r6wv7v3zdff/LO/+PMGKm2kqTuPSlNPKEuh+q/+1T+TCfDZD36IubJsQnBt9cbNa/+b//q/dBzEN7duiVuoihORkUi6s5gJePC6Y0FdeSJWDDa7oG9DCOFKA3mOlJBLMyWzugBBk9uWoRigZzu9KyCtS/IhAjYhQ1nFr+zvd8ZZ/MgZGCr5pf+JVD5kyStLVAtjT8DRkSfN3oMvh5PkT8hNuaWNZQg0ZBS3rnJuHaHEf7WXwOdPwpO9GVXre37hPE+qMgAjReQvafW20hpix2ol3VyqWTisruoY6cyKiHKkVyMUXlyqP3j01Mu1mD4gjPtF974HgSSHuH+Jfeit3L/78LvvbiOC20EykubV/rZ5URrlJqhst7rkogIi/dOxkfrRlsAaMAcQsCxojhqM3iOVgbLUD+NO3sXW9pbKxQDqOpCuFQgvLhowrFua8wz2u7bmPvrgWpDXKE8gOCDUOiwM9FpIphE9HAE7tiacu1eJ4UtfPUMUmUXQRFcf1RQ8X0Kl6EwMDN0t+3/z9vbdu77OICWLNcicTGYZeMlLdZbkUo/6VaWxiBpoiRXp5WtZZgPck6ynCE4t167f2P/X/+qfw45HrQY1G3JQABCRN1astmCROvhdfYuSaSJhmE/Qu+DBz8o7cDb/1z4SZ63ElaxGUuE1FjJuxj9fqRaw4DMSSfq4fdoK7IVeyWA//dFabjxfW4DZ2LNo+qwXVl1iRTimw6LLZXGe25Anbc8J1tqDGBI/XJBkCSomJXwHc+zyu5b0hhXpA+u8S7eHnaPAKFLW1PsPd2/fe/Pq7eOHj9+8egNUal89CuJjSijYRWfI7kQexj9G0OdiH6/tbv26vEvoHEnqLhv86RPLqVKxOYPiUPBcO4tMAVx8Q9d6cPBUi/fvP77/8MAEsHl0IMolM2C6fdvc6DMV8ljME5thF+o4fPZKgiJsWBP0hNXgDjFVQjEr48JnRNYvCmlAL5uNg9dhuKQqxYvy9VRu8o4Z8d6cZB71MohqGNSRsMLVPzWOLdN8zKvV5TZXZUIhmMu2ejnT5tfAeffe/ZLF0KIpi6yJHpVEpirzujqZkW++vQ1rS581Fi4QUxc4wHVq7dqN6wcSHs26zL4KhHIYviASdEy5FSMKe9IImqIvZp6SnD312acfcdKc26lRVZvi0oZKTpHclGFcvcAJrXDTS0ShbA+/aFQzWKePHmJwyYiHQRFGDuGjeF4iWZ3Ypa9QIFs2QE/cSm6JYm4OUfuVyoCoat2HLEkHS/hzmIfwAXVCilEGvZOOSFclLxot5DwfCvMH6JSrLrVaDvSmhLO2ijScSBtIp/EbXda7ATtcQ6TKQ9lVYqHhHomQPT14goNAtCrAqrrL2y3nt8e6rT6trLdpNSNmv0NteRGb2AaRxyt7+88IqWw/BzXgtJ2FNjZKbWg96nlZgzNIeCtbySNth7GJjWGVWUJ2xQoGLwo4m2izlzDFZG2sttS8Hvnc+fMS5uiJVtNZcfHcj6Gh6iJh8r3c8T3w+qKlDuhWLVHnoFdD+a3SYz88fPjo+pU9+5bOLmMfdPNskR2caMWZ8xeezTqhy461rZaI1meuqrrPeICxtdsaDCN4ajd6hmG3jo7v3r3/8P6jvb3LehtD6dDsFJ8XrIQWv/nmFlYKmVnHy6LYydTAN8SWAbGmk92V3Z3LerYHDx4YClc/IT1qLZ6OSwFCLybBI2KWFw2H+IloZE7Xty5v/fhHP5TZ+Rd/Jv5gTJyWaUOANKUfOUqJFR34wxouMOhrKRWJp+uIHbnTJ9/FpF3xgoYL+VmiBA1c681D3sX+zq4XdC/DmFn1EnmGOVNn6PiuqKvAElM3uy576rTQDTHWiUeQNC0DKPvICkOF2RukzKj0JpRYr6pRR93iOMoqZjRUq4hpOJ2CLMUTnpHF8eOLmirQm2ogX7YiPivpe+Xd2sU5WFGM0boZHo+9B5GaCEriJysL5NNXJQIE4N69Rzh/9drewcPHYJXYo4vQAQx07cKgX+PvEQx0TTy1KPb6pgW+KCJnlg+qm7VfmJU0ZtZE0nJVnSRe4rSY7OsXLw51L425z8pOjWTIu0Diuu+qChrXPe9ZBRojSvfwYHf3sviJLS2MPl+9ahkd+tjDVG8s2lZIcd0GeK/bf2CCB2h35uwSqElE1IodrpDR5RioGXoWVW/aQYMaVsZ/OoAB9QorNr95pcdjhqzhePz0he0DDSCt0bHwwNS7ZdbAEIhvIcGz5/ZzrxJ0EtaZoRQFtuLRTIilZ9/duf1nP/8ZZulwdEIdBxUbRkrK0D7z8uVYZXtIllbUJ4k113Tq1F/89Kf/5v/1b5lRI3q3zVuDufzj6FSZ8OMc9JLruQunAvUnJO0m8sZw902afPjw8OBAgFZI0gylwO2b1+kMPcj/IzhjDOxToN+QOVc7M5HBJHzfJ0bHpUPWrHCBXlsqIh+M3wNzavDo8VO0pFTpLlmpE08XUQ2lwaBz4NKE6fgEbkVBjB88Rw08s+8IFDUWgIMTwuXq0JmEcDQ9jy9dCvKNzY3HVsx0lI7k3vZBMZNg3Zle1AhBXggfuq1zW8lQF0y1lbl6/erdO3cQiTyZe9GWzU0SgxSgRRhIPLIyojP9Mi/r6eunV6/u6nMqvL4us2T7Mr9vQzdADQjlhqxYzVhcQY06EKSZvg6dzOgzhEHvwm+U8jv2jfjPE5giTnt9exD7VlevXt3LZZwhzf7+LtJ6ZMu9ajkmPWvwmgpNBjv6EoVQeN5eLNgIne8R3TtZzDiSPvPai9eBN33wGWcd0h9sHfTL33/52z/+sZNM9LNv8zzRu6WNnWLDLNch+2aG+5ObN2KbGOvaOB1tvlQCiDn8Tz7+5K//9heWHJwy/m8mABQtYmLVp8E8mjHEuetMCTDi+vhLuGBpFJmUqcNRVCcigPSU6XQb0eiSuLFVk4T5BBBlAr6bpDZkQ1WL8ztJnIDA4aEZ8g1QdkSF2Kod8c9yoRVGR8WJwCX7wl+4+KoVcDO4SeJP7+/tUW7Lt3NMV1dv37t/++6dC2ZuNTrnC3WaJ1Fy7NxgQdHU6VEiZUFWyDdOImN8X3c1rTUX6eqESowTbN2gTApptaeTQXR5JT7YQzwShKpa4Jj1oic0LqsGHs21Bm1nmw6bUxasETlBRM0JIKDg4dsXppxUkI8jhuRqbeXqlR3DdlOnda1rq/IIkMHOUyoulLV8SH9t149rlbm/ceMqKYkZJSTb/QX8x7IbBCV0D7A+Z/u3WA1Mcw7OFDaRuiZanUYFMgjgUnhMKRSZ20EU+fsXI8BQzcMUlGKLgrh1ERminlbGr5NPHBYORpl5dTEynlVDYl7czN8hN/SzkR75KAEkykNsqCUQY0GRcB34+p279/OhY5zW/Tu2JIDgMhxZCnXO3fv3H0SfxO9kTIz9xm+aZnH1CX/1139j6z570aqW6J5eO8NmJwGDbBpVUNHiwTarBRLGkz4N4uz5s6d/+pMf2UaN3y4yo91i8s2EK3mUh6NQIbNJHoa5YXVgrR6JjbLN4+torBjrYuDg8e7o7R+/+ebKzrZzKVDUlBZPNHkyzFCtqhuzn9rd3n709HEhsJ3dL374w/2d7R//8HPwGfGygkZR//Cb39y+d4/NMOgkqYLa+IYWk+SedYmthttJCWjTiJO/hlYTdSFf4FpMk5LOWUH3kfREEEd4AoxqZqeVAzJBFl7jn+JjEmN9TNLhCq1ohelFUhbadq1IxqhcubqPPV63rn9szHxL02ipVBxb+9qpswRJngdXhHhKnNWAO2EAZ709xDKftJdFbC0iwFVf6/V+cPQThnm2gJcS39vd6bpl3l2EXRyqTo+GKIlid+dOzfV1tKJ7tditMQ3zdFGSLnF6Cve2ChWHlNGaXeN5vHt7O5pyr6dT2FUXU657XoGJ96hERWoLvcmDHzu4LU3nmCulFrgXBmVbRinq7N1Op/3jazDnfuwypQ/MxNJ1ouy37tohWec3ZHHv7ezRHYhrG05tQIqz4zbriMgVF0vSK8lsZNIInt9cpsgPPvnk91/+Uc2nL4y5p6UaG44WpHEAliCqatWysKpASiFFrSQhrRvwOAMWAZRhW+RO/fQHn51e33G2AVaWLoIEEBxiIor4ku1rbt+9/fMff/HTH33+yScfnTt/QeRYk9V53szO8Sc3rovv2fCIIDS3k8kI7Mav/5nkTVEnJ9mgPiAHCRjR4oTQI15ejLpkLdJlekf22swGPOoAXCI/UhFT8CYHKUPSl3kzfjWdnJIIjdmzUyUT9FAqc+UDTBoyAGmvpRrztRoMprOaCSg4vaEatJuPNujsSK4GSY5WPZiGFWpUUYF5IVuUjFZVkBTIei8kSXPgwnuo3qmhqmJUamkWytP69iqp4T9BMDcq2Z0apfIxtDu9nAnFWYJp7Ml3h6YEOmGrjeanYm5kHGhrWAUNYU6ABS2MlcB/ziRjUDQ+2lRCK2m7397UEVlGL77Hxk4oibyesNqWM4+fMogtVjUUFBtgKMYnX/DTJkH95vatH//4x8RzMUkDV5OS2nKH1IkL82JX3mflKdK6hcGerh2fPj4jE0w6iVPs7Psyjt8cTgMb/DMrjqrQJvtvX7anbMIkQgSpqRoCIH7fUCK1A6MQPP0SGHGu6OXNzSR7+rLAF6Ml1PGAZK/ubTtV78KN/X1Tg2IdZj24u4qBT/3GA9K/rLV/fPisaqMmYvr1fa+Ncnm0IzxBEysW2oNWSERUfgz9yXQpbrqlHq5Xvhc8hgHainfzYV6rAUv88bRrkt1RFBbPWV3YjElnl5w2zJ0zLui5unp/oIuthJlJ8m7yQyftFvzokcr295uWViJtSXK8llM0UpqN1/M5xwApJXG0Cc9CqX5X1ltdaD4gDeZKeYJwtxZvLvRja8CPiAylgTOlTv4MqAqkCL07TpA3Il/daoV93HEZFst3X6ieu0SE4yGNJ5FoWNnQ08tg09y86gsoI0ivV8lSRzUa35tswgHo1EDE8qukYNA05uGiNcMj8nGK5fZ8yKgGM9z2Yrx99uaNc+dYTI5G28JOG0yAXWdE6z/cvnW74abjdtZOk0lao3HE1gpwGHMVek4AyHSm4GzHcbjvUlDAqZaPHj2ueIb0uNtsqiTqsVEhFuMoUIgBHZkXCDTztonrs+euXbnCUbD5xdEsb7NZH034+EZdh6w7uNa0oUVyo65g4xRtOhzvggRAUabkm+tlqWn6MPtjeihF9Jt792p88aGzSVG4rgEcxnHoODYJqoAjl0P9hjHIISaA6BQ1BZZ69Pa9jfQunj9H9Xs7Ir3X2S2iVg015KORxoPTbKzidoDQgZOcpFHLFYdmrrxBhDe2VdUuuvH3lsm3bE/Bu36Sy95Ys++qBl/Zzsym5xnEUxNlst/xZgPCEV9Z3zxJPjqree/uQxjwqQRq0ZKS3LxxpRwhbWELCaahg+zAmRQq360sPncBvkOpwYiMTV+U3hKASswnEvTNf/+8rVgWTZ3uAlxzsarCCJZm6/AQNeqiSe/xQEYYqEPfI8bw+PvX07Ax9uqaAoSMBKPV1DwNES323fvaKIJQzzb6AAAILPZ3hdNut9krl+0Uf0HqplGvWgyRrcpV3xu76b15c//+Q1Fp9t5SFdILYj1MY/Usm/m1BlRiG0Z6vCCjC2tGZr47ctFDK2nbqZIEIh4mKQr9gtCD2UICcKtQadPMCeOkhn/20Ueff/bRzuXtjz76SGrxhYsXnx08NRH2j7/7za1bd5pXwzcZsB36UjatSkZio+mljY2r+/sCoxq1hYAVwpg0e04rtiju2uWLm0xCPQ2CIh0SoSZFZS2mQwDH8Dy6+9/DDKQZLqbrPdSxjxpUhpsu/Pqh8WUkCreKi87ZWML0XQEfQ5EZAVdNEqAynNGrABsqtoC3U7+A5vn7dx6o8dzGOcnEDLkCJNhwHGzIdePaHnGJ9TRwFArRUfX5U4fdt6XA4XP7tTSDM4d/bgSxcuS0HrEAl6kyXJEzcqFDIsOL8DlybuSTfCCg9vss8uprJoFXkD9hnBz8SuTd0ZwZsJn4C6KRb09JhvIVC9nk7/s+OcrMZymj2jpIBfxTg/7QieviGPJV3Sh4l6TFgFg8ZZL/3kpQiDn8IKgOalTXZul3i7/jAYPFAroWoW5h94gWrvZ+4ptupHWQXlk5eGrzojeivGvvpAPrJd45GffO7dsiK9/cumNIbQrWyifbDwOK6Nnwl+IhK+igrp8Rhh89PGLs6QOuAim1JFzGzSLlp86Zv7WXP7QLMI0kNJ7QnZ0/K63avzZVNXtlrvf5q7dmYf7siy/+8qc/3dy8sGFj8dU1W7ESAq4wifvhpx8/e/KUi9JC7EmdmExD6LBIOJQ+kBVhO+krWuNM12OMD5ARhvWMLuSxLpwbzpYvBLaF7NiSefTJSPYZbsQU/+d2eJCQ+FGr9YyFbmXLtO4k0VFSrJrFNZ2EXiAdpZvySczo7jBBXUymXTBMY8ukBo/tMHav7r16U0IE7MCRKFBoWZZFeJa1tKkxEieVHz5IxbNZt3ZXDq3RabUh8sLXW3lrbqUKSZauzKp5e3dmfJNvpw28M+DWAjs0ApcmQG/57RUXaAhZ7fmquulqxqeplMLL70U8UUtDKuhFDXaVENe6DyBdJ0ORM6BqrF9ZQ7Evl6l51VbD1LZwwE22DD5q8K7XUqQqK+3A9tVvhncFDadnqAF0OLN2ltD7BDqRaElOJJnqdQvdtLb+q1u31u7elXhvScHjp2KcLx3jaxrOS8UYj47v3L3zg88+CVowxWNNL1BkarTVKRR2/PaUw8eFqZcsyOspg2WW7d79ewKJZv2l62fPgMHxYbm3L12yBTfm2Pae6DmqBA2ALiOKVBiluW5MPE2jDtbL4rpx/crz5xYE1uPxHhJ0jtoslx4Ig9NxD6n8IM9TxEGL7Ye2xLfpmMWn5ABCwGdqQ8CYdPLBBzXBdFAffiVPzJseCWjcwp7MUwa4LLdhciSJPd5mPJSmMufy8WsH5zJ+qlao+nulH3JsQUu2xhCKw8NPWxdPc+rRe4mZzz+8Ju4GhDrA8S+8uSJxpoPHdYDX9oz57JAgxsFePHvygj+4s3NpmgOg9tIHNgVPNi9eYJlcmUs8/8EkcpMqsbUODmXE7VLjgX+5iB7uZALDoEcpV58hQKVCtnIacpcoE/2wPHF7PZ8Ke4gCZCQiKNWNKkKFSOJuYExMpvqWEgp1Wwv+jD73yjytoaF6DrAuIP2fKmGaaJjHIz8moOo9EL8VXd4EjAtmhFlx0/cH9x/8z0+e2TpabWz5pUuXT+mmGd83yUagrq2alQOKCeqZvcmI8Pmooq4FJngt6cZUNfjlRxuOtkLMC9hrdLcmEeuiU9jELnkrGWlwqpnuPH3+YjYwNIeKxClOrFjTUdh7ixLNhHQIg80bMYOGERTnBH/5+28KH09TSKB4ZgSpkqvA9o+pY/YEa+sBeb8xm4RObFsWf+l+Z+wzs9wkGeSkZQqRKeY09EH5iIDzZABSqbfv5JVYLSZxhjhrxiSPnVntVJ5Qr3k1cFr18tNBF3tZBBJXPAuZvpcVrUW+UNsp1+zquY3Qhxuhv7y12QHS62v7e9tw6XnwndDC7IdJhv29XY3a5BOhXAgicsY03r+kqxiot6YLJXDW0F1Kjbl5R+kYeIdZC9L0dQYW4DuRuCiKNKiH2p4StSH1Akpo+ixCqYoR7XQGGyo5/nkAoGCUUcSXhVm9p2btEFmUTiDROh1p79QIflJ9EOJbBIu4J3eXv+PpdB+ESJ0lSzrjp4CPucDp3PNp+Qbq9mD6//oKNfjRTqvgNSDOfn5jtg09rSR3SEuL0Ff70aotWcjq9MIs/jFTHVyRgydXV2Nn4cvbopqWx7wnqODxeu8CWu9kDd3GeYtXHZ6UVa6HFdkoYe4tyiGAjgNtgnBmqi2P1Ev6Rmj0I2BVVbhGyHol69RMkzU64d+W/iDuJgL5TucawZRIDuwcnGc0g/oIi0QpjCMl31rbZwPnszbOl3mCxZDx1vqZDvQ9u3ZKENZ2vCj41XffzZx8Bm04MF38pEglx9NPu08AaNWNq3saHZ0d07W6emGO0jA/EL1QIixA4WoqIxA+vS4hx4RTF+ghSrAIjcJc/40VG0DEX5NiSicM2h3hkmIkC2PqzErbDBAWSur/g7jR5NIFuUe+h+9KpwP6qUFqEPNWJqIgBggjVPRYLMsADqqlZZ5VMA81/MIjoKkIT6E4sgwAFicXXzFZRpx+gxzJUWqg2DgbjEYO/DhR7HfCWTsst3QjVsNIydYvesKG+23BVGvjziT9MEj6l8v5kxhSJ/ap4AD+NmWWHs7G5sY/jEvF593FuBLaCIFcbf84Gqfnave1krqbyVmXE2769LV51tjJMyTJkXPlQBbAkycik25mIZbQ5QoDStDcOPrd7//wox/9SD26mrG/zcPgM04Haqd3X7p77/bSR6FpVjic0vuhbDaObSAqmT366SVSnBD7yZ3oA59hVbbFSmq5IqaVMENbp8qLttyuAQrbhei44kIPKITqPfYVXZKLmEwR1pDh8tbFW/fukX6rzs19SGLdswnXu7fXHBdXYuYhCv/9r35DabOQSJqR0gmKGSySNDReaM0VG1SHXWOLT5iW7ro50lMlQ1IvjjlZOAv3PlOmPmiUGQnNc2SgvTLkmtYWKZwGXKZbPa7UQpyeTw0ZXqv+J6LAPI0ODz+mhIZP3qrlRBOZjZTUqF9MNbxvgNg45+zpK7s7i1x6sgxMlBxwBgGXVdCNSJs61QOYc7WgV9frHDOL2qUSzivBqvG2lxOgXF23h7HxlaERo0OADLcE/m0TtLd7+XvEF0H6/u3qh/GQZSQJBr7qMkhw8ql5UcVSX0vbHD6ELLkHVWpD9IrNGFvLfhX6Zk7BgrvVycWCBFl6byeWWUS+oIogRt7WRTre24wwXSIX484kqzBFN4FN5/pw+1Wnx2YfSQtHJxEa6yzn/PW7oz/86leN46Ka/1O9Pyd/lYtCMcwA3JaxRBr0eFQXWywxZGBVj/ShhcuPj54VzVwpXYL4KwSe3oIOWhZ5fAXAlTIdshJ+18+kcrXJx9vb3trZuvTnjtT67JOrV65ysXlOturQNaEZb+3q3v7q6m+NRXSI2gZ2v0hYe1a7mpaGLVrk0rN33vJEA7BEWkKWWZoVGidMCYAeB8ZEbjGH2D99/ASHjBbMD2lD3+YDjJiXa0cNy8nyXjdQHUam3gyBsgt5VjQfeF7o7SRjRc6ZiXanjLWXRAd5zSowp3gZsZV2sv78KSl8bej1SrbJm3fW/lpPoxLvq58g29bB1Cl9evXMUvx318QhSEy2CCTAGU8h+cGE0PqeRIEgAY6p5HjofpHBZBnpF6iAdDp8/OHCuQ0FhApURwH073qDVq7Zvat9YWqgOgeppf5+o3ut+xSaqM040/ZKhR/ZdSNGD7WQphnWeo4V8w8p2xMo34GsQ4XzjNWGX3whzrSsdu1K5MY2L+ILKkV1Asib+PDOFkmfXL9BCJkpwSG+HLtL8Mg9aZTt9tvff/n5p5/YHQC52F+AFZlcRGKSGjcubf3V/+P/maCDfMwGYODCkgZryIEy384g5PjOg/vZ3UqQK6xFjWRw5C8yOPyA9LMlzZAIyo8PrVos6R1uvNkTw/ic6ySwmrREJSa1q/Dl+iqrc21v++Pr1/d2drEBXWDfPl+VjMTbdpAdQcx8YP+wBCB1LzUTWJE8TXMi94FefoD0vn+Uyv4koi6lWqQbVVvpuQ5Kn3D6cPTy+UsSjB8vDh2M52yY149sTvGmlQZ37j4iK95z/sODhw81Lav5wYNHdsa2pujg4RNGQJWPHhx8+9VtRy4EMH3HAVycKfwc1vcfvvnqVhl+sjIfPrH+5uGjJ4cvXjndS3NO/tR5mG+xtw9Tk0Ufq0lZBFKo/dTjfFjHtr6O3CfIx5+F3PGmf5Fo+vk1HhE47D7/9KmJ/A+W8zv8Snmus7lYNZiQwRwcSlzamoRSzAE84vcNSU0EnZBraQ6tFmqjYC5/SZDYNU3WuB3Xy7BwRafBrD9E/KCZTzkYHXrQ4JBf5C9FkG6Nc1Yw8HnsQGEljDdyXeoimqHzRwFALq0jrbN6X714KQaDEYCgNjACupZpA7fod7//0rSDe+h/stQRHPMPcOr84Q8+tfTZuD6hsEeTJhMff7InCYjcfvPSyOe9uw8eSoUAtZOJR4AcqBOLwUQaFQboh5X3TmGRQsnPIbeFlsM8N6kK1+wID6AGC6Ik9Y1RKVBGJJFobfvSluAua1Sj3R27W/tBLhhQXEVstCl6JM8Seh0fhFf6au4MD/wlG86Znq1WEpO0MbF4+eKFr4zo9ilhnNwhMkr4U1ewJDUD8ygT3uclv3hJXu3SY1NUaOqFLeCTvLVbP2vF0/u359rBUsRHkG/nwjYZxRWGEBSffv4JEDNjTZNFe7CeOnXu9avgl9RUncerLw9fSyklDgqwoSaU0dmkqc3iJWB7LzppQ/qd+ZFz56yCeEZXKN7RkTkmir1+tn5hEEnUEHYINi+lGr1OoNDtw4eyJ4BtrGkhteAY+bEsQdDch/dFLg0PXq+/daa1LEDS+fRJ8wkyAAjZwjM1TCt1JSimJ8aG6Sy7jZyIzWDP0/atYfuAhyTxrF8hJKxMuzkqBI6IstPkiVjrkJHdJLARqY/ADvmON9OAevQJFG9E9cOZcwRYksErp6yYR7EdeXM8zH+z+C8tQiCfTw7bZzqxbJaw1TgWT9SRJj8Bawfn/+Jf/YvxdBgA5qUBFmtV/G7BBbycURRUN7rIxNrd3IIFNwYawDfCzwadBP7rPR48Odjb3ju1fpbsVzUCka3GCcMKg2Y7JPfNKFnCcZsYI0yS2NjUClTssFi2ccXgHlkVFgdockIS6+nTVMVKLiria+xFv2yVx8l8NA5EbesgqGjMi2rV43jgi6LDEaFureJQw7ve6tv8io0ViN/DeuwSW/DPIIx62G5ap20BYUSb4zcBQ3ZT8pEBWeIFi9bWRHIRaln+u9TPMKJwIrLevERNca5ks799a2GAofmL549hdvHSeTILKU0DJXbN6FP/fvjwOXMgB0Gqrp10cJdYhCY5Q0dIcJdhxVLkQUSTUcIVs6T7u9vu2NBIpVpXMxYg4ezE0Whb1AsNtCs6fP78zrx7vC0TNtO2MNHzet1QmE9ES3KiZ817nIT5vSrOgRX+SZ3N8VjoqyxO5AGJCdl/LIOKbDSQ7JIH6+090xwsmBUv9UJYHOtVvMXq5QGZ6S8es2olqu3Mz2+cXX1r1cNry0Ls/vrlV1/J4bNWOwqsr9r37rPPPlVHsl1VXHdUzZqmmu/f//yLnxQ7Ys7NTGcjiyD1GVqGgwnuumZ5qe/tM3zw2Uc3T1kywqEhJdNbYQJpGnEso1jaRYfM2WSuWFkDspZbq2jxqVdKPa8bxd3yEBtDexpdx7HhjQhDNXWSMAJ0BCFRBkZE5UpasHbr/n01MxU4ygbwygjlMCByg7+aibetSN+8sdWi1oNgReCrFeXKMKTOJ6/K2JAqDvewk2VNnMnrExM6K4cbnRY1p2666VD0Q27MXasF6q+dsWlLd+ZtJkbcaYmmQ+8EziZiyIm6sCFOJTU1PQeFhG0Sfq6lF9lE3SPAHObnpu+s3fVrpMfY5nil3TpWOkAWwxAjkh3vOKDWdwAeH9+4vucPsIddZaEhIciZV8QJn9TNS9ifqqvFUIQFRlvNYfpcIKztKLkxiYlivYtASQgaNtgjl32vqsSohgqH9InvnqUFFZlWvVExLHNg1I1r10wJK8YgKqBRPjBLRMS9pgZbwyuMfYWlAC77vY2BxfTBI1bk/Ap3B+hiZxnQycttFyYOlTPhjYm/uXP7D99+Zx3Lc76sAzeOVhylM/Y3NEjv7dt3AquhXXN80NK+Gx75DTBGvDD269maUothNCwkB2PhQglEoOHdUz6SpKPkkNVbzJIGb8FnKOhQGTi8Nzl/8cKG/YQwAAFqaZReJcwSpR8blp1ODcCZJPqVLuQQrptfl/9XtWSdksYiyNVGw9/dy9sa9RMHeksLx1ZdYEX/FpZkgtq7CqaAUyiZcDQ8HXUKfHGihrZGag0YxrxNlZqhmcDtgIKr164yHnY3UGu+X1MlbQVH0E2wmC+TK6U5YOpLQSuRTsmPPr4OCBA7LWF1TuhAoTQxUWlPpLjdp9y+Fjn5UAtyOWMXR8WDF6+84K3UoBcDMiJkQzzpfb8hWZ+2jCMLWnZ3+ZxcVtZ/RRXLBKCxmlzoQ9F1RqcazHwgKIIrigfMGE8K+0gIr504zfaMmedamXaSsUCZCHkw+kzjAVExHePPfvbT7+7coQZaq21Grfx+EY/2OJJ0yXaowSOrdngyMyUsl6n0ggKZVTnsR3xzEefOXt/bc0P/eWCJ2KvXDf2Pjv7uH36pboZECtLW9o6juOFiWOuTJjgn+9EjXi5vIgpMKiQZXmgDFvxHRhkyeB+UwAeRfBUKKs7U0skzZy6cPWdvQJqsY6Jthj78l8IjZbgUtRpanLDHMht6wi27srdjQp3EC8GlRzEyUmP5S2tWxVLfaiHbhgPD76pJYDs910Fg9sgw3cgxLbshNuYepZbMycXNDfAgNHFhJBiZ8+eIT3sfBQ/ujBoMFzHAvYopj6oitSrxKK4sZooAFIo4kS9Ps55pQ7/yYieDI3PUHVt6WUl2gQANRoE0UlFAI1M93mDl6scyAQGDvIsoRHvvJYTorYCwTMy3c2XBsZRhqU95TwMGOOqYNubbFBhSKTCxd2+ImSgSgspE8EjW5fKeJhc1wP7s1KaI3Mrt2/fUYOPEmfWLcn6eP88pt8MF516EyiBBwmVnGlDVNWKQ/Rrk+jVNLOhrNbuILQABAABJREFUbpoeHrmPtn7TTScz/VuzyG1Zh3VQkgrKlFB8Ts57S39fvXhF63J99RidyOEv3Jkd3lhDLA1r10haei/vUz9wzwLZg0dw061yEEipOrVYx4ILVqC3GcoHt85fvGAgTfTMk9y+c3tvZxuS4rqaf38s8UlfHkyxRI4qOjfnEg+K+V7b25E4/elHLW/TNpfWCkGqce/hg9/94RuhIRAYAp12rlLrt04YtQiOjl4ix917j968vSFhAI/LEZy87thDTj44SYV31Gom62I1r2eZfhwhs9nqMy/xUHjk7ZuNFdkZdkpo3id6JzyJxcWO+CaIq9a7XbEgd0ubm1vtTaSInzFaWSDlYxsZrgJgUKfoTWTbf04vPWKjCZrRXHhmJblTvv6ql+LLsf1c/Zl/82tEbNoKYLeMOMfO2oy6HUXnk+ovVg3808bIqOpHaPzRBIHAj4QqY+HVoWiIkN1BJpHrZs/mod/gi+CUfmiW89Ss6OQ1QHcx1cvGEFOQiSXZnmTj3n2wxoStubx5WSWsEuJEXqvDn7Wace3CeQKqPdFVwTchH3M7EnbYwbYr1eSo3EAbovncXl7ATwcick/9WjnabmOZDVuqLPfGI1CZpV9tOTcZRFG2fYHylEoQsi0FGUA+o147iaobs8wS3Lp9D9LGFrInTOMKowGcCDMsL14bj5mC65Ru1bmXKh6bvVGHEYWu9OgPX3/1xec/LGdsvB5ljDKA6v+Q5Z3Of0xifdGpqzu7/9v/+r/8+MZV6xhQ3DLFDJjWrI5bF3hxxCdNQHnCVKCJ2vmaO5/vR3fXZap+9c1tVqQkpQa4Z1i6CB0v6X4It1vye6P8aliXQIiyngI9X8mglkHSjmBCr3k0rtG4DohiEzshDx7F2TN/8fMf72/v2p9LPzvHpowbiLGNMBgkh0bqcN/pQ6JmEgQKLeUXzlWilvDr8fO7IDUCpzSIVfLug9yhzcsX0UEF6gUwHBgOLUbx3L/4rkIz9pwlBd6+aBuy1hnbZPfZS36U7RbDm9wCYhSohrUYKxJVbBuAmuvQuEdJUuAmUieXA/p8UfrENveo0WpqrEdU4feoebKYABABsX6PkW24X4Q0X9ne9CSMNcFfPSsiGzudP9VqJO1jZdCK/nEZvCuf3f2Rbq/7aGiABkH1L3e0+v2j9ABJxaZI7cODxxng6XzVgzVFhbgvY25IEXrqJ7CeIu3t7T88eCA+Zo+fTuPp5ELeuivjY7zLO9CNatXcH5lSEQEygIQlJZm5vLpTQjQC10CUDAlnmyg0aJRol0sjg+F9m57AtvAbO9LpXRDIIzhl1vra3t5Gs0LSqxu/xyO0WW8jMRG8lyZz2rdsWKvbaaV1VJiIGbFYcxbG+w9vHx081ANKl7Vv0bk1I78kQTEFRI6GAiYdxtjzPlA1AfUTAvV1k/Oc8DRXwjbHgcwz1lgJJRlr4wJd2IKWZqw15a31EBaKZZ2RCVzwFFhOkxhlMquZo9XnBeOjpr1M1DcvFOBK8vIiFmiEAVoJbvguK85682fPHuHE7v6O2R4mRPX7e1t6c6TTNG7PpOymENCTh8+wTUadg5wta3rw7NGN6/s6sQEvSQcEVIIwtGuUtQm87g4lUodFpPz2L6MP/SjUN1/UpipoVXKQluBHfMk6me4dDXqKgEP4eZ87Klo5wscj39zaMujSL+mkHzy8f+3avm68fH2U2eB/rtsPz6iKSefCAPT8xnlDPPCmKgN6bNd81sRf8PsHQh8oDZCV7WeKGQS/o6/e5kU7tE5aCrpZBH/n7l0p9JiiEoeYPLBbveXdpyzeko1bdTRq/J9MrQuCwQlH8HJDEE+SPcje87IsJxLR9mFfDBB1gynP4ntxqA6eHtjgz8tjfLheaUJT9eM1TN4R+3HCCX8nBBGJS7sBSnjQkrNnOMhPnz+EDxFBZWGFpqen3Vg19Gg+cnXt8ZPDy5e2dAsYBqXhPaLnFLHTzt/d/nBxkVpw5sM6hC/OVheH2chbv0ngROXZNDWDtQKAOSVCdc457m0NJAh3xmlZVN+qrvpKcCYsqgnkjp3zdBEgFJt+p81aXh29oe3KLSaa3NDKmh/rrnzdWxK+Tqv5a0DBs1YwHx8/evSEkSNPVEIPrTC8KF10G4XHkw0Dl/VZ/utRT2sh7BY5b3CUNRmtG1aD+UT6gRTsUzSEYiooez9pHoPgd8ruWxZCiZzsBn4SZQ3UlK/J3N9qUE7nmmiurDU5LXb37oI8v0ePn+G0PY+ZtmrXj5233LQNW40s6QPjihG0muARU/+ADTp1LiD5jdIQn4tuzo3gDPJUtPDguTPnQMfl2Nrc+NEPpA7sfvHFF9tbkp433715/Zsv//h/+b//Gx4zTXZeBDDYayc6LkiTJcN3ll5tbCJheMPRsgPaC2fNLEIv/mAXV8kKzcboO8gYLIhPgI6d0jkdNYrUwz+xIn3t+PzpdYlkRdI6YvBo3cqHO/fuWwrk8HSx5DoX9we3RcCTKliZGwYD+0fsIK0lkj1EIQWZ9KBs9UOEIJ1U3cKry5tWa559+fbN8zdt4ivoZD/KJ7axedYkzvV9wUReMjsN4PgQt2uuEfDFjYuyaxSoXxLvG9IqltHomL9TBgd2QdO31jN6HckjlFMUGnLlPscIVWYtIi68qx+oxsBrK2/lhxbUZ0+qMiO3yE29PiiqAONFrd/X+Qrzw8AZyQaXhm66COZKb1GVyaPWOmbB9SzpOyeOvHXu0tqR05SlKpzBBGndpUzqimCRjp20qAaw+ZBUMESKiADa4KH9gJseIfJMa9VQofk/V/NaRiRQWc3JDcG7DPby1klx6YMXztv2mMIi1kc3r3rMjyZJO7uXEUFhBaQEF61v68iL7uA0rz2azOTpVNiv6lyoxWZHdhi5uTQ6KAxZpJf/+PPP3r8+/Ms///knN2589oNPDQI4jHwlMvfu7dk/P/eTf/zVb37x9/8JJNljCGMgCU73xkNTbM7BYBlRUrsKeXThwiBCwI2Ji4/brrzBFc5aGJn1nN1i3Cer1EmESx/y3M6lHyxAXDU5OXu5Hziw+c7de/ZxI/TCWtwmDobdyKwSemWFgsnlhXwjTzDMMjEPUBQ+clAJ0ac+dc8zDkAVnZulDGTXwo6vb99x6vzDF1q2yEf2CMMYnuF2vLLsqUZwGc6oyfHOA8p84YaGzK/ZH4ofxiJhGjSG+ydlfMUkCWS6bwMGA994OHqyCIiqVMYwEC9U8JmBMBJrPHus/mxGe2CRoLGv3o+XPtxqzUGYIhxbkKRPk2EqcKoeKNiATbhDQ6nxsD/qHB1LaYS7O1eu7OAOWsF28/gi4PDTWIorcgIe45wv4T0I1+SfRGq5njHo4nh0w3/FUo+0pa9eS/JTwJM7vimhHnOyOtUSOSf6VAnvIm0lFFleidTTl3kEEe5154Ii4p/gma8R0G3KgHW9f1JD9bj5pzvfwx/v3ByqasJLmln9/JOba+8Pf/LDj/avXNV/2bc6w0XkjU5yoS/+q3/xT//uP/0DyR8TEaogUX3aQh4mgsQkqbwwEdu/cvzi0BJwbrZR6/KSUmRP/A1eR0b8gRdjyxjIyneY4gsnylp00LGar15bvWg6X1tPnx8SUAaXW5H2IBXnhYw6osZxEpAwzM82rXb2KKZqVgyUMFlQd7RlEP1h3YxBqx8jbsifhCmSFc07KVCYiJSDHq0rAoMouyoMnG6MFRznZ5ySLHMyYFDCsqoN8p7Gq2nAY+ghB/25vLkFt4cHHJVO607FkvM4pKw+ZLL+7LNy9uLG1dRhGsYadZkx9e5IxniTbsXU75lIA+Cb62JqY21rp2k1MIk8jiKFhTVLxDrDeeIoJ1jSzAifythHY7yRUp1AAOEJ4U/pXA46mb56dZ/59f1FfD1RGPAAAUVCq9/+NNU1tEg+EG3Rlmr0FUtUw22zCITXPTXPa72qQBzwV1Rx6mo6Je7aksf9+dEfCxBBzbiah2GXQSFjkB4eclqO7EUCm6Caqlz0HsIygomavz3Co4mGBehS3MFnjx9tnznr+IgiQgGeIEQOv0D+ox/+6LNPP/v177+caF7P2BT2TtP6Uj/ANoBRI3mrSXbVy+2/XV9KFLszt6ozqJqNwQ4NcWRy06SNrp+TJqZkEVL9xsWLQhmGQIaCeh39fEkyqK9uvHlzZJviex9fu8YDf7cuE6sd12rMf3XxwmY9JHJTdy16K/mYp7U7hkBMky034x0o45YYmy9w2kgfdUo0L+I7ZoXnoCpBmEbzMZhWl4Ejb+TNaw43uWac0X/YnTxw4i+ev2gDJRHi7c2LljTwdAjF0slEi6zm/KXK1Ve183fI1TeQjl4FYKP/EbYskE9vRmFNFh7C/lJOEua4EKHVhtY5ZX0KifiMrHvg7b4NGIGyfO0tP3rOYqZuE4UaT+57ACZgzutqn9fnewxN5jI0YAbqUugEh255fyqoKFlZYfBIT/590maYXBEN6dPkjrWn5fEHvRwuMJbGdVyVRbJ4sEmGTLj1069eSkeV4fs2SrYr+AfViqKqRMcO68BSIlCD1geYOFq3Pzc0On+FEwQ4Lgly4i0fW288w0LforfCYjY/+cmPf/vllzGpOmMNPc0b+tB4IKcI+joUolAv7zmU/ZpQR3SdiuaC/khkKVLFaJbKFYNmxK3xZmxAaEYVwIZMwlO8fUGX5eA8Up1jqk948/7tHyyFqXPRKADIPPNaQwqgrgS5t/wyCTbB5CGy9oGCNrJ01oCfPcuZjhCDmKcAj9ZwGSJJN27/RjY/B2Tkqt/D6yEeJIyVzb8CIpFhCcCQbKog8TEUvn792rPDF/I3X74St3xtfU9dyMKR+Y37Uc1QbKHiyc3AmTqJsYs8S6TCEF5a8EJhIgXKcEwPHj61RYUiIn8eaRoA9eMhkzQsd8SXOy7vuzso61HqMiKqgCKQh73fVMqDIWiY8IztBb7gBTpKobQHle5yuQBwDanQb0zUYpDn6KnbL4D0Ei4ur6nQ/IY2PU4X1Oxi/to95PrNqwKWxCtDvrrC3PRkyjmEjtupz53UVHPkQn8OB3xj2CxIoI2qGtPmIpaegNb9AQIwweDRFJ42ixRZz32xcdcEjgVPwQ4FVZFNv5jCmzeuI6WxVnGS/IW60635EGJSaOgle7LwOzJ6s5cVEd7MOCXpU5nwl49xCFltQGI0d/68gauruX/GGaf4SCVEbzSFelgKUEpRinwjfLeSgrWDp7YiP7zaqqUcLEZci+Be0GNAYCuwc/b4TB2FsETuWFIxFigg5eJe2du9c/chmiCdh5rXKaMPa6QlgxjHjO9aglM8fmoe++BxgOSbFELGTpi7UMLs1mjZtEQgZK3aif7o+Nbd+xafSAJ1Csvu5ctiqwE1jYKENRGV27l8MSEbXaRVGklMEyYO0CTDJStj0KLLIo9JmXhkGx90GNkaWZc8h7jMjHwkKUc7u1t8KFJLJPmge/u7qMmI2u1TDrKe99LWZXsf4TVO3PvuDhpdsSeA1IU3/MxTm5e3njw+BMW5c2t7u1tDRrQCfP8Cso/r5WJugWkE0SxSz9IYBdNSJFIuhZm10WyHLQJMHTAOkZQ2tvQ8t8cya8nYRMF8glkzc8wsklfVLHjPdX7z9lV2sAis8ZssgazkomTT4rA7dfWvHsDTtLHWlQTSgDF66zVte0qRSO0SKsiLI3yTXaf0YlVtKCiOUpgERs0SJlz8M7bYV9JBsr2XikwgeGlkjHsjh0aS9RG0S2u1vQDkN0w90EOSKUU1jYnjB7FtYsr905T3GAbjVYNWYouaZLPlPLTwe+GsmIZD0i7Tajtlg5O3F483CFX92IkeLayKb7RzZ+tyojZ0cEGGkAtl3VEdq/D46dN3N64K7OiIAYLmI8G9EH3tnXH+3L0HD8gWuFsxUTSLkVMBhYXemskEXqyFLw+ePPEuJJ+/fH11G0albmnOf5Riv4dACwrqP03TRYT1tJMCBCtYtxFhHEu0BujoyVitWnXLgrIVMpOluGhaEEA3+er10emzr8xsp1OIRgJ5PW/LbLOt9/bOlr17IWKPmFYdWv9lU5Dz53BatddvXqc57F+jm1PZhcQnoY5ic+k3gkxktpFDxA+8ynxfNm5UOvnTfk8zIZANIwvYZVWRgpFjN5Fd/XRYJ4kWJkk2ty7pWkn/65dvbt2+/9kPbs6BrU+9RVUMGB7ev29KBLktzGBkL1++pAaADBjaDVLsWqCoeoLCXIEDJKM7wTrza8Coc0Zb3qEtG3XXSaFYSIMr+xjZ9oBDZ+aLpKa5EzwlvpwOCQnFdI4aHC9CroRq6k3qIH3qGYzhvVYRLzOlHjWk5Cfqhw1djHuPX7bayGkseu52n8iiZjV7Qc2sG2fRAYEb55uBbNM/w+r3H27MMJekJ6bjn6U7SiumC0OSHqVvjVAhH5UWObKeZutySpy34nn886yUpzG6EBGRpB76MKNpyZuzjftMBoXuCOOaI16e82WPjlh0SI4QgDhWsF6nCZaww/1HT9GjzOJSdsWuQAK7kc9xIqfpEwmDMAjM/r549ZJYExNtBdkwc5ydQiJsRQ4SeUJy62JzsayLOH95Z5N8Wo6TSbauqF2qVUBM7Thy5t3rJsXR307r9rNQrbWsgaQfbMtAPXjQk4WH9x8SC3sPowAXeavdfzWHcQAJloEI2UlsfFWV38vF/+o6xg/4wT+FF0TcrQbWlMmXxDW1qafBNLVEBAIhwO0VowVlCZUsb41hmfXzvIiypc+2PMAQgoG8enUnmjZJN5KzmCS4LKSer9iMTkjqT1xIIoIOWr7yOww2E5lSbmXsvrVZ14S4leGitJm+pJn7jw7MdE6HkJsEQnNwV6QtbF62muK7e3eNVAfZEEx40XZGz4tKGJHz+DEZv612zNlxIPTzQ4DmyB8ZD7TykZKYypAT/Vb/PMPtkCNT/6f/w/9xa/MC1jvDxlrVew+f4jw4DDq8rc1YREB0FGU4yc44c/j8kK4OZxmkmY3PnkWa2LO6NqttTj1/a9mXG01EuAmySKPc0dGBzfNfvrQnnmqz4MlTUgI3r7jyipUoNrHb2Wp0rlhVZZCqgZCg0bVrV3//1S2kRhMF0ASWKleTQnNR/+PsjjNnTCdXrYYQWoxCMiEpTECHVYHtjekfwKAJd5gjbtf66TUW/dmr5/fvPJSMLYzdwQjr9nlycmEsZ3+YEcd/WO004d2WOcL37PmzhO+83VTZm3pnxS4IHM5ZZuW02lgb8iLuSdTJZ6RfJ0P4v+8Kkv6TpwMmQKNSlEB0Hz0V8MMahhVBTAAYcYpU6GApfAWAYLuNpVr9OQCWV+xcs2e+PEK0qYKGlVcZwzhczTnpe0Y0nVyYOBSqtaFW3PEWKcGlYWnDgB5NkIAHYmzo98z9dfzpmZUSNNHYa15FzI9u3vj1b3/Nx9/YOHtlV/rbzs9/8lMdl7kOTsBXX3/3f/03/+2LVkWTSUj08aL/DOt8U5NN4qwZWOW95/PYcsq2bU1UJ1LWedafvyb7ApSJRz64YMiEi8q2+Iuf/kjfYZbBwp+Ee2XNciiRWnYCrHlNDbdiBspq3ViWgqtOZBVHqJq9+pLmhZ9j3NgSM+mib7AEugWpSeFwK7yPy5h9+uzFlZ3dxsND5cEuHsNquqnzdgESyHt7pXlTOlm/6s3hE+gp5I39K/q+cfPUWu3AJ5jYjyupi9jfpfP6sVi7sOXYevbTK+fswpkR8xq487cqkJvUNe7i+qSgfvTpddaRl+Fwg/CbWq5/dBXISU5zrvhtIwwJxnuJi8mp08xwRUUONi+IHIw49EiAXBoLaeMIIHl8qN2eaDNxmxb6jgj+RLKTR/72ifuNaJYv87X31aqOLqqjEgkoxTbO4X+fsEalSSxXMOcbwRPWD6ni8Zlcc4R3p1LqQp+oPRBOcwMSdIeRwJv2/Kp8LzSaH2xm5YOX55l2EIotkxt37dp1Arr0saMGNaIiEBtD/MXPfvLVb3/1s5/98Ob1G05OaKC1eVkH4rFSUn1++uVP/uf/+Nect2kZcoU6wNog0uaO0+Oz1DZQAwarxNfiEfnNGqainiG6pP9Z2ySETCGdAmZk4ge5eVEBBGm5fHooQ1uJiiSVkZ2ppIJxWlxwRmymwmuSp5hUDAiz3h/6ZzbiKNm5fPHiraO7FHgIq4KGAujAnfNF+0AczVWHyquJSzm8LaIvCHDt6v7X39766No1w3S+bfMspjODRJ19djkWDs/rmBxR4EwRobZVK4ygPQCtyqDJRCYi/YAULbzb5BlgPOlDCBJobxn35H01JvcXTZpvCafEIyTB4HvQhvNiCrupI8XRms66ji7FwiZrpwnwlw6g7UsXW8bgJkB78+S/P10pXouGLpPk0yVTl5iqYYYB2khGRyQHDgU8xSZ/Fma47R75MDS0NInK9T2P/P2DR0/lXNoy5+nBU/QwDRq0Ua6MZNOgTCIjSGSfPXtmD13hdsdRw2z7sk2ZhsiBmcJpFw4BMh+V+LjsV46gOqO5G/Y0e9Zy8NLD7NKlPaMEYCFClanr6Fj68z/5s59+/sNPr1y55vAvO3GpRLizGiz2uHThn/zFn/+Hv/nFED4WZ7W1k2wX3ies+GarhJevHeT1AthVroo6t8YbjKlpR1rhYh4NtLEsGNwanTNJUUztqGXV5y1fEnVp089hPTAI7+R1DQEa560KMHN1SsYkMQsdwydJSApx3Tn12vCGDxXgTthbcs9ODadPWYxraXw+XkmADK6pgPc68ZGTKLNUcuP61f/0q998c+u2g6yliCzCzHhkSCK/9N1TOztbjyTiyoQbYxN3QD+MiQlR2JxxVwNKb3Y1NAS4L/MBeWC77iozHyIEXa6GTlb/Q8KWRuOETpLcQKoyNXeCZ99WRV11zu5aDczYjQFPPPRv5A//1J2kRpoRgpVV0Tq+opEP1QaGDxx1lYdPX2xddgpEG6O8ffWaNCya17sBX/r+MDuNjmuOw4oNgRFetWO3NUGkjXXGolnRIhBs4dvX7x4/eU4nw3NwRxYDG4xzoJdZBabXSMZZFiRra+OCFfFEaPzJsW1Dn8FcY0lbrY2zBnhfq3Ro7sIj8YOHjw645urnJAu7CLo4mSLKDUeYJQdd37xxg1dc+lNHywk5RN1wBf3a6kc3r+9u7zx8fJDTkFHL+Tf4dASYLTnRlkrs7OxATu9EssYfU0AEpVD1wtoF3HAIQveKvnCqjQdmdhDVUZ9ct+aTubSGzZ4uTSCHEv3ToaQbMrktuejOW5sOrAgmEAOieTKfMvSPDXzira2LdIYMCXdKcP/ko5sXzpy7fk3Mji/3/rtbt2xzqTbTDzTKLbuxYD99jKSsiGGNNeRnzjx6/FAoWTqAp9kgIjQIAEYr+zs7v/7yaxLhAeUcnoKoqZ+oaG/Tl69Nj/GI0EK9BmSwPFHy6EmgUDnd9krU6ZNVdslIPnt8aGSVjzTbM+ahCXqw1il8mW2MPuKAdl6MXIdtDHyR9WVfTZajqVKqZmVFVHJheawCshtiyx15hlxWWtk6WaybSgiB23mFjEo+Z57IOovnWDl8X1ndgLXyJ3Jel6TZYD6BfxFKCIz/NOgkiOjcRgEr60t6gg6f1WdEhIbFUp19SBYQjDE5PyfQ2NBHck5u8GGY8k69WR+FMov4fw8Ek6wAAzOAudRawPgspASiWxxFID1/fmh9L7+UzCEiNmAFEQ+f2TlXZLl+JLzotTDImKesWYbOu1evXbll3DwBMc0s82fEwDCMUB2+LlP61asXYAgexeL1wALAXBIOMMMYf+kkrtEfbZmsAEOiR7U4GEba4NOsHWb4LSoFTCTFSmF38OlkX79BCpUIMamXnenXzDsmqfNRKXTIqHiUE03+/Cc/+fjmdSc3snk9ECx4/+7ZUzNitFc7HzrdgXieBobAnxTRwK3NU6dt+tJh2kSvfxZbW8mJH2jTiFBlEkM4lPlc1iK9bpPGxmARwEd/1WZPckTkrGoiNhF8swQnWm2j9jpA1OIM1c33kr86tZxRTZIh/sNz8+Vs/MWLT58/47DyHN0ZSbJAR//55toN+w2WFKABr/CJRZCA/OpYqnBNyl8y+LbAikQ5fFIG4QhADfrgu/nOMr6MKxIOod7Djev5u6DF483NTf1+DNZGIua/LzmaoYQg8xlPnVkoGhOuCW5sAVKBR5apg5XswWH5i4O0JRxcsBSGir558VLI30yUa7XzDEieMUbC4pw4m2i8f+/FSFrrJx+t+IxNWNoayOogu9B+TJwa/GIv7IXTjgHoHC/4kwwouVS4auFi4kX0llUDPax1C3BBjkY8vKk155aLsxUchxVDbfypIXKijOW76gA2gJkPttXyyyBJ5NIloIpQmezSK6qB1CtJvLmDkYYkjJEG88hP7+QpOcu4nVSSBn43MucFeVMVwKZPOh0CPbxJZ4cxNQYyvwnW1kUnR1r3fmZrY0mI8FJJaf6xMbvWml3erGkfLadtSJMGZ8oTk6Tacrsm+hw12YygVXkz8B/UMuSW54mWNSJcJFxNGRNEBWe1ONLd8VADdvtqsSHjgRIhamM3IQuJcs4ArWyA9+YgkT4MjqadGk3yO9v7rKSaNsdmw9GBjWewL1jrCIne7pcY/M7uDkZwA8CgDCy10o75jUzkeG7YWdFkaAIw6gd3Ry5INScAzyygkW9r439Ko6OTe0zJ377l+04nHbDK1xqWRKUwheLAHx7ozG+eTsA3QiOiysj5KwT8SjowWqr/1nd3nEksnAWde/cfEVzLdEknQptP8I/+SCi20YtQij5KSEcTKWPtolJMwjafuQx5/xIV3+OeedzcEPvgUFoGS+bzwnCSqmQ5pDAcozZi0942HnHn/Db3op5Eq/BrlELDm9ev59lJkVjikBR++EYubGXt044FTczZESJR0gqZs6Lx2tWrN+2VsLObtCQsFhTwfky2ndZo888GE3rqwcF7CfYYeIevae/NxaPzCIjMbg6iLvtLWmgITtte3jva9hkOJdDxKridt7cpyo4teDXUK0iK9bCzSmb39Wub4CO9f14hBISvl9WUOPuzKnnr7fs333333cWNzc1VKVMrFkF7LBKvAzE99+DRY3oLLIUXLzlZVllxJLWl/BpwPejHxKarT62eE+R0nuw8wFIwkbOsgIj1EBcjmR752BZSPbOJ02yNWDJC2yu8ZVyQisx1DoAo9shCBkHq/MuXITATq2bQUBqFBuAjjjiBoo8Y7GYQhjg2a735x93dHZvQqOTsacfWNVEztEzutrc2c5BMS/Vxexrrsg7B31CNEwv4PVC/aoHiRbv/05ndvT04mn7BkU8+vZmw2B7LRqg72wvxl5GDsAHQpOIE3sqqNQxaASe+67GWa2+OWiwY9C1QPYx5Qw82QFgn+ch5unxx4+9/+S0DBM4cAb+t4J3c+BORKR3QRCTfrROmJQ1c/HCp/m7p3zLuyYMwK4GhCurVJiG2g6i0jI+u2699nwn47e//8O//+j8mRGnjinEPFQIG5WEe9XsZilL36KkQaG4QJgK9na0Iz9GrNpORNnfw+NEdp0cfPP3oxQtz4Fx4vrvXGlKvTObp+GeqBnIM4dzroyl5bF3AjixM8LU9wZ/blB6BqJ+bHvgtfsOm2oztu9v32iLgwnljE4KoGFaCf8SjyriGIlpf3rqzfq4pZY+ePJUjIB3m7YvXL5/ZKE5nMa+olhEV+19phUYOT++vOWCYKWUQy3f3ANGbGl9bvbBxkdSYQQ6gikpDT4wWTDNBxy1Kdh4cP8caOlCTYHLMxtglG6+pQfLc6yYckw+dOirs2XyhkRU51CM5GbLq/ac8A5PGzxHN2q348uiMGQm8VlVJHEor2pmFZrWJblEjHigOVjpol79pkbpHozCotBR36qBCBSWLNSlgi5y3HyxgP332vLEHsciDIiBgRnZa0bKESrIdA1ExATQYkxwo7gd7OgurIJ8BIii0V1MLin0bYLqnct+X4AGY2VyJQ0V1HNshFHZ2CY7Fcc3mztozqqkVBxm/FjmkQ4xtsaMxlMPRY8c4SbjUT169sn/t+hVm/ppU7z3j0EsW53MSpFF9/PHNB48Pfv+HP9bbB2E8NZAwZEVGLdXTWtZrEVa9SKNfvQOCnfr//u0vrCIgYfocp15mndBjfXVmMaoFPsxlwWL4Mq4fjiBD+eTPRAbk0WmI+ywRzkqljmbDxN3+8Md8NQya2xFyystiOH32wzmet7DWUrn7nBZetX5+VAYOq8aU8sDuPfr2F7/8pUexZ4ZBifVIg94R6+ALSuMeU5ljANhI4lS7BCuJ8+JwTVkU23Y0xvAz9Qsn4lEHMnwFqUKNq/i2ug9PNzfPIhm3J2PC2J/hj1VsNEHp/kUBSQYkofXbGjOSaUgHq74pXbUJhwsEAk+ikvz55NuA19N2KyKbKu+FKTXtKBDO80GrYcu8q+4ktEZCWsyDrNvjTXWzX4u1YDgDvJJP6/HyBuNjkATY4D5VercBkocxVACW7qnV6jwAzRoGDfUJ/FHjnBedOfRdwIaNHc3UQ0V0n9mON9yssTz6YGXmzt62HToxHTsppLYiDk07bg3WrINtahJPACAHIyopkB4e2wv0B59+bHnJf/mv/oX+2d6yohYyQThaxmnwObd27vrZc//Vv/7X33zzHfd5Js5wsBl3ck+OiQT4qQRPhSvFZX3zWlhMP/Tu1P/013+XDPYYo0/HBiGW42NDNEEOX+gGUKR5+0zXZg+FdcFQaDRAgVJkbwMVxYIaTn2a00ZZPmp303vd/fA9thHIdZh8++1t0BFPv/Ua2hLWSggSJwly67znX/72D5kY/w35T/rTZChBbBKgJ6o09OE+CApwnGqhu/HMx/CrgWhFMaqbaXhvES83U9X6rQpXXT9JjJLkpLs6ZX33wnVl4J4RWxDGxgxbELvRPy5lzSYlbsbG/iQZwTRwzZ3eGoHs4Um59J1CdUMZ33zUNoN4L49x9GfGmkiKYjW1iJKirvyabGTpOoVVxpZL4kTh+/ce6CD1VPtXd51PA06JIflcAyJb8/TgCeujM7TdquGBYzukThnKo4FRHvmopYELYcCWJ3oSjSHz3Ac3cSSrGT6w0x8Nn/iZbjiM+Ueff9ZyQOFzzpvNTeSAQW+ohuTcMz0HP9WofQQvkmEBUAmQjuXTjz86d2ZNNF4AxsZg9cxTQgW4OAbm+Gc/+tHO9vbB08dvPliw5pCDNLwFTJjZPg3yUN5a/1knyF+iQ9a4NaJgBrIOxbCRK1K3l0H56BwPGQVJcHQf21ZCS3Eb3Y1VBqi7THjFMDK0BN2TBC9ZBuicMuc7GeCzFEgU0UY+hmMt/79Et+irIGpcnxFD4jI9Jnkw4HPgLgQW4dFIi/cRpuEyq5m8KO67QRKQdICIuvTli8yDiF1SAKrMljdcBO3wPsdXw32ZfwubUxjwF/d8/vyZe5bm2HEta2G7lJaM2nBKeLRXADCiUZ0BvGoSQLTwUIobp5a2K6Q1UIKhMkZr7sSE2ox5WiuC2bskTT/UCzOKGIubu7iokt89GVDhjKC+64q7E1KqKRHQtyYj0G4yo8JxKtSFczVpsYiZAjIArDdAj8VIoZAVi0yPOXVzaniyv79nrzeRSQs+1SCzUAIQSagHSpv/BApkwlBD7oZggHWrK1CZ024hP71Yu3XnjnihqKw78iANGFJUMokKiciKsKZ0B4K1dr4YKPrUFYZNK0R4oU7re/ToLgEgv0b37oODEadO+oexFNza8x/duH7v0QM72BY9HjAEXF5blZ6nVF7VKbJ59nQTWsViBCc+NP0WpVWYfYzb5BjU/BadFERKrGgtaXEPldKugJpgqHfdgEBcGInEC+quNmiLyzjANE2IdpnM5RPsSlBHJ5EVlKRx50QxSUNduqo8j8EJ887OrkosRRiFjgc+SyfGei0DrETnaEWmVlH/92/ZEGUgI6n7yZPnsq4MBy5uXazVYVXoVk9RyKqDOUEIuQDoaT2FvwDK1OkPlDExBG278ehORRgN+qEv0mcATeWHCF6pYzR4051iog13EfPy5csirQ4sQPXNzS17EaD7pQ0LUA3V3l7ausgaPRC9WT+2tnjmg0/UExBs8VA9vzwSAxAQwY5Q4x2F0YjLiZ4wXYsHFGKVHDmIs4S4Y1TbBJsn2R5NOS8fTN6pGi4eMSYQ0ZMYGya6rLSDMIw3sKhPouF31Fo4URmuVOApnAUEWYzTcvcxVy6YFWHm5lR7cGCb6cPz/JnpkonWwDfSoU6W1zTKeeEsFBplmtEjVqhOA/CX8P/dd19RJM4ekyhNys15FBNpXSbi+PjKlStQe3NM9D0vsUDvQSCZfj6S8FRbFhmtMRdFNEOHDYEbm9S0FOdWrbpBBLQAuQ7VAzg5DceuJ05bmtGhjoptaKrSivULZ6guE6355CmXMfFyTYNtZ0DnkpLIM8akFkhqrOGoOdvHYvmcIuTGg2Hw0r1Wie7ywgXR9ycmkqOtmoGZESKpLAcV1e3gIqJrWp2Zo+p2ve78bgvoIGhmimUFBoripr0FchvO2BlXWvWiAPF2FCzY3AM/IknWMHyanl1nCGHpmec0QDekyqrq8pkzRvA2Px3d4v42NBfZsMzIW/KcxQbaz3g2Jrm8v3t4aBInPXOMpDzFvd2d5y9tEP/2408+Onj2BMGNGsEB/vjJ388o9j3i9BsOvkVhZFTiT19ddO3WQqVQVbCibmZH1s0zvtX6waMnW9sXDcDck1ljAcadew+v7m+LT4hFvvrwamtrk3ckX018kTvaum1LujdshVT/gzI83jPrvJ2E1VckG0jojBszogT6yrrg3l/94m8fP31yX16nrRxevgG/3VZ2d7aQLmjT6HSirjNY20FLF8TUED2ySyWkfcV38uNzdLS3u82kIH5RIBsIcSTe8ZrOWASJ8rof7eorxMdVhzxDqvS8guDMetSo33W/okBEXEBIY4BD4uhEO4IHtqXR2icJ9K3k43bUhZN+vkF5BABC5uc8zVdvtjYv9Q0Sgd67itW7ZTdWOvL26VOmZ6HVCb2GYImDdZgmd0zSTQFKbBQj2jAZIDUBf5pqOPG7P37TlLvaVcpQAcdowGC7YQqtiCc6fU/9JC6JwbGOXsWEctMGqfPpQYLR8ii+WcwA52hRdYwSeRs1uJAe6kzggiYkw29q52mpdVsXLJdTWXKQ69grqrZNkg8mIb1h2Lps17FnnCWuCCl/eert0cv3nGARM3oV86WF2mjo2TPhCmqv0UU8EowZFCBaHHNX2x6msck40fDFf+yg+IGBp3DJeY8jI6KKx3klmUUzO48fP7t6fY/DbfKO6/zxJzcVhJc87IvnZNS+ZCBsbcQNt4G72DEmGRPiBL+c2NUea7jEjbnRMTm30V2IT7PBxFbi7/vj1X/37/+jYQa/3NMmrT+8N3fxw88/g4g7MWsk/gRg3YvDls6etQ8Eq28AjYZIx9JPQ5lPSfV8oft3H5zXe25tRXmnnDT5kBkKOnmHL1+8f/sqwzZ9WfeCM07wuOg/UiQFPVhpM/uR1VNcStAAxQia4uBqZF1dF328dede+6JKJaYrSN0SKBMfUlaePjh4cv/xk4ub20KKvFvaCg5WHjWwRL+oXfUY5jchxWTnB4MNmaKaZwBSwIyVgk2ynEEEYORBGsGw8kY5Q/ijq/tX0kT6VJ+qgqK3+jkkgEgDFTsHNthI/QChAYWhBRub2JnDikNwivJJxoREqupPn0wFtkavYOsq9WIeimBigLwtSR/8sRHs6pYO4S2HvMv1J/eQnkYkyZ6+f+/RxqXzdlN8fHDABbq0uelpduTIDsEXIoWdrcSVQL5qG10nb9uX6dAN8I+01SOBeXiVSAVT/5PvsFuEaIHV12g6bAV/xs5PH0xDdM9KEpm6aKMBjxqEEHb3tnnMIKfqZgw60/J4las2CS918tLvaqENPmw3xG0Q8Mg6IO3CSS0gRDSv1HT1oICeiioBtY2LG5d02qdOvTDxhVxeuP/wUaEWgsISzwljS1pXqlx4pt0gWYclfPS+3UdjpBOdGxWV3HnKxOXXX//u8qWiomdtO27TxJn18j4xgJH5Zt0+AAA2LM9gDVlwtutaSqDHwiQqgD46xTr2wlA44mVhkyfq64CqtiaWPfby2EJhsf8HDx/YANjRL3BRYGf3UMvLUGHIsdDEby+pY80OchIuSHBCzpakDwFIjFvpwi8sJnP69dv3TVVl4AvSkxrDktQJhXkgRkB2HHrxOv8gGo8wpBiMQL0NJOPnnOJD4GpsGhFMAknq+6HhzTE+VmV7h6WH8ltjGIxRpZFmz1wm05SGrvWWAxtcSesoDYpZs1bpnINOVrZOG3gQl03F/qSjINnevmRKUVUIbD0AmrsI4trGBjNWXimQryGgyiNUAG9kAqh+wPDyyFbYho4/3u1bjWVrMr9Lhd2biIK/ah9OI5oyEIN/eqRsHuVJJb7qBlBlhdGeKKrMv2mxupLprEJRk6FMALAyi18wYHhfjQaE7Vi1gBe22poHKglYnYkdXTbOc6HPnzfmblgi68N6Wl41vpokpQnLCAR4PjXdUZFnsZJX0rda5vDgRuLkK8J88vFHf/c3f3Xv7h3bMjJ2futdrUmyU7wE53v3H/76N7/93Zd/JOkxE6BkjdIUf4+SgTrQarMSjbRNoJT0H7l67Bd6zUh3wDoSh/qH3/329TubdknybsJeRdaqjEDqYk6XNzTAaQOkEEjPkt5KBomw2qRwq18/U1PECmIDilb0dLpd+wFKSOMkZPVPRm/laDUnRlvOnOIgUb/ofyIW6vNZSD4sFpKbOilSJIOJ5T5nrea5kiBgywDdtbj1GTmYiQYwpvDA5kuh8eWDPtHA/2hZiI2nVBxQqYjXZ+H7gnoO0lJeLZzPqRYxhQHqiWq18tOGW/WZiiUxlV9d2TJ7PU8H8mrHPabKO0yGsqOfYVHxZL+eoSrnXy+ESwWnpbqUsWvdn+rii47z6aMDAx773hoGHb5+Ke+DQFfH1GwlpyCmXX3lIAiCaV64wvZBJsVswW8dD/IOvIjiw3WEynIaVe2FZdDVpnICGNKZbt+9qzayaJzqHQsGza9d3tSuNSf8JTWgP/wkjbua893W7cBplvkVSosWnjrfMW110IYob98aXBkYf/n17XMbm2vrh3cfPpagSnPu3Htw587dx0+eqEd9OouFU9MbR/RkgH5ExTiiTtSpZVwQO0JAF8nUgkS5vmLA3Xn55tWX333rcR2cffbEgMOWp8VxbMM9Axd9ghezcHN2iMGGIQjLxBI3ZNDuEEWzoc35OyV+zJDkToDDb07zAytlz13c4Q6lyA63s4t6QS1vsQmG/Df29767fT+5mepAL2dIwghK2WtzirVXJhTFgwaTROHkE5f/dKnB2iVp8CrlsiuPF/lxNZTAxjBtOGWVGV6xkr6q/6Rab4cXzZm3e/2kvYEw+SYRMmF5yTxAcYWRENXXOiS9ODZ1PKLp3BMF8/GRLcHIeAXkcGXqHuDiYTAG4Mm0HX2oJxxG9Mx7akggGY5Mgi8ZBk12+LnVQpgle9woz3zuW7wdmJM5hyxeu3nN+lLRDrNOuuKnTx4D7OrVK/fv3z97Zrdqp+IwiUJEN5eJqUlFXEWZ+Uxvs7uz++ZXv3I/B7jenPK85yDduHpF6aAiDEZipxsvQQR1QClJ7tnhY4esueCNlytEXUfq0M9BwDu7+7/89S/vPDagEG5o9zuDe3kxplDQGtIRaRYwIqUm4OjFBfK6gDETuXYueL/mRswHJJFRNxwUOcE0iUABtdQtIaexizuETsY26feWwlySbAJM+NNHjTRiSc0IL8ySmY6Tgntx23NrJnGK4lEhLFFbrDm1LCx+IxvMoAIoAkr021DBtCBiDltP7e/uFoWhLhsb3EpLF3jEulEnRDx+/tzgXpAS5ME/MjDGhSSUR0nrGDP9wyL9yoRXXBk+emVM6yCeqT2hl4erNr165WCysxfOSBkks0OfCqgf8CfyP28yH4ycS1RUn0ecNa1L9xdD5AOKvGpWQKlBU3aweI5UUMDgtwwlFxc2JS1/cBNsVi2qp1yVWAHWEUDkwyoqOGpJBRYhHiTQtBFZEjBC6VcXXqiCrnWWPM02Ii8K+ZZPaAdp0RgqjgoMHOONBXzCdFUnXtiRxhZVx1T8RcepyTcVA0m/r+Lkp6a8Mz63C625YzMedcl7e7va1j7BsrLipMZ3P/mxuI+DNbWIcHIORJTbI5KMdULxmfqN7a2+1u80RkA1/1CYE/n5Dz//D7/425cTldQi+xl2smgv2EXFILvkotx+zhM/P4tG6bxr+tVwpdAOarPu7kBBzo5ssRrHVa1UIXcpedJt+Yv83ipygiGjKn5lfqDLnnkkuFRumcU95JvWNos+QoKBs0LQzTbwemcjDEvgjUlM+MEOYXlRURL0JNusAuoYfDsawtiUrcDqSgIGeCYXz54RcyRGpUK1kMh23AcGYc8O28oPxem0Wo0aQi3WN9bprKfWhZy2e/ve/mX3Y9pYekEh9h5FErGxRL2ggHeHo+PTrMqnFTXa291F3wcHz5Q36LSsRisiasZqTzqp1g55xWRALZ6xL0SYd0SKbZHSnCsAXgggFsQD47rXoYPuDhqEZXTEG1S1LQ0T7SCPi2p7jI4Ize1XVbXNh0wsUA6oivQ4vRgFUH88G2UOz+gwwjnvqgNBxCeHEUnJ+XMX2jLh+MiZTNTVphs2CTKbJqYkjfzN63ePHj6+dEmgec0yBjvBcg20pcohYyB0XeNdZBdO9CGqztOyrWY/UBm1jXwXcO7eu2dlkp4SdyRJC7MpXucYmuopYouhvKn3Z4iDRNP2AaET8VV64pkzn33ysR7g9SyCy/QMriZ8kNJ8WbYgW6OzMd5YDvwsukLw9HIpff6rxLv3Du3s9vop+yKdWtZxJt4Gg8nRgpPSkdlPeOIoTrZRh2GW3rtIiHGCLsFaJBuYrJ51LHq8pMEQ8kaZTuFA1d/YTMGIlvZEqDgV//qvJI/vVJPNX379LR6YBaNCser4UGdtV20D9GcvnjlLS3aINf6Okxtl00Kqoi1OV1RqIiYO1fWrmE4Xn5ELfYkZECTBL7dRzJtWF4TvagdARcSR/f6Mwxov4ioz6jNwJkN5EZru3TEpaKKflFJPP219HDWlvjAcMRRmRQQtxmF4LFdQNz23lyvDIXAsuwb5Hrw90LV7Sx4XVWZufdUiurHKsSvgIlkC971kd5FAhCroYri4xzgnIxHzKy72SkxPUHvDHaL84jnne9XhcTpYk6cXLopc6QpK8MQusV3bX5w519aqgFc/7NSIwWXcjlCQsS7GtdF0F9hdvzFQDX899oWWGIub0JLJaC2BLMApb3r7+eGz546AIeHBlynI1nKJI7xd8dhW+994w5YPI81n1zkUE06E79Hx1f0951L//uuvGXfOjqnJWmN7OB1vbXtc8q+qG52QDkluZ8odxi8pdjNcsSbMTwdJuvnaePe9fqnMlAXHodmYRpI0bjp6z75QDd2iZra8jpKgW7YmNfq9U7SuSCtYE3g2crIv9JHRpfsIQjqJjtwmQSfcYACqAnfDOh4Z05sKAaq8VEb31v0Hhy9aACSNw7jKHDhH1ut5X0mnt5uBgcHISKYgUBL6KnYR+U/EIbbQqLqFjrVsPJqFnT9GcjRTxBAD4u/U0JtaMchBjZlMcAFShgUPkMFfkSOdCbqhAqpzMAXSsMYEwrvnLxmSsxvnCVa9+SwufW1vhDdvBRMNsR7cN3H2fscBR4FdtfZl4zTmiRhY6wgnsi60b2+lOFpHnfYmdMhXlCxx9h2Ai98/jwS+SX34hr7LwSR61NKiQu5110dKoiEjlM6cP322vV4mom8O1GYzkU4mEgWYt1bZZsGZnBO+JYwQZ0it/Qqk8mpdjEb3YtLyCPenkiOWwrX9doMPTLaAsGLPUi3bo+T2FJgnUYjJVM81DMs3O39hI9YXM3HI7OszdR3LAZOdNCnO9tMvfvS7r/5IJEitRwJdVAQA6E/wCT8d0CZv87ETOAk6PWP/TjVbwnUnb7YZFmRX/5g2o5CBejDK9kARDpCHIsJl3Cid4tmeSOUHvQiBZtDaYPfRk2e26fVqMtrOebbHCyovGSDgolbJN4k2btFpKAb48oPow/RFTnhlvb8uP+xOQmDQSJub+cfxRFxbQVhwc3bp6isw+524LCLia4a/noLc6Hj0fQctYM8yXNpsiXddnIOvnRKbQ/nWMq1BZ6me45GjqEyo1+dUr3dxKPl+9cbcp/lXm+cPURsRhdmHo83ti8Xm3zvIY3LUwDszPjYpKU3yvJ2ojz9YuDvu6dAxQ+qwH25VlKpRkx41qGV6JdQOltqfD3gWzig8Bpm1Des4P+bJ0wr7ltd+8mb1ff8Jo9GoJLeyi1dD71tTKhziJlLoYhmsaFjM0TJAW6zWOzXVNNO9SuFbE/kzKTZvdc/LAT/NDDC+JzE2aDPNf+vOXcFyadasniETE3rv3v0vfvi5gAVDhZgEhQAQGKxe/pl4sStwFoD8zBpDhCYVvi5y+NMf/+i/+7f/A4lO2bE8Hwfxo4EOQdenHMlP+Bn7Ji446k4faY4vvg5lcj7bDNuKqHe93Mezqhu7wN6T4LqsqFPdMeKEhlMUD4y7/W5hyqPHBzubl7wMT4MFXqYBMtvNSVcFXPTCDKq1P6cudiqHulQe+SI9UTtFvBiPJ4cyq/Q65CXfSzGBSzQawzDIAqOeJDgjNNJXv//YMkMU34KT/nBVS4o2HERBcuwBpfMOIO3mzTaoYfALjJS6JPXEIrgig/bdnCFmm5YdX3aW5ognqQnM0obf710xjV7fIq9CAxACDvhiF6fF8L/ps+hrs4YgrlZFCiDWcIs3QOJ5GAWIhrYv9WS8jh71MA1N0lTbjcRBZI0MddMnFo2IV3op1guxMOGovhDy5ocVx9iISgsM8fS40QamBcaqhLn94KbShgfSqyzt76SIC+eYTxbadtnQJBdVuEjKgpGKR0SmhZOmlgpF+K7t73Gtbl7dv3ltj1bcvf/gP/7tPzx6/IS1plF8Vz4bI22nlFHsE9ZK0Dp49FjPiYBOZEQy7eL70rZvV/b2r125cuf+ff11y2zVFQbJSYlmhMhyHFGXt/ZCMP1l2ByUBD+CDHAweHfU/mKWlHz80TXukoGs1G1NxJagiYshmw+A5PPiaAVLFQ3cGIBm8mlt1Vaq+i8jnjOnbCtgH0Krctu84tmhg0OePnh8ePacOFIJiTrBYQomDlQhFv9MdV2/uv/t7bv47esiEYY7A3GCZV6iVuvWjUrLu0YXwgoNKRDqmj48UN3RxPyi7eJxYh0q1K6nEAr8/mi3oQQ0F6l31deFx2xiBnSMwwCcAELadYwqrhoiul8CLeZbpEXLRUtmGqjGtLbM3OXbwNOy7fYlgLl68aOWFqvtKrF310dQ8snBU32LUeM0puG4YNwphZOByOyXwTpqPQCrfNzGXtaWDgldsg9whN2wapFRFvDlGEsPRajYrDPnL3Lat7e3G3c5euOl0bxh/9rzp/bgeb9/9YotXt48Lkd1e3f72aMnNmtKHMdtw6uaiCJ+19lCKfp3ox8Vkqn//f/uvzGcacX5uWYJrly5am7tt7//UijFsKQl9D6xbuyjhD9grQsfnWPCWGS9CE9eTaEXzVo9nCnhVG9v//7rryK+p0Msf1XF5eZZoMAw1JO8egwJxSF711FJ1l2zCzdvXPsXf/kXjQJ1jtADz9INUIyRMzdGkwbV3qsiOBf0l+F06UKJ7Mb3xnlPX7xg9eVYFYN4++7w5bMXr9440lRNhP+6FbrRrnWPNX96OSXFbvoop05z6WvX9/cWGLrVveJX/YmaA1pa1JQvLGGeQICPtjDY6kbJOOFdLQzJhkEDsK5+oo0VMeOv0NjXIU01+RkCdZkGECbP8kfFT1zg7qw+i+ko89bR67LqVw3Nmxip5bqaaW9FaMjKrJd0TzqkgAg7SzY0Kwtze8s4dbadzdSNTOswX9tfiOOUDRJA4JBo5vmLVzp0gU6WUNDQYF2d1n7LZpQoTkY3L4qCmOeiBCNDMyOROo0Gu4lH6Rf8k47MyLDxmKzLJHv+8oU8GjbEyBz0PB94oVKUoagCDG1p0VyvMBcPJD+eep1qhwQtmGqoJTWP2ES/0Y2FVd2Ei4ez2tP+/u/fvZJ4gTHg3d098+knn339zXfipBabYfEMwTL5y6zsyOiaQZSQTJrp/JocntcaNTRl3d6/atSLNkjUuI69zmfE+kRC6zjh/zhLjYhm7IcRSBGbfTQasbsXvV6+eLlzeYcQCviAg8mWeju0zCIqM4qTSPQROpAwa5H+3t7OrGo8Z9DHUN17+OzJ4fNf/+EP5AbnDAGjPGmLrPlppLNK8yYGYmAARCfRvCHWjwQfH3MyrJlwamjsI18IowtIajP8MNPhwdfAgxyoAFweFRnwWM2NrFKIMec4UTOYYU95Yr1xsaSabg0BvJlVCK10bkiXwLgfpDyc3u+nvOl37+TbuU+r3aWKZlypPX8XANoXVHOiLlvufEOqwc552+aiGrh3554oAhtr7yNZt9rSzdniEygN6k6f02daqdiq6NFNrYirWMqnN2dS2BV9GhCRktwnro3nzZ46BfCFHmbg9LyPh3mNKJBmT+8AgZEM308Mii0OHFHMV33/1h4Cwo6CGWqG6r27D+zHozlHINk+3hYeKjFzCiTun0zygwePHC6K1JFwqu03cCDjx98hXoSLlJxV+0EthmANFS9Rg6LMZzDzxo1r21tb9sb95OZHGe7kuHwZyXC47qtWhLN29vfv37kleIvHL53+NKvGaSP9fK2HbeLVZih8zvrnPobL2NF0LSswKgGkRgsN3kALLL9HbZAkOi0fw5hHT56cWrbHIBJ64ZGMEEXTeuIG2yMdx8fYs3t52z9htZevX9y990CmtJgAsqrueYPRxKJszST8REzdrKMSQrVFUiu1s8YwyfRwdIaK7DTwbGRi/uX5q4M6d8YEH/AfIoKvdVG0Kb57llp8D5XoQmzwSQHdztdHWtqhGq9wcIsGJhNqCPGMSfPfQoqWU5db6tr/PO4kp7LTaahtRXyJwZD2pFroGv5u27eiNMQmpxR11qjQ+Ob6hhaTDLXxMZzpvX7Osgtwq9r+LtQDPPoBwySp2hahP3n8TFF5DQ63HO4M56jhkRQvxyG3CyDITTBwY2xJb7AHBlILWO7DyuvIEYZDFWLX15kOQnNxOzRMUBMzxeBUT4dChukZPlublL5mK5r35zdkvJlbsLqaUWg/NW4YUKtv3VZlGSNLyQSEKW+L/VuYFs0j1RjNQBnqeV0bnvqQBb+VUhsJiINuWg764cPO5Usf3bhx7/7dFkUue4GdbrcUNiP9KSDLQL93zvbtW1+/eM5YXGBglXz14sXW9i5c6fK9+w/IHwwNLP2GL66FYdddBSF7SyADFRbDZ9e5xowyeOrtlTSY+M3vfttQsqfKyUjL7TltIzFxfTU3D2C/jZc21C+GeOfBw+/u3NMvAZqJ19wsBVW2umsNFUi16vJb+klGO6ZBtOZV2WWUpfn21n+G80SuvIITdMS42YED4NCcGtLdcKCW6gixqJ2kU6MJyNZUKMNcDIQu0V4LtRd43Ned21oicOryFVZDhvP5od3bV3Y7tSCH2281IMzURPn8VbTbY0t7j/FkaY50AO0Fb7ntBcYb9T1aYAVXBiDvqYbGQped7ovjVxhzyyGNoGQKvH718u6rVxPQGg83wkGpsWCybie8y1ucgfAfld7opAhusXQpL6GTiYczl9cugTLh8rJy6Taix15ECM/j1qpnMiIQCsYjBd3Uqm7Il1Z05a0JfxzrInzAia3cV9VCiMpF3+lQOIS9PmpV/aNhUUnLSysBsoDT70rODb3oufO2A0xW3dMEx+6jjz/++rtvmQw+DznRcxrcBh/7qJJm1lcubZzneD+4//Dq3nWW59KrVzIKXv1GiPG+UzRFlp48PzQ9j4MBmSgsPnBALZ9wdz8WAwVGCfKUzuNkILAJzQjkr3//21P7HYtG3F9QKTM+cvr0hs5kswjR/hETPqtigf1qJIbNVPB/w0r1099ozEqod3lBHFY8CevA683jVUeT2LPRDDjO0jTj88q/fefoLcApxOMxASc0AdJG01G/2pNzhKmWseh9X7A+EdohdwW9wcfwYkAmkrGKaUyeqqMyiXbdDMD7mVv0o8ILjys296dQZK2OxuXJtB+4G0u5UIy46AEfPnhEQFOzgVN575JXCBJIHlH2tWz41dnLsaCGuI3myCtkQYsASUngpIICr4Z85YZYCGEjsKbq4PJh5/z2FLZvwHTaiXt0mbQfdfAyY7Q7C63mKedzmXUfckUbKoEghuAhGvGHIqBHPbi2LcN4816I9kctcOPdaUlsH4oiOUOrmkGdCuG3uqqu/z4eRX8D1y59sS2VebEP5jmVjjRrq9dvXOVsM+qXLl1u3infdqjtAsxdciDPnj638Tf/+L+cOXNLkqkyugKZFKAVTWLo6E/D5eBMAtwBgAYXwoJmIPN1zJO2TZ2V6RYEzTONd0D+DMPsdnnqv/mv//U3d+783S9/7T2Oo8DZrbt3T2jqZeRbmkjapSlPiwQ127PMadcyxdJwkUuOWlgUHQudNlUH49rde/dtHH1hjjLXT8uwcEqV6RJvQkLvSccMQliLJXsifQoPLuNJnLdOilGZTiByFwJSc4hBXw08kIUQUZ8SmX38YG74jaBWk6TdVZ8UjDdGY2TapA3HVCvd79+0txTLwNYGGnXY3FHbeZjfIP3EGpBowV0EH6fBaBw9kBull3qmQLXxfPiXI5orp8xdZFNFnvTD1T7K0NgDjev/ggKEffqb3U1VvO4JAQnEhKt3w98l/mT++zsqz/iNBZhX0Gqq6qZXcp4nSUwkg6fK4bm0tUmTTTvODEYypF3KIfdUlsJmi07fWq5FSWySxjBCxbZlidwJpAHkHUK/eBUegdnvwRReWgRgTpFwLR3Gp/Hsj22EfvPmtcPDZ0ZZRspkVaWC78jF5GBq9Zw6dfPmR08cJf/mWT7I0MJvs5PGOfxMbpLCKM/h8Toxw5euiB16FapE3oQ4261LrxPg0HglrwSbyodbhhk6wL/86Rf2qvv1l38wKprV90QePMAufEuyAyBPo6gCFviFoB5Jn/I1kXEzU55FikMLTB4FQ8/NsN2+fXt/e/tocwN31t8JbqpmBumF6mlULLYciZbjH7qqQz0B4KOCRo2LLwHdLgwlyIgWKjXluA6AnCFAz73PNF+5sjvUyZ4p5vey4Veg+VLcOJdrYD7xn2oQNFODmLR6aLq+1D6CcbU+ppK9rW3tK6DyeTRQ98JQST2yJxYPIyqpcxGR5SLUlrZI+RB5qbaqSNCxDX05xi9xwBG3kFbDvB5ycDZ8YlMlYgUACAKsRnp3CIApMWRwARgpiApHdmG6cPT8pW/Pnj7d2t58+uSZYryUAWfFUmNOgZl/OkBhdna3D5+2ByGHkGTJFGyt3zQUiasXMItuAx9o3Z1P/thcuDOP/BpHhU+CV59/9snf/8M/6GDXj2Z4YMmd6/Xm1xhZLwL2yv6+cxX+8NXXiABpzCD6Zjzqh9PBsr+sT84htFNgHwPpxm8eCW+eWz+Hg+7IOaSKxB4oCRBNcxcJ+GozteVm0292ZrSHKaWHBYGDHeQoQXJGJdicaB2XwykT1I5Ow5UkIAjLGSBRdYh1BGQn4UhEPKRJB88O7t2/d/qUzMQVsy3jdtv/ue33vMRGccYshaOg9DzEasn/SBiUSXv67jPwpPPMnOesIeUiO7znhQvKTNQiPiRgDQT8mamXKYEAJ5toLSOnqReoXvDuMG9BeQZXo9Keyh4BSVQefgfJYsbqtBbRgDm6Hz0+fGmqiK21HM0gW4RrrEINzEuVn4ZA3RP16Ru5iJynxn2RrGiYVedmHGXNUVXDDAXse9UhMWzrhw9S/O2B9t2tu/bOb0sBVXvgh1pAHLdrzM0FKWSjnlGs7EMpRpa2PH8pJtKmBGUK51uqIcloF4lTh2+eR8fo3pI9ZNCTc2OXYsOgE/7EpEg9VkEDmpyuezqrBCIY9PyWwsvJpzvGMCsrV69ccd8w4KObNw0SdLn0jUKy2Ua51cZBOn36Z198YdnN+FpNfkvD1x3o1fXJAsGQev7i+dvJJqITEukunjbKb9IT5W1c8Hb289MuNMuGPj6WeZBKwFEvwS+YzpV8nJL/ZfGNmCCwYJ1oI19IsEpRJuKGq6BYL02BKOWivhh+TGBdQuNjL1TBnyRqkSuac/T+/sF9U8k5CxdWHj1h0Vogb/rZxntPnh4+PnxqQbO60L1amv5KSKbCfmNeEPZxWxvLxXRgDKTVw05xTmsCesw8QHSyNriRjqrVBLf3/Fdent9J/SmqBqYAwk7nHglq1ASJMdkEs03ZpwYg1L9PNZkC0olUOt+K58ysiPwwVM0o2z7o6SGTwenzCgkzr3Rx85LkVq0JDQFDIhpjv723Izu67n99dbec2cAHgncPDg7s479+cQO+FINS8wp0+wXXW+a67mCeZ0+eeoMGQC1ODdGoyjBivs8aywUnTQiSyqXIyq4cs/dedWyrZQB2nbBTvCjRsmi7hNnTZ/QYUOYcPn3y1KD53HnJ7dG3plI0f0ZW8uUoo/vxfljgMsvYnb6zjpYOlvqmAJExCvj8889+9Y//SCV4IYgKNRNG70QLlvcLSK4o03gabWe6QLts5fSWz+sNSi89Z15LFA6Fufdmc5lJbeotxDlt6QIAlBR3pmOiAo5G2Dh90YZfhuMgFvwkxU4uYITWdZe21qAuSRjx97ufbKmvUSyfu0xjOkTmmpA2IxBJUAHmLjM2CJHw+sCkP4UpWJ2RtRUL376x89NBdsXMkZoEs7HvhIEjqLAFgcmSCMd1VM1U6JdHI7v9oRXaCFjvd3CdLgmUGg+DysahQHCUE8p3GHC4OHkIkEuxmqjoiSXrxVRiwPfH6xhne2IggNMQQQqTCu3588hK3A9lqpktkre8u7dlK8mRw7wU5Pb6y+fOMuv0YmmYpgUIPebtX9kBmfUdIkiorSMTHm29+8vXqCT3e3Y/AEFyAzSui3Ua9Ec2K/NvsDgoFx0K0TG8dEkrMWUJMkQwvNBlZsK6npKDrLciqVAJ0Qm2jQvyf0Wrzp29yIgurgXv0UJZTovNL1Dw1fGH07IKz5j3DTBFVbW0BZiAmGa6dn8keKFwpeexX+4ACO5x9agB3+jNykfXr339hy8dbWNuRbW5/os9nXdpBbt+3c6Puzt//M4xYicfvhOZym2PCiY9XggkaYPbQnsDda3UWvYL4xpMGN6Ow+8VlncZBZAKHazk842rV/hEKOxgyXaMu9h+5QWGwE02vEMvkvU5lvjoHR7Dc8EsDc/GRochbRTxLOkb4mCiNcN58v0sRY2h37+3+X1WdwaLJdiN8OJNjg/Rm0fTxmJd3IdsMt5nyKxMPNbNR5g6BCYifjdJn2GuyiLZ+UIgNj5iyLgFY2WJvmwomdWHbANXVV8YyAoO7BOGq5vDMlpseKNOPaxuV63CHjoxHZlBl12jxtu0v6qtfMNeu2M7EKTVXuiPDzN95lzX0mYIH95xTjHonLMkZskLkQ2Rtsx5b1N1OPZvwaIlby8/vH+uw7HHhLUYtN0IXuQ24KTVEOzzZ9hvTvPgqh+JNSG0hPPjGLiXWl0jfHS8tOlQnyGP9UDWYc+yqmTg0vmJSaxYwu/meA4SkEx3AL/MWZBiX8jO61Udv3s8/Kk7HVvwTkeanxBhmKXMzUTeW3FfLYbI7zJtzMT1q9cbwqqDV9a5HK9pdC6lEUWtFbO+dv3aN7fv1Ki2eAci5W/JAGPxRmUcn8SgT7ssv3jf3n5JQn1Ia4yI7odVo3CXOH5+d3/vxo0blpF8fOPald19mcJ2hfndl3/ocEVv7lzeOnFHioVrJi8tWQY0Y6BvmgF+tgfUdT+RG2wRY0gSB4Y0GDZQntzO3XAjx5Wyei2n360h4RiJMafdGfuFbolyxOVZ1pS5AjSARrYkuFJL3cLimVA5j9rtbJlhqeICEfgFI6/ojjV4oqLV0xfzZXv7O8M/7YAPLhHancGiP6oBkYkksYHDDzpe+4QGhug462V+nVzKrLBX+Zlz20Ef0Tr6l0dhpsX+N8a7BwePiAVuAYnpJsHW+kS6dUd1dHqD3fxRhO03EAQC8GA30K7wVaIXjI5X9686hKXNOdPp+MzaiN+Ze75EMwUf0uagXvo63PEtJOZTDSOtvYosPQQEDIegLDHK0uqFTHi8TFVURODEs3xOUsFQLnzuiWugRi5sqqHIqCQnKrd+0bvMTK+YE27SVZBQ9gRYy3XNAl65ekW3FvHV5dCGN7pH6UkldHBpdE1y6zYvWDbUVGBNBmJtluXV7MSx47injWFfEy9FL7MU7YzdUmZCYAgqAPbzL374F3/25/aOt1uKruPShhAImM2EPv/k46sN26njjn2gZoI22bGvNY43j32ye0q970JI7/mEdriDKKcvasK7v8CJ6nNzYQNp9IQEIt4S2EFM745tqQauTcqFmI1feZbvjMeV97oa/VFD/BdOLrm16erlQyh94jHWTecbZCqqvelntAKHIl2zWVJc5DMSbrLQdK81Klrp7sC6cDc0oOeu107bcuLcyyP7t9lO/MOF8xeJBnopzrqomwNtrloVfmrVKQTOFnaGdD7l8Zk2uViAgcdQ7XjVuVvJovoByq73BBGsMG7x5NQTFYfRUQqDdNLLfYxDhyDEkaEzxPVdQ7eoOq1kDEJ9WnSPMMTAFjOFqBdHB/pGMlHEEEjYet7oLQXMzbecaH2dAVA/lLTm7AUpHlKw1HVCogh10k5M9s/P/HLdxWLmMo7CPtKD4wdAte0KtM4fshcOB0mwB6cMV05t2CFvYak/9jR8HY9P1E2NIs5gTh69Dn24ZO3WO9qUisvZ+eijjy5vXb539zsnWfzhq68MqPjPyPix01pNG+/uqs1EIrkyOhklP7+3t08TCi2Jc3ABZ6NCjRXGNgVtiE3nwhX1TsAfAR3TDjvsHmQBuqhqVB9quz/SNGKQMCsxT0Zboss8T0zxsT6mDmER/EWhsqBmsRasPUBmNahebYgIKJB7ShnVYtUSDR44q0f5YXOj8g8Gr1aMR3w1WCYr34EQp2pLbrnbCzC9OHD4itK8DpYDR7fsyby6urVdWgTEzm0bmg/Hndi3t6UekC53NFAZ5iGqRYOqnpuLyYQiwcLOnsRog5z2jEGg/JDEI66rBfczFiMEyooDSkez2Z5sezVToSUOHgWnpfk1khgoEaa2l2dWKr55Y0025d/f2xGi1Fm1LHN1zRgGro4CQ20jo8xd6W4tnTOJnhUowckWOxKbA1UES6X2IQHowBYvhutcmcBHQNQYdodGZIoApoUsT38rPjO+JRQCjYCmV8ZjT+ydJT2xp2L8IKcNrvUsS08ozaRZUlZAcwQ435AXaqb4zJPDp4RIso495B2G8tDyxk5peHHvwaMvv7llWAwwtsC4lJuag8B3SIwo/gpHghytnzl11mAST4Av8VzUjyYQyPk0RNY9uZ4wPcAaJ4+oYpVumRIsdPd1kexFS9m7zL+28kQWxUgus3GInXLZqHXkWrGUkj61qji/C+7kY2KxSU5yWS1+IXhmQC3xOOIjcI3US7iVMAF9qN6fYODf37h51Us+SgZ8uXERYsSk+r6XGJd1AtGi/i3m8QWmygTKDUUjHuSzqnPTVRLkGgA6tO7OZ4RjacRK5fGA62Kru/G0z1IumrBqNDWVS4voN1PV00xmcq6wUKDkAuw8fm6qsYkXzcGYZCuh/r6Bq7dUE/Sacn9Yo1pTyKYd1w1RdDvCFYoZnZqipRKiKUuOcMQo0bAMXPnYTsFiDY2nCZx1zJ5t7l007leJ1ZXDgAg7lPE7OOfbxBWXq1AYDx7Zz557/uyp5EQCwIBraIGZLDus5duv/kg+jXaboqqDNz5Alq40xHLxZAg9EZCKwsUyMmYXaI2u4M378xLLEer+/Ud33t2T7G2BYJQc6KLE/Cc9t+4+/Jf/4gxNs8PfKLLqC6ciLE4Ti4TGAE523a3b96Z5ablrF8+f//xjvcyly5sbaPfrP/zx8bPDITWGkk0tRXK18ASGEORofkbgIKT3iU9s10T0hkNNkBkDoRy9ou8tCVIT6686oCxMTALDI+VQT7+0VIIhFUyIgl7pImVblzbtkHl170qb0jVV2XsLPFU2Qg/hERBaVit5adxMFaXM84lnI4iqHi6md6luQw42qK/jssekdusXxvGBX8CQqueHT2cMsCHkV1WUZgxHoNfDOC6pPtpHlEa6AOgpKrmiAwYS9cYfxJQu8ovdRNWWyHROeM1oEdPOXzxviKU8dsgUsN5SHs6ZdfsIvd7a2jD9DZYK8wZT+fQabD5RpMAri27qX5bBG1LI5Nc3DkGeHb66dOlPM/Sdlm3MymIJKSKXrkCFLgQeMZs3O3WmZojI91U/OAdTv2KVAgvF/EmBDU70CboVhgBpzoBQmSSQ22f766//8AcLJ2TaCVO+O6eDLYUq5ickNqKkra2q07bj6BAKX0jOqxdvjJDEm1oC/qZNV8J41eq3E+nBK9+bHSVFK+vffHvHDuEbG5tEECTCIDogHBlhPi6yRn6J1M0r+7//8o+Osrqxf/WzTz+RJ+PQT+EqtYiRP3ry9JEjwHov6sJ3MayQZH3cAQPmIkskGHkSydcTyTaBDtHmayFCm9OMz1UVSQwiDvx+6aiIjZmyLJv/7vja/0BEOf1N4K7ubW/vbW9SUZ3m9Ws3aMeZdWsk5XnHHh8gYEmel039KbyeT0sJZS1+X5+m0+a4NzBMk274mzGT9fX82SH5Pr9hYXmDMK48Ztrrdmdb3LRdg0JiQullsJ05Q7zsjC3fWCye5X7y5BkTW6rf8YpduwFmDvN5cwgMkBOOtxkA+7ZlmiQ1njpllZb9cakZRIGhUUjAWdzm3OuzMgzokKoIB2KzMR1+5nxOwu3oVUlc0IsP8z+MfJi5uMO5wjH9vKEn6yBgYh2FULoBAKNsn3uv2duQjaBghOHRowNvSVbVBTx6ZNAvM+bcwcHTMsw3N8BVzYlZ+Pt0o09f0L2rLsk6NciwCXvqDWZs1tplcuRdjyjDRal2G5cEQ6m+rsPMGUP3euUtcefUPXj46NtbdzQjtVv5vAa0sw1cjeV1nT11Mh0cWRDHf+VoeGOwrKjOBX1BBcGvv7t188ZNBOfS0CFuVrI1MtA0NYh8u7a3++nVa//FP/uXn3/y8TmbP8NitiI0gm8+j30itQvK4xgldtmdZCvOZSECgtVHcbXz/63eVTmJxMDaqR+JxyERJYCcwA7ZIguoFJhiwdc4JJVLuH1ghoL4BMIff/rRpFUXeem1qckr3s0QuFjpnKJnT19KOdm7sl2dSylZKs6J65QN9XnV58TnckX4vJqx8mV6AxNAsnF1C0+f2tzl2G4IXnJQrKkx2ydPi9k/xy3bVMkoU1Ra3FaeBFgph6i8pTuUxAmqzzs1vnAkCZb6j824DkHcpWZ0yc4L+gSpTt4lUCNnUYCeeJGgSNNHJd+CTmzh7Vv9br3l0HEhK/B8HUJAQiXRmTVN0J0CeuG8YYATElCSTLORErFkE0Vd7lZb0UimsnTztRUVDLKe6d0HOVNNqMkdVFutqTGm5bTrON2LvMQP1esQEoMgVG4pWvwCF1skbb8JcgmeKZCJZCwvbm3+4XfWYeqAzpw6eKZ1/d6T508fPHzIuJhlZz1zPWzBaN+N/OmRoJQu+vA7MhmthBmnwZ2cxgzMqOWwU/DzaOXLP371L//5Pz9+7WDc0sVAPO6qiltgGMR+b13c2Nm8YEUOE9irA7tHRNAYhigs5CUpAjHz1nQL7kYIGGt7GUxQjihFUWBPD1xHnRrKafB7oVTffcJq/jAeqd/3vbo2MCfr2DRK8h1Muq/TO9tiXVtssZ66HrBHtPCkkrGCjZ7NnsNMDQNBVIMWynIwKMl2W5oOTL0YSKg630/sseY4Ibgivo6qjuV76dhxd16+tkVXC2U6BCn1oglGWbLxtPHk8SFhCekFbQgjy4qTyZ+R4NOnz1MSN2CCUYKGgDFJcWaNpTQXJry4LrfHK84mTcJgN5pJNxQzrBQvtrVo3rtllqe3EFS6K48t/KPjCfZeXHCZjqXmHPaFvPRLvrFpb4VJi7Ey8nsH7wzZzp6VYBclLFpALDyFhAkNV8rjwjCn+zUUaxXO+Vl+fMWUqFrbvoyDkIH0tbVW+gQ5wzyThTiViqnrTkv77//f/+75b79kdvlg3uMAmHXpsY1oze3lDzC1CZXha5ZXFcl7zZlIBgFgjbnaTWWWA2hVujAsNMaQ5G+srn5767a0VqdUkWJcs7bH3QROlpr/aOEFc00Wo2Fw4pt7MPeDpQi3B4tQRrihgPtGAJGgJubf0htO3SLByYLR//ccijI+KV11dA3NFDwNR2Of+RVgvTWKUeE+vaZsvyoVDILeY+9qx1b6HhCmqTwPzoUPe8OiyxH4HgyMOC+5vU1NGnhM1YlaOPrmvcCqO1pjiOwIwhJBl3ch3m9Cm3bZW4obTSVKUZl3iUisGY20xQj90TmYWMAcCRHmMc3QPTvsJPbTpy/xmjjimrxw9rwFmfkJKXhoTjxH4ubpN0dvG4sN1uBRxJkDCgDS792dTTcJrwBKwLkXN8fV8zg7lGMyRMyQJSNhmqCk7lMaDXuFwqBDrbf/7NCwb30fP6N3w7GNvksZYHQWyxLVx055PJRbGmJi5Cv00OMp4Y+fmhMRNuVbZCk5HkD9ilPGqM6A/MO3twoBBl6CQdElJ0OeFQYGqupDDZg4iW0CZ9HPKVHZIH3tvv5xRlMaonLqDOms8wgclSldyIT0y+9u32nRpXEBsJADCCNG2shbIFZG7rs7O2wNGmadIAj7kr3qaaSwIn0jgXl/fqejsJp6mgUzztF876g+liy/h+KKhnOPokmo+qeTtJY2CUZHgh7Rpj7v+D4FTyoarNRtw7Qjy+XslMrtGXObBMKTlPCUxgkaO93ZrxI5nd6epARKHFlh400wUw8yvbDck9SgNxcRiIlApcyof/qMtZcMp/Pf33FjGWMz+hRyFDgqKmyde68PUQw9V6UuT4vqQ4+z9LCcV1MQwq9lw2uQv0R/8MwdZVLD9Jn1NbRdN3lHhTwAMbFRzxC/FgAJ1aHMdL2BTXhAkbAjcCIWsvMr1CM9UrrURAakrVxM075h3dyTpM1dDoXgCCHIGcEbWTspD1NkT7E8mzbqevPeAmibUyVpoY7O/tKlvk6TpWO4s8AZ3AMVoDTqAyGeHlWHQhOevdWHFf7LP//5b37/JYEA/fw46VAv+E4LzZI1yw/Ii0abwryCCujKsuQfYgU6Ohl11IZSiG4ZOKFpwGEM8dALBZYBw7tvvvn6B5/c1D0b/CO7AVeRo/GO0ElPUVKXOAxAESQEOIARJlKSSdpJNAc3FY6oRfwWi8WBEYRBLB71vZu9HcGGFfCuslEEUCXmzSKLEDPkhSApUtLfQCMaaV03l1T2XrbNGKHKOrXp4PDFVQOtE+tS6SkUHO0AXus8QKfFvXgle0etKAJorOaIMijjHgZh1AqRWunXvKkRrZfXtaUbFZ5w7MgFjPT6eDiVDJBpzjvDOQVpMWtXjaCppqltbPax441HmcWdbGt1MfviQSZ5+rdga2vIfEHY85zy2Bs/xClydFoM9A0ZAoayDKDBq1aAgVzaM/7rxWlz6BEy38toJAwitutD6+9sWMa04zVa24Dy+I3CFnB2/LbmCRMPjZ4YzIhdCnEQGmEAQiJMYR323s6WfZCGZulXzY0hAI1GR/i4N0CLQKAAo6s0Vu/6Tkaqndd0aEJp9mcohQwNvvjR5zxMeVBKLx+6onWqJb8a4i/kcr19c89GxVZ+W+xxdOS49NU5m7j5/zevbQ2qEZhw51I2cBsnFHKwnekIUvQ+/u7OLQr0/s1ZW3DjJuoRPeRhk07sCQN9ceMiK2iEL+YE7jERgCct1jE34yjqE0kXbsXhUB1ON5tkLAsCZfRjCYOiUBxSYTBKiGR5ufv1Jckr3rlWZCgIYP6c0Xb+D0qSflAhM4uonRQ9YFYFsg6ePLHMpgBf1G8pwmIY8BIr3EHNi5sXNq1yzCEuApOMdhKzcCHvB9YRYIQVtqMn863q5qMWy05pDhXkYTT8osDwDGQMDvdq6K2+nFw0mQqIYzJLJRX2URIKteKIFuFCm0SWOxBxOLa9fLTy4MEjwx+GjcAl00eNy/U/enIXgmWGm6RHUVX5j9xeFNtxR9RbHcQLqFWaCObfDlDBiHyBHSxZZV2lofzzF4cXL5zbvOyIwecDfAz1jjoNrP07sPfm0RuRAP324UGbD8jWMtxJJ02AZGQjNPIuhKz2yIA+4Bk2aBaa0b/YEXiAzlecLq4jdpTGZEZre+vSj37w2V89/Ts4AlQ1xPTtO2kxLxYJOSNn5dRZeYoZ+A8feERCmroN74oxjOwZjdftwEFwokbhqXaClHdHeIjAsfRedYoAOYREYJdegVkJ3XHvKg0bfb9+BxdVFkkaLVSRj10spay2hlrJhioZdS3zNHZtimD5xgVn7/Ao3t158NiqN12LGmqDkfc/3DJZC6k0MGK0TExmHqeRPDxkIpheE+ullvgClGjRvZDy9fDVyzsPHvH4L5zrkBWv8wYJh4Bzs3S0G5fmA/yggONYVtcBlE64jJFTIViSG58gHMENHppA4BhER591k73sfcXo6VD8BChN9drUPeud6ppNPzFdqABlz73O0MPPaYU+7WhkF165ku/fixoxj3oqcPSJNlJ04owCzV+3EYHZ0rcGu1qnCGw2L4s9K9Rryf/OJdfTwS24DTaxMYj7G/T9BTsR53E/enhw4eK5geeNxwwEyQMnJlF8o07vor9kJNc2RnITGCYkGES1U9ds7YA61Q7dNI4KmcZgXu5DPu4CbiweVo61/vCuTORS3Efe8pZ/8Omn/9P/8lcUXmnOFKdlnCJXjVLcNyPuXcTJRCqEa4o4hPPow4vyZ9M0UCUrjG7OD6dWshYitxeJM1yk2ZqjlHlqg5mxrlEbsyh2fiqoU4rV9MOTBnZrDTF7MGKkDO9YRoZYIVu2J51PRP/ytu3NRCEceqllqvm6sMqrM2dvOdfEUWbxcwgyf9WWrzb+w5CobgvcHECUjRqKzbRPjPE1wRr5V9q7Xp373oqUj54+2X+5Q9/QWbdogcXPv/hCLTohdjdSqhRrG4HALSagHACqpLoSEY9Ovuq459H8npspSS4HCTRvZdo/btKe8lsLDZtBQ30KgvSyrJEzZRH2bt+UzuwhJ3wzaeHytzmugDDS0NfXZ9nHFocYsKNVafJk1DpPkHgnIAfKgXdFdhpZoSRMuPkSHEUwTduMSDlKheJYjiA43SAa81WUOvQTWQfZkAn87Ljwzt7eNntv0InXVsfTWPXoVE3TCpWqn9UnMeTBcN9WNLwPToE3TTYTGlWRY2t8FoFcTEe61gdh8/e0jrpaHGzYqYIuhNBkYTN0pd9a9AOWiexN3qH8a4M3aUJqUcM7iWYGyFny6o04S0vFkZtZoQBsYM/CzX+qM3zMvB2dWW/ZGnthB9Xr+/uOoGZx/vpv/tP/59/9+/v3H3z+6ccMUwaTzGjOIG1aWWrjDYp8mHt/U47aCI/m/CMx5vSMNeF2+eKlf/UX/+T6lX1rpjr+sI8ZddAeX/hw4aKu8/3xX6//PedzjC7Xt84AujFjJO8EdFAwkyaLhlzzfKQAQvOJi4WCEsE+dVDJlx7QkyeHh7/76hsz1PbskRb6Zz/6/GR98IhSUiDFtzV71o7NhthLM8YixeBWhfENzuCPthmQKa95b0EEjVGVLzljA10tSXi9u7djj3jTQPYhf/nyhQu7eLMfgo9AEnjxssaF38CDR6L15JLMckohXhKTvAZr/Y4cMLXFgSRt2XuvjfAbFdatdahGYgQwEqWS6YoPEZ9/b5xi+D72MGBZQcKiZ2TOdfe6lxAPjmpIeKpeddU335tponHAMOIg6DoaOMpQsGWGZQgUFaW5mu0G6UzRjqWxL0GLGWgfMN3nAMN6HG9ZuHMQ8vetasJHSwPC+H2+1QGDBffWbYv/4dwZSBNQdsE9r/KRCJ7+h/jTkFeHr3NHY3m+xyBTBTlFi+8QwVgP1eY/9yxLx5ixrEdSfX/82Q8+uiosd2n/yrU3L17+6Ec/enH4zEYVCPHqh69+9Y+/uXPnDjo0dcMWtB2lo2kt0V8YEfcpxzHc8CNkImA8qsGmyeSriwme3rQbwaV26eKZ1ZPk7pP1k6KkSoBFYMRqw5GrrO9ioXwlH2oMxShTvX6nHzmvWfdpsuZiV4+SkUXZmjWfd9g9j/HGkQsqwEiD7ss72zr6XHmIULDpN0eWpjm19FOD4vpAYrDNkdXOYOchKGss3hhoNoYRNkVwfSjvmExY3gUAJc0qKAiXRny5KFN3z3KXIeFEJh4FGdWb5yB5x6ZN5VQvurdqi0U4MFEmd20AylfhlOpAQE6vOE5ah4drNHDBBeUdyfkxs4RMDQULUp8W0DMhMD7yYmrMP8S7OvzwBQ9ch74phJFEghVd7YMt1aLlyw5JkUQU2RB2sozKRCCJlvzjiWtmbFxQarYmkqZ2AhqVWrJn1SVvtlRZNVRvzQ8IfiPTULg70OkIBCxi3lbOrrZKk/lQlfEDm6UrEAiy1ICKKt+rwVlV1ZHMm3fzx/C37eOhpWdg12lYLoOHczYsSfzJj37wxeefCZVytYt585kFwWaRydWre5999qlZBdNCjdUskWsE3+E1choH4GkS+Zhc9aMkXAkZWkBREW9tFUw0yXfefca5+yi7LD+aae3emuCMOWkj2rFLo1CD1egExFLf4VWR3mVGAp2GevGs1saCaIsgJMhRYXkrrejG9x+FFSNfNJMgJj4f9Lki9I3Y+rUAEVV76K9QhCMZ7OQH45pi3saj8Ig/mjJGimCI3LLwWPQ5MuzJo8f713ann8kMk3UFk91sKCoUap+flUcPHmGLwy2pqS4Ivc+sGZaVe+M3DGyWzPhxOH1gx/3xpgMww39YrxgIWBv3oTihyfYq9pAJoD/xsNGzOe+LdfE85PJBElPCO1QJGBzJ6pyQsVoXgmhlaWnuMDpJgTtSRqhMAyg3wkcfkq/iY9Dp95AnVwdcZEC7b49SBsYVItEtClZV7/g9oYIUZFRS37r+/IllA0xqRkMe0QfJsB3w3HzA21f2Xzr/vqMSeI/u625lFrExwd1P6EeT9iMk/UkGDfJHSy4gYg1wKYYlbm0mjXMwswgUlQOwDJePb37069/93mpE8zkA5HCqvGH3Au4JZTLxa3bpOj66iBoTrysSZ4URxdJPd3JMn+QL+cG67kBNwGU784dAAw39hoqQKXLEiJGsNDcaZ6gUnfuxYKi2yHqhpT4ndBy5/76rPOHEKGlE91FXjrWLtHdqanlR0lMD+ve575XkT21Aln3J8tm47vTZrToCHW5VJXBj6BZdTIGFcSiDMashIuNzbs5GAK3cIVYG92lWZjuFHUkCthULF85e2Li2aJ0kFVXXrSebixilomc3Gyb6xyh6qbZPMA6UBdpIpUSMiVXV0xagAlIrTQvmb7qrs0khwQ+7CHHc1GkE7KfbblVwPmE19PK7gUox/ko5rey01JGus27gVf+rty/1eGSc6X3+ygHmZeNZIoeqLaY/IxYkryzfPa89ADIIwEWLPlodE1PrMaTbgjZlvglZmrYS3DA7/r4d+e3/pEs0YmkOgQ60qnG0mvgiyGAXgkv0YOoe+tWMBmvV1fwjjXZ3/Muf/8SATUglSLB+6bUS6fUru3sQv3v3/rW9vUHYG7ozcrwQLmIlBCMuCbtr8aFuJrg6sjPbNsK/dZe3SozE8tGAQGBE2lbP4G+eq3dpXl6v1QXRGU3iigYyecQmbw8G8PuTRCeooaSkAkVbUaCXkXBw7s3qCqA+dRLTvahmCaWf1Bz5k07/tRit4TLXUWvlmDvB1Hg2+pw5VIM2ToQ5ukcKRcmBv0JAfCkbImC/aqAsxn3S24RD2A2K9Ve92PdqIKaLKCz1j0VTMkumaT/jLNG+5FvRXole+D4jTt/DcYCeB66qJMiZN7WekIyiVFQZd3SHH8rF92ZQzJ/lrQWqiKKN45XHB8/kEzieme16/OQZslh0FK0LPlp1zVsRLbDi2S5Y1pFZnfdaD+Ym55efdvYMYxci3uAhfHBwBh3FEXCNE3hSFdzaOCwCJ9yr63auayX+mfJh3ST6TlU1Uv/u22+/ufWd+mmfLgQ5WBA1Na8G9HDwdhRePDB99lQbCP65uXx4rN98+23R1bFxMG3ahbM9E9WiKMK1Rj7f3bn9T/78ZwYJOQK6U2pprABz5FXc1PLCfmKtE4g7mqEyJaue/vj6tX/85W8eHx7evnfvkom2lQ9nV87aSzpIdFpIaKctGm09xOy1hNkLMwI02ZzpMzXSoWFRfAvIYiajAsP5EEo4/GGgqJuyCKmCyDkE0RTo42gcJz7HzS+OckWoKIQMa9i8lHdzEVGVCZiAJ4FJQ6Yzb0xSialfNfO6itOtVA56ow9uYXVvjYCGXu8kvjFVFx8u+uCGTonclHQNHTeSb8VqKcw9Dh9UmqbVWVisuwEdxaaVBfca7hNi71cdymS3ulaZuL+AftJcNVuftRjj4em8NRVOtcFcgKvDsgL0w3GbDbfeYB4X3bARmwXBL8XGuRmCgRrimJlpNsSaaNIFZ9wRWQowpFowApqeQRzrhF9QJWTxJpxV61kL6r++dfuh9P71NhW3roD3ePD48cwZC4k225tNrMokonebLKobiWS1l4OkF0oAoKnaDEIEi8VuHh8/ff7i9r37EiZQg9uD2UMrFfL239rKdn9v7/6Dh3apPiUdVX4x9ZPEdcIJjdRaEXn80gOubxgJllYUP9R/tPLxzZuffHLzq2+/own7UjLXtoBlJ1KsVwgNBC2tc3v12j4db+ECDbRGYWZuwB7uEu3GmNhv2gkOSkCiQawvEcEnW0rWu4g/2F3ktHPphqq+Kgpzxp1oYKfde5yOE5gRfgQ79asCxGK0mhFYyNuAm3dY0QAjeB5kod1FercF9lCQXdBxd5jaxGEBVn3BInbZcp+AicdeMeSVdO3SptzOC6zmqgdbWhS0Jzeiilfm05tqpbKVq/TAXp3oMBXMvQXVaGhrjpnHkAii9u5XMyiCZXmhmt0eXRzuhdBS8dIBzwsrTwVn1069fvUcu/nuwr66+nPijtSguHM6RtDMW0KfcUM0YFEeBTxRJpU8IUhfB6NIr/VscM/GSgBrXAAaaC2S6Yi//k//MFE+RSxWFoDZqt7cD6MGwY8MiuawQxgTIkmLaW+JXu/eFBGpy2yrokkkyLam9qCL1X5HXR7XV998++PPPnt/oZXfS2/AkdMXiRep9ua1q7/9w5fmYc5eluQn2E4c4NbLA3SI9I3e528M/RBVC9SRFkqF/9mPv/jDH78WFbbXgNSVK3u7Yk3A1ZmilgUMDlIwh/f42VPUgwDIQBcQi7UbBYj/C7ubIRb7mpZmlN4QfOjpFqhGgsJ81AJK+QDgQXqfmDPFRBQk3MeMLPGJvqEny6fsBPun6IJeuMKSVCmbBR4wId77/Z8K8M/C/N3dbemnSzwHuaCBEwcHz+zWd7JDxLwADzuqI5Go0eGLl873hqLJRj0kOyry2IBh+DQthFEXtUmYs3xQBQ9exvsZxEeUisScynknxerWAiUBzd8gnHhU2UWhshoMM1vrHTUOGf2Kj0tDikokgZc7oDJjkFQnzavWvujT5aeIizx/9gqnRErct0eo1qUVOlf38cETBMnnyab0GRr4FZcKi9cxFpMMwQWwIE7Ed/f28ZkwLKkiZo1F8EiHXTwcVkFMqSUcOUiLaSTlxiWgUzPjLyGIMpAqDas4K1OuRFK7iMtCB4/v3r1nU5IXr14vm/WDMTpaFNpGAUc3rl8Hj77ITEBgz4BWwO77EdlCuLZTP/Ximczh81ZWcQpjExWU97tyZG8M65hkut+6e+/x4bNbDx/rfQyinr/U77GVAt689PRY8OTM6mmtxME+caQnOE8rRp5ZYvzmM3oX9IOGNxKLJVIR/eb2DMePj94ogiToGmoqOmEDe7PW9oDLo+o5Xj189qJGxBqll13IF1R4cRv8JqnNKgbbvDQtjWqoNw3RIZgHoNmmgTYunX/55FAf/e7924sipG/erTmWb0CbRiMyQYEZU0loTOhgqinhtGzt9MsXTUtFgJGN/vj0NW/YfWigW1jrJlF52BqDE/r+EguXPZ4PMmoO5LrsursRuOyCGoN+OMBcGvjWkoJTpIaXCo42LmDs6WfPpL61wo5ReZvVyigwYYCRkPf0TQMDjpMB4KsXwsHLThwSMd9fmqVLXuydmOGi67gfORsyYHXPvv8MU45VgrVsPxlQmFY8efYEAdg1tMVP81neaMj57v3rDtOoToThb48lKf6Wqk/utWKa9RYtaV+joVzkXDu20sgGZ2zR0QUbLr4u0wwF27UtD0aYbmf7siPAf/DJxwQDoABYpEGNSSecSKeIGBDzIrxUW/0DvCQNG5c6ANTJ6M/fvJLy8K1TrlpgndGPDWlAFPHBqXyNEz4MK+cmfGCNWrFM/UWF4Z3w+eLuDL7FgjidiACmhZ1BEapViPK1kjCEN3+U8hKOkQ73VeM8v4vlQjM237MEMDY8e2eWAClNt4XuwsTaOPmvxqXFhblLz2PgSG5sE8WKCP8JPbWNwvRPhFiraTevfUyKbf3y4RHxzFkZDR6YClBPBTQ5n0Es8z/fBpBoHF4L49WX31d5AAUm6+3Z8vryRGHQ6tkLXynR+6g4/2Z4yg7ol70ymrY03W+iAxKcsqfqgAT+OW3WPCv0zuBO9st6BjXW85oh2SzR2n2vRrq56enA4IkRznDEVR/So6pEVnOVCe4epU4dB2P/oTGRa010ynASUN5Yu1AanU6hM6K5vERDd8RlWiZ/Q5qS+oPM8EViFucdT6guaOX0alN1tBRofFfTkByUvf19LiKPSmzY4LhoH+1xNu6lC1f3d+/csxTun4jSWt5A3kS4mR2YpAj9z3lPqlo+cvYcKfXohEuDudHG7776eubZ6k/ptxcqMBZBz54HhHvdWxQ6AZmv3YJkT6MrTZmzcJymiUzp9BjASiUlKUrdO+hUEJhDT6U84kdOq0HcTltE0+ORn1pXmvEQs2sm9RwzM++b8UWk9eYy7ZI5WA0cIy4qalQ6sGuIIeDF2pvx4YMDvfCrF5LBRyRnakUMbnfvMoO64MFo6fxV632DS2f1rR9J/XPUcYl+5y61ty7YYJYMDTRDHtADbGzAYF3zCzAhC5R+5km4L2/6Hg1Dtp4hb0HKCg87HBXRRp2J95gA9Sc7/nvS/z6+Lq0vbbkz73lNHR/4cr67w9NRSXZlkuG0MjY4/Zv7A466qjIJ876rRc00YoKgSLMVSNF+BhLHK/ZYkTZSAHeCpGDE9ufPXphYG11qhMcfK/UhU9yueKoeZBiHVCuDr7HGEo1n+KtIzA0WaOJTffrxzf3t3V/95jdmAvilkFeJUFRkjzAd00FnufTXr1//67/5hZ6ba2DxUwYlRLSV+tYNaaZB+urqbK7mJK8OM0FuFQEIoHvbl7mnEA2+bqqfgkdpN+gNQo11j3P+Rb55E9z1jF6aCDQaGmB7W0+CkXrrPP9Z39Mr4OhfCFSLGmoPX6ZNgCZX2vGx0sqmQ3lHw8GT8rYnEZFYJ4Xjoc17a3iAdlZ/I3GJOovSpJnL26mX1txXP01Abt1Ne+iaEjKjUh54p4FIJtX/sWd6W+0hN5WTqsnd3tq+tHXZ24ng/u72gP6/wmJEK6iTm5GpRCu00FHhQcG4eGFHxZLKoluJ9RQAHsRRp/McAAsM76YYQw6FFdC63xm4zOSMKaOcf5roYSD2AsU4CdCN1kXSobu/GUTwLi8U35wVgo2XUGHxIRbe4LIqpydxMUgQcfXbfTb/bcSwIlwT0VmM4aRAWSpKXee5c5fOb5I0CaRm5ZlgOENNYURGFG/mrB5LcFZD99FrwHpvXzq53Dd+9Pn+7t7nn31qFX6zlkdHv/3y97PhBcl92/r91MaerCQ9zE8dn7LJpCNxLJ86f0YWJx/E6e5De9BHFvSnvTk868ZGFkjSFRKAlABXEmwWalinePBUFhogjeujVdTvORmunhF+t1p6QtAxrWdGTJMvpUHQwKeOL6uQXL4vcV1IJPmIRUPOOKfwCGwNEQi3sgw+KoghaqMG5FXRJGyEQEnZDhSM+2n6at6tSvG0jY3Thtcp7EwiqWJaq3aIkGkypzwKXLpkY1o28qKSUki6vQi9OWFKwvXwQAfoM6qTNiWhwCBd3W3GccR2KVSTyVYNJYzeUj6qQkubGfuBYyqEyBh/5b+XWpf+eTV2qGBEGsUxwky3TqDY7EIoF2jrF0KpJokejZp2FFrp/PP3bdOLDU8ePzSD1owhFw6vhpLsiBVechb0t69fvOJV2hMWeKbhNK7rCNRh7UBVW6Oq9Cq/f5AzXugrGOAAbleS1dnxeLfGtSMUbyjG+wdtkdQ89Rjs+jq5j5SPJDvAJQM1vzSclVwzISD789OPb3z20cc7O5ft28VT0o7Xn68em1Z7bMvlZ895RCRL3Jygl3wtP7qWGzTaEIIVs3rxys5O8BsU4D26IC4RQwOwIKhuza7D/C49EqwyKk1kVNCarb2dPSe0wcv3cIZ05MNFtAnxxZxozx6ikWf81WqeLFGwuLlk5rjo9eFT2KLsSIOezlyeO0IxWqnK/lcH6MrDMchOkEBkCkzxSYBLMSoIna1Z7hhECUpWFIyT08K5SmdqOnvTjrVEiqlBhYqrEtMI/ayRDf6ow3dYpD5BGTmOKLQplDPZA8roQjVkzKNPFXpdLVVgeUppM3+6DR3/FFGoevp6AoLyQ/Bu4xEKJT095IFW/k8lI70OIjuSVx1bRyQrXaeBJq1Z6Z346y9IbEB09uUHiUyty7EfhyfSZs1eq4QkGFBZ1nflyv7BowNbhptKs3mmrTfg6ew5zrzxqBzE0DqBJD6quTuDbhQ2VXV8qiNj5OnR0nL7+DJN1dEFxd3RY5A2nSxBEjoiuQQjYvg3PdrYlpR+4CLGBWl/9uPPv/jBJ0JAFy9emszGNmhLBo7bTOmTjz6+euUP39z+zklRsqe00zT/EG2GM2qiyXZwPnP77m0ZSvWKPB9KBqwcHBxZEEm2miEWwJIla8hR3H7seoivHAue/up3v+0FRBvCDwcpvTj90WrC73JYNbK68Kw+boQn0XQr2cE05BtFEyQ+vWZpze7lLT2XHYuF7O/cf/CLX/1m5CDoR1CSG6MqYuECYQarDZ2mr3F6EeMaCNhuYOy0U4c6LnLPirtk/gM1i1kcfSqkUYPl9DasSDzr/YTZf41gxoi1un3NTVHhu1c29T+tf5eDbbicFKo1fL1uOJRxe/32VbnNOUYDEPWc0c4of2/0UtoYZaq6T+2GC0lAvxxp/3wAe8KtLulC4HslffFncEjlfNiOzFlwRiLujQsszgE5JQxmE741Jl+eCFoorJDC7Iu/4qFmh5hP9RiP8dDVyaIVpR2aROOgXrjj+uTTrUxFAyTVZhdK3zqzvb1z7+BhTQy3dAvYqTnDEp5alDkhAt9Mm5CNIv3UivZTClBdufbRxUuXxfBLyoIOG1MnYz+osxcvtufDL3/3qycvnl853q/1Xk8Y1IUfQXJq3bmPDx4eoAraMJHjQtGEpKEXRpZqCWkPXx6aW9WDSfaO0owTKtoCcfuyVTIvX1vzN9gMcTWU2op2RaqFOjUeOeCm4rIgcp6CKrxybS092dm8tL25ZdrO/kXX969saLKdRVqnYx3t777+9vAl0+U1JMWPFGCRAzgtxMa8Iv26LrLiIVHoUxtuTrF4P9wCwQldBoSIjAtEQWFvpvDLu159f/T40WMhVOv6ezS46F11lRrMhTUFrhUrQd4d2TdO7CKZcyS7LfxbcnCJ/LOsmMno5rDmFQAgEvks7OkCiIE8/+fLgFvCS75VgCNprwB1sQDuuL/gOBoR6xh+RcnEoOMFkqTStIdY++L1qSFKqME+LodPn57Z2mLg0U5PC4e3bb7dMFIikHI+okAG5ky1MAsQlXFzzGDUG0gW2DjSiz1KhJUBIGqnglWuLAbKVTmVFrWAO8xSK5/Es4HLMLR+f6DWmr68VpSA+NAGj94/PHiMKzw6T1WaUR8nkHwqDAzyyfQ8ffoEj0DgZY5WLZmoQJjmbU7v71/7m1/8Has6iz07/VN+9jgGMi/GvIGn8cz6Ok/r8ubldC1XM3EhBC6UF1GWLhIaJwY+pBL/kaShju/azFWBMoAbtS3bSA5aNGRzY/Of/vzHn968ZmsDpoI7hGEn9JE3v7q2t7176eKlw84fiCgJxhiKk4u+apHDZuwrewKHtCTKlirgnGUulilFx6XcEr8bfgA3zoyn7W/6r41BYQRortfXNuxCeL55xs4Df/eWM8rec6AZoA0ns9sFaGHT6uqzp4c2TlX+0cMnaCTibKhFCg0KKYO5BdbXjJt24z54opZPl4PdfOv7IkLzdaBIWJZhDZgHFUUWu64QKg3wUzGxK7TB3dPZLxUmPiNOutzT4hyJ5YjnCzNrkUuS0pHEyoS/zaXP3T94JCRweWtT+ppT2Fgl4wTwc40ub2+xnQ8fPMHUvV2EDVwAR7lgy54OXr4RICD1PRHmRSNI4V6w6ca92vO0gHBZSnpp01MbPGqo0UGDeO9BQ7WK1s0VfE+zevvugwfPDp8JUdAg/hTxGvcviChbM3c0f2XFOoT3P/+5+sz+piRzlnN1SSpbX9vduSybxEnKEtQB0tYPKh/Zwpy8BhpMKfWeErNmJwix2gYZo7JZSqTd29m560ANLSNnr/cnqZgf8GisF8ZZzj+g803D9ydAXK2uCEP94ObHu9uOtmqGmMMHoLoQn5LwTtFss4Df3b37pwqbGo6e0ak/04CTghFoyK/64YcZIgttXjuWPDaAo9fsdvHKGpq4xdKzHJACNmWuLwvgqTCVHVswPocCJgS4N3t7u6p6dP8AM7FKeoLoE5OTMQvDdS0itzW25k1ddfDC6nqnHWeXWqao9iIK4Kgp7flMj9nXEVk3uq0d9/s78DMvA6dfkW4p2S0kmNpOOl5ilmxWL4kZ8iy1NMQYiRml4hzxJc+coRfW0J1X3KCThtRhzd7xUYp9OVd6atK45ryi02evhL6qZZt7DgXfNO8zUI/NczuiueteRVQ4shsFyDKLG/sy+I3uSK0fndgmdjhPYyz6hfPSdliSEcxQ93MiFMMfGMraeHPn7j0GVD1knO/WHHmGI8UzxyB0juCPymiyarz9SNCEtA/YqaOhgyXHwLv/8JFlZ+7zjoqdgw6oYTe006SzLl68fi11gKkwkqG5lDLsuZLtZCiocMYqXN31sA0DhizDCjCNaKlMowjsLwrM1JJS+D40ogFSElCEPRgBzfsiU80iFSaWXnJKnxBB52cYXxevXp3dQuhc8GJkdESnAaNw8J8msxnajfBoOW9xAB49coqMc5N0gFM0GBXo1YF6RLMZqx6LYIzPtyLmzPrm/hEmBve0tTutdKmtnEM72522FPjx46e67IePDnQjIi1vXr1xPggCnDlrE8hnlAeMglH5/OlCzlhahCQ1r7bgcMO3IE8OCkgE4lKEGnCuJgQHZe9MNvrolTIjmrxOA1U8HS2acY4q0J/mC4Cmxh0MQzgMAlEGC52oUmtRqdUzXL/g6JzF7Ii7Hk6BRZAo1gD6JwIuwPZOBJnW1DZsSKcymPxass32kMsBJg3D0Dh7vCLV79SpctU8rUfQdUX/GK1MlQ4JvMHSuH775sM333338fWrFy9uWnFC6EX5zpx24larUyzvE2jxtu2ynzx7dvHSxQyU0a/UJyCStibmjy7xDi9s2CdF3TqiQg1Gc7AHMsBSh7wuR1Scb6Lu2TO79Mi51XdIn0I+iSmvxLfKxF4XG6InAyRw/dRdjBUOxQE/LRiioEdSTrjdx3vFDfZZfXvdpCTjyYGzihpa+4mmWxsXMbGBeGKIu+NsIwnS1mNGMggtkjKNVnNW3adBTaOTIOwuuXknisdPZTbg6FPZQRzcA2rVRuwSNq35eNGW4mfPSra5+/K+LehsmCydRV+chk/J6VBMMtj4wb4eOXgzFLUa0u7Qz53/ZX4NtPZHqdLkStMj6xnIkangzr7CWBkVusw9Hir1BQX76hNRUiHkGSgbfs3tqZYbPB1dMiRiKLJcNeKkasjk50Nm+5uJXQZISgxMsInkHdxYbrZPD04+SBoE087cSm08DQbcGZH1VYHlvV4MvCGkAumzMOm0aNX7iEhsqof0kAuyxrO/YAGnxFhQmPS1P+CCa23g0FQ4vn5dItDu3Ht478FDcmFagN8q04f63L3/4M6du19/Ky3u3sxVy4V7fO2a5SJBB8FejpSmqz8Yjzr4mKnShJF4YwODYeMsEOBLH/rQIpIyUu4+eOg8Q5i9PzZMeaL/l13Hu5Ki65qBGQJg6PQMBgajBzEnoxcLwZAtH/C7k9wlnyAzxNRoRskDjdJAxS110EeljxHBooipxgsaWYR1hoasdXVX2Iin9wf2uZkwyZ8jspLJhOnmWaN4CDvIY1l+iTHhOvRWU+xMLif85bYEhLNnrlzbL0a/uuKINEYVtL5YMQz+4WOAZ6Vbt8ZTks/TyQx8bjKnp+pMgPMd3gwqMGTeGjudTDIEvgd9Ukt/vida8ZlRkqFjUAJT6YioWMgu5AIZpRotAZgiaIZGi24zcfmKJXurbVZ8oGpcVl31swisxfQVtvJ+xaMgo4BJUpOWFRvScLiEOLXZCqcmH2yk+dbG4DarFDYI9kz+ogzho14CBdT5uDOwjk7gMxVk+1LPkZtwsjkAu/Kc8/E6xYnYieT4rt5IOkYs0S3UfNykWncf3P/l737/ze0WzBi5PRH8evnKLmav3sgGfWVfatkeVo3x4X9WmLCuFkbxAB/bDkcfvrG1tfnNrVu8X8arGBEH6RS5yr9oWhEQLYSz78iFc//pl7/7+v5tfQe+chgW2Q3cgYkmeK0m5jN/plvwFIcgnKh0u/+90gV7npFcWzGN7QhEcTDICYctw8AENmvTJBapNIcllPHi1QuDjHb/jI0nAYqqU0zPWyA561QjNafPWZNj5QjrRmmRt2J+NSCx5qt8m9HFuR1c826dIWzmv4pdAFSRCf72+pTMEvbRzuz5DFWsqQ4cdlGDI52FHRf72nsBgdUQc1HtVRHfe5SARqkseOX0dQAsVgGw5WUT8wYnr4Q3pjcEZMwKmOqqmmoYyKrDxdRZWx/WPiAZXmd8o69Tx9KZh/cPuHk7e5eFy1+/emnYIHc/zvauUQRfwRLjzgm38EU7pFVC5njeG7YB39m9XO1TvF9KxPaBKEaEyPJ7ylQgY9dgabFyri3fxT4BJUfAtvZLJwxzdgYAUPRiMxBLF+dN1GWYeBazk89vf/8HbZJMFSaFHlhpLeiSe9hbbukT5B3Vh59Eq3JlF4qj4P7+3m++/NKgWWCgnaSGj/GVkA7dqVDNXby4dfjqBdMKpokbZpXtopb0j/gH8olgjACEd8gnJaCfvoWUwweg/dSH5N7Saf79gT1Dnh+eNZK0GJ/X9DZ/iQuTTUtK9DARjVP/Mud52AzYheJydCm+/apXS4IAfRzUUp9goOU2BTKolfuSaiTHI2bJnZIVH3DBmub5Bd5+UbkTRzw9//7FeatiheTUr2QSH8urGQDTpTpQjBnRX76X/4grC7xekwXA5izrOaHmzkK60bzqAbffyfXqmpwZdTgVsq+YH0lrUn7KmRECBbm+9cnB7dWI3KspVUbdFSxZF8/bssxnrLVHegnCzRDOub3HALOb95Wr+/fvPOAHWsYZzJxDKxbMJr0/enEoSLhiQs3Um3Ccmhzn8ap1nG/tjVn7dVARE1RkspZEG4cy4UMigx2EvHxpcBr3FUezh160P4fIrOZCBymjr0VwAUEf3XE3hzOr1mcwnhqViD7mrQWHoMln7zOJ/iQeEij5VASY5hW9LHC/9ITkT/Onti9dAp6hwv7ebvMJmmq9X/DGn6jfNgKr25ubHI98dN8DMNPLFJFtb426UNtMVBRIvoDh7fyfNKPGAM+pSPQIdd65q2GdUNfLN6/vPXwkXu99/YRRrkasfIqRyIappW0cbZw/2zHyq8fnOnPDrrHnBWd2t7exAUjM5P72Nnqi29QcjRAIPNbd97eaapViVQvmLEVinP9TGqwN6DNCQ4XGyrYf1HPB8MJFmaf6pDB83UGDGTB2Q8kpHD+qNL2x4OuDo4vxTYegQZQh0+IjzBUHwxANYLaeovM8ckNYOFKdi5ttMahxQIqbSHU6e/acLhPhnzw+ULU9ZtDcRt9nz9oM74PdMc7auOH8WXHbYKj5xGvMB7xCzY2kb2AoJpJJQgw2FixHTl8+LcOSDBZGb0TBGxwTQKri3ZAmEdSRYKS66YlhnoN21I5T8XpajWYRfQgfLTxOZhKkoS5gFAaBALcIobawy9I7va1iSOwNVGVtqaXNaIcLq+eM3e11kHwFCzsSF2Nlbw1ivuYhANuUDigSwsmIqVzW79hyHAf4AhQH20imGQiimOOo/Jl2tVkzgfvTH/9YTtGHVuVb45Z/Uhv1DiFp+ct5uc1yM1STILVUalH6+iGrmNMHtqninlCS/J4KR3YsPjIuGVLIAYzN4O9/BEyqHIPCS7u2u72+0oYchghnzhYCc+qVIgwa9PHBEtunz59/NEec3Lx+ldly8gQAmV4L8PiydGMUYWEPvS9cawSldxfhGTqmJOMx5/WPvkKhJ4EXD9OQYBsVmlsntLu8fQnusrsThfOWUryVJSZVxpCAKVO/nscyHa8MFVZI5+bRFmKSm/v3HlXhh2MeiOhTASv7N74sVYGJaf+odVvivW5HpuQnICmkYQzaOal0ZrMEc2zgnqnhJYJzLJ8AFPtw/unh4cbov9dG1MD/pw/UkoUsQX/KWgWAx+gjiEj6LbSwIo3SKYqJfk6tn2+VyevXQnaKmXUCFp5iKmjFLq1O8d0BK6oULhvzt5DRb/BDwK+EATPg4qLvWUIgEFtuME3Lr5sPYVCKT3Ca0RZZEOdhGBT29ESsQK4y4ogKqpphTLWl3HhUP4Hf2easM32Jkp7UrtWXbz/YT/rq7s7btzbRkHZExRsG10nUiuuVu/fuc7Eizbxv08NQWgw/+KgNF93pzQ8PDgoghkeMUtjLqpqBeNLfx5TZBOlSC/3LTL4ieBalzh12UXq4lh60SVNfjo17Og2AoSjPvEVYtNuyQaWHqg7LkU4qfHX+i89+8Mm1a5l5R2KtnbZmgAvJsphepi1RbpgAFs1TRotkS3XhOAF3HhEsy9j4izpiAwbYLPLvVZfx6kQZuuFdAXXLbZRnTE0hS/3dONI5mKE67hy7oYKAkQ0GZ8Vm7kDEnXoQ4b2+03Kns+cOX0sF60QwxENAKT0MPLBt3VeotwDGBa5s/GOrIU/UpGTalf6Mo0ku2raECPKLdnd2tUl4VYKeK+eHKYnaQB9fExRPQ8BnYAnJ7sfkDpvFWM2sndrd2wWVfRE1gfwP7z+w7Bs81kkzohcuHDlGQydmZ1i7HaLqU0elmMKkz2dOSSphnsTICNA0FgBRvpaG2H4HFnzjywhnF0AgEc2ClyLlbx1OmklIeBfZURbQS4kZOkyFXjNKiTlTeejAMUWDYNJI6UTt9BjBkEkYIzpN5zLZVPizG9fZPdVLowPWqKjDZ18aRaiXQSFOZeBBgfRKcFXzJPuhonBbkm+uUYHIFzGjbbqmUpycdX3a1b8qc7Tyls7WO6elgaG8Rw6PjSvNW4cwjlAii5o4fewi0kgb3HG+WKc/YHCToJm9xZZEytXLTlI7c2CPmYxiFTc8Utnp1ZPNx0Hifq/MW2iKWNRHTQMFRPr4zX47tQUcvgw2bi/2o4qjYTUgL5qic+8BGJnyYsvFasDHe7ZZa71oawyRVe8cfSocHSxrzOOUvoMx7thM0t5h2VrHo50zpbAuJttKaIvgZImvWRUYx1WQ8RtOcspt0VuyQDt+6iI+XNy4JELCuT88dlzVzoB9bCQSxM05BCpi4l9StUCOetk8CHqY+bRlnr2X4hEzBGYx9U29mZ3FTl29vj9WLnE0DwMPMVihYSuzm7pxAGnbhtcEOKnBolnZ6QF9wFhoABaCEEEGjHFHvZnkaNdhNmftcU0IRpZ7ZfjmDd6SRTOENQUbdo1HxHzgV8pULVOt39lyqohTyd6MiYdvakv9/MRfb652sOccnq11K/jrcuzneOvOnV/8/d//5ne/a+cO2bjPnmR97bSZhzOaa5FpvYyDhproe2cJrkqz/3VBIz7ThElxcg6aWkXoJBb+Q5BGKmEI2jg0CLjwnp7R7vMSja5e2dNPEG5KKat0ohTtt2HBV8JjwGpz4zpsimSfQ2bzoqEcGE9JP17Gqfk21IGeN30bbbTwfVtxYUi8gKdown3KMS0Xnh++pN4DYEyN4r02mPjmKsVBX7z2Vh8AIin9cVcz7kCaGtiW7vmL5zOT3wZv+AH/oV6DJwZBXPLl4Ytzq+cAOyscVm29RpHaaqjz4jsZ24vDZI2eyK++KBU6PpJ2pbmbN6wUZa0w+viTT64NZYXUSrEknRr1mRpyIKaOkwrh7umUh4ia3B+8CaVnKIfjw7TBWyOJDzJy/DpKPbscUI3Ao1K08XSpcIwv5jQGrZDS6fFSIFxA4y6YQQUXtwAzo8rJDAXy7PVZncHbSknigRp4buWv2YCSqL2f5UwxgJaNrY30QIUiprgSSOiYlrmaumAdS4MVls9fvXxwcGAxkK7VEeWPHj+x88VX334r3spp96PAvQf3yxj7sG5moM4BZqpoetU+qO+4kW+bhTt//lCSAngWhNO5E7kJY5D1wMWQDfYRIegYvZBfX72yu3t9f/f61auSwq9fuWI3VbR+1aFj776+deu7u/eLHXx4b9Uz/A0DiJOADyrrHMTyzJt/dO0qGiWf7NNQFu1sIAhihKjFKKtthDgRCwvWwCQ7yNMeZvKPRJ4tIHx+eHjm3A4+e+VPVg0qS23D8kiu0jlCqqNAWsFXPNcx8y0tMsVCNcT98MiQoEjfvDadwPG5C4kyaC9tnt/evsTE2Ahqs+T+tIiB393fTq80Tybjdn8iW3/qZ7qLdMNeNWfZQiEK+/RiRvekpw7WuRUIy4snd0J93nBRZHYBgHDUBAaJPrf+NzlbKsE4PDOZmADOR03mItF9ap7WAbzEyU4AVvmJhqH/0lwsGfpqZ2nX/WSihJ9G53wQLfaiBjQmcWg5UZfQTKK2gD+BG2cD4oVmFUc8taCm64xgEHaTHIT61F9IwMicDA9HtM4D/w9/97ccXeMfvY2QraiXNnlfQZXRf3//0eNTev4UywDF/wYedTdsn9GSARWhtEV2iwQCfEDHYu1nAHwHF73rGV2CpIOzszVzkg+wUVBS0L/8iz//4Sc3thwefc7+uecpVawVov5w+ub+FZqtRRyZLT+1OA1AhsiYwbB97Nq61DeNIrQ7mGsFjGIKwKHbQTFUGWl2lQUXektwh3ZJPBiPLB0kXkdHpsbK11c8oYqInkZK8rfQ0xO6d7qsoUbtl3e2kk6VDbLh3QZ4HDRvT9MsQq0kHe70L2pNF1EbQRgjmzlMf2i+SqJ7VqPP8nvp1aEXcUeF1c5ZWAAMvPnMG6qfF+eOYuofCR/btDS3iNpSbniGqDjljZoYIE/wrWQSnVADygr2aKPW+TpSNzRas4e1dEMFtyx0TnfTw/jh1pQfMAKfgJ4I21C4ikZqkrB8coTSGIySyAFGTcZhs9UxOjYtMGOhEJ2AFwR1K9w8/CMK1Ck3fqQ+OUDLMIC6elMVu93PjL+oD0jxgGvKneHvRYTiBOQ4CdFXnDp8zjavbF4y8SZt1frGt/oFcikjwbhQpaVxPz5gULQcfgAXW0uxQ8TqdTDr2hgYcz68Z/gz5WhT7O2U00k2HLAg2iNrQXBwWAqe9bMCkVZzH21cu7L/OMpmL1knSKcqE+6iuPBEA1D5sb/XEC4rUjG8SvPhFxm6NYKSaK2umPfpZjQfTg3d2Ztoyr8/kSFu1Vz1Z7mAVV8oXJbzPz/UUm+NhI7Uzyuq9oKW/UeZ/uJxjrp3F8hyLOc59uTyjth4pnwmw9SVm3oVuovLvTgff9FbfaqtqnDue4/dWvCdksq4NRUOUwKBeE2fMwgshf1eKhxliGt1C0ftUtVgM+qFNiD6As+aTdQ1rNHRjShi/M6cAebJk8OdnS08OIEqMzTQAqB28xAXeNOXKNQ3Nsp13VHf3WS/RWswjYnPmRHYyFqtlN3DLQBWMh3dMM7gK5EgFMBTaQ5s7fYrCtWAVRBsIDuG2209Bk2QgAFdZrqwzAZNJ88+acjRgbj2c+GBV+/tm+uO2vUEIGBpHSlW8ZUVq3Y5cNk6SBD6YVrjDgpTp6FIczFmi21Mg5vxlSz01zRZ07R0k5pEWm2GNraVGYYgZ4/PSsgWKVFbIivOYOddSj+zJJD3bh0VFCDR7r/poYIMZWzRuGaQFVbwC4Wo7n7MGC2I2CNLyqonAvpRLO7EntD2dzA5eThSOOTuodqyNUP0/OoRF69o011chEmQ9LtaDp++UJsYdJww7OnNRs/xm8JP0s+IF9U/tvU8VohWtyL0+D1nWQ3oI9CwTCWpauCbBmK4RqbzAWRNBrga/oTFfA3a/oe7vwsAVZNxKWER+lGgEKlYyZwCSDIS6+l1QiXC9AqYa4NB6jOk5DJJsprwRiTorhdUWZNYFCFy6qrCq55/j0WennALaUGcGvCSZOlZwyikaxyV+Vxb3LMcchUBL6wDSBJhRrbbPshXoyGSaCbUrmLIybXHNIMNF8oLh0I4yjtt4/jVi+bPk+KoePj82Snzbw8PHrUrplOrItn46EYtcqSljL92JHrWXYu5KOYUTB21kwDg0DoysD7aCwZ6mP0LHgQc4AMbZND2P4oQ3d5a5CtftRXdDt7WF+kKjopZjew3G6IXUxeZp0mCS7qaiDtDTCyOqyXG+iB9VhB5kuHYMFz5Xg5qbSGfq0DuxvIJ1BlmoWsPUCDwVx0B/OjhQ5egvry7CwB10m7SAlWoQWQAUBEYqkXb04qnuXaoZzs07i9SGWzJihlreqYZ8UxGH3JvJyT9nUH/Yam/1iQdb21fNs1kfzEMvH5tL5AGVmD5i5JBGSX9gELTEXWBX4GgXzqEcK0VZRKNAozcFRGw5KoikalY/vG7zorsyzBoKgw/zVQoxKN2eOvV2mP9bcvjg6KPu7V6Akov9m25SyqmYGI7hhKtxGoCQWfTH4X7qCpGkhOWDvkKlpyABBD1lfCzOA0DF3maxIdFrrw9KYZIQhsHmGqeKBrV0gYiY08ctBrVQMGucCSbBYkUa8YIp5xz/92LZ/cfPdizO58TX6LT0bMXL+7JhHjzyn52hy+eN1yWg/XqhYcBPTgvvHTf11pduhuPUT0K1Z8S29CYj2I+yzWy+njNWyyDHgloRP3UqmUxtmxY/BBa11ABQMYgtDqfjlqiaEyKAWSEYlVP3n++VaXZ3Q+dfiDfYaaZY6byQ1ANhoJi3ZuPWoNGJcOOvqmoXaJOXbmyp1r906F17HO4mIDPk4PHcHMYIY/zlbNl37+7emNPlq63a+Qo+U6vWZrDwzFOJgE/PH186KQmW6oZYMt4n0ZO6FY/Z5r/XfOAWnEyihgw8qKIYvUjQ3NAuQRnJm8MzQLzEBI6JyI1yELsPyPoUd8HZejgEJSkii/cOFFKNM2ecUvS56XB5H+xIJHGgygje9gkg9MkBANo18Dwp99VEjuyIDhStzDUj8Jg0EjzP+2h9j6/ukrTyD+psSvgmbToCWUYa64eby/wLw6H+rk/fiOFXz0efEmOf3wEH0qV9KgjMSrTO+PJ6dVR6wt6BVZB5QP1Uzdv3rB/0Vd37hF9MuL8CyeNyrgKiiDgZYxJCOrm3qeK4IRVYkcHfRnvAfr0a4S9Zmo/b8+RLWaTCpKCKcFPDbMz1juw94lO5xS2FntgdoBcibGJ+JAquS9ngUdW9qtqIZ/xKroSIPQjlRvj1DuaPZY243TKOf1Fa1Wh+IrMhQuXLtq4zNoUpABK0EQU/8iA2oYuGji1bm7uq+fPHcTEUbz73f2rN/YdUS7xhgx5g1cDlRRAg44Gc0pa5EoIhj3D5uPVze1LpbI7Bqq8mlZNBAvkazEp8ZIpHlEmd7imGMkeWUd//txF2OkGmy0ZqOa13hqRVo1BP+Dd6PkIE8lbpm8DJCFRaWj6rWS64Tqi1Xygdo/O9pYbCFfnTppBtbw7lbsccGtIze/NwdElIj0Vusm8j1cAsZEY9zNI/38WJ6eFFaYG5oU0oSLF4orq68oFSXROPO53VgkBiK+/d2XffOK3d+58+90tpPv/lfUnTXZl2YLf5x0c7nB4A0cbTUZk5svkK1apRIkyTTnXQANN9RU1oUaiyYxmlESpGiuWRFb78mWfkRGB3jvA0bk7f/91LuKVjAeOe8/dZ++1V7/Xbs/wDe/0S1U9yIQwiohLJFEvPJqDHTwkquO9gUmaR/cSa2OSMKnSaA4D+ejVnOGzuWU9N8zJhSN0CQFlWfl2sBXL2JvpSJCuSZREJ+ldgVKqpDL0CI5zCctEGPba1/vx4X2vAVNIi6ZQeObsefEKQ8OuWcSYbhoL5gvTS/Jg2YbYSNXrmDRNktq1bWFIooVWUkVYd4YRhrTqvlmntYYOgPcgwkYyevbOsXNCThSNKsSN6hpHO8h4NHy80lLdf3QMmHj44GiP+DFYXd7/1cj39raj5C3P4iPpOv8VEnJ4zYXdwB8+GAwDb3lRmhUNXkgOFJsXYTckEAZ5BYmpple02Bre28s/7Ji7u3NHJO3whWFR3gcHhoZq4D+UUWREtEgjKcfQ+gCrdnhyIq2eKEzkx6slET+Udj8w0n3CCdBQPtnji4S4UVZ/ScRzmQbnurzztEzpVo1tfKSkA5mUk9BcbmYk1GDQolajbeMHGlHAT+ss1YPnuPnLb7/+27/5BW91fHTfIN9//P3v/y//1/8aV0fa6gxUgfhK7+OeWtTMiah81KbNmN6apfnKo2drYzPaQ0ziuVAHufR5xcUGdMx2ZUHoy1cFSROmKJ8ebQCl7PX6SbLHMSyWdpc2V89wQ3mmkcEVIM9rpeUwoPuLr782wLphJzftrK+MHqAzL6iQKwZri/TNPam3LFkVfYGpYn9LKYjHZ88WLo9KjSp50PjAMiaQRRkID7eR19SXm1zQB8GF6r7mSoUnUZFE7GhoJ7beJm/HN+deUkrUbWhtbHW/2j+09uHq8uyNlTT7On+ZW7REFYttpM9sxp63qELIcIQtbPyLdm8UP7mApmamYfW4MrPHsE2G0mlDhwuFWOOwkCc+P7FkkG0RQeLKV0RZyX1XIu7AoibO5Wb52XOPErFsiEqlJUKjDbvDXuEEjvRAGZk9zUqCWAoJEF6DJQWoK1IVxBqAQPMvDEag7gnN/YI/eGE38QU4FRmhYqr+6z/9x//Z3/7q14akHj26p3HXDrS7qclKb1X8+I9+9Tc//9k3f/f73zVkOTQCRKEhqPbW7d/2Mjv/qHXHOUu/cl57wzAxSHMAmenp9UKq1DaP0Q20VWdl1/sPHPHmlhOhIaeKz6xcaYgSOKEyrREmBAWDsykd2ZU2I8e9nFXwyfsk6i2CQ2O4f75Z/ucvXuovOgRgjGqCHMXxN3ayVEFXdvT85SurZJVNzLc2DftiFlLgVS3W5Gi9iz6b/qtCxWdxgdpr0V0lFfeSqAWhFg3v7t2eBmHmWz55y84HaodJMlZ/wu6aGxC7z4Pofnmb1r3DWpKYuGm3Q48t4vAG43nLE9S0Ld6/i1kLJvDEQaD0j6Fc5LdmIuJIqiyYcdv+wbIC2ceCri/6FiVo+qw9IMkZS7sWHcuLzwVH9YAfue7L4ZpPWE2RSEhV51plmIyssbMWG6/MqxbAJgGWMGcD1wkBIfjYAG3rO9Rn9TskXr08aYvhtnnGq5cvXh6LG3kuD6La38q2QmmxjTQ+GwMBzBALTQJSQq6QFgJJ8nIPKw+sv2IVPQ3ULGqiG7e29re2/vf/5X/5uz/+MQjB6AIWdyiOFN1f32aB9QxZhLUV4nERqSr0wKJ0xjIn3DA0AHjFqRbLNlIkGrcyPSOza57eWvEzKFouHZoqYNMoEWV58Sa2jk3kn52gjHIBQK1x7UK22eNk6gNvPOAM6hvwN96TaQfGJ8dINnyBEjFYglwkDCcV4bDD6M3lHe7tkzLkBRngD+nNp7gqWlsfV9WCztx032EbhulTcpDy8FEDPpWZsuMA1o4fHqHN8o0gexSqniTCEeSwLsVEeyycuoJvZegoFg3rWAT38tP1VrTLHS0zUjF45FVb6Jb4We/IrNZNMR0mG4VFSeM7MvL+yTv6FyFUMyIKIwap4ETusADyU28Z/ffk87VCCXvlXNqKKS9PVwVgOHbOkfll6TdxOCqONnvDp9jD9ms7mx2zHkIY3dtHPzglG4Ib+1uzRXjr7FSX5q7NOvv7h07EsIMiNxATY6Z/y49qrcpV1fPD/YLA2t6du9NvLtlfSpR77b1NZoLtmqBaFMozKAPj7te//IVtn09fPee448UCGEun968lk0+AaogiUx9maj8ImZhTQqIy4oI7c5GITrkJW32BNHbt5vjwfiPxXhBowb3T36duPjvVKF6aMJzqUymxE620ar8BNyc1DY5pvzytq8sNLJMLC5KiWolieFk+vPMagXPBcwfAedtnXGuGD0FYkCLCwZGDlqhdvj28u8/aFB5f2yeNDX418LKZbko8ovUBPfwHY1QZTKQ1kXHLNFysnMLypYqN5w532gwUj2lqsFuhW476MPicjtO4jBpPi4lyH2WoJfNk5DNiGMSCgwvKVro6NdOpr5/WLPlqmYaVfJZyGX+EBHg9lSUfPIpSLZmgRDPrjoO7fCdAUiMlSSkCXdWrgmPtSIWOEh6Vo9J8DcEt0MMF01KFzzl+gkP1BB4oVIRmzDG4HXTQyCN+oHF9wy4Ir2a0qiUNu7p+8PCBISP75Ynk7uFdy3W4XqukprLE0+hJRjv4jsjyE3E95Mav5aRVE9GT2Nf1jfW80FA0t23/pPn7W7mnIap0J8H9/Ntvf3RkmFSaNiNgngLjYNO7d61i7O3Uwn+sd45kPqYjhbQZMTBT6xTAuKBNS5+1eCrmymQyaSWt4NXrcQ72X54aFZEzzUYR9owSdVS3NQ+JLj73t3z4hfa8h44yTSCV7umVZOk3uxZ1a+/qKW5rs5jsTVtBRL3ZqAsrmt3MhbYdx7oMp/p+OjLVvWVsTXinslz31OuLiWKO5iKm+V8/ndXE+MA1gQ9yGI0Jh7/7KY8zMR5mlV323and5MnIaqkkXKaInEZI+Sf5NdmCQyUDyk22Gk+XdndJibV5o5uzV6eGiSYyLhYGCTMvzt7WaFKBT59svTl7fXbPCzltdSKthGOTwC0VYY6OgTEirXyu0Wrwj5/sFMOrw+ODcWmRG13VFvOq9/P94Jyp5ln6Hio/Zy7XYttT0s+lILmfn73Vf1e/AmY7eEOGmrNIA/Om7ai05zMv3CIlhsVUPr5dnUwMng5n/E5ZqnpMNcUdZCcu6qGMsVYuuVm73nFNLvuAbTrrfVDnBClqJdziAEcvdEpFV8AifePn33z93//Lf444BbOf1cMN8zXOHP7w8T3lLkLxJI+C67lYksVqyfTEaiAK7yENhMOcr9U81ZioYyutY/t0fe/wcP27H1SYEnsW4p9Vf0VGGJfU0fZojgGREal+yL9mk9GO/t/BoU0ktsM9cIjxk0ceOLHMClBbJZzHEZ3L4gM4xiEcccT6tQ14FridXFw8/vhu99auTipesR3TjbkIXFZrdJnRCY/h72g9GKOm0T8+O00xm9g6aowNQz/pHm5GnlziHj2/lNHcShPyHMNQjo8hFUVX614SYQBK0HnnbsMyhjhhaLWsCMdokojZoLhJUZjc3vHubq38zfvLt5ZWgVCVjl3gMlOmQlVdZ70U67G9v+z1i9PFlx/eu3d2eiF03d22N6PYqVknJXllVjoba9J7mI9KDWXRjvKIam3z1Nb4gSKL0LCqFm/kl1NM3+IcvtUEoWVspurs6aeUFmkal7QBw6pLXtHIlzMmdPdZr7C2bfy3tknBmyaR77hLTYGlR9hun1nVd2WcffexoJkyNrrdFS7jNpvIs92Hvdnbii20iiY6JsK84+3GE6w4NrDmdKYZPq41RijyP90/OOTLAZF/6ip8VRs48Am+6qZVqc2IQcOhRoK2HHiEsbUGM2+PfdRORR/f2jLQnhCZWYJKP3lNBv9EykPOKNpoeWLIhqIup1hz7JsokMcy/etDtscPH/0Xf/vrLx8+8JbPQs+7e3guErC83gLfP79TSU3HiKSJhcya4q55VU8epB6qd3v+8KNTw52PklB5CSiadpiCJMFN095GsUMCTi3bAGIghNDCa7zSoL988dorDjZ3e0dL2PYXq9yIwvT7xIjspJGNwakMGJ4QR4Kz0kuiHWp4YDCOSK6uL3TCBRU4CRM7Oc2P65vpetJDR2ls765W5MUipynf2XUktTvv7LCegoYd2QVvieUnR2zs7x3sedOCiFnH4+3FBS2g+pnnB5s5D+ilXQoowoqQHktwg29c3OhVyjckYUaXPFXrl6YfigoxqdbzRNUIceiTzAFsbDx6dF/l+nCN3B/f0w+2r580qZpgyTwglT09sWb+4/7hAcfJjA0GmBY0VnN2cqonRkLDMJWOfyxilBI+Y3iwqd1esMIlmf2gl4wAIYhNvW5MXHop2QnLY3LU0fg7HAzGR1E2T0IWYlrlcMtEfI3JQASN+tm2oVVoRe3NmvhoHHwdS/pMDzW2tzfbbD2sS19UmAlhN6AeQEkoIezm6ozV2BfiPBUnJQ2/Vj6+wCGSGruNv0PfqB7PUoIMeLr8eHz84Nc//5uHxx3aequN9JMsRL59pR+yvf2yGRPyyUGlsxMicc/JFR5ya5d++/s/GmXqrJSCjzLWFEDfzJqlsVrqxdQLqFLgKQqVCIqmynANzYrYBgC4GnEansqZLGyHsVFnG5GbTa8IHc7qVlXFr9GtaKWLQjo65ThHuitUeHt6xhKaLNu85TTCmEjS1h0iSENqjOVWu4qD0rP49ujxfWbp0GYHwFJ1svcM45z+gqww1HB7K8WD486ZdQ4A0e1MGL2+8eLZS31ZDhk0kogN/WlVl0u1KQV4K7wh/Q8MG5k3FJ6LjZ6qjZeyYFGJKrZVv9OiQoNjcCoZS+QitGyysjhHs5WvStYfPNQ/LtQj/XsWOOJgyHgCK/f1ozLV7FMMUwQzxFan27KV/VpbbcG/ASzW6FElb64dXvT4+P7OjmimUfzmZ+pcFWLFtCaV2wB7VpOQkVfQszs7jx89dJjil1880jv4b/7b/05M2zwb1qsxcXp3upY2LyMmEw6ozdV4TNWqfI5LdNRAo63W293acraeTf7ISDzTHruR0QVA9zBAERK73CWbMVueoEV2pkVEk0Qtz5Ce9KSwC0NDNQqqFpBgZnmSH7BY41Mbqd8u7HDkhtWvEjyllMMpWIja33sDnpWxYEzlQ6g8ox7hFkTIZvH+iwhBGJ2McKzT7Fh+YUeyjYvkXdGwDIll+t1YYn2+oUsR3DQGaseT6fsEs3bDC7qxC/nCW3m4NenO3JxT7B3yZS+RSNeJ08HkZ7zF+ZMo4jV6nSuDJxyUt7/lae3RSUmuTXkalbLoxdwF8m2pa2Bnva15Dic1L40oJA27l9Yf6K7ETNNicITjkkozE3ftgCGQ/NyU9Ww8xmSZeoOQr6nf2es8Rq9i9QLYl35wgk5X8trYFWjGPrE9SDXnSMiJDNzYVvYwGtvo6Qrz+OHqAbbOMcODfGUg4QmROVnrlz/7mZizSQOTpI3bhJH/Vpby3pa9GeT03jvnSetAP3nEexx/+/Nvn5iDOGyq9PTiHU/6H/7uNykPW1nkSHvB0whsbFn+/On9h/aO3xhptTE9oxjuRGQLy/wkYKtlOCSamnamZhGAndrRaPA9zF2Qi++TqHj2lwbNmH3OJolMuxdGWmcNFMhnb2z3maGsqp8GaXEgsmRQxgf2KOuL16+84YvrBUGczTFrOk/Ovb/9/ODu4ZMnDwEfV7goQUIPV2RnXTEu0RXUtprN+Q8ROPE0b9Jr1zoh/dxQIEZXM2gYleNpPdaow5gxVD9+Onl1cnjvrqGFVx9PL9+/PzDCt7ujm8C1OPpKtKanwGHi8z1zMqCAh5KxbwD3SGyvkXheCg57B7t315pUGWvBdsa2fnx/P7XIPXy659jduegH27jtbABchqH/cBvkgCeCaqCG/qTKRFmTQSaBfh84kkRGG7ifSWjueYGlwhxtvsCbeWZ0bDEJSDhmwlT/Rp2cuJooc1zBBJ3fZwxXVojUtSD5EbTagBoMU51hYw/yK3w4bDQ/8RuHRkjxrakh+tDWUG7q1PDixcU+N6E3mSfNC+NzEhoIop1f/Oxnv/7Ft3/7618eWPW1t5dWGdHvVYj6dVcmo/53/8X/9u9/93sCH3pTC2zV6FJv86Mook/kUihV+wh04bGFRbix9cPzV6/5vfM3ry/O2CwWlCEnOrwc+iMOxIiJJSlQUndlKWW/sqzgzNIaryTUyAq3li56utbkyKZRapsQ6BAnOLbOKCpaJS4t6caGCWbbER1a1vjC2npdTOvDtSSZVa28oEYPz31akAJDdZCEbNecxKS+FvB09Ce/4oFsDav2/HqfWsMZBgiJTRzqIrrwDJjk+GOo79YX33yBSNxQ9YNH90aE8qw9enxchWaFt+xN60RR5GsiDACqCQRsVNmowcIAfKtXJhG0MAopzmAxObRoJ4cEX6NzuQaBl0S/gURn5SZPKKagyw9pEAZ6ZOZmGjVZRw+Hxz0fLq+4Fg5BxC7BXyZhJYixvaff/8D87h3vJ09ch8vGmgjx0pt1vKxz57Ye85vT84PjA6Vfv3ilt7B/ZP3y4ijBW/CqrolNVGEoBD7RovXxu6w3tq3e4XRRVngw7QRaLbfhvFiIzWRmxcQYPJd4kjGkp40fbH756JH4ogOl97wB8OP2zS2DXbbIFuhr366v/9GvfqGhePbiudpGyJ/qZF955+dW3fRNc88Uyjky9h00xUYsRDxB08bWv/w3/7/RtsW1JIcVi+N2VEFICiqxWzGNfhRLlp6v1bJpcLYcK+Nsmbu7lmTap29ARmvTJbNCNomLfGBg0xoLT91GZcY0MwNMskjzycNHf/fHP3u/baKaJdtZ3PyDSjur6zQ7tBDwoAyLCJRxjAJPKXgzxydfPMwfLJUNJvC0Hyqq1no3VC1fyl9Px2jD3CW1dET+xb3CQ34lfEihHZih5zckyDfgU3Sh0vTwhmuKpLWB8VGRbror3IP6J0HjjPGb4coau/BDNX2nHLmkEWcOTmKq7iq9zg8gEqdYcbZLFo5XjlD3KQubHHQZHMcn3NCkDQEyV9q/l89f67GwhF6eSzTra149Zq9EADc6xcwLhp284qWufLUDj/fu3j15faYtdM6/N9mZXuCd4+jgF57dKzx8CHdwivXDuG4C7IihcSqaILB0kIZjrOyLdNiZrtfVp0ek5kS+nY09HtxAE1YM/dHqWFpeg1+jBQ5ZmJPLivLXtLgU9Xrt8O7ez7/++senP9663fI2LMRnDoe4T+0W/vRJ91pGjOGyACzmAdHKeWE8xwv3FWPAGw5hBIOJsBAAsOZYNlZBoVElNQPwf7ogkH798eTHZ08fHO7rj47sxwekUCTVmjL7oYUTA3h1mjMQqgE9vofcxtHRvaoT+9L+/EGVKh5e65vaHKofs8EekYe20lGDF2WOgNCr5a1cugAy/eoR/GGODsWxgUYoO/nT3MzSwyD0oH+KhH46RYyVddN3eTwoYxWtOY++0QtnDrRjqrW0PEZSBHWaOCji4tICWXfthZPA2tzsMJVIrOL+0wPIA2hoO8Yztp4FSmHpqoAXOS54rMpVusILQkstcoZmhXApXvIZEvxV4Zib3rnbfvCU3odiFPFuK/OXRL1PQ4vm/EUhPDYDODy698nxWVrAW1ssxyDd0Cg75leI3OIJtCCTdMY5Qz12IsjXtZjx7u6dRw+Pv3n82AnKD+7rKN/5Z//yX5ycvJ5lo5Z/itDs4ezlJsNJ+xmAX9fFunz3pljGqwav2pV+a0ff7NLJuPQw+KYdvv3mn/2rf0lLh52GSRymtXGw4/Wn158s9e3sFrf+sGsQGgZh1CxpGl7H5S7YZ02iiESioaR9ig7Lp0EgWgbXKgzAgVuEraPz7PmLdz/7mdZKGSGFKT597eF8J59xKk4TuL4+0vK2z7MVKYkPh8DAMnbV0T+3dy7entfeYdsonoltT6HEvMfJ69W0yiIFU5BO0A26Omocx7s+O+2qj/1LRfFLSkJZssWG0ZhJk3GBiQV2Ub37ZNTcMWSkNQajKB11ZhANZWkF30vF3Nzlx0+XF5dpSJunhyRfLebpHQ4dQD3dzZC+WecW3r37mG+4s2uqbk6205naNsXuzecq1Xtm9pyucxeBETgY0rA6y8jmIqAIp2QLYQj0VxAlQfZYssy6wC++xOAWGk2OeEnTiRQdTa22AL+5izmiiVwInJd0KP8wA3dSgBbPVos2hTz0IjrS9j1XNkriM752yTPsHdOLy6VVUsbF6d047f3//H/6PxpY9v5zzYJQDM7/m3/6T/7Fv/zXRjKvOqH0ihEiSVXJOBuPMDy4NHjiPDJRh41QcxoV72hGR4dFs6wqhyOqkfsna5xnIkqzFpG5hqgWwiKH1Ej7BMy4eDUJaxa/FZVQbXxYvZhgakssYt6hrbXkx/kv7Kt5tYy8TBlMDBr3grOvTk907e9+3DW/bwAkXW9JayMDwhIG7URk5gMZvTJPPWNjnFVOMO/ZTtGD/Ttnb07TaoFfUw4FI/Gxed8PDtrXV8r2zUNrUfAnJq2QHhjQ8c8I/XmrO732JnJkSCo4UNEkAjBiR5tHVENQLB/RgtRwGOfL85GzDqLYwOyvmbLvv3+GoU445dkCnApeUWsTZ4IHqBprJwnq8+DxIysS3l5c3rt/KLSNZP8Gm5iTHiUJUEUGG4cbqujVATo8HR7hkBinNVqK7D2o746PnyyEoJYpphfYN/9JhJrjhdSFU7FlYYk7ecq4XKllDzWJLKQd51Z2hCq5kIFZsw/v3l592v7xu+9Z3d3DZrhPjChueNHggUmGV7Y3HlsRd+vF8xc6zAdHhwAuHAM6LRo/A5H8VLFmpoLqZEzcZbgxPPTkwT1JTryESSdMXt18+eTJV19+IfzN/dMLx1nz3zN+Ey0kZrm/3QUteMATyzG89G3p62oSJlomMrNS+44X3bG9DJW9lTxGKT+d5o5dc6rFkhgqDEBZ49TchG82IpDK77OTFeemmRsjLqLQUssC5oqncROUlVDH8CnWje7/28s3XlaydMcHfURhSSPrllMo3sIbSyBvpYKGIhdTgkAuRHfi1q0vHj747kez3dP6F/XUvqTamfjWyfnZYwsWCrJrFnLSP10RPNd0hS9ODWveS+ilhaP1G87bu7N39/JNb52a4j1Cd7ZBVKkqQkoaTqx/7HTuPep4+vrUUkdqQa3ZEo6fn5037xErPtcLm1mMbUE6E/TCsraEf/gIc82FmbW69LIXdhqYbXnz2tVWx3u1LLqwTe0zz2n2cN0wl5gEj2yBMCFTby9lhVxhDSxDOzVMFsongOgEnNvyLWuVlaO/2PQ5Sxm7X3dc+VsOz6cxsTcvTrhkQzLWNzNC8sD+3bt7ZnJEfJya980ZVqp9W1szt6AyfBuYzdgAl6H7nXcMq/muqkhLAtJDE3frAMQuBuyxVQZXFqH+zS9+zsDIwNDVALC+xjCJ+CGqhk5dF56Uv5/ot9YrMMyGXyk8sVH2jr1Y+6cXZyNSI1fat/Xtrat7B/uaC83wb//4eydUwHzC++WddDFzS6tRHYOrCjjz0XpVMAGCXl0r5i0IpbiR7WLC/P6dnVsHXhYwQZuuGTvTp+ml0rpe4+3ldLovy2P0zldWMQbNo5FZQpJibcWm434BVnnCWusFRBoMzymQbtLzly+/+fKJOXnmn0LkHV0hCV5q3z8s3hJ41KzfzIo96TAfqRmz5wGoYrwe/4MNTbAlER8xRc5+JaACM5rBBu7dPwb55LUlaGYyvRG+SIlo5Rw2palO1HG8I7/mPUQmxbDC8iEnxi3il1NVEFRNtkaVTetostsi0hYTFu41Q2xYzABh/sqIpQqkLxSgcKVmhJT+QxWerUFYFE9qRMk0rmuVubz+k4fsrrGaCF7vOL2iPYdNbHzx5UODGpfahI+dXrrt2FPVbdjztDfBVGWNIMXlmU4JYtaY7Y2WE6XRs37Mz/JRqKk89P3E+LzN0jh7NBkAkaSie/cOnZ08ovcWUCMovPAn58vySvWLorVB24Kc5Y1pXEtvQnCmshlJPQcjYWsGS44PD394+r35h7t7lPKuw1N+8Y2Xlj8+PDzC2H/+r/7Vf/3f/N+KFUeH80GtyODcYJfH7dA7TaQL1gthah69Si3iW1yOIpnrKVtKvbOr2f/qwQPvzPReBjO4cjRVl6ANGCN+/NaAm57kppnmiKLEsw+zEZeqGy2OL2um/XUV7BomYVA0gLMsBI5pkKOCz7zSoqHauE+Fh3ETZaXM0Ms14GOErDV4Gqk2P9fOdgKSZcaOXSID8BIAp0skCE1XQuSzJNtYLBflZsPWoTx7+gIJJjqreK3TKDAFbgv+i5vPG69de3uVVhROdMiyJcQaAcQ67Bys28/uSDL+QmNggSdPbAlDI4bIwoFHR3DYvdte5zhPtxolsx6RQlCJ5BDCY90RUgCQng23hwy9bVdSo23ALFLA3k4h0aINn5Ior99AZ0P7hE84vE0KYGMdRRmtDnK4D3eqO4uqrQ56EOLb8KQSMn7OqeqeAhJqg0+48OIWvMyKLELRrYKHJhIUUaLLCCGR1a7e6pz2UPfMf2v154gJfRv7GOAroDEguu38temYAS0fHv+vf/2rwzu3vvzy63tH97549NgyeMNf6XmYrP+Tf/KP/z//6l+9OHXaL2nFJfjDxB6FOgPhOjyMqFxcqKMjwt1AY+TBipxcdP/43pOHD+8fHv7syy/2d43v3pGBXWKzuQk34LNd28+qwNEJUGz6yWjDrilkj8ZX51Gc7kiVU3JK6S2/nIqDBba3zi/zlzBQO0HFfTpgiObDe1Xcu7tX54gn6xBZV08XkeRcDP+9/+SVZ5tbx4YNwY3/QhHHU7+xJbJFdYIBSAIRebRvaAeotO67gZW+jSp4IO/UgSbdtVLg4YNDb3GyfScNgHhyioH35l3ohH10v6gMGiT6xRcPPA/m0o0e5fJbjLEkA7U3RzuCYDgfTyZ3Ml10CH8+FyrUTjfkgHrYx4QSSW8QjxXKDUOTO4rKisDKLP44dZxCLMsNGTGzem8tBCKpkXsRJlYqlNuqpml+CU6GuDQVrjAYdFRQfRQ9XRmRpXhT8cLNOFVWEhJr120N7eQqtEnOa1vWv528frlQVaHMJv4Ck6jq29QmgAtngzQyqEz0EsnVH/d++e3Pdm9tfP3NN1pLu6mgk+MEFGc21o8PDn7182+f/qunEkbeM+tBylxnhA03FwqrM7DT9A8TlY+f3mCwdes/+/m3v/jmZyzB2K0h4fjH90PUwLBlbZo/EPErAlt56pS4+OF/C35u31ydwd5bXgzB587lktXThs1xpu6gAaQXFghF/hgj8IQ7UCRZ0lfbNV7PEWnZHJclQ3KGCLuKnnbit3AFNWmD1VjYpP0lB/3CCByag1w9g6HUpO5X1dkt/eCRPo9y194oFfCYrnPs/Jt8mHvFF24pFfdomCZ21o/wYZ+bDHldvCPXS1bjodM38lsVkmOB7xt7wmDgSoyZfo25Ku42fOsXKKJB26wTNz9KCIVxowgoFTlld/mWNsl1/eC7WM3QPEFkTKZ5E5cm8lr2tFbZpQ0KYgR7pN6Fs7gApmoUiNtTm4TwDPs8AB8XBtUU/sqjfaTflxTKKidF0k1/8fIpKINp0W/lKxg8rZn9469OXxd7N2ASRUxC+amxgVQlhCpHB4cw0qeRAapZ32gyZmrX/+bbn/+Lf/2vRTU/CY0o861xME5lN0ORSkuMWf5HfU89NrP9lT7+40eMwBrXHi0tjIh+a9syPt12BeI03FJOAUZVpOoNSxfRGuvVwGEaxc/fpOcGpjJuFVHfgznjxH0Ci8hm+50sb2WUdy1a3aSUskSULi2OK27JNdKvsXWoxAGyk0V1J7xuEmpuaL6nTHYYR7F5BFkmuALkGyGjS3lTyHIckbFYnRzyZjghMhWPHGKmmu3ZA6dKVZaE1BozF/VQdfcyjMrFYcBkFv8EVO1TNoRjvKday7LP/ahAeWp2JrOMaonzDc2F0RBQcv9TJXC6ixDDh2FZjSEgTNBmaiH0njGdVB3kGslh1PMQk2febQeKwRazpDqJBhY7RycOLAJZqqt6ZQYnSPopQdLc18SVzYABxYYw7V7kBsEmXq+cRvHRbh6mgljzHMTJezgWDSnG6E+/a9uQNZ4Z6nheMSXfaES2auwvVHgcH1ZkoiRbepXGy43rn/3sa8s03nzwwmzaVfzmmvV5C8pglBHXo2wYCPWcQMAMYWy0n1V83OI2sAlHeMOJp2ecc4e1iIVseDCRLQcu4/NowqJdaTktYgn2MiSM2tBaRlnT2njnPNotrwe1UNkwZa/bsIL61jYL+PqLr+zfYxNnF2/Lmgw5LRMoFYenn/4Ro0/PsLjEEXht5zCiIu0OSrbj7VKxWtyIliujHGxC+Kd/Co86xOil1Gd4Sw19Vqr/U39qETN9DgaDEayKLQIFvWytPFNd5dMeX1U04pHijgYv7hLenoc3TQ21looFPx3tvXhNFPImNhuYKkVUtQjHe0eoMR+9Ix0eKBnvMn0RWvoqd+9qYGXTWJPw2/ML+Bjt1WO0Y87+qjZqvr3Uf1GdqWjDxA02VGd7G7gbVhv/ZnwQbQ2eJ3HP043hVahGqgcTX7mBt8xGySyTVFeLbfGtSvQ8edgd4evtQ+sAGhDi8hE42gHTDgcxx6ebsXvLudZsxFiqN+rWDdMT0IBzbKIm1oV1ZiWcDuR1yTDGB0CwRbBtvblT+M/eviEirMAAGG7tFrDG8sF4kV96gCkoyTBG0Lww1r+3CN874T4dpzXm1RpCAWXCwhGLQkbeDX6tbdciAKfgeO1Y4SmAbZKq5Z2BLwFqb6+ohYVNUlnfMAyl0/yLL798/ODY8l3Hqu5sWWh1Fwj9BMEDRiBNWIm2ZvcUjMg0bzW0mxIFLbFkyAksNfLl/8oyKFlyTR/ljU9xJXL6DOrCByT0Y1Y5eATzVSkIJeVF+0HIE6YM6l3anarspysPN7nzjV0e4TlRLD8BqeLBt9vJEfPh5X4cm23Hr/AQ2wWQp6cXeo18j9k3m+MSlyNn7hi5+kQ3uS5/C7RCar2a2SwPBUt3wK/Ho+t519AwlKmRkZZW0artjq3t945yUU4w2L8TvaMFMx0+/r9T/XqlC+InToVmWUgccbFhfkfg0iCsGJWa0gKlpJs7M5ugm85UybA+ED3a2rJs8YcfT0wrmc2ysAs5nHzsGL5ZOatFo2NmDRpdx1jDR9Ss5QvFB+OzW81qxM/6xzYEfvDeoPYm0j75mSim7d/Zgy0FlaJXO8yD7wgfC0ZRG1GClH9aHFfCGQ+qPt9OFb58+JBHFygAIwNGNrxfq5cO8UlNWyJSYJTRQVfBpkmaxNj0kgR7Xwp8tEhK3WoObrSZF4eVRam7dw5abbj/4N4DzZwV3UqBpntgJ7wD5madCLxoCdhsh8wWhVGeSox+r+SxUjU6mTJFZFopn5z9dOejb1zRD0uKpSE1HgAbCUjTs1nQU15Z8pjCDXDlMjJB77ozdFwVMWJlWyD5oZL5ygCq1TU88JD0wkG98WpBqfKlqmTQyUTg0+ruKYtGsSg4WfH1zeM9y3UKmXBSXzxSxj4NDHgqCMYhDrQ0x0k4kKJOWI5QKx69+YFCkRBHG6lVYWTO5yAVDf0LU6viMCF+TIFw6t6jUGoyuxnMCJ1/C2Q8KmUyuvFeAoJojA2Pow5Lg2Os849//qPWTFViGEGU+fnYFKVNM9N1b8ExYJN/wmWCGYFSReGrGpg4HbaerzHWttF7kdIyiWkwfFOPO/fhxSgxuwunb7FBdUO0K0o6SMdtvaDkLYB0Ff+kdp+cWvveu3r0E2zRvL3VBugrq/o0rbalcef43Wpei8CtKAwICNBUfXFBKLZH05bZZTJcyqJGI/M60KDo5jug0npDZTWFjky1LSYEposvXhIEvl+/BNYyvEE5AjxeSb+QAx1xLZzy0WxABmQNPmpVoCvSpaUGPZZVRt8Vn3ltlUht3i2NTBM87msxu6xkAc4PljM9mB47qHoJBTzIXqpSjkYCMFWnqbmoFCNhjDLUdqcngxeaPGmgL3QC60YoTG8IJrQZXr7JbQsC2NWCOZjTTg5VA3v6HQtQoqWqcaKKI4OGKUeX0mxd0pLHtQ/+ci/1l1O2mOBuotpgux+KstupAfKhXb4caxwa+n1Ua3XNoxyJ6e0rGshnc9lDBxtbm/C79Zr8X34W+cQQC5r40GgI0a3VExAa1gulzeWkQN0GsyJqbLyBngBrDbZwi9NVa+gURlr84j0sm4Y9//yXR/YbGWk93D+wTa1dwrBEewWqLZwbUptdfG2usZ0/iUWWefKTi9NnL581TLTRFtJao+vOezQa+/zFi9//+S8vT84cfw3UTIa3Gs8ugfhAlc0079x+fSK0u9pOUuCqV98/wWCmTpGKTRcc3LWRihpsyu9mQov8LslzY+Qlyrx102zUSJ2EuuACe2DnPs+U5LE8IXHekhddbNwjjZp0VU9xBRdTSZaDWVqrzsDR7KyNFQzeS3swxYbJqwd51jJTJ0AWHxfYICieCRXlG2wLcN6wcYIYoVB5lq+pv+qEgKkIn8jQs9iaCBROxWVfYBft0YnqGOWONrbxE8yyAValtXDlG+yCVTSOLhfpJOguUNAwsMgm9chuaUV1DofHKkij+MJTZYfOmpEpH9dWfJ3qBtz4C+ktrwC8AOb2HQOMn5yACWHS89ACGS89slJIfC8KKLw2seOJOgZ3g+x2xterdojoahr3gxEhECzgWAigJHggiuZY4eMsJOugG+MZj0bJ/+abr9+dX/zj/9U/clyNiYE2tcFIe9P5ilqrKAPQt0ZhYGKD73G43drh+v79D8+e7ty6fX7HphPvNvxw8fbyxPJce78dP2911sbG+Zs3fFQLgxbx+CyEs/ajhsmkicv0Fh9ZJ6EpEo3GeDoS6Dyl7f29/So1aLBcuOCmRkYabG931khzlg2ljYdbONCnlmxViryT3JD1U1LWlHkARWqRmXCLrxLzXBJdcd61rIyazDRX2ZjRFV8qAIL0sfWV9vNK4yNjnPTap0RJD+maG6XiyGhK5hgC5Rs2LZo3WYq5B8NVdX1JyVuor8phMo4sdxYWiMkMwlt1g45cAQ8OQ/VdXR4FLNyruD9AB8tJ9yvkPZ78NXeKTwXdVtCPJR4eVavCMF/BrairhKyIwc1svafSJqXKdWDkawazFxEvut5iTTvaT09eXt/doyF48vFqzvDaNEFV3GsRyolTab020is4end9Oxk4/DIPH1Rq74QK7Ju9uS0K61hsA0/1oIZ1TPr+sWF2r/VwlKcKqZkhTgqm2+Kvs1Dj2LCiO6xeCExZODLPGv+4/uHlq7M3HW1NoQ0UTQAdt3UDhFJE+8b+dyRoD9pgkXUucDFPvYI5rbkCWgZDT8CYOxxOZGlq1Ort7eycv72c6hMIIwbPWEVnGDRi23pPaGsdFABfw7kogdzdjgRWtAxBcZ/mJ+BEVIaChmZ0wvKTc9tVsoSF0mT7h2s03U/JcvRoMqwY5SfpqhcN9AkaUJq0qWwUNqWVPPpRhUxad7b8JYFAVDwIxNwQavWkPx7GEPVJWuENm5hQMpgyKRKIRTYVqzhSlS0jIFMiMMPm5pFF4bwIR7jVWneVzGCocafLbS8E1r1WlvybHWmplV6nV3Q6pMrUpCGTew+PoXXy8tRc793ZnyA74BxM3mUYhU3yIByGixkg0A8ZINXAV5YQtyjoUDBKMuZ9sG/BskVHDXxB3yLS5UU7hfsNMm0YCDs5Pbl/sE9009DkHwBPotFrlHLLkCP9pFBCJjcGXTREEz6Rw6ZlGCaHocMOIKbDsuGEHVgtGAfupwvEUv3Rs4wxr97StzX73F+enZ50csslhNGMWhdCK+OIAW9dGKc70mopudKLRFXs4HU4QXEqsHKp9qflaBPPxUGDs1smwrpi3SjBokkq8FvDArFMN5mHsZyp1KCR9hQb5KRyEz0iJ1mDMfSNU+fTWvlYTga8AOmxEvUxIIwwxYwZ5dULYlLhtDPsq5CqjQxk7Gf1+ANDBeqtbjnlmqf4UEJ+GZvwpEFsNYRpAXrEyNCmaocSLPwMhVaY2WXlNkArRAciXFFI0RZCPj8FMDx7Q9L182cv1RhroyBC3GlRXzx7QfAM5/z88uT1BcrEKg2e1m/ocNmFVxbnGeGwT+Dk5EQplYmprXh5c/7m8N4BRbMzu+paqfFusI8BEpCCnoXd2ZZhmASQbDygSDERR9KEvhRBSNRZknz3rg0t4u1lVbZ4f7yuhboqpK2tuO4495bR+omkOaqUKQq0RltkMHYscsYgzLZTXDtQ77SnoSeaMhTGR1AZ7MP5RSdSbhgkivoVXQwFusYZ2FaL48d/DDfVN7LsI9EptZSJ+6nxtVVDCBw1aIQ76U5WtXLnDomAEzLSjOwhTcn66+oWlGBf1dW/0XoyekLVM03NB8lQY1FGVNXVsxAvrOr55Cmb/2lGD8eaAisFvEUcPZRALhFNgxdLDKHS+wOVlLR5uKmqmvLII7eUtWx+RFoQmbQDE0SWqXhQSvdGEsLCWxxHWdyudOeKntgvdvryBI25mZDSyt08//ElkLwk7qAMUfCwlPjHH19gRLgFNuB8of7fZPQAJ1c2Of4rLoyrk4srjz6Ul00De2vTSOVe80Jecdlm5UaTbuyfdFlM/G6MVyXxkBE6bcPqIM2vTZVeo6eRZ300hCh9hv9yrZiWCox9Zs+rNGR3Rc+Ed0x/XmxZRjOGHbvv6bilOGmvxt7eXWt5HfhOLRgZONj+9t3bl+deRHGhlygYN9EnUXSNWjsIJkAarJPMhrG1iVdyJVZyRz/O58pIoRbRmnAv1cyNTC24FI6zLyfJU7LFTZVe18y/ZJrO1XzFHR89ldr/8nnqB9YjVV7vvQQfmSInV3kjxUc8w8E3bw0YX21vN9kheMbZMQSVm0PpngPhR6ohYw2B1GuqTDnMzO3cdg7s8EiO/LUK5EbvKByOKzw9uQjwXF823KEH08npswpAh37OQq6wxSvdnOzDLXyG2JHi5M6uZifMEF2SItzWyxevwLrb+zYPCFUp9Tk13tDx/tFdyKtBbq6h6tY2rNm2V8tA24e3H9VFyQw+89DX1y+Pjg+EmS+fnwgmHSlgZRrFg4mQihy0orF09CwLhg5iu8t2AB8a62HaUPHeifZq9SBWYovH7fHi6+xvd07HbPa+MZnlzzoFCK+t2yzvFQcCkUIAvnd7rR6tFdnpAMU1nH2zyZeNXNQr8gS6gYDYoaJ4jqZ+ljKiGRxGDyvWMLQy3IRBTwtyO0w/A0uO2gyzfn/8y5+ETR+v72ipNk7enl68fX7y+vunP3qrCxtxFsbf/vJvrD2gZ84CMYa5bnoadmB3OWnX+WLNOW5vt+ByeB7TGIGf8G0M6tROVKfCaFKaP5z/hQc5s6FisMdcJSLDxziYuQviYiFoRapKe16mLG6GpfHUdbC3S+p8xvhq7VoyYJaMT/Wua2tC7Wy7hQUGvJM0YFSvRQ25nOZTFBkzLlaBagjCa40stVPNLFQEEou9hkw0pzElDfOjIBSVVEVpGUJZOZRwG+XPxya94ofJFVDlBv6UHtZouzihrHI6iDKoUNfeEW52EXC0IsPXJxdeISW8Tp+u1xxb5NVEXv1dXAynm+Zr5eSLrL68uLg8O32DGlg5kVtN8SkHlvOhlxa28OLGT9N3e09o7lzgwG0ogvYKQ9ggz3PIgsMdiSIWMrVXNo1akTanfuRsaIklhuA59rRSV43fc0rqMfbx6sXLL756wpZOXxmyPONEHWTmsLP3p+9Nq1lYY88GVTPvA8+cQ1dhJauo+tjnXxebjHkZqoCCLrY4AnpuWlC9k23nKFKQvnm2QyurXzw//eMfJGoazBpKxVtmqQIhylv20YqPvdrqtU7Oo1vUZipKb+bkC1tAxV3JkaoQh0ph13IUpzRvb9t2Z2b9tuPhDPAUBi1Yh3zCT7pKVDyKIoXqQbFnK1uRE9qTZJJhVlyMtUzm9Yt3l89f8/rOlFo3BSHOaRgpMzCwxfE1AGWg6fDuQX4tN4aMZjbUQP6qDKciFnXUFsEDmqlGCOC6KdKmhIi5GoMRngvGYbvCrdSEkdJMJrzP4lVUxYvPilM56YEs86whVUuiItURcWRnWTSU/fuSuoILEv9mluP585dUiggv3ryr3Tt/6+WICh4/OCYG7kcxVAChuWtiC61tgv2oBRCsCNylW2NyeHR3c3vz5Ysz+910h9sd4fjUfIeR63iVsgxBQygk8XbVvhEb+uJQBNbB0PQ7OtcYiSJubu4ae9kJmfW1g6N9qi8jB00b9q/37SRu/+xtYzKmpHUl8WvT4V/WjfvEmeawbWnzNsqbtX1HrI8rLBZKKvhZWEhXJjkRQmMYpY3vEZc35rCJKPGMUzBH4EwWs0M75MG6cfjVXc7Ru7pTUL3GW16uYP1nvdu0UMfg6hMtojjVUKW9wKW3xBuGmSlU/tQok3YvjepVBB/EEclURDDS5IaCcHJ2fHP3Zqexo5gX7KLVdCZeBnz5l7l73jV+d1JJUxd4wpaZggqftCQlhg2xfff06aPje528bCnIbLZg9+eX53/+6w+/++Offnz+/J9u7z5+8ChN8Qe9cZfmTUBCq0pnILjlQ8Qx1RNt68BGH5HWHlyNjwa0Rh9CCxnBGnoiKxPyI5X/TFB+qR9qnbueg9ylZNSNXwN/0rORAFZmQKwKVcskiBWg1Skvjx4/IrVee85ltSinl71r2RYbpi5eSK60guTR+CF9tXb91i1ngujx+gVfMdKrl6/v7O+lAP5vNvwgmL04u7TIxNpYcWzoUqsBtWjbEBOaw6ghGt4boG08evwg9vBWmxtUgRrog3WCXZFwvhlV8xJEuyl27u53vIA8StibqqfoqV6Eef5gi6IVnr0W6tKNjK/a7OEE0lIfGMfH4VU+x8VKw63bteav5KeCWhdvKVLC8AlDMf4+Zjlm7MTInVsOx/53f/8bLk9Z+kCIVh7ozDAnDZTNzM5Hull/oio9Y7SI1lhMljBoo5fXf/P2olhue1sUuu5Vy4LnBqBitUbDxJkDSDc3Hjvvdjwx/yeamGYRZv0bLfExNh1Zn3mNpFyQK5I8AHQIHotJTXBRwRd2vJ68EpJp68jk9Ozixxcv/vr8h9enZ94TZcW4jQrFcHP8E/0WmBf8VFN1UwE9hSqQku6rtAfgIzXeetf6FotvAGFstXXecorgB4mFisq6iuZIqAZoZATSPPBzrikxVa8QoDvJM8uIM7m+QYt7mWwZp2dSAU/PrkWudnHrV7abx4luPzx1JF4cX7txnBRz/eLL+2MS03NSol28GmVvsnCyqrfRvd+/u6M+A2tsxmj09h1w8k41IOtrXz65ryKcGJ4MajEEWiuihj9+RrIGBwf98KFDMFEZJ0rXKXeDNtE/HOi+bEAHayjqkZGe/f0DSA77+vI8OIarGyhXW3/MLdkMH0Kgyhval7RYQyBliU+h27Ic6E2MZE7g4fE9hi3e2zSJ9vG9ThFbytR5w7Ut79Hh1KXEt3n1BKpy8Dl+G1w3MW3pZHOyls+xEH8CwjWTsXGer3TqOA35pBnUOHI6Nn9qriUikqnYWPDf/j/+3Z9+/A5KjH5ajERaYf/hPHT45NJjXOzIk9WK4U45hpML7+oj40HCjRVyeW/cq7PX/+53v/39X3WO7VO3J/C9JZAcp85fwejVGpcA6c2dBputKLT5CAeTxHANONJpFKygP0zCrXDCpZry8buoPHtzLvMgCAFCXEDIVf4Q8m/BbB55DMjQmLwixS+Mq80cMEUgNW44MpXN83KVZfRryRe4gaOGDQpd3S1c31adT55pVN8iNruCas0KbIIYNgJG2zvVh8fHdvbUpjWyTvsPDsW+ScVpvCv4URMGcRmqGV+3KczoWWD73ReA+YQoU6agPy44YWGWGE2N4Q9VSlJAQ/AjP4n4zXb0HZE+UqVShnR676kWGLx3BluuvTRaM7FtLYN07UzLVGjKSiykNgMVYRzSg1IfEMLY4eHN/v6e6N/QkJCHAmCd48djuEwRl6id4eVUkRcnJ6IMIqlnqBEq4Ok8OKBfO2zu/Xucdjb21h0vrWwVqoIy8yHYYcGaBgf8mINQrLtuboFcRFxeef3w0eOzy8u//OYZglvPhJnyhMPwG9YwhtecAhB3B8cI80Nb4Jsw52eEpWd+DO9rEBDkpZE3V989e6rgSEHntANS8VhOeVXpCFHDbMqaS9faRbyKammLJmGtxQAyO8kJ8QRTi8JTl/pgS6dfnZxMUVzsX411kDyOriErD6EUpJecC7bLs+HRIDTPhsQg93S80dSm4HQuKom+ouJ4FtjQcavIvmWbo1NCXcvoMRHIXLJRhGY2Guyby/AAafcjEkDpqq/UZ8Djv+qTAtRcEx8OlqunWQNeCj3TaeFkgAdv8aS0TMCH/7ng7Hey5EhqzRuevLJt30mV6zrlugH3H9zj8c+MdLWf+ECHMnlC5Wbj7PW54Uicvf/gwasXJ9qp3T11rDsbPLhXdv13onOg4QCJ4Z075IRWqMBhbn3MthNxDpes0+s1f7yd1KqItTSAnOReN/7w67/59bN/+S+8ZsD7a64unT8gmggsRccoZ/KZc/i4s9vkbVraZwKJgY05C6Jy3qVDa8M4jhRFWis0fD0+Onz84MHJxVmRXv48AD4RxcgNdjf8OjoZbaAAPzqNnNi+kCUVdJYgkUMwtsE6zV2L1cSXI+P0MAgJtCOh5a02rsw0oWMGrVqNfmf0hTldaZy+DKmh5iw6G0dLP0YtlocdRk+VVKE9NfhXDWGtkYzmkI6ewWyYAmQ/asddkE2dJ89kD6piPcMx6cO7BUrWBDkPAExpwyV5jcINptLGow/zgVpITL/DouaFYx6gpWVBkK0V958fQ3gTRL7wXqzH38kRwZJA89u74EO+yFBiFjaA4aC6cXUJO9ziwKoyWUahonUIioOxGAKONWhocn3dChlmaQ+65QvOY7TKC4+85msxYzntalDqwf1jn4qou5VtHz6evj5RvPPD7XBYKMVAyEQ0TFW6cNt9uku1FomU2avobu8c7O1TTZiFdFTFBw+xuhyD/M+++JJ+Nv6TkvfOX/1msJtFWbsy3316dhpwCsZf9C5jA7tFJUGbtaRsBv/kcTmdDXfi9U3n46tCgPqLn38DRSGf8LEQJBWYBiUeR0yodDNNp9/jgcYHjsLkpqxltQRIvOasekt+aedwINMajo8cE7wSVH+wScKLhjoP7207GSKD+0+bKEQdONZIFwJhcnHRi9HSCQlS1kEL5ZubTo4xRBCWxDLoZgaDRvwdjqbftQaxp6ejqRERKAlZ6Zh3VC9/SUHZ6ZPEjt54MLL0uCyu8JSOv34uwDrnc1bgheAQz6qM0z179uLF85cICcOR6JQNI2VXYmuKjAe6/vD2w5uLi5CPBTeW12OLbdmGDDkODQbYqVbaErKJOK+lxiib+wRXFUPMfExCmZTlCuyCuhvH1jc6TMAhu4Y0Ghq+2Xau7e5Ormfokp2E4Ql/VWrUHz669+SLR8PLVouhfHhbdQspYRVbs0+YwWLkUrVh3NP+U5ajw8P3ZmBnXwEHAMREa5YPmVXIH4mlH9w71q/FC8qgy3txcXF6dkIUMXzWEQmQmCVGibQMqy/ROyXzXBGUmj6jUyBwgIaP1KLbQL8SpzV/m5u/+ptf0ST+p7EaHClrfDSEA93sGMYoUaFb/+bDl2dpPFwLDHtcVoruBuFqCklfIxftR+mdY6VUxgY/oh0L/Gjt6qODA514/TNkkyVYKtXOsI0yQhBmDN5H1cTKeN/S+KL2elTN73isplHfyBlADSwmCt0PQgBksNIENY8Y0hQmckgKtvOrRDiA81mPaso1CN51JfPahhNZK7XwJIAA/CdUe1gQFekppnOnvMD8dHfPSjIO6YOVXm0oc27FbuumrI6kiJQSSJrx1hs9HLp46XzSDgOl+s5t5m68LNQ2PaLR3/r6y4f1s1Gm5jQqTEZgq1/JbozFZ4KAUANxEyqFXQzk9IiPissAWSaqgz1kdZ4N54Ntgun3F5fWI+hlQuD01QmNZDy2sC2vVvCzGaFCcOQuQ8tzaygDtPBQab2jYZeKlupDLtTXb7xF7rvv/0It6+/1Bp1tmHC4FLK+iqjSPiHTYzs75mqs3izAGbhYW+wyzv3s7ISjoNVNU+4aATJZudYgkvOaGl28JQLMs7CGa0c4G7el4IXcCHfB5Msvvrh3dPT81cvZvYFj8SQuUSlcYdHqNZtTDCdwA3U0r5tui0zKH0k0J477nEG3zFcR9MiAT+VcNv1MoyZxQrRGsswXfnn/eP3giBlkYyDM1CPeOeeMYdbtR8PUxNvFTTqCbony996ULdtXqzy+h1JIDYVh5b/P7MEnqn2VMbxrmTybzMpgPqQTUzWUrVoHWsWamJTdo/pFy6OwGdGAHcjoRSw+uwlCVl0bjfs13dtbJ69OZZogaNuEWq9cudVmqxPHPx7s6/w5tQoPvX5PlOLkLy8IEGwWG3385M0Pl1dGHi0Bai9i1GSyYbjIQn1hHgJqXln+cBTCKVFYG4yfPKPxVthcHezvn56e6Yve3bcyedOUM3KdXoVJp6fnGHfkOEoANm4s49HNNB9+dvZs/+jA9MLlxRvQrBtNZxSQy/+44XIzX/jVfHyIhsyMUvqJXV6GIJu1dDu3reO4NLrPNWS4c0yBCSNkW/ZvLeaLYh8+ft7vRvLeRSIUdx6MA4wF0L3vxYnw3pZ7ME1pkX1kUiYbB7ZvnXx0YCRLyAbSnDH+TJSefvro2MVf/Oybv/74QyOVrVEP1XTmjhXRd/e8rMH8DjP4u9//QUCPChTViUJKVMXXMY+F81EKwqzMIY/oTG/iB2MYN5yeJzPMyiXLcdPbtQyt3t7qoEgQOCrncVGezvtrqevVJd70svtGFUHjKuJTfFafKpDTQRiAhXqJ6R/Qg2n5UozwQUAYTDYgytm/yEli/Q4pIGrf3CyVwL9SwV65vZ5MRuklZwv9BgaQzwa2pAbr8N4RVydCvbxcBlVM4NT4EtL+gdfhGkbzUpKtt+e9YQQkRCW2mNRyhtFyEm3B6X5rIJqJ10stSaWqbP0ErGN2pTHZk7HcQWhBbtpv2VNGj+vHeY0adnK95tfoDd9JU8wcT1/e7Rp8GPDwNirqnV97H/ve4fHdyL5yrNPOUE5wwzxokOwMHvaVDAAbV7gyxJhZcw51c5Gd1Wl1/bs2UgKODt6u9W85bY0TGNp85wf/6fvvk9fy1p+9HYcgfvnFE4X/w29+Y65QmI0noiwsSgImtVQ74YwfTSniQUoTcC8mNCXSQYxOdM+vxrYvHz9O9e424Le9bBP7yvtJ7h8/PH5oOQCKXp+fe6n401cvp2HC+IrFTr+jOT7407pJBt2nn7UJiWg+EJB2sbYhBV8KAeXKJ1P4H1++vO9kMiEef0GovcXZtIv31tr28P7k7O39449HK4QDVP2pHtqrvGHZbV2otCv+JpFMdNQ/cchEHn7C4DNSP8FARrD8W13dKOIaIPCsRZSahZF999Hfr8KxIFVj1Q6QHlR6AGW3XlH1rnW/+mMOJmmVQW8WNOdwcZmBigoojDkEPVfu34IIFkOWHTe2e8dM8K3tD7bVi+O1jpu1IWKGIkMcyN5VVFXjAMYyhsrleaSE6oIvy1tpSa0aJabXqV67YTXSliGkGI10TKulFuvuDA0PnQXZzFpB2OZNs2VDpQhsi8LyujIPoBI+sU/lw/k8hH+ZgEudTBHymZpjWOd4ASGwIWdqAyC/QBUauXJ30/m6v/z6K7NpVgwe3b2jifjqyycapJ1dq84c9vDm73//B8oCedmFRoh1r+soYNLEkbrR3gGLXBWuOdZ4Z2+vuQCvcRssGNBdLyy2sfv/8F/9V46MtIHNwPD+7BSDNqY1antt9nHv5sWL5pGwItp8deHh6MDcow/a6MU2IIfpS0yTqPqrtIvwC7d6MYIOdtw1v/bq7NRqgnfm3tfs+/lol88Lp3Zd2P/T0u6vW4cYZBzP3qca4Lgc1INil7PHeboAS5/qsLvacucTuY8exP1Fa2krQS5rVEZ1VTGutRz+V07hfi1STLrpwSjfQmgkpevJfDKGYY+oVJwK1TbOW2nXKI2Da3H08p03/Ui2iYrHVTaPbhTccqAK6hU8OKiOAFgseT/t8bKzlq0MX/nz6lNh+LhNc+s3VHnpRDANsme55PnKNoc5dILgchtLmOSpmzEkYDgnAGjSqLhTg5hFEOg1oCqI1PF0MsSgRZ9zcXVhk4BaMtQwm754h6t25EWyC4NBqXrqu72/dqbL82fPzVbc3uAFvLPdWzQ5jjvLkL/VSGz0iwf3r99/axHK8b1DEr9/fB9MM3Qk/+XDh3/6y/eXlw79RZaF6/aBebc5r5/vM3uLVE5Wt1ivmmHjgvFjQwKyN6Y0nRwtNg4Q09avfvalmTbH1bMk0w1xLXbqVJn97izYNAXyeYTmb/sZ9xMITlkKAj9lskv/3fUvqaxYJ3tsUnxxUHHfn4W+dgzJ++fnz56envKOjrGw7JaHqDKcryYAaXnrFsOhOic1+GoIlEoTlj8ucERFGFXvmgA9TLOSSg4G3SV9Apw2NLyqaUwmUIPsUFCFspY96a4qrd4e9Mj9AprOTP1+9khWitIGK63WdEiN2Tm84LYFBmZLbu60ozVFa6oEOJYTVLdoV3bwcR/Xq6lqYsHQIMNwNaYiIXyHISHgURgNgvGhprZryqjCBF/iWuE6jFw3PEr4xGLM7o01f3u9rFERSAxSRsC85KaD296/ff/y9SsHg+/d2fPOI10dIYXGKhml7mKzerouvdXhKyj+8G9sFhpojBa51ygeRST6623LTz6u79yy8Ns5M2IjgZHqMUiXiR4yEu2DmSVgWvHhJdG3bj28//D+8bEVTNoTnQihtB6yxhMautQ6zFWFqq0N463b1jHOGUrLCu0ZaNI2tBhWaa1uSzpnwiv8KXNfuDRajioLy8ANa55utCEqhxoUgmTMv4ZnbCCZJYUlQ1/ySJreFDfUwgEs1iAIGHhsLyim9/WJx9sHttlKLONXajHkhtFY2kg3maaC1da59s0gKO5HOjQPYTuVVjFQoRbXacqgUsrcLdKJ0NgW5oHN6qAgS0+SZMVLXQhTB7kuCHQXY+I1nDPV9DfA00YO8Xlcl/I1oi0ndRRICEyFPaO8yjfI4FoeyOkfRMePug2x7CUk0F7OOF3rD3KXgmG7OAU3dRoByQzCGYlihhnTkdWGh0Yk38zxlV4CfnV64p2itw+O7l6cvzk7f2PND1da+65wkxrWPn3Y22q3LZ/tpGTKaxrn7Zv3hisw7O6cM6uWlRASRTwbVqtu2FsoRSJDWVvb0jLjQtXQdMGMpHNdM+IZiVEvzNYz9jpjTSvkHWTYqJrRWwrMVVvP+/jB/e++/6GRxi3LWgsf9C9TJ+aQWVI271nd++OPf2RKR0dHGG4dNEltfjRWpCnrmEYu3GaGXAFp+1ldqVgMhQYNxT9WG3kJwQPElmOYC8kepFcorS0Yzi/sGDoTT7zsEeDT5BRKksrVO8OC+doRb5zzv985N2qdfGVwXrn1Z3CNcSKr9mRUazMxUEFtdFvL1nOFYbdUGIZdVZC7ZIbTxrB+qYGoQPgB2+dK7XrotLWS/U8SbtJ3xrKUyk7DXLkBHuIEWD/Pn2uqWKBOgvQipYpD7zNelW8AAGPVHQfLbMj44vKNOqdN3/KKYl5DMO3nea8pWTs8cPqQvMlYqUx9bCN64lzkq8f/0SK2lxWhBetkjropj+3LT77GqwYyksidc3nTthFzApXcynBbr4x9OcMQnHdnZ7yr9vx4946BXS+c9lbFmBPzQgKDQmCIjU6pKF1GHMJFTiSGvD6e8RJhsAMc2ACcYdE4QQehNzEPAysmYAtIkGdRY3S2C0UXYPthlvCjSMxL+nSdm53gGeuppq9CGE3Ig4ePfvPbv3OOvN0X+OmpHJ823olw7AV8+er0L3/9nkNu3RF1UqR9BOGZG8YTeCmgf5+WEyW4YcYUoybbhXp0NrjpcSri6qGPYUBOMMcsYTrKI4YRVW60WFXeGW9Ot9IwMkiXelGpHIHsxfYfP4w/SzyGKUYTDLOahsqFNGCt5vSyD//r0kFt/vcIH3NLGe1KtsmnuisTz/wKeOo1szYe9SARBprppmM2RdCSbGkld8UGbsXJoOzdVkufi1rAqqJVOTX6KJM80lh8SjN2Bk/v1/FnCQCHfWu7wTSDlRy2VTpGC00TjcmI8qtpgILDxPNTqfgQY4xPDUH2Bb+ptumahKK2aLLbDAPTCZuEW7e89kaQfWvL1icIvN3QfS8wrqW7WbcTwFko5GhH2+G9Q1PR3NOmdZ3Xa15A+mzeZiliUWeEM71QQ020JV8gZm+F+mMDSU8LqXrS1CwYSC1Mbd1GL1syHmpjEjdPHMrSXQuyDfuu7Xq/Iy8YDZyIzBqTY7vyvXLq8tIQok73dDCShbGFJDVribyg3kuxvvvrd/a8WN297biJQokGhP767Icfnr7wajkps/4pndPFyOPy3A2GQrPJ5yuHcAmftDeowhrKl2QNeqE1VhN55CM5XZmbhdk+63DNVLRvdxVLfmlEekGNwGzcIQvx0+WpggOu5lHY+kzv2dDBTJRMNiFB4aNHLsxoH1cXBMCrDppb8wJYCgzh/HniGfAoc5c6+KrTzCtLqd7gTy4M7CYVA9zDenjmV0KzX5MJeD5jCMnxeoAZqotR5VqyTgY4DOnlWe7SkbAatRnsEa0tbwrRGLn1rOJSk0ZMQkY6SmPiVR39TH+KqGoBMwayAP5c7/JkZp9HdoLbsK4WjxYWz7czIe/wNu8vDWptmvc9uTltVHR93WthkHhoW0KUFs9I1plUtdFcjcnzF68bsbjjFIn6NrEb4L5RFjb+8jBkpEFaSM9iZ9xonkDD8NTr81M92q1dJxR9sGrAdKNlmoRofwLuodfUgdda8xe4XLBgXowtWYFweekFVY+ODm2GSROEPLO6mXFrwbQton9+ASt/9s3X/89//i9+/8NTWHDxeia8v+lni8MZlN5z4aBU9cnvnWBxafyilAneTLLUX2n0Aw+Zdoh0JgUdQ9N0JLwD1OBUry2sxdVbF8eNERTiDDuwKSYNq+Z2uUsu6Qa3lhszr4yYWOeD5gLl0fn56XNHIN47bgARrc3GClZsQdLVudYsIgMxElOPSixqOBXDIGAuPB9FnXEVv2GPxdkxt5d+dMmrNAhkVTelbCjoqa9IVkFCD8nlce68K/I87XPKdFedJVakRjPDWvIGYp4Nxp54MGhiaYtG52VtN20vvjftA/2TxZoLOuZfFCoU6gtuwIUDaP6LQ4cNnoZbBSZbOOBp/G0WlurYwmbFkSktcuOMnVlvqaNAJWm01NfLLjjHNeNayW/jxnwvPbZZx7GTAB8/OKKUZsTLvpCvoipEeQj5iNV5b2LzS9WJA6rAErtfy/GVmn0dFe2RN6rwvytuxPMAGmJ6+byVBDwfXbHs6fYdzaOY5JP29P7x4YvXpy2H2bpmRY4N1bBtX/m0hMdcTcHek0dPvJb8D9//NaHXXInvtg50IPb27N3207Vl/6oTrp2gQvWT3cfaHahMy/CpSb7dOxctw5IyCieK9Qb5vV39dutmvbXkLz/8+Ps//pH3x2LuZAwgXUF/Eq/vXgwGZgxeLpzIJlaMcc7v0ozjVjweZEPhxrr/dz/8+GzXQdyazK2kO2aTJfRmm1QpC0xJcW10O1nEcCkJo1vBf6pXck1ED4M+ze8Ko1hk9qghg9RlNBeI6aiOEXEmCQMdaXbeAHHg/ESQJ0Ak5r4jfZDqxuXBSjMGT1jUXnXOUkWCUrPZ7vjWsd7cXJpSvG5iwezbjBzYevbu0/u9Wztt1oO8MDbPFJU4Njc1sKQYA6aSIXqpNl6oZxjGu29tPHhwFBdmGYBtzdYb+UFTzXXw/QKCLdMXWy13M91BgagLHNHMxYLUDYMwSR632pU/ZPiKj3OfQ0E3IxLvklKFhkPlHa64EYaJPqy6knckop9NdaiSFr8GFrTbVm63EDFffuuOsUpgeao5LOv6070j24RvZ21ZSj66gIH6tpCrGnFDy/PrX/3SsXQ3ne+eZgFnEt3Rd48ePUS499xtaSDYQwXG3ao6VEZNoetEPm/Nefn6pTftMa97+wcPjg6+/uKJPrt3+PD+Krtze/uv339vqZgqFiKH4JH/jEGhDKjCFLmDHWvkdY9vEZuaVijlUGSENyjHcTtdXu8fEPaOecFpFrBxUVXWNmdLemtdddctq1hyScpUN7hEMDUliSmI2Bq/qWEcp/TUh2+0riApVbpcIQVPpIWVn1lAYhqT6KG0RckqNmXGPKrY/9wlQpt1KmU+phkKXaWrfSoJI220/vFMZllIsrV+dLhfw71toduVV1SReCz76M1rClZLr8ga8MwijFO3pca0gqebZsiDYUvYDaPd0F2gl1EyaHAloVa2LGxkoG3PvOrMkdnID4CaWSnydmYGhsUKnIT+VPOZYyFQDTkPlmJLXtsbSHhh6iTHDvGV2VQ9D6opMilManPzR2OaiOUduK/GRr1/ebbyjGhnpE2HW//h48eDw+MnTx7/8LRzGRsQxaK6bazBQYnCJL2L1on+o7/51X/33/8zHerREHy/dmrp+ds3Z28uBKJQ2zp/e2Ex1oJ00ZVoGxE+MbZe8sYDnaSLe//413/7wPr0oyMnKgu/7BFFEnWA4v2jI9mcchllNxrY+Nk/4ppRixknXRxkugguXsaWxZPhstQ+x4fEagUTjbEzmPl5cn5hAbDs/nDI6kMLMezGtqdx55ZN6HBmaAFdbCuAfg3Xp4kjTO52UoYTIVydKWLVz9cYxbj+aNPApVWLGoDHTSofn9OYSKzQoA1wv4Zoqth3mE7SUEUd+iV1CipWxQvGk64IN8XxamxVCSr31IhOjMVRsUpKsQx+M8ZpeZVPTz0liPRGgr96JTBUsApKWS5OB1OTgwyD7fI9JGQbpebi/YMn3a8lHSdAmYaofFkV1SPf+DBvdIFmh2/DbhTGthO9CLUPtKml6CJWa8x5hIwh/5jDlQp/3xdvzSOxgW3zxmIQA52CYTUhmS5wEPYqMJJPdp45J85arCtn8raLNdLXNh49fOS4XhujsYxtgG8DhrDN4opP2x+Zo+W23379jffe/+67P8kDPV5AZ8FKdMEh/aQPW+Z093buioLysth9Y61Lksz8Pd7coP1U79uvvvLqwtuGZ29zBfUfy0BgN1t3Lc5qEaUlUEUnmujR8M+yjrsNEIWyJYWLR8XNkSF+jFziG05OtE8D7XYwZiBSZaEkeuOlD89PTzbObgyuqMW2BT0E7tmjQzyyjKTx73hLIl0JcvRtKBmGS/WsxPR8tH6yNvKSokJgpbA8QRn5/yVhvEyAwEmVy0kx3GTqPXClcJPUo6oqq4QhMPAKziOuHJ3sPRUuVk7RB2IwQE5jqzgG8vGj9FWSegM5OJSzzCGO0uG1NH9uJ3Mc8K9rqvaoFpMlABHg8F3wC0bCTDXHnGTIeSsa2oNu+d0KnO1kMN57fHxkuR4NsVOSri4sUaHZq6gEGSzdnrwJXohbAEyxF+wGYaOUAlzO9Np5hzou1jw12mv21/FHUTismGkB54aceZ3mqG+ble2h835hx9W0/rJXAHt14svXJ86T5q8ixZKFqw5Kqo3o/MT33Pd//utf//4vf4yRLtvQGrDVu/ZK5SqyTrizqdiHuWnjWlCkf/iBDKqGEifZv393WCwRfRrgJbSFaDbty04+fWTDqtMfoIvZyaxLjf56TDFi4c/wIZ6OGiWJwPYrs9LX692JyDNWLB0OcGNahoovbK1Q4chsBlVhqvBQRX6jPrjnGqRi9fxaPpL0Z8UYfZC8SKZc0JhSn78ogar9D74nVTtwICsxVlQs1AeBARZA6Z8/KglqKPc1St0w12QLpv8xUAFVxYdpjeTUVVGFJI4q/xEKqitFZ2w17WOOZasl+FUaATLpcwzQagg+QURWt/IsLj9AgfOV3ucVwiTyagUljB/0GC3Bnq5Y3Q8p9L4JXAFqY1x1Gv2w2qdVavhfLal9X1Or2VzTxhGvxjavqqflQGOLso2O2VuzdnPx5sJay+sbb8UL2VCLcWE1tu2c09vX59L0803daBsX6dcHpaYYJdy3MXrs6qMRB2oDi+ZttXX2TxaNb3z95VcqLQxrSgrjM80UJTd9bXjOckg59cpnl0I8jSOFmMMXvWx9uDRjCIQaMoeVc3dtEcG21SBWlc4DH8zc6SUj52lJK5gTStiLW4ht0ypgXG4vcCHUlIU5f+S+aZhUInBJIKzc+GdgpPZoDPJmq1FOcYvGIbnKTkK+lXA7eC7AK14N1cTjJtcIWVSmalZcl6yUKyUbNcUKTxcMFxhLPRGjVB49n1dXYkAqS3G4GtC5iNmOH95QxpjJk916qkA1jbKj5/TsjaONdMYM2/um83gOJJJlmli76ZQpkg9zEwnh5E7UgarkAq2RbjhVh4QwHdVPd7uVAqf5TgzgLwiVtPwAYxJl1tpf2jn88ZMFzGwWgynix9ufDg4PsMXqf8bg/WjA1PQvLI1cEUWv+UB7rPeJMex8cGp8Zd4zdmGBzTunVl84xk23eeYTjOd2Pg17o0lDpSNnJhrnyHPyYNAjHauUCi3s4fDg6PjwyJrfSNUkWMEB//JP5Fwza1vIbXPJ+gayLOLvLRCEEtVXXi6y24CkSbcNltQuHp+IWlQVvyZE0pURg7wXGI2qCXeGZcHoTDtrzSE46k5yw2KIJqtFCCOJkVp4j7ebDmvPY9rAWRQj8Se+RZuj10OfoMLJ7WSm5Th5Yzbrk+Z4oSt6wqrMwSpj+ZfUMg0yACyqsbCqLGEqdYwp/zHAZwa3PAuMwAJPQwI/gEceqWO/PI0Drg3h6fnFe0uu311c7t8V9+dqZm7LwwJuOovMuokfP9m0/ubyPe2Xoohza2wm3t05NsPlQBDRs2k154pbkciATckaQW/MjGYlBNTlqwcHuEE3VOLgjBIPatE7GcuwQiBcRwMymilSq53nTvTT1Yid1WPGwMuYVFeTI4Kwf9ORdSDbQQYLTT77rCFj0rPfuiCglTIqnTBvhjEMM+HxT1wSFVov9D/93d/97i9/8XZJYYypbjNgxpIYDx9vKm1jy6Bt+BGMrgLjoYIO/Sh+8QJfAVKHNY3xzetRvHzG4Zaw1jJ8oKa1rfUr0sjmi2l1S07ApNPDKjmidhBb2zL/ZjjWJNan2R5ubl/WMKYQyMUe7cOGM7bac3zjOJkRN57GvyTbwfP37x2KqZokiydTHI6qGRaVDyQCmRDFeHkWFcrlXEkrgdaa+5nDq+pFSN3QTe1ZVE+thOdumZOvARnWD9fCSQGgQ6WCExWk6LXF87Qe21yyDQ04FGMUmn+Vr3LMXFWXXyqwURwm0MvFDeJj9lNhaBJaOHtW5XSnVZBXFFonT0xsB5YFAjhn80Ue3ILNlmG/F3mzh8vLdJ3IcUZPj/EQGOkymM01R3cZMLCn7FLVSA9D51A0BUZBWTLSpMeY0PQ/T5Z1jiLFiHAOw3KGXgZfAcWzCpAKUGMDOBgiNwS0r8LViBvXbvhfgPDB2Y1OA3j/0STgzu1bdGZ8S+39yNR3VSeuqUx1dJ2nTwXVMKwzWvRvf/s77xuQCCMnwTF7A5788rZJzEZCQavb4Msn3jGP3W39YAeb29zTAZJq0nVFDSBiavNaGmGxOl9B9WkI7WDe6rTtS0Er+biSKKxVXDdqBPm7d3dtk9rS2/j07Pl7J1VZy2rkKPGbq57WETc1LrjlBd1OitHoeBlUYeK018m6gR3sOj5s08n5W/NrpABz/2tWLJk2dWNO3nH3zkRkCIkRWFTGpQTXf9pR65l8k8SoUrJb1EvGUufX1Agrea1bU5lTmjAo2ly+AjEfow7/8DMBS6pShRLVqA44rMC/YKYvqlHd4DWZB+gCJgGOLUfaILD6HNSCOAYD094af/32rdkiiFoPfO/ekbfPa1ZV2urd3uzi7IY7FlkaBjHGJ/Bog0czQXW6WmvgCNvWBti89g5K1iCEV9sOqwe6PmkzhV2koIXA3UgLd4hl+oiLG5XJDKDtNtnEjbBGWAu3JJeAuBGNTKOdlStFb6QIkDoNSwzP905exmCcHpSUJG6n5eAEtsjbD8VdksNZAv0pdKsRUyhFahqY65535+XR0r90AAe8mDsDS6drAjHElAry+D5LgN6/v7xzbbWSCZDmzjjkO7t7FghqoOz0UIU2jppiwLgvGtbOh/tGpvf3vbcTl+1BYEUW0jqU4OnLl7MWdXPDyg1HIiuks60dKhgbk/YJcT9tYL15wEjmVPsObcfWYvQIXL853DfafVcr7yevhjx7Hr55/NXXT77oFcjrN//Tb3736vWraYDr58XgmBXXMDmlHE4lsHhaqhYCGelpMq1o0hr15QAaVSpqxkRvmqgX1XMObwr3kVQUTRiypeVSBoQfEqQPdfm/qYYIyi1n4lsgjBZVLEj/6dfAglPUj5ol60FYVq351oYlMdZKcEgzm6u7n793JqljTThytkfEqDElzC2dOKoWFes7Z+KqXpJ5ZX+zgVQ6w+namOK0KPl3tmvM8agonjrpHgxa80HYfSMrc+DpETEWsUI97sVzReff8EP5Amk0oLEOOOAjg2HA0oAsNhV3Fg6M4JaKI7ZqYv0sgpgcUgIzfGMk0sKL7gdUbr2FtV4bKT1hh1IHe0KDLJSlIZJoXQhPMOCJaMrgTtMEILWgMHwLexTpsu+Hae5cdEKHM7U6DI/aaIvMEGoZklRXlq0p0HRwoDVE19dnrotzw6T2Te948T1JiPgbxjJ9Tiif7YE6AmfBoCEnfGnfZrAAAGErSURBVBzpt5LWHOToTHrlxFhnP4rwvn708BfffmPfz5PHD3fMC99uft6wwKuTM7Gd5onSDT4JI7wgxtRi5Yr1aX9Y5/zowTD0ZlqhxMdr4FurMsLFGzjXbEkSPmIKWQxHBmqqHbLMJY3BvRHGRAExvgomfxndLWXTm3m4ABoNoEwgVqDPEevwIJ4m43QABUu50SIPrBZzvHHv9hM9OpPZKkkboewU29h6h75xhGYM2MOUJPXbxscLrclDtyDnHlcKF/f3C9LFJKSglZACQvozOHUPyIw1dzd4DGbTfJUEQcTHYogO3MwJdwNRqDhUTxlC9yRujB4jR/4hO3In4zQajVS6UYZCZpVLxcvXiGzFkPBZmcQiALjI1Zhk0Yrz3nqzQfZc0MGY/NHR5hZ6JUIc1mJQ6ZsbU6hnF2/4dIo3a+xEnh/s4WQWTrJnPNIfP3rw97/5rRXM1hTZzmlNwoc1yzeL1Lj4l6dnzkkwsqpqCNMQMf9oNYUyQXGzeeC9vG/FrnMwJTPFiV7vFxYFdteOaLcDXatE/68Y7JyROVoQJ7QMpnjXf/7FY0e9/eNf/erbr79tg+rebvxkss0Kbd29c2e1GiaJxDGcTYi1536kxIu4agzEWxg2F5cfHwynFrYpm0Tm4hoVLtydcTGCWQUtA0eLNcIbxUH12Ica5Uqdh8NhHo/jSe55OoieRNqiHXBEQ/rSp2r7QFSPV/qfZngW1goOcdbP37Iwxvlfjii8uTk82MNGekhl7u7tiI9UCjAuDHvA6qWNsVqXTk0kN6bQUJ+CIdM7lFr2Nt0wKXKFaLo9t0NU+QCLtrHb5WHMAjDfrF738doXsBqPuitYFSsCBJUylZ9hDqiEFapT35JtKT1PlWoQ5R8glq8BJnmwo/8T4Exq8CHRE6SSaE59zjTZ6PXMjIFTM7TAKYt2LLHju0GuzzDvdH3+8tWjB/fENiYCrArRVZhDXIQ94CHZO6OOf7O+7lh554lcvbdScEcXHwon5+d/+uH73/75z3ZCxu6I7AsiTPqWRb66DCzSpKAFeE4U47by87PeEHvkB52BElLvwS2MqwOeikMtbscT3Rfx7fH+8dnJua1MdGL0bdQ9mv2va0Izaa2Kx13EmWHUdKNXjKz9jG4fEJ3LTbf+lBijaSRWgpRsK55q5iZHaalO+uG2pyOIktE98FKUWgO/Fo7UBndVKBEVKkxChRbbWKk+xuVGQy3xJ28/F0ADTPr8TskGFqCwrtEZU6ysovULkRA9sRGSVahka9GH7RIrmKAi2bN8b1m6KgdPX0kiV+txIXF307ks9GM0Q3IF/DV2Uiy11FRGiWquufCdGZQ0pAGCpXTZEhspPJGHilKDfrYOcBk2kLGCVAg6skTNwOvbf+zqge+xlsgYf4hUozttF3N9bPrpZtP7c6w/P9p1upeppGX93yzMZjlOpFTrzbU9vWajnXYBV3mM0SF90CaU6PX+kfWt27//7vtXF289MvZqcREkX3hr0LvL4Qp8RayGbPpXy5a8Y2MRfxO6G1tPT1861cLCq00LW4azKhs5xPJY0AF1Lq7ranNt1r4kUS24qY0tHZF6H02rITyGL0zHbL9s7PB2gdeXb3PjHozwQyIBjEeJZyuxj4IlmoGQHJMgOqLCXT9VA8lIsaFn2DSiyLdNBY13ybmgUamlXpniGdB0wL8VfYGXPl6z+ymnXg1rMD4nfbYRCA3/4RS1SVe1RRaVDL+psA8pQaY80x0a5VDBymVOu6tMYqxZGoVTbFAYKPA00yNFarUMb6ojXBLgvILbboJWCbUCklfyqJdkq9j9gn11JMT62a4wyrEBSZqO3nA6bzP6FimIHFqivLXlWDZj/Oiz4EU6PADXRTbMIoapDfSesXTx5t7xsX5+SGXH1J9h1T57FM61maGfZGaKYyRkSFSwbNMFETbXpmJnnTw4sphn15IdsY7mXo0Rme6FvYMsHKfLKqwYNADNBA0kILwq6rVqHAxO3Pt//w//+g/ff6/BIR564u2VLRCy0lsGcfZci2y4Xo6+zoeNEOrBGt3lVyfn3v55vH/3/fs1L42g7qiFO64gwFb0FnPH5iIV65oScHQmRTe6KUJhW/pgIDqatNJpgvECXT/GxhtfbcajRJEVLVaBSf1LWn0CuWhCd7JRATnL7q6Yp9/abjE4XughiNmSAgGoavFMflK+6q+sCySMmKKgVgM8p8KeqcZHhhlSJVdpeH0uHwK1NgqS9+p7DIIQhhwVKTzPKwScrktA5qqp4VIzCU/9YX7PxvcHbkXooCbLmPS43mHWZ/ZghiPD9Byn5TRq4ExN/Fw6o71HkF/z6nYu94Nen6GLW60h6JzFD4cHXu36Dl56L63w6Vzahjf4YAxE/IaBUTTUarfaxQsjkUzhtSTj9UcShrzu3pFJTjjt54zaFxdnh1njPNnDcHpSEYOohS/zHVPweUa/Gyjil8uzdm0xHK9vZbQTKT600Mq2tAw2U9Ew9PKNy4u3ZqOPhBis0bylkGpzy2okVtpkM6v92ddfCp/OL98W90SPN6d93Lpiw239Gyk0B8IIdYkRoZa7dzlxBCcuVd5+8/6d03YPZoH4zY75oPhAXfgKc92chC5LHGcNNl/3LgkExA9kYZfeNou0u7XeTA+kd8Ui3m7rlt4I26apGBtfUkzMXP51Vvg0J9pBLFrcIx4pn+GMPlVSscZTIDycYl8f65BbvJ4ix/5Rd/BpVxyvflV1D9MkQYjIgMgMTSxKKAc8ZC9nuHf5psxTuaJ+TyY5fAdzARx26Jc/hpSvOxWnzf3yfNSAqKfGOsYehU9Y0aJVjQsOlZg6wnksJC1ZuFRGSdyYvKXVtUiWCmAfGeHNcGZt28tI6oTLYjV7rZZH9eNjSlELka4U+mZtZ/tgwcGxqCFcQ7FePBvzFxIkRy9Nmgwk2Bi/enVYPdAqkz4bGj4OuuHfFaru4tdQHJiSFsfqvnU6bNPagk9aoU+O4+bovDolWnqDsprWDKidUq3ra4PR7x48FCDR5K1bXpT2wVoPjDcLUDXXa8cHR0Ys/+1v/x5AGKhJyNCOv5mo8Xa29s607NcZNk7f2TSWrb/hyIKsRIOBLxbhvXr9+snxvTls3l7txUgiFhPEP0I6aloTlxPIntK2xVfP8X28i60S0+zqcKulceLIn1Xvx0dH0421DKSkFFxnugPWbzuJ7d6BdnHXCpE//vWvDgofcQ0nE4CrrwpUa4xstJdJYqOlLw3AUQmoybLkyo6TW7pUEa0rVBPFTc5jJFrzsfwDFfjwmnfgLlWW+BkaQLP0RobyyAyCh4j1jxJQwlGbBWSoDLpL/dBeFWMENQbTbahZCLvPdEWaqOazMkVwgqzKLnaOIuw2EbGX651G587u/sAuHwKhpKYtEtP1M4B77aUB+R2kxjvBQrYUAvTYTQKSlPesMin+wIgbHoR+vhXkHIgc0xqgeuAAIhkVEwvJUI8oM4tFA9ZHRFaj28k6P5A5Jzt1fortMnSAOlJroRdLsAT5veGjrU0n5/ppm+Xv//KX5yen/NLZ27eNMlmG0eDfHNJZKFarAvM07fbtf/JP/vG//8NvCTnkW0Q8R8temfXvNFjHScDQqNH5m3ONydMZ7RA95UVgL8TXSfjxxx8sMNy5d5t16kYnImsHOomNw+kU1YYvgUdaglkkFZGyeYWGt8S97tBfRk5NPt1sOBcj746Ndpd8+eSxxQImLJ2uxOpub/UC6oO9HafWSHXWL6lYk+hAjpcOggdfybg20q3SWIm/vlIHytby/GzS3sPiyObOE8TIcUorkKRCFBKDcGY5ssGmUUOpSYgSlD7uc0VglFZr9XY3BoDUKZeqZAS1sC7tUUqB6dW1+qeuijW0NJpRmaXOftOVlXLMDMGACfdMKJxdy+eCQH3UyZ/GxxiKYAElwtPSUqjCmBHYdUKrFdU+02Bf6ftgC2yJKy33BE+Gp8DkLTJyWjEcqbkzzCPwMMg4Z7WrKkIWLIMNsooaAqqaYkJLLVqaAQ7H/NlahpryZng+KN8vv/3W8fGasjeXbzl7jfuJHWRbr26/faMWI0mCQKOaF0Lz9++L0rY2qVcHS5ucWb9lTjCem6b07qB1J6dqJZxBv/bLn//i4O7+K2fB4wxEk4xtelcX1+f6GOkkMoVDdYFgas/01an5hOjSGnl1z+HBX/7ynREkzlvcOOxKbmwLnerQKLvYl47MRE12EiEV11IXl07z6evX7GX61ptbloUAkxmJ8651QkRqh3f3/uk/+pUzkK3lZglwFFbVedPoX33c3bllRuJ3f/zzx8S9KER+KdanVo3Y+FtvBl1K0WFrLpJA/iwikxA5Gqzwm/pkPTTFV79lSYcW9R2ppHFh74dSo935y8k/sh3aKpkEh1kBS2cpVNbKGwGxamZS3zAvAF6uyeaWjufS6WsUVN2iwaOWS0NQ6gI86kMYpLlWT8CuNFqrcyDLlkongqU9obuVSrtjYnj7FTqhuVwe1KcqW8SXRytdndM/WajJuJfRJupRbdpgX+GADKUUHw6F9fiFZIJJ6cQEnz0ojlKpvNire0c3/GRbFPHhHOPlAHuqVeO+fnN+eXlukKdREH6mnoA1V/RJiK9GLTHlYjB2MnKmPLrDva3Pt11Gc4IQusc/isO/fPLk6b9/YSVGVk1d4ohpY0gUqqjKhieHpiyH1qcgnDUGUg2XhV4KXbxzuNM7y0rqoQvvWwQMSnMCQpBeaHDHgovknt4M4XgTczqaRl9ly5DwaIVS4+A8dRlhuHv3njPz7+weHx44KMDs224HOcbLhAHFutPr+5Zt1P7U9lVuCifl7gPoflEhrVnq7uxEs5XVNkIfu5Fcim5xoxzsB6pZy3JFbf3pRWel0biRU/mLd/SeEpssOcTJsMCWMmo3PAkVHFaXQj7hlZqkMYUNKlkEEN4hlyuq4RrElnsgTHbO8wgAECzxflD6OUkVWEYtpZKZqkQjaVhXrBnk8nLZSQihrY88tTKVnzp4hOxwQQueUTgmU0VepPuJsLWKZS6/jo1ldm8B00PVUW6N8WCkay7g1p9zaKkpPx667NXHFEJvcoVDG1jCpEdsAFf9QyPgOqU/PHsqiKdvec/hzyxNHHQ1ACbqvQTaoLNLcQNfxOOQ2dlLzL+ylju95ufS2gnjUFvbOzdt6Islj+4/wAfsWWSAVW6qtc5yLm+R61JTGVlmuoi9Bn+sjNvcZJQGqg4OdMs46k94IJ8lfpqCNyKnfSc0HlCvwgCqkkhwIIpxHL+M4KoezbWOKh4vgQt8twWxdrcpai2NYCwD7wwPA2YN7UHDI+0wDbqzs/3+zTvmmUwhnfq7TSWpBLhJWjumlB/zXgyNFbMIl7SxbpyCKcEguYi/9gKYyiyyCp4LqAFZNUmMEseU/i2Xpi9YMq1QrcDkpZU1L2lkg6klp3sUwl1tRU6y3ynwQAjFSmANwdSylTIK2neCwz1iLtdPmaeJoyx85SJCapwj6O3zggjTqMlBXWb1iTG5N3+3poU3ZGLYDsdqGOOnCzcHOnhVX0H9vxevzndvW43TYAn0MNjOlTdvDDdd2xc5Q6uVFRaYqMUljf7p2fnRxgFFxIBV81EWl4oAJkxG4sKKvgvJSsp0nJT+3fOnudqlRNnKw4m4fLVLhZ9Ya3GeXkQ41cR38A9yGprVFX5nUVZLKmqnxuWpiKYc7JnXohGZvRTUj4XKlCOtniqtOoFkwtC5WpKkGwQF69QRUw0wWfhqtXMvUEGy7ov2y/ycubon9x9GjMhxNC9gqV/ao0NuAS/NzuihlT/uoKVy9NKdzeOj+0+ffe8phGLJdNZ5dLcN6QKSyhhHojXgpbKpWjIMgqpGi3lDbUjObZ5cv3n/1ubtaT6rWcb+KSx31Yw9KDz3mX9jOMRPv5dqBjB2pHCp/0QKVfbTxZaWX9E6FSxl4jtE4J5k1FQhtadhczsJNTV+Z04DxVMAawXjsIfOlWoZRZBAF12E9BAMVJB0+9aevXhN8HwKGe/sbNnZrPipIFpiDq/Nu5rbB/cPUpRrZ7B6W9QlM9idXd6xYtwE1QjjlKFi/qHNG9F1LHfnNLuldhJ/9vzlzOnesovg5auzJw8P1ej8Zurh0A2K/vzlawuljr2NKokP1TkgVtQVBVVTDRJLViG/gss364KiKOxBo7RljkFxL1patW63AWUg5AbEwjRUP706P2OiBvXZPN3BLQ1CMs596K5U3IVRLA74KouvEFjgg6cp7l/6tWLEzKwxUsw1WOTQcL1VB/TeO7wHPcC9qUGs+PSVqbqL184JvH2mfdDXgRmKqBP8EKG4ANH4iVXH52deyzWG1PkINVtqHuVcf/Lw4V/+/EdHR93Z2fu00bbd29cGhrG3F+rY/oH4186uYSEgmm3RmA1VYYu1KJroNHDIGl1DCTOwzUO3RHCOMk4GOtUY4D7iwwKHYdUnKUVpngkOSWsu6TmMFK8s0tUSGA33WNOChjoGASBnZKwKAl9oMqDIQkcsu8pa5c3BepQFLyFlgJK2UP3E62Wvrr585AR2mSfX1BsG8XexwF7Ip8nUqG7vcKNknGnpshnafnT/MHatbXjr2Om5Y8KI8fb5m3dPn1+00AzQAKdz0axcXyEkIYwLs2zH8briHU30pFvZtQZC01G2R46X1PjY6GsNlSM8jw7v0jsORREHWZuQbj5WbAFySlcridLIR3pml570ED+7KdxHH28bLbVIo+VDK1LEeToGBwdHRiuFKLV6hgeHP8pbxagtMptkOSxB29wjWhO9c9fspGPyHAJk6lo72di82d6kQ5PUsvCAUKWI/1GBKbkkyEAvLLOSTauDOMynJ68//P53YjTFnJP5oTM4YqM852/e6gZUVaCv7ChFhLFc7NMoqNd6jYv1CzYvM+XeuZOXTTGx5+bKed+QtRDKOOCox82HzweNIcN6rJcvX55fnCe1go14lMIMQ/ERlxl6opJc+ejhCazjMijmiNeVdCW2E33aoiJsryRZNQIorQjkygNi3wiT2Gc1JDYfPesrsUrxG5y+5kqdKijkMbLnR8+wxF0OQh4smfnp8UfcvyQZRvNgX2UZl9PXTs7tULM2+2oZEAdJRngmorG5iFXS7yoqOPHSAEv7TPfmPWYYtHH3G0e/1wsHWTlK/PihtQZn4RtlU7/yQ0ZuRlooB3tW3Deh69hHGuJAHU/NK99xqhdNbq4Xb9cNaJo3Umn2OXJR3QIjzMKb3D1o9eT06VtyS3c/s0cvIFrUTNoO0ptheXmLEgWEzfgtWgulj5+eP39BrmBSRHlyfRW+Ie1nL17enncCzRFJzmt6L6SDE/Sgof/AaJsxzArpkf1cY6a0KmTiZKNbdCO0k7GvLAhm9ai9k+TunlOJLz58PPvxKYtSjmtLJFPaN9z1buRXgxk0a0QgKsPYEo2zFn87OrkvIX+r8HF+Ivuc+9q+M13v3P3rs2eH+3tH3ozo/MN35h/qEqFQUPv7P//Z7CCUYIbbgYUiKOWIF1CfOG+0GQnpOSm0XFHjPuq5WMjoMox1gmORuwwn1YZfYKfcMjMV9BAIVU/nUSmxKKHXbvQ7DqILHn3OBcokjvZXJI5xPpK5AABl4Ol4o4K3qVVFC0OVJC0LXIyZV/+CUhgy76kwZEIHze0f2doUoFIRPqvzRJcx6S070VNOGHFSHhEvXmv7d2+vn4otPaANgc8ggE+g1YU0x+47Y8FLKd96fHLGhdkvBumOxZYtAaDFAUKkYZFoxtolWeOKLcvRoKMOYwOqabxVlDt8agSt6iPA0mZ186E5/vEXVH/OPAVQn5tVmN4CWP5RN5mjXwuPIdot/1wsxadj8+zogI8ACTVDCC3UAm6IlP/w3fd/+Ot3yaBubM4fC2GV8ojDRpqZzViCBybUobcVYIGQBzdr3hlkpd0bk3wj7EViiTadiHcWomiC9RHQJ96WVLs25Do7LK3vWnfyhNXi0J75/xpEANCoC2SJ3m9+94f7B4fbmztFcldeDWSfzbWo8T/8/vffvXwp1LEnaCKYlignv1GSVHmuxTRx1820azGOLvjR+ENCCDtIKRvasUFiPFkglGH0O5Vt50dCjcdjeBkXZaWN2V0lVBBHpYKwksln1Q9m1Uh3jZhyK6rP8nq6LC2ueLkWFOQbUCZ9RTiaclVM5oBprYGaprzuVCY8U5APeplNEQV0rKL3Jo29/V29hfNzOz/f8QWiiAf3981VAVUQ6CSRWm7Uea9MXCL+wfInfGs3zVRpWe4d3V28oT0VDj61nUiI61wvj2q+UstmYLvp+AkEkKc3c7LhOrJ+jNXHiij1v+cLa9KmJYyQCk/+2DCoOYRLQ59xQj6Ex0Llh5dE0Z/7ZrBLTYVoPU0mXa3Tydkb7d72diw3+mQgVpfp9cWbZy9f6s16A3jBfZyk2YyaMPP1C/tT0uF0nWHK1tSbkVISHyS4HK+3qNW4eT9ZRz1aQw99fGRjMKu3DhzsxwTwIXL9wmb1aN8MH+nLsxbepS6//q8zDuispuvGyZv7lP67p09BN+5rXAMaz0+fv37z5o/ffR/NowewTjlWiqyWAMSQYXRiHgSGWXVWLeeKtAhNxVzgx81gdBOI8FwWomZpwtiYNYxeKBqVawIlKCqapiMuDL1gLum009PR9YQ3YszYqpkBTCsVEsNVSeoFYrGqwSE4MOLJPAGLDwal1HEZaVZsWCDmmGvJBcWtcqMbLuPqV++vPohe9ncNqXtRkncBemmnMwG8ayuwELr+WK9x5pVjTHpZwOllGvTfiiOabxJaD8Rg1ZWDeqiZUpTMYgLDgDa+NEi/ZrOEXsQlamzdJETo2uTlBFVGIggx1kTL8Kr5ier1L8Zzlhb/o9v5vihVb/xYrKrtqeIGLZKBenRuCIxnGZJCsSEgMTBvopQkuXRNJ3DZpLaKv7Dy+f1l7svKWYfGb+klRuO7D0aTBD91DxZ8BtzoxLQwEj0ANzNrKCjFVhHmqo1aN/vQu5Q7+AjSWfnQ86kgpgG7lMorHsxR11Iy7RaKfARu6ARtiSJ6X87l23PYWh9rDmQ5TBOvonBt7dHD+yYpfnz98vzyjcBUoGvU+K01Zd6wuyCOslCKkPiggimaN0F1rrqEelrZXmRpUM3Al3GxzkRe70K6VqXSUoajnZWQRnQev5ti+qXTJIt2G4CMpXgPa+pPU8EZOZ3GJ5bFbOuB7SFWr38ypAdJfpjmO3mr0+BcwWlxdiNjxm/i/1DlcZQ0JlG3EgP9ZXFLR6J21rh+8ZTyMPcTZhRr22KhxMx9KA5ZMI1SMN51e0Pprhkd8kiTmurqIr7h6IK79mft+x9ewujRAyFqW+bVq/4zp9LrdPaO0A5TU6/TfV6ffDh5bYvVLXg6kiym3azZnHjx9s33Pz7HCOcHb283WRbFORoePJENsxVyYRC+ypvzXbKplL6aKGiXWo8mIkpMZIi7ZQYHGJYMPaFh3d/CHKBSuY/XnxxpfHN5UYH022DPOmRYV/UQXIx3VaHAuRjPVVMmDT9TYVUXFIR4YFqVPVUnfWNCdtw6njplG5ISAbeRAgWdW7ZvyEvQvFk6IowObds0bUcFjzK4e1Orndc81rt3t/ZmC7ZFMpFGsZRYv3/vgXdmvTw/u/xkBXlNto7lrHHQ8OUypKFabcDLgIZu4NhHrlcGN9IR6xrl8i4ju+HyJ/5GDErKB4iCtIZfy5n5aa1YliZ2rq3PgYdW2eXmhaqnUhSXz6BiND5FfU/NApSSCf+cQnnJevb3vafVIXzhROf4V9vc9xqSB1Cr6LtKDfmpyfGBUoORoeVCqrepj2VN9Tyk8hubl5efnN7jJNj79w+iUTfx09WLlyfHh/ajm7Gxpb1FZGMo7Tyws95IiOMigVVvNIsWzi/F30b9Ntfvziqy+Oe/rQcL7XG22Zvds43LH5++bhFbr2PavHcgUsrGbUB/8fzVu3eWHSDU6rzcgBEmB6YIoRDRYYjYmO0VQgOeuqCa8jQ01MHaCASWrAQ6VDLboEXn55YY1aUoK46GCeRGmn1VwqdvykAAPK8Aa1LIvZqGljjJJUTUR8eCmKqy69VIE1aK7uwRx+4BO40RgeHO0qkibiXzM2a0TE2bT5hLAkp0He7t7zNZobNkAQ0jAojzXrgAHZuVjdwd7Oxip3Z02+GsBZSRUtTZlsVenCp43dvd53s8hT+GeKQ9vnNn7/7xEUtATLC1JLMkznhabJTTl2qazpxL9YtVLo9gyRcymVGpOjeNUd2Y/K4QMVDcWNpNReNE3x4h3C8535uJNNOxuWGI0B3AFeByDHRMf7Kmo2kv6mArfReolp2P2XUsmr0ioPDNlorMy0EFJHPYrZKtiLb50Fx7M7K6tZpZvk37mbRHhjPiEl5v3hFfu3O9WO5wbxciY1Tm8j9enL9b2+il3AQGeVol8nz24pWllzzf/XsH3t8RD4axohe05J617Umss9IcIqSVsChLW1ITiv7i7CYi9AVIhBpRM2tXju/duXdkFzvHENGGKBp+8NLBW5uPHhxJlkgZVwy9ubIoxl+lQRl2uwEcNq5yE91oVIkjlKmu5AUNlqud7CGtCN8CisUq9LInU7xqsInHS3CL++oJbuBJ1ORpcma5xIQh1uaZb1l/YfBAVjYjDzh6Yry5QKZaWjhB7b1cx4vgqYV9myhzyusQ48Nvo8n3Dvct9kgeEJNdz4BS0j1otzx2nS80A+/YJ5iCr6qmokfC+ZhGczBo/ezNm3vtxBMgcYcCGCR4zNg2vnryxW//8l18iFkNdOQOZga1GvPfHi0X+cVexJME4lWR6oZNXaCp1qeuvC5jkOIq1isTg/ohD55VybTFVnWBGBCnVqWGRiSdIuGEhQ0jM3hueMvpQyneMj1y/tYtlAI+wlY9F4vlaoE1LpvXpbIiX9NYtzdbwe6nejmyD2sMRmlSWfQAfUimXNq9Ju8haezcOjPvmDX2IZNaeJO9uzuNuhspn+6B6h1GoqswwvU2GptG0EGRaqtNqK3kBUk1mAHY3vnmy0cTHGreFkmCXYfEhAOvWk2ByGXsNFBUdFBC6hmzJAlMhMtyoiUGZjwpb+ZTWiAqNXfuUYkpg1KGBxwXvLCa/Ja6StTlNcsUmhnP6LhiyvnLFYWEBOBy3H6gMd2t9vK5KWSIwzVH68RgtNKmN2Nx2kxmr0vjqGxuRidIBjAbNCqiFk3YnPBetVLb7BX4Nqt0X2cn8I1rWn2ky2uPnCYnXxmGaK26sG4098Pp2dnVo0eQyNLoX6xjyfDMBhQwfGHJBkfFToyTtgkwMo3tsJz1Lx4/kUdjEaXB1oBqBoZ2jwuwY5c6sR77pvaFHMqfMKK/PdqWHsQu3DIOKOrJ/CEaiyKIxHy78nx+FzVUi6rrrtVMl7UtfzaMd0SN/sYnK64ApXYMXveSGVilqzMKxKJSMWStWU+D4sonzkFDlVyTplYiB4Q5KuP6TPIY6BRDFksY9ROFiXY/2Ifu4Ns7+/u10QgBfLFVSmOE9IBlvrmIbwhO2/SYN/VrIckHqCGFmurxHDKyFT/Ue4hX9G/R+ziaao8OyXG1dvL69P7xAbvzK9DKDNPmBrAEiWdRMcPZ7qtrBIxSkMNzwMo5aqto8k3XOULaNY9hEeKVLeNk6Cfe8KdTNOoS4ZLDLyUoTT4smFMJEEGZvyLdoWSei2ymPkB4E67eJgRdYCvn+BD11QJyGUp0ikw79fG2vofgki2JoHh5dDaw2bqj7tkMfsmjkbVITusZ6qjrWZL3jSKtrCOMCFVJ3FEHlVKKKvc5fl5mk9DXV2fFaQ77fucd1HUqwAjg+ob5Nec1vHt9Fn+GolF99SzxVVYef3oYYxSsqnqeE36F7RRMyLIBYdtHoWEZITtyLX3KoVnBRYQS4Uk7Bfe8BR/MnSsAOlw91TCKK1QnxSWwMVhpfopDqa5oqALPsX2msy3T3RQBpuOzV5sXNOfqqUHqIBRYAtxOMUh4ZZRErIM7aHVVhs3pTOwcNVw3h/XBIgoH83ubsBxDflAwvXIt5ySQcIxqQQTVCQ68Yo7PeNVwQFmqqU9ktmvk0GH0YvvpPgHTs7JR/ciebLWZVeDBPHcnPQcPln+Ny42XkUoX5fVswq1KDMzAhpuMGKv46HiBegrFS3oqbVrBIXzIT4UAg2moVHtVdxf5Km4AsTapy62PWhuvtOVseil4uxpsKLAHgQTMUL29aHpK5iLSIZPGssXAz/4+blqgeXx00KkA1RgZWG4BzIbukU4z+tQ3DzMj73d6fP/Bk/sPeGAGpYNCdTCcqW3v2oeguY32EG5R6o5RMaOlliHVt9VVQFJOKx0zp398sP/01esJfQjQE+UUriyR8nWJ3M8QCKz0vquiGgBJJNOu6oiLd6zKEqUQs5+1ZhWlIApOJRIq1wIBYc8dQya9s9qLnA2tFDjBS6uqid3dcKya19zp96w5bWVa1Bo062Nj0lQ/CtdruJwxReEaCrSrabROTrEWBqlg+9ZuLB0H6k2BdCuP1A7jpJnjILnmodKR8ZsLcVEq+trY3AU4RVqaokUp4sTCheFHv2JcelF7kMNGy7iPONC/CB9H3reyN3d2zYfmyNLPsWpfi3aVfSInT8NmJBrdsa8f4y/CGP8LR+mHCS0ERGkyKVe6O/kDlwj8CMPgILwJgaYpMGIKVueKt4Gp6AJqCkGSDiiiMsa2AlW9qqsif8SESToJQFkVoi+uBws9DwsDM/u0JHrsuVcQ9yF1c/PVkwe//PqbLx88oPM2pgUMKqFgz97mpq6CSQQb/WyFdiLmwZ2de0f7D+8dP7p/n6k8f/Xi7E2DEvGyNz17nw+F4GwUD0+16x7o3rF7zQJ86yp43F5Qh8ClpJbx/eZPfxmXEXYoTf3d1S2pASw1lqZ8U0KaH9L9j38jYw+7JwCd1AQDtlLRPoT2I71wuha+gzUC9kJsc/JZyLSCs4BenvY93l7p83BkaaN1Q9WBCsSqPjhuZrIifBO+C/HJa0K5AhH5y6yKjDZiCENStjD9PEDKXeAx5KOrEpErM0HtNITAlqWUtSvZL11qdQ57+qoVdIEDEkuQb5w3e1tqpBBonOZhpZGhGgK0KQbx2lVQv4uOdqZvo+Zp0ngclbBYY/ZkaISg/qiAb6NjGDWYCLTnxNBSkgnHYbIy8zOeVBckQ34lwuw7T+fh4J5GVwKdfstuTU7K3/1I2sPyxIcl71Djp8exnmF9Wo5CrKXjTF1AVKFSeUZ2ImqTLDqtNs5dGW3HwyNHC9sg0KtDrJDLTgZ1h7dtPvSeBO/TvrX5zRePnhw/9CaRo3tesGCbjW3gXtbrdQ/WIs3sWSe/4CiHdMWPhaghF2sBdhxK7DSyDrhVWe3GtniJ746/+vUaI2HY23cf0pnEgkJFoyztkJTMSowzfU1UMCTF7jLwbXcO795tOaB3VO7uKZhAh931W35i/Cg9DWRlo8WYBWoeMcwJqcgi3o2edIMbPRrhkBkElKAecstb3YvdZhMNtwIy6o6GApWIKMMShcsSif1LLsp+1mzEz9ag4v4lFlezfC7Rh+ams/TmR3g22ApNFEIpmaoNKc2jhZJ0I06sSzq/8+H9W05tOtadXwp5HR4158CcM7Zt9nN8zvUnB+zR7byEM/Z27lhDIOQW1MmAPmYrrmsjTchPVSrAM23iOiVpVCrzg1q+plx+h8/yP32O/Bgqrf8t+Kc+eVIAx0MtZQNCgccnRKf/yb9aAxDblA94T5NlKI1mBHoZsYoz4xHg5Zb+u5lCstda+kknp5v38c35G/1o94oY7BNUADotj2rX7JXZPdq/Q311wg+sjvCazx1voTNnYInXR4vnrNrW/uj+4uXWlfc+FGFn5Qla7bi0ib8vXr2wUHHr6GBGFW81tNKxHBquTztb24+PH/7x++9TL5o2LJrKC3vSpVgXwRE/zjj60b3SuOLLrx8++ubLJ4YLSKtQJUeTP0vlKpdGDNdGEhN71s8Ak2eO6VmcemRfuF9XPUNK8bFGZsjQOmYTWqHUymd6RnKyhl/gInvEWp1VjoRwDfseTSU9yAmPJaQcrZXyhqPUthGdQqeabUPj+BqIHPz5+Ryl2oKaDSMhoJEixM30U1bxcCZSGNDZREbCMFns6hwHa0uNfaHUdll9d+8mEgXGHC7hs5jSIhUu+GqqqtxXvUk3KU7xT9tOumHxVujUHXZItVfWuyiZiVTsgNewI2qRCXu/63P7Iha1pLK5PbA3HPElmo1HuAybeA6nGByYYVS/k/tn8ZQ+VSwS7adyubdhcjDwkbUbh4Bt1ul/UovhjN9DTJxgWD8LXUbGHRtjG4zMutb26Ts0L2hqUCbPgNeH3rP77Fmk87gNhxfaQhs/uRNN5MzJA2gIpvfYNm44h30PtmHpqPG3H947tMP4t0l9GfJH5MBudGs2Nx8c3/vL0x+JE8Ype04wut2hP4xWSq+Xh+CIgmGfwz+T6UK3gzt3Ym5PXDkJ5kmkZN7o0ihwa1qHQL9lLBSoqjx8gvA6zwSW2i2mnCDTzg40CJn1Vo+TEjLja7W0AnXBUtXFSkuUsWgARCSNl8OHqVo9MoVhTrznOTJpXEmiktYEaqd8cscT59R/cCORnZj4Mc9L7cLNv1nPHC153GpNh4PZanbiU9af5LQskWSoJFsQ52dIC+6NFGKx0fURwYBKk0pO30ke1FTYG+7uOAZiNPvm5qBB2JLZbu7WHZLq2qV/YVdM1daL0PW7Mbpw9j9+Go/rzWC9G0kajmQzmSdaBlcZfccSSSgo2RXHQJFShlJjeylL5NfSErrqfACuljFI90l1m2fYtPq1noM5hJlJQnVVS3x1evLVw4etjKCgw9DQhihSgDOj/vTHp/nZ5D5tcXFVDTEf3DCrAXDvu/340VCSislPRhgl1GSsWd8yp/Pq7JW18taf2mInUAMAjlZGOFGGFbUjyXDNLcO4hL1M74roF06Q4lC4RPnDD7gtbIjB0ltM74JgDKmXYJRIHtXMrzL1lxcfKciYwKAqw8JARySURaZOIMTrNCiD9RJSJoQhmMAhNp8Gz1SL2IoPKjXoSAczDZjgdySsICni6IArnpE9XRy5epC3hTb8FklnKGFWvwExyk+cabk1eZOx54ZWPTFFoByNpXb8MchDI+XbONg0xxxaYGnX3WU7DnS5wxmlVdC3irU8KWvGUqUU2q9BRR48zUASpm/ULjo5eKIfylldFu12DNXvhFDe0iomI9OIPDrV5yxloLgF05pVA+jDikEkpmZBqTUQYRfA1bfSw6HcWbT9wwVyWDcPBmEa72LHvoXxjuCfI8yQ2RRyXmad4tLQMBAIdTot8956bhL963eO4tIezDwjRa+ZaJE2kh7eu/+bjT+oJsdhDF8UFT7YU1RlRMhyP30Ab0W9/UEM1bYE2qBpjYhhOXyQ8Kfvf9Aaf/3FV05Uu31n5/WJMfq3P7549sJbP9968fWg9W42YUS6OtJ2SC9kf+ZtLg0y3DwkUoFyxhe88yi+t4pdkgM8EsJKiG4TRQ2FD2XKMhnAT3rpJ6oV8iRk0ojGdngpaeWishjwYQQjBWdlGXVEZ0D6H6LV7JoumbRamJLUmny595S93FXRhYgii/xrtQnHYeOPPCMxLbZtkpevxjyu7l4zCZE8PACjwVxwJA5AQDlgTIyQaUKqSApUUthRMqYcJ9LmrC4cBzGAIRNegA3AhaZSSHUUo5yjgSGqXBrcXw4I/DxpP4I6qdJjZnKoBRuAvSDHQOcbb/2oupinkIyJNeBFiYCz82VlkmcKlgfQySxnrTjmVXA8uLGE2ZmgwcFVXLOIHEUiENB0cXFtTo+EWOedIccgC29z9sYWkdPNtX25s+z29/WvFgq7veCNcmtPuPYYX5i42AJe2RxGavrBba55d8urF9qQgVUcVgzwb9qp/aP7/+Nvfv/67fs/PXtZGHZ9xX5AgzGvMJTFMdWOS8CJRJ7I8Ca2yRgjXfMd4LClNaOyVvZq7jIAv0sLVqXA8zOvD6mA0Q7z9hJHHhP+DgOHs8GUUd00bbn3cKBN7eNNYZLIasZzfg0CrmQfxiOpfGCYFv/Iknh6BNU1a5uT94RUBJj4OKCI5a9mIDUayw84zZ6Sbv3udvhQPyjM48Jo9ihrhQDE1cE1nyUujA8CuBhaJdBw5Uswuu9JCQGl+ynTSteo8kghdMEYaSqSfkpRy6QoBouYVgVVUfGBvMifhXiS0kn0HBFhEjGAWvJs7ZlTjGY6JWMYplK8ejimwO1tPD68Z8n17/783b/7ze8q6w8NEFqBWXFBNVM+GGrkQ2isfm3TC8VDGh9VO2u4crkYh3JPV3VwkWYv2uXTl68t4zIEizw0xmh0+g91/SFnEVkqAw7FbOyvkSGEpGtskU1bkWuKzpqcd73rpQ3UpCp7Yc28g9HB8XZ8nL39cPrmBXzrXo1DJV19RZz1s3YfzGTfv9EV3EpqskshmJSycCIJL5eSWCPKEk/Af5ie13RInwCXm0x3FgnJSgMztXgiUlQiu/V7stCdVGJEya5i7GdhJ+YQxv0wCc2K9WOsNfUIQwmxrjt2CGzaOjl7XlUxVxYQ4DH9DVap7QW8f8VWgIwXD6hrNFtJ/7RUoZogvPVDmfIucKt1royBnqR8ZV+AKZIh+QOmC5EDSHqgB2nqHj3KRMcAC1N/fvspKSS6ot5vdzjjBi3B7qss0PeM9VVjEOJ61jTQJeYAYuGariNNf3ny0pvtD/Z7casHTs492jfpeveLh/eNBDg7VO/f1rE//PkvF45nrfr41Rdch3PqgPNUHIfEQH1enS8buz2pI5SIJKfdDCIUPhOFaWzFEVt/+v5H2tXIWqbQrFsEpXZVtnG0f2iwQsloAxUIFbmNpbb/79r9r6hhfFPbXpKlwzCBWifZL1jfd57R3b0f3r6aMB1HgkRNhVPrW7s6TdzhovqZ0FQagcCPXBvu84/wcXSI9jTxDDHKWvRhPFv4kI3B7pM+kyi3Vi60B+dCpyDiRg4tlzQKUEL/KGkCZwDpHiASh8CFXAkoXuhf5JDP8JsqVQV1ymOPOWNiGKNA2YFaDbJM542WqCpdkZq1dQ+V1CMMGkXNIAppxGN6UDMbLfdySa5sVYx408WpSfYZsfBwhsQglwCzd7WvskxDpMDK4VfngF3wzBiCvaT23WOsW6QRm0ap5ZGzexl+yl3URCxpTtZaevDmZ/nBCdSUghVWW/X9+MHDP/z5u4dHx188vGeLhT4te3h4/FhRWlOI7nz1m42fPX7sYLi//8tfq8AFg3Q6SuEy/M22lqeJSY/EYFnDohvswbYHjxo1miV3Rm5N/1cyo8ITi8+FKp9e2vXz9t3WrOynEL0jEWz6QMpMhBZbMsRNIjtSKFrdKSMb2YxBhgKk2dMsVHDAArZXpfnmYHTZWf7g6N5fn76Ef9Er2RqmKHJheMb+4hXDUK0+uvaHkNWbbcTvhgIMa9NS6ZD3MMTcj6Bww/q5t+8NLFqlHJ+xGBxyKP9nDQIK7il8CICTuPz3rZIMaH7WVc2nLwqgYQn/VBK2RVtdMKu5U9VoSOUqXKFUMObJmaiqK6XASSjrO9HNvE3ZpzqYLJpcoZIrNbWnwNzo4Hsd03JEjSv8lGcIqa4FV8LhgDyFl8pzYwHr+ZT6ybD9XrR7sb1+DAxFS4m9ZgkgUSsB/rBmoCy1L7cDeWCmSVg0pI6ZJoOpO9BLUzjWkPSGdHD8CQPsEH7y6KHBWcz1slE3pvDNNskHSJnJosNIrWPf+tmXX/7mT9+N/KJNDSPeURI4ff6W2Q9RN+dlSIhehWoIaiUELlwIGDFZF8L6JDfoZTL6b1TOqXpOVnIGd8d2QxJzsCF1vL6yHF+8xRIYoDAkM8u9aTv47wIkA9gzPyKpKUebJ5x1nGaryPkZTqjc2vz6yZP/8T/+FokIaKtRU875O5nMQwdQL8fWgpl0IwBFb0/zigjc5E0ZXh27RbIpCHZjSCyz98/pUdsPH+DbuFxZuZwYMAJLF+CDs3LnkmNLOkTdPNPCJanJmwIUmyVNGUyQiLI4UFmlFctVpft5PG0zHkmsEcpAghpicoKFMAKT8lkvU+/S6rp4KjlpU8XgDedxIlSmptHYtCZbzZzydhXwF7qBorAVCF6mXuJyTb5V9tgQSHwYvqgJEUOsRJwJK3/xYVrsqUUlY1WKLTVU8/LEo8Vih4oyxlm6Wd6wwzJfYwFjaRADY5rc5bapW8Zw73DPrC4SuFQ+1UBnujDUTQDbYBO6aMrXX3whWOKSp4IahM9IwWpBPArCda7qyq1HuGtYFPrF4cxgy0aaJZI0prNBv3hbWZFhNkCnszcx80AL7Haiyb6xbkrNTfISAbPEtGXAK6nxsjrMTEGjtKbiGUOriwRU1snftrDeuNXaxuP79/V7HNNxRVsWNbLvjU6yXd+pllTw29WxCPV9y/viWvxDQZzvkjKamEa6q4HcWHt9dvLg3hH6FuGxSRMUw8+RTb2LlA9TFEHIiInc8rxVMLASwNgazo7QcVUFndo9SpqQ0w2yarmhpU1gLupb45ku+LmIorrcSwRDFb4z3dGPaKrcYOE8NybU2U4pUNWNXkbbELv6zcq2enFe2hvE4XwVVqx//XlUfZWVJQOeOsCcm9VHlgfcoDWoNHzsZqgLtUCNrIPaVS3LNT/mF7wkAo2mJdNS8wAfgMp5qlyqPHyL3Z/hWPtoemrD8t76tToAjbVxCOs7d9pmBHks5U4LPdrdcmVPGEu4vJgTjcI3Fi54RfKwJeiDjPTmrgU9tKNBNRTO/8LCcInPoZpHlTYrWBt8LX4CQcsYHILzWS1SSjWYTVuWWmp3QlSQ0LyFUclMa2SDYDsjYG9G500vse51KeYznNCDaqu837x+x5XMnovWnC1sQgZUFgiFYEVLsT7s4RGVRBMZGaFLyjKMojt+qxcnYqaXrNFObkVOaLjvLQ2j88qMJEDIj9EhSrykgJc25y0zBjka9kndpEUvBFZfK9Ujdc1uw6sYw7qogQzaWb8n//KhqRmdD5iSHmWDYwzKgTkTINHVv8gkleWXp2rvJ7QHp6EXIkFolAZ2slRm8YXLbQY6lHrIg6qXJqlrJJ+wg1+BKpJ32CtBlj7TiOUKDHYEf8F1qa98MWMe99nDfFTfQPQ3BAZYirrVNvmlxC48Vy4o5b0xCg8JB0Lbxf78xSsB9t52S9nXtrbTotsbOpAWKDgFBkJWhABrj9TJxZupPCiQGPYHtSr6mdtcPEAhbW4rhrlCdahWSmNE4Wm1IMhjMdKQIESPcDNrba8urhqNS3SFWmFQEWS1frPtOHCIxyNh7tIfXLFYKOXG6PDsYnPc/LYVWrvejDJjKXz2s1en4b5UixlpW1wZD7yYXmJQY9dkQ2Qyjpab7ToAmtCi9/07d72K3SbGe97Dt7n58vXrORR12BPqP8kxMPiQxhXeNEmyAE5Du1JSAJcMw7QWt7E1tU69C0KRXNQIP3qK2fGne9i5lRA/RqHczHC/5zEkONGpbZxrtGIRorIpzMprNuZCcFHurw6L+BPueMbSslalYFvEJt9gPxToz3CoU0sl4ZPs5m+Br+ldvPJkV9+8r9yPRWsUqXDYLMYXKVUUVaWnBmXIAyoF+ihen3OlgNE23Bjkl+RwoILRM+yJtoSdTBNEM9wbjx8++MNfvrc76s5qMps7/ii6kE3XoQV/hg3rG9JDupq+0nyQRi9WdkqlQ3DUHo4hA7vsYBF3vmA15SZriyoyjSULXCeY33BwgfvpqaCoVilXtxJrffDYAajBLNM1QqqEk/gzcSYAL63K2fs3NUct+u8lLvD0DmJrSqxXZH5aj4f3Dg3vtHOxUgspK4yJC0HxfBiaxWqwZi7JjfFgS/2MNn3z5MG3X31lU4Nl0nf1TupgGCnS7xBzrXmFFoVEtx47W86hxo5FOH32xOeCOdQpGgbTMLeDVe1FEw7zbAqToQIKwazUnsdmPbxFZ1IQf4EKuNu+YZMtLtRl+5nUSiSTaUX/aFSUr6RVxrgQU6e4yumDGEsqijiz0AWpRknG+FWG8kAo1i44dFMlsik3uPnpIqDBq1RPJ2iUU9aejpUPCmpOUXpQ76iaUjV1eKzWBb4ic7v6JTfe9OGrrir4xlfyrAO9Aw0iQGO+qxvY4J6I/eHxsQVR9qPuOQd7x4CiifCNYm2py47fILbYmQrrUiuo1dPLSAUDN1dGG7zqdpVWY1DulhF6GosYH0ZaOCc529jMR9h/6xoygbhmfO3HzQxiS1NH+JIMB65xISFbk2GeGdlP0jhco1HFGxuOqFh7az2zo9FmUtvm3fV1p48cHxw6cYTknNV67/DgxclZLi2RYC3jbDOpGkWDcV3L3iJkyQy4VXou9RCCtlSr8u3jJ87ns4VACphGjj+Wfd0rKC68X/GDYG10EOuN8ER+igJ0GlOY2s/PAhs/50eSi7RpGQALoNgHK6mQisIME41vykj2Pc39TF3ghZ7kseJRjfr3qcvAGu3BxuFTJpLbDVAYQU0d9fOCWSMQ+DrHcswF5QE0yYv5MTutbKJxVUkDCG6w1K/A9FlKRjDuNyUZmKV0pfhUYe5BqDVayFLKbQTnC3Ntg6ePJUsllK2C4UW1KiNlgHAtYaFNDEzauCpOLkhJOvjmZL4GRKpm7fr48FAPwGl2h966u7Znd9nu7Y7P8Goy8hXG0Lazt2fPXj43Um+Zf0AJw7FDnZSbh4+76aEHftQR50tplupSrAkUleCvKZx+ibiiV2qZbAai3nMrKvyz05vt+THMsuwHNG4gTkY83KNzg520T3y8kblkNWfgg0El0PTjs+dew2NxqoluiyksrmLc9oB+9fjhL796pDNyfHRodll0Y7igVys6X21DkwQBhZoFVFP9EJ0FI0nvE+S0ZHPUmwNbm9FuaViECtaXTlUG5bXHt5wy//HTBUyLKfNeqRfMwVyEvLongNzDHDTiNnnHMdJDzyL4ypabddbBxwpAVmYVK+Y8r3jjr1Jqy06I2Zd/HrBtGQKdxgSsG5dHntfVXlQlGKX1tTxbaXFpcilHxp/bgLIwudoKVffd1xAIUKJK0XPU46wHQEAWQEmpPAUHtIbXS3V6LDdjALv61FEB30yzbuvgNz8XLAOiisF5IFcB1PwDLoSG+W5Lk6NWxUDMtHSTISet+Z1g1SSa8zKen5w9e32elm/Y2KhN4LU39TVx9fnrF989e3r65q1Bx9ZVZHKdi70wrKqWV2mxjerLQyEtzFFZfhsGGZQV11FrDTQNGepYQm2PaWjDqyOjJOiIm+ICm/LLTi+WFQeFHxiVyTCdrcbxkupoSR6M/XweQqF8a53rrVFID/pTzfu3b05/d/H69atf/uLr0WKkarBCUidJ+6dt0kKlarFhjDul6KonLyRAOWks4pAj6fmbzWLtEHZEsjPtt+9s75xttp0f8pqKBornEKeMYtGVlLi2LvRlQvRIkJwylhH9GNDyPGVQTVn815me2C+lnhNKir5Ic9ZdKk0F08uxhzRgLo9Vo9r5rEq/lq//xb08Hv302d38n5YHWmn7gsgymKryUKs5ijWRuJjBlFvBGUqmRhRM8bDuYUT75slwPQ41RRLIuNvz8i9fQ2kTQQsGUCnPQC2lPwVjK9B+TPOePdAZ1cioFvCIJo71xPCGtIlDt26MCT18+Oj7l6+evn51fnnx3bNnwpZproza6S2065+jpJ+KRHMw0hXqDVaaAfeUzQtzCWEoGA0pU7BmPgZ2rU7vXQVmAAz00/4cOcypekBSZs5XXMSiCn+NuGLUhNP10ox8sqIdJ3pYbArBXFAN3DBTcRLw+reTp89fiOxazJRA2jyEveHFdDbWf3h9/vbj761eRQiqri59Owi12ihAbFdfICNz+FnZLk63BqoO/2Jf5RjpSyiU0sp1or2N13bqNCjEfDo+TMCXLmUEKkrOac0UHnZOWhmW3mCGM141zqgbEYu/L3N8rdbYkm3Ay89R/+6xAyMXr1oVrQSXUX2TWZYKV/X/8ir7T6kpXzV8ztzvqpU4dSYv+QM1aMmaBP2eUn2tikrCgSlWCpDRFxdLi+2ZroQ+PoNfUmLukOnnQsXoSZBzhLFiaqQbuaGAVILaldy9qtP+MHPRg7andsaPh7Jwz9mG3KmtSdbNRw8ffvg3//bj9cXZGxoQ0wZgQzV0BlB77pdKU/80e5FIwCnnNNiqUQx2qfVQRoTTOmBEtSvactS3by6EVEO4iux4ZqGN449FqWptK8PbumqMFxmppGrmcnSKUy/rOd1lmFpWwUXMrEGoo3j+9s3f/f4PtjjZ28S9Q8bEmQg/BiS1uErap2/eeXFc+jHxfYSlcHKUBU79DhNMZDuGXxKaz7YuxMSGBXOykS97PDQ7Ymaw7nQjqo7Cva1qFJAR1jd7InfiGQDdE8BSS2aBTFDH5FRazZAbQaTEoVJBoVQedLzUKo2LEzL4BFxli+aCXSyJU2VG1mgS6woByfPZB8g//ej+px8/PSt1csWhapFl2DhZp8Cq1DxfAMZu7PXxn1z9QqRsmq95CnDQFn1OrWsLivHKmga32V+dUuKGsvIghSdfsKmaRWT5/MXXVeOM2w9sXBsNwumpbGHFUJF/saUqpHI5kKqT8/DBfaMsjp1WyYo/ScwCtuvLT04W0z9uaVqYtINU80wD66SKR5qfrQPAgdavc8gLxe7pSLoYa2Knxj8JpVdKe3uh1qBTaGVSD8ihPdogZcvLDG29sS1DcJF4TCM40qtorNkNob8daoNoSsCa9Bl03FjTv/m7v7Ncg0oIjIwEAz0NQnVg7PB8CceLjgGej3EOExFhocQwh07ZkRRVLkwpcHKIC0/fuR0anQ/2nG583NAA4LcpSd4fE/HVZR3Lq08nYzw67m1EBKEKM4jssX9+DHk+ibnmYkFjDAILp8AMoS4oZXNLc9RvleYKlUrG/VYLUtVermp08RqJudZw5SknOTzcBGaKypAbzoIKbnwCX04fc5s6fsbZt7SeLuVVsKCATVMiZIANeAmrgiszmPpgswBMp1OCsXAYxvdhi4IkO101JfSlUr5G0sNNOONLZmlTy6T+1P6BiJzF8CZqCNE0m+audtFXqdRBUt3Zk6o3Gwu5d3Dw9sVL26WYXw/GM1GYUX8Go0KOsLJDHSUsNOJyPOF3pYOXWObiDafxGO0fk7lMdxzGk8J7KBex8uSVMoWFoCqt+JZhLH2X3U8m8grAFrh6s27kEbHZcOORmSijQvnBXPv1H7//4dXpBdDOKLZyqTXW0QHiSIMzgXx5sZivjFMLrhCodo88iL9oTstwU43ve4d2Y/8S9a1tkGONF5YXOX/y0+4V8tsEan5B0+roWYMMXgbhJAqUJ2Ttg/ZqVGfRHjXVkKWA6sVBaI7SqgEm3TfXGybwgxUS4nh30kfZug872uE2SiIr6lJn+I+mDoGjsdWsyGIbZa72ueAYF6b8JEjP/7qA63uFQzfDaTVyNUuxnOMybJBkBm6OY5Q8fcgIYivB5tH76tfI0S1aPF7gVTyhxJD+lmseetKFXk8CUq9XlpDwWdAQi6ZBCS8AB3OgQPzMyWZfq646qSxijI1+eP/Ows1GX3q7H/gbRhefPHrw3bPnjUYABbJJ2Wqqe5arkMbTLEwDLPOa46SCHTXUOq0djivGcupjOJm4JW3tOzXaMrvYYMQi6ItOQWUjjVQDmRFCf+vVySk8JPC/WhSsTRnnJcciO7eW6bVutlLrXoRrdOj7Z09/fPkcCujtLMOEHvikCvfRr9FA7JNSvVU46bIOXYOCQh1mQRE9TxzLl2Lw6EUNrPnq6tXWlm095ud7z2iLpBytp1lkxbwaFl87Pdzufq+vZRD4kvXP3MLAXJAbq0O6AlMzNJa7lWUsIk3CPUdE0ls5/XCHEcJGVhV1wVVm9KUbQ+VU59ZVeqkR7/98BrA0QhgNrgnFlGpairiJ/kGwFMVqTSs+WaBDZFJmeKAf3payFJ48Famq/38aA54TyDaEuvhGtUlZVcuFKWPxFU00MEyYaeDooBLqGsCf+SdlGDQA3IG2OPoSYhMRQDIjnAdEz7cSm+0H0vPKIuEOUtn4m2+//tf//j8qPRoE96X2z4YLdCGe6lYmODoGyaEzac2qhfCdlCjoGhvP2dF9qPhfMONGAyczAcB0uEZhWlHHEjQ33ukklLq6bha3wOPTRzG6d6t9cMbihw9zfoGjThshPe1VFu/evL3QfSGHN5cfLeILYnKBFZQhFH7zf6jzIxHHFQThLy7EMVf5XIav09RRyppItFuW1IP575j9l6cn953NlAPUSEx4N7RDw2yMWe29nd1extOgmZ7Ppw6+UWmqOyz6zN9qG8iD53gECSEWUiv2LKo4apsSxCUuSurQ0a/JEYkL/gvpfhTqRG0ZKrZkGV6slKenA1Btw48hIziBnUdLwRAdXjLB7itftWiaTqdfk7LknioCEbXydS2fg2Qspfyl8hU997cqXspwYEnxMDWKVNxbGpKF4ikWhv7HKuXlSEFrNrKsUoo48qr4SYLFVQRG+HyTxWnCEsK2W9SYPk+ut2BRqrWeZ5fvQZwa0okQrJqsBcnhVM8z/oxBxJgYUK35hx5MrBs35i9tE1xsNZAKmjU4d+7c/uKLh3D4j7/5fVWMP0IqhayEaYedXQGHE9fEdDqisWHpWLBojQMf+/Tls5enL53VHHESO7NI4WaRvYNxsIRpSA0lPYotfcXs+aym4RoeVXpEEQJlHKJwlWcJSKlD+oo3axoiB3Trr3ihUCwueORXiDAlaSX2+oY1SGsvQDOPyGjj3WdOuUlQSz0R7X5SauTS/5xlyI5jXGyHKCswVETUMGuATuLgLXmFKXgDFJTQ7391LAAmbzn9X4r4gpKay1bGkvu/ZOpxGHUFt2rLNqX/gZalXKnLv6XuAVSxyT4w+ghe1YAsekRqZr+qcRHLUuPUM2FDcwlK+KuvNGjmFFxppMIFV4N1FA9rcNLKeq5pGoOGPot5xyqcfCWCzSPXDF6ZLOag1c9qdG2dyXfq2I6lZarMT/hP+aG9SqN0mDQURU3eyiedHfwnE/siMMkLL2yOe3R8+KtffPPLn/3s3sHhd89ffP/jMy8NHAtoBcfg3q8to5ENKHlV4yz5AHLqB2zdnJxf7xzy/M7RubEOkmRoskIrMzttxoGEZTXH8i4/h5ElLSmlTpKEqp7kvqNt3EvqhqcxdwQfhShrRkFTIMTTP2h8AC8Heya6ZDSiynU49Uj74Nwek3DyE0mAVo1HtUxNHMjSJ05dw2S+p1IBVfoxFyKnxPwgfFY62A+dQZq/Je+KwEomqKpZRLDkK1MQhualujgp+/i4KfI555RO3aaeFfjP8AEApqxhOfD6WuD7nAoWLD+X/IfvqJ0LvavGIXBECWBm3nKOaa/l+xx1F7tTNduGaiNGOqpdWm/AwBygoZK11Fqrv6mEOqSS85tSxM8iic27+0YzhRvIszVQHkxuiOXTewcfjzmCEsQYgIs+lzZ7xuYWnnhc01ar45rM8z2NWJ7R2Ikj7+9b1HB3n4EZVLRO5+ju7aOjfVGWBuGrxw9+/Ytf/A//9t+KHUDIhBaXaufxu0uvvWl0MA9b/cnNN6wEe3ivwv4KmhvjVxjTNAjmh8teZswMrT7n/jPnF1xTt+DG8yFiIRm9/SpvpPdDBjdpkhSx2t29nS8fPfRGLai1/gJz6zCNEuW6GmytQmt621u9ffLiVCdsa7sGkRgSR1VophcEFi4rF0bDc/EWaeVGUgU0D+HKlGFMQDQHm5ZWeFR6D7uWm1HywX+hYsrHtKqIPQNIXWkL7zUlFycLu8nn4VI29KaPPPB9DNzhcY8kCNImxwoRX2UZTOb5QJ/Ez/gtoCo7KcuNe5j9ZJ86mqtTMSUvsY7MNb2yUzwVTABECxEgyyCjOJc+XsPdovs4OZsfFWsbis3vW1vfP3818bqjfZpUtTCHO8MLRpALvrpuVU4xSrUtjJtvTKquSU4YEkkkvP0IjUQPNV9szO+tjVuWpv3tL3/27eOHd27tPHryBDH3jo7kBz9BtH7p1j/521/9u7/7zfISE74VATPkOst/GFNcGXeJKKUgGhvidBioemqdFB1lU8icbjYw2PmQM3kMj6axSuz/oDnXDjFHftqcZkzvpC4/1jpiVZ+5TZWmy4ypWY9+946drtv2Njhs5sHRAyfEfPfjjzUJLbuuVTBLbm45EY2mG1bWEjAGSz3YvfUcGx2D7kgy+7C95MEwbG1EurxSm4wtSiPUP7jHKTnSqigfzkdRFfjhdswUytPyypfVJIAxaM+RolI/u9yl6NW4fPSDTTEoNUkKANjplLskXM6geuj/6qcvOZdMITs6sIJdrvJP9qltVWxS5+nnj8+5omfCIxCDnHIshagy/MFXHb3C2gWLEKwGf+rHDF6mJbd+ozEDqA65pgtXhrSC0tc4a6atgd6+5UwggtN3tcCHXMRoRnUM8tBmDYeBGqP+4E20OzIZCmqL0BvscK2dDuusq8HCjEdpRESHrJy5sTUzwQ4WEkgrqHYlrDsKwQKHRh6//erLo4MDr71kq4TZHk7fZqkMRKkDD8CMOANeKTEhh0UqIh3DQfpkRYcQwjxaEV/M8X+Q7Gv5OSiP5sS3ZDac8jmop0gsgGk6VZLWtt7C3IXCGzdeIPDzJ0+eeNGI1XY7t4w1t3bKyS3rN3rtBnPVOYZAte3bALkQX/1Rc2vTWLC+pCOmOx9yyw7BHX0m7oLoBXhn3op1ce6JWQhURs9Sq8dpZKqY1g8Zo5B+sIywl47tky2PvGSKU/ZGhcBwRw5JaVejcgtWQolgVNE0eWGKr3FaDmhM6aqQI7EEAYiSAx/7RsjBmLzzk3B4wRBpRLtVn56LFvUOg17mDDtkhk3Vv9haCbAdk6pIwpVWgerVeBYr8JQJHj4yWu7WoGeEBUaOQVShYURNxljRoJfEUxxy8ypnlzJ39u48ffGUgKw3a9XC2ra2gEDBrlOhF+3FKy2isXbZQI5ot7Ec9SNkhFNFU2cDo2CvmNjoVENhg/uiXrrg9dHNUO9sG6T6xKFWFjaOxoq6Io2jzc1f/fznPzx/rg5ulR9GCrSXWtWLecMt1DbolkQSUDrj3nBqO3X8KWlSuSchUbYMJl9Q5mHPsLbHflYYcDstLZKIt+mVU/jskX6fxZkIjLVq3LSJaW9n20iCOMcnSbQy/Hptd3vHQfZe84hOTGe2evc13vBM9FUNxE7n/nqP07vD/f1ODTAOZuF7K8C21z7cvNncUCn3s7dndo49+CMGZydueM38AG7DRfFgR2tF4Mg6ZVjoklbqGNBCYVVHXkzIZ0GNWCbKLAMUY8nKFBQsR6E5SHr8SmHOwrEV2IWhn1kZX8EGoiqmdjd+RBspqYAyBafXd5B1uxUqUab59KHKQCSGuB3KLnjKE0VdPQfWXcBK1T5QnUr48HMrS+mZYlMioP4ljUr65849FsrieLg9rJ7lFZ8088YhL9+/t/1GhpEsb6uVvvKO+qcvX7559+HgcF/TEZb5kXZt5SIpDpR1VgvoMwsevAqyPI/shzaOn0qQWk5Hwc436dBiEwlwBbMFFyTS4jE+0b3R0e0vvnhiNfaEfHFksW2tEuFh4TLPklFjgrrjX0bhxjpYoJqN12/VQ9DRiQ2rK+xXvyatj/kPoZjkYicjCrBKK3KvFZroLgs3faylUiirwn1aNYKCmIq1sgZJX2yc2gB0+8ZLzejtAoekZKZGDa9isWXbFxcXXpYU20QBs8E/rb/ZJhV0+mNmpiZ0rSyENFDsxbv3Ts4x3Iuyncz39MVrPTwDULnXOUzAI7OZMC8QaJakI6ORvxj50FjYn+Ao0PQ7ojDhxUCCgh42pGuLw14ccDPMcYcoAG9HH/WITyxxJhJM7KhjUtKxVK1gjH3pbNKDKZ/eDDZC/Tz9NEfDu9yaJz13hWcYL/CqN7OcWeT5AT/IJoHhbPSNxKEisQNUBLOjMeErRW29iStGj/aP8+C5eH2ZnaIoggmxjd5NIzx99uoEZY4/UUut7dn6j89f/PDixeuLC2dRHB0dWjNm7o27pNuExUlVBwZaiz78Q79GQOWUceHtjeUVmNIryil5a5khc/L61cerr9Urz7CqUjSKgo38oovPpRWWCQVnJFuzMfdDnbQZWvaDgg0zYg/+zuKL3lQ3hyozx5ihrqk78VXHqkVGaQ13XPWRC+luRNHn3GMRnefHY7SLgWox7dwDdzEJyOPobmIAb0PAIzJsFeHuLp6PH2jHVjaTvFvyYLH78dG9f//spQDJKX0OFQC5GltlpWne9puconIYWZSob9KbTfbo8I7WeXP9bPvNq9fnUGMIYjTtgcaa5QrkICIs5HLMV2hUoD5cQ2BaEJmoFY+FcK3cEkLX0LZFfDCZEsrFrBiURyfsQQeIuDqmFWhy62tMfUlPIYaBPmyDnhrbQRoCHFms9b/af7rtZhIrlw2FZOaSUPwf1As4xqGUY1qn7CARUhoFBqj8CQtRApgFDZNVUFbfUljIrEEGiq/JbmlYu3LbqGk93b//7Z+/f/4aV4VALU4by4FBBnN17cxqxzogcKaMZiog/KAVvtAYMiJiXJRKekRr6jheW39WgqlrMvRupPa3fHgHjfdv39J4izIaBZ14DxGfLt9tt7rotg4qNGgxXEQ6M5ZUmwAatGvLq3xhIM5n/TWWDMtgUVqPfyGUc6UVk9dHRaT3OXwaFS3Br9AcXOcZjPweqeZ29Esyfl5YFnQuearXlQF7tOVAPop+0WmqlNJ6QeOkH0yFyJXHJaVZieAlwXZHvD49t3d0c88qPYu7uZCOpPWyx/PzN45i/XR/Gt5F9mOJjARh4KB0/44jzF5KrqXSEd/2srNrVeO4plZQ/ups7Td/+KtBuju7+43XzntZIIp+XpluA1KQUNciiyPPEhbHkQL2KyPxCLsJomakPKlUbBK8Zro6gIrhVIVBISLFK1SueeTBqt3IAw5U9I4Sj//LpUpP4fl/UDzMCtKrRDA5Yx18MrMqiJDcfj9CMP0fNCq8wAv5ZCqflki6GOH0AnfPHIL9uEV1gojGFcvReZUbD+4fn/+b33jbJuBAMwZHHJFoFqgpnL4I57K4uOkEc+4qwxyXc7kJvP6eLfK0PL2ggbRi+5Z5JD0NIyj8poEpbDy59vrGM28RYGPCh9sbzme52l6zJQavrm2DhMHu9qYto9cWJ1iNsX3rYG/XdpoWKAxjxsUMIzRDKXX23k3f6xsdODeMwAXeVnShbRyeJtuoxrexBzcxsmsSAUnAEW1UhzkB6KoWUihKInSbgW4ceu4EsYdetDqvtMFNU3u14Wa/t+z723WqKpo1vRwTsxcNJVEIAaZDsLF+b/8A/T+8eIW99iihklbZ9uHgSy+iNDl4tXe3brpVevMyASs3cFW/wfZZJ6Fby+edvvp5JHDbWOz6hiGs99fviJZj0rpaH+t0bgcXMK07u3cjoN6/txXayLrNQanX4hOC8l6jH188lUGTMtJs8jt/pvPTGkkWn5iXRYTYhAY+zqFVsS2PyjiycLSjsHKaKV8LnytABWMd9SycTdfjqmzxvhO2sxaJPWUARmyWbgtLJYq41o6WKZScFFpJu5gEXaIvOIw6j0ZKlsGJ9eWTn+NuVc6Vt4b+5YenmvBdvdTbu3gM6gx2j8FNFU8ePtAZ1jNYFGKEUmGnvuom0wedZgVhOMTiTvvuUazxJ+hPbxwhVNcwDszI0fCycIb2O0OCVkB42MsIr5+9fHX/6Mioi8oJwzoPRzaSOjpqpm4272zf/s9//jXb+OLJ473tnUcPjhn1BHPDg7iS2ScVOh9z8me9lay1RTmGUe05whZKOjqJby43nmZMsT42+/Y5XmHYPB+7uwYTxBf1JMECEjsq0q0y66de13P8gf61vGiz99sacPCQ0mhkYcMgP3y8vXPV+AMQBYI1L8GgLHd0uHd3/vrsxbmTyOJ6SPAlPONoc6+O1c+hXkrQWH1zMqOuPKJGRRDrQNh7GpYPHa+g3eN18FJZtFEmxSSIwU7Oz7A4K2rxlQ3cOT/eheXudALszfn65veOVrt8C3OIpD+rUQ+41CkyTmDNI/1gugoyj+KKXszRafWaQUZiEIX6Kek231VIhmRxc+C4RnQU4vGr7S5JQ5kd8ChfbIYYdKQlsccRkAQCSl0gbGpG8RivJEbCYEZpgPM09rmZA/ZqtqpzOC2xtc26A0UXzh/1boA7e9uIhGejii23KyvEUr7r6/uHB0d37z47Pa1nQS2KdpK5+QQbcnA1Sx9r9w1BK/2975pw00QdXxaQF8gwqAQdgBi8Z4SwI/LVCxuxc7VeX784OXnz5uJg9w5pvd96y88aK6FgsQry2Lu59eTePY3Eg7s7jZ3EAx7qM4GhOOQzg0qMfiLMC3QYLDpl99xgizbFZmgKJWO8ASG6Yt3qJnNAc6DHhAJIb8jWiR2X786GQeP5liA1AKKLtRMjnW8vdWhbgC1o4dtuo1/lG8aJEaxWptDY9Kw+0lFKhxO1N8V7Jcz28b2jP37/zFK9CFANsefQreX7RP8+bZga7zwlRrq04CyKqOSSmSyom/NjPpx49Xei8XFn6oU5qffPyg5CffVSlyP9RaDRiWZLuJxe6YtuiuBNGSxVeSgMX7K9wkAtIuXW51u4g2UxbhkC0grAN14EJ6JrB9zM1dMJNyoDuWku1C+vM3VEwtijies1UMxICM3Veu3L148fO4yQzclAPFowXUjMUfz88vL7Zz9ShfsHhz53BA2tD92d0TydjbHC9Zvz8zPqTnDolY27Bhl/Bo3Nfe9h3+WtUjHYdJbhRDlkl8WOWvAvjx89+N5BvMXAWJGGQxUlyEWLW80LPzeJw4NxDY3yZzDXerc9ityuMe4WVzsSBgPiWXxOZWW5fHNpBuPDwXvp25+8e7BOczaWr/C898AjZ80L3gu6FG+UsgG4BTwxywRD2Um8ZNbpPVJ4SgLlU8bZwL3T5eP7sb8MoeqrIBxkWWVbEB7rHy5Ri4017+He3hFLyI0fCIPq4h+C4ZexNov8jg/32dvaHbtaIxJQCuJV8rBnKO9Fah93PlkoOCugPFpcPKXh1Y8O98EpBJhaFB9KUiGW126NXmeP/JoK2sCeWVXNAbcwqr+3c+fl+kmV1ut1mBL14H7s/QO1LqSXDGlivU+RA/emipiTbHVI1oDmLJ+fnPz16QshLRQ8g8BwZYSw8IcFufEBzW4ncAnHcS0jnMgWGvmrXJySbQqVyU+Eiw+yFe5ya4Nr/Wi9wFTaUkoSc37P9Q3XQGSz/j9e6hLy1EI/inV6eX769hw0U1F+apA0VeCaixGa1/BE1LU96Cyf/Y/lrz88vg/9vbt79qFD0kb5+0f3Ts9Pckh1sovoOBEARxB5D2ODXz959P/9D3/PXkZhItM1+ce/dJ8bjc4Qx/jG/9lU2WLVEKy+CtYwZnAxxeveHKG0JZp9cv/oyZPHr169fvHiGRURRwuvCiFu9RJy9jtiqIjWVd/PjmPm554K3NnZm1WbC3gZdV+Td+ISxF5aaupA1aSZlKTWrBt+Ki4ioQQkc7nTalXUGoZ0yWwdQxpvWemlzoZVdLsN0niM5sqOiQVKKR7l49XFxRseaLvjNtKQDKUaUlM6enp6PlMxn3avN22H7kTBqu+0i/GfW2ap+T/RXPgo2dgAvlK1gmbtbKpfo3Kl44bYYh6NjkMAE0TIt4SpgLJeJF+STjgq0FBUTtqO7nW9NGHV6dlrBmetAFYaHNJyEr3TKU/eXLw+O+NByBBTaBIE40lkhKtrUvweFpZrScGQck3qpEx4OWXJo0zNLGFuSfjXFigtGwYbL0EjXcw86gFrEET6WsYPHd5s/GBdnFm7x8pwMq3tV3pvObHXFHjzUQTqZjAJljS8invrvS6DKD3lamaMtIMGyZT7UDUBHh0dvH3/JkZnrGKjOjdUZ31HUt1Cuwa+eHRkdueDgf8hP37EiBiilohyh4Z+LJoUjZ4NS+aOlOqPce4cE1ve8vpxmNzZ3v72qy9+/XNvBXyg0fr7P/zp//7/esrl2bZPKYyU6o1g0ua1HrkVpThEU3Jn79+/hXyz3eZ2OxIDz/zPD6UxvkOxV9te83DKhUp4o2FT9YXawuEhxaPwnvyVwQz55n/+YcYNsCV6ysqOe0YOs5R7yJwWq4eWkW5tOYgDLxxyfHd7x+iQsaTF5OilUlwXIqDYKNlHq68/RKRTakR66UAMun/YbMHLk4uEiLc42yGnZmRCgRl4J3Zjtlpb/WQza5mlAWyjQ7JymSb4dkUAMqzdnnO/x5AAVwM4Ygw7P7yV9Lsfnmm+zGQnmc0WzApL7N1jZSqqMk514UafI+2YtrAr7Z/LV/VKDsGU3DVq4TuEJpfyWZQs6cwYrR8lwmqhMuYnrLyoQmIXPLFW0mEL+OlUaFsPZ4SgUZ1C/LWbt+/fXby5tAIe2iqlLnY9Ye+gO+BRMW92Y+11oBvcy0PRad0E7oALElnc2zw4PT+toFBna4O1sDoiMuQDAHAMc39nt67CyVldhQH7mUzUNL2kIp4gToyVT54mAfw2E0pfhz7A39+9s/3NF199+8VXB0d3LLajk82lmpy+taOiJw8fOYjbvC1OpL3DJcg4o9Rt4xCxmENfFmLkODhETdC8KET2sYW8sOzUZ83bCVpxnZzqsIYde3Ij4J7kHvnfZ+M/JJ1PcKm+ZmTkMwmBKS2T7iCn+ibWn5SYbrlxhP6Dwz3ng2Pm+dkbLRq2Eo8YiT1EoQcN/nfgJEBi9I8fdIMEgnuqADuUG+rOYVuE+OLkAvBQo/0tmpepvdt8ILoYQP875+PD3p36HpHcfE0+l67rKF9evqlBcuAZ1equ5q5WYf3GqpYHD+9/+vvfvvt0ffHxYpigz1dggG9RNaSl+8OWMHQ7l/uyJHHXoL5wZ7gZbYtJzNMogHdFEuHSSwja8DfuT+dThWUJJOn1XwtGh5hBYtZpuXy3c2vjttdlbTWg7J2GmoEXr17/+ekPb9++EziJc9KF6kJqITv/H16JsfGopro8cXjWrU76kS6Kvu04rk9Ki6a2nPn59uKdTgCMeYM7a7v4C6SfE8sAfqU7cfM6pMP0MwdiGZ815hFravwMDxjlvH1wd9ff/Xv3dBG98/LN5dsfnr78/ulTY4tfPDz++tGT27vrlthgGpMLfc3d5ubxvcOff/PVH//wx3EIosukW/iJR6lpHl9OfSp/LnUSKjX7nwEuLdxbX9webwAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "example = dataset['train'][0]\n", + "image = example['image']\n", + "# let's make the image a bit smaller when visualizing\n", + "width, height = image.size\n", + "display(image.resize((int(width*0.3), int(height*0.3))))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "826SLZx-ziCs", + "outputId": "dc7af551-fcb0-48bb-857a-2ebec1bface0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"gt_parse\": {\"menu\": [{\"nm\": \"Nasi Campur Bali\", \"cnt\": \"1 x\", \"price\": \"75,000\"}, {\"nm\": \"Bbk Bengil Nasi\", \"cnt\": \"1 x\", \"price\": \"125,000\"}, {\"nm\": \"MilkShake Starwb\", \"cnt\": \"1 x\", \"price\": \"37,000\"}, {\"nm\": \"Ice Lemon Tea\", \"cnt\": \"1 x\", \"price\": \"24,000\"}, {\"nm\": \"Nasi Ayam Dewata\", \"cnt\": \"1 x\", \"price\": \"70,000\"}, {\"nm\": \"Free Ice Tea\", \"cnt\": \"3 x\", \"price\": \"0\"}, {\"nm\": \"Organic Green Sa\", \"cnt\": \"1 x\", \"price\": \"65,000\"}, {\"nm\": \"Ice Tea\", \"cnt\": \"1 x\", \"price\": \"18,000\"}, {\"nm\": \"Ice Orange\", \"cnt\": \"1 x\", \"price\": \"29,000\"}, {\"nm\": \"Ayam Suir Bali\", \"cnt\": \"1 x\", \"price\": \"85,000\"}, {\"nm\": \"Tahu Goreng\", \"cnt\": \"2 x\", \"price\": \"36,000\"}, {\"nm\": \"Tempe Goreng\", \"cnt\": \"2 x\", \"price\": \"36,000\"}, {\"nm\": \"Tahu Telor Asin\", \"cnt\": \"1 x\", \"price\": \"40,000.\"}, {\"nm\": \"Nasi Goreng Samb\", \"cnt\": \"1 x\", \"price\": \"70,000\"}, {\"nm\": \"Bbk Panggang Sam\", \"cnt\": \"3 x\", \"price\": \"366,000\"}, {\"nm\": \"Ayam Sambal Hija\", \"cnt\": \"1 x\", \"price\": \"92,000\"}, {\"nm\": \"Hot Tea\", \"cnt\": \"2 x\", \"price\": \"44,000\"}, {\"nm\": \"Ice Kopi\", \"cnt\": \"1 x\", \"price\": \"32,000\"}, {\"nm\": \"Tahu Telor Asin\", \"cnt\": \"1 x\", \"price\": \"40,000\"}, {\"nm\": \"Free Ice Tea\", \"cnt\": \"1 x\", \"price\": \"0\"}, {\"nm\": \"Bebek Street\", \"cnt\": \"1 x\", \"price\": \"44,000\"}, {\"nm\": \"Ice Tea Tawar\", \"cnt\": \"1 x\", \"price\": \"18,000\"}], \"sub_total\": {\"subtotal_price\": \"1,346,000\", \"service_price\": \"100,950\", \"tax_price\": \"144,695\", \"etc\": \"-45\"}, \"total\": {\"total_price\": \"1,591,600\"}}, \"meta\": {\"version\": \"2.0.0\", \"split\": \"train\", \"image_id\": 0, \"image_size\": {\"width\": 864, \"height\": 1296}}, \"valid_line\": [{\"words\": [{\"quad\": {\"x2\": 244, \"y3\": 390, \"x3\": 244, \"y4\": 390, \"x1\": 232, \"y1\": 372, \"x4\": 232, \"y2\": 372}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"1\"}, {\"quad\": {\"x2\": 270, \"y3\": 390, \"x3\": 270, \"y4\": 390, \"x1\": 256, \"y1\": 374, \"x4\": 256, \"y2\": 374}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 3, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 354, \"y3\": 390, \"x3\": 354, \"y4\": 390, \"x1\": 302, \"y1\": 368, \"x4\": 302, \"y2\": 368}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"Nasi\"}, {\"quad\": {\"x2\": 440, \"y3\": 391, \"x3\": 439, \"y4\": 388, \"x1\": 364, \"y1\": 365, \"x4\": 363, \"y2\": 368}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"Campur\"}, {\"quad\": {\"x2\": 497, \"y3\": 385, \"x3\": 499, \"y4\": 388, \"x1\": 446, \"y1\": 365, \"x4\": 448, \"y2\": 362}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"Bali\"}], \"category\": \"menu.nm\", \"group_id\": 3, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 388, \"x3\": 618, \"y4\": 388, \"x1\": 542, \"y1\": 362, \"x4\": 542, \"y2\": 362}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"75,000\"}], \"category\": \"menu.price\", \"group_id\": 3, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 246, \"y3\": 418, \"x3\": 246, \"y4\": 418, \"x1\": 234, \"y1\": 400, \"x4\": 234, \"y2\": 400}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"1\"}, {\"quad\": {\"x2\": 270, \"y3\": 418, \"x3\": 270, \"y4\": 418, \"x1\": 258, \"y1\": 402, \"x4\": 258, \"y2\": 402}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 4, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 344, \"y3\": 418, \"x3\": 344, \"y4\": 418, \"x1\": 304, \"y1\": 394, \"x4\": 304, \"y2\": 394}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"Bbk\"}, {\"quad\": {\"x2\": 430, \"y3\": 418, \"x3\": 430, \"y4\": 418, \"x1\": 352, \"y1\": 394, \"x4\": 352, \"y2\": 394}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"Bengil\"}, {\"quad\": {\"x2\": 488, \"y3\": 414, \"x3\": 488, \"y4\": 414, \"x1\": 436, \"y1\": 392, \"x4\": 436, \"y2\": 392}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"Nasi\"}], \"category\": \"menu.nm\", \"group_id\": 4, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 414, \"x3\": 618, \"y4\": 414, \"x1\": 534, \"y1\": 388, \"x4\": 534, \"y2\": 388}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"125,000\"}], \"category\": \"menu.price\", \"group_id\": 4, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 246, \"y3\": 444, \"x3\": 246, \"y4\": 444, \"x1\": 234, \"y1\": 426, \"x4\": 234, \"y2\": 426}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"1\"}, {\"quad\": {\"x2\": 272, \"y3\": 444, \"x3\": 272, \"y4\": 444, \"x1\": 258, \"y1\": 428, \"x4\": 258, \"y2\": 428}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 5, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 417, \"y3\": 444, \"x3\": 417, \"y4\": 444, \"x1\": 303, \"y1\": 420, \"x4\": 303, \"y2\": 420}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"MilkShake\"}, {\"quad\": {\"x2\": 500, \"y3\": 440, \"x3\": 500, \"y4\": 440, \"x1\": 424, \"y1\": 418, \"x4\": 424, \"y2\": 418}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"Starwb\"}], \"category\": \"menu.nm\", \"group_id\": 5, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 440, \"x3\": 620, \"y4\": 440, \"x1\": 544, \"y1\": 414, \"x4\": 544, \"y2\": 414}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"37,000\"}], \"category\": \"menu.price\", \"group_id\": 5, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 248, \"y3\": 470, \"x3\": 248, \"y4\": 470, \"x1\": 236, \"y1\": 452, \"x4\": 236, \"y2\": 452}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"1\"}, {\"quad\": {\"x2\": 274, \"y3\": 470, \"x3\": 274, \"y4\": 470, \"x1\": 260, \"y1\": 456, \"x4\": 260, \"y2\": 456}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 6, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 348, \"y3\": 470, \"x3\": 348, \"y4\": 470, \"x1\": 306, \"y1\": 448, \"x4\": 306, \"y2\": 448}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 418, \"y3\": 468, \"x3\": 418, \"y4\": 468, \"x1\": 354, \"y1\": 446, \"x4\": 354, \"y2\": 446}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"Lemon\"}, {\"quad\": {\"x2\": 466, \"y3\": 466, \"x3\": 466, \"y4\": 466, \"x1\": 426, \"y1\": 446, \"x4\": 426, \"y2\": 446}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 6, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 466, \"x3\": 618, \"y4\": 466, \"x1\": 544, \"y1\": 440, \"x4\": 544, \"y2\": 440}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"24,000\"}], \"category\": \"menu.price\", \"group_id\": 6, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 496, \"x3\": 250, \"y4\": 496, \"x1\": 238, \"y1\": 480, \"x4\": 238, \"y2\": 480}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"1\"}, {\"quad\": {\"x2\": 274, \"y3\": 496, \"x3\": 274, \"y4\": 496, \"x1\": 258, \"y1\": 480, \"x4\": 258, \"y2\": 480}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 7, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 358, \"y3\": 496, \"x3\": 358, \"y4\": 496, \"x1\": 306, \"y1\": 474, \"x4\": 306, \"y2\": 474}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"Nasi\"}, {\"quad\": {\"x2\": 420, \"y3\": 496, \"x3\": 420, \"y4\": 496, \"x1\": 366, \"y1\": 474, \"x4\": 366, \"y2\": 474}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"Ayam\"}, {\"quad\": {\"x2\": 499, \"y3\": 491, \"x3\": 500, \"y4\": 494, \"x1\": 425, \"y1\": 471, \"x4\": 426, \"y2\": 469}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"Dewata\"}], \"category\": \"menu.nm\", \"group_id\": 7, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 492, \"x3\": 618, \"y4\": 492, \"x1\": 544, \"y1\": 466, \"x4\": 544, \"y2\": 466}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"70,000\"}], \"category\": \"menu.price\", \"group_id\": 7, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 252, \"y3\": 522, \"x3\": 252, \"y4\": 522, \"x1\": 240, \"y1\": 504, \"x4\": 240, \"y2\": 504}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"3\"}, {\"quad\": {\"x2\": 276, \"y3\": 522, \"x3\": 276, \"y4\": 522, \"x1\": 260, \"y1\": 506, \"x4\": 260, \"y2\": 506}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 8, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 360, \"y3\": 522, \"x3\": 360, \"y4\": 522, \"x1\": 306, \"y1\": 500, \"x4\": 306, \"y2\": 500}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"Free\"}, {\"quad\": {\"x2\": 408, \"y3\": 522, \"x3\": 408, \"y4\": 522, \"x1\": 368, \"y1\": 500, \"x4\": 368, \"y2\": 500}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 454, \"y3\": 520, \"x3\": 454, \"y4\": 520, \"x1\": 416, \"y1\": 498, \"x4\": 416, \"y2\": 498}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 8, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 514, \"x3\": 618, \"y4\": 514, \"x1\": 604, \"y1\": 494, \"x4\": 604, \"y2\": 494}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"0\"}], \"category\": \"menu.price\", \"group_id\": 8, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 546, \"x3\": 254, \"y4\": 546, \"x1\": 242, \"y1\": 530, \"x4\": 242, \"y2\": 530}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"1\"}, {\"quad\": {\"x2\": 278, \"y3\": 548, \"x3\": 278, \"y4\": 548, \"x1\": 262, \"y1\": 532, \"x4\": 262, \"y2\": 532}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 9, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 396, \"y3\": 548, \"x3\": 396, \"y4\": 548, \"x1\": 308, \"y1\": 526, \"x4\": 308, \"y2\": 526}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"Organic\"}, {\"quad\": {\"x2\": 466, \"y3\": 544, \"x3\": 466, \"y4\": 544, \"x1\": 404, \"y1\": 524, \"x4\": 404, \"y2\": 524}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"Green\"}, {\"quad\": {\"x2\": 502, \"y3\": 544, \"x3\": 502, \"y4\": 544, \"x1\": 474, \"y1\": 522, \"x4\": 474, \"y2\": 522}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"Sa\"}], \"category\": \"menu.nm\", \"group_id\": 9, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 542, \"x3\": 620, \"y4\": 542, \"x1\": 544, \"y1\": 518, \"x4\": 544, \"y2\": 518}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"65,000\"}], \"category\": \"menu.price\", \"group_id\": 9, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 572, \"x3\": 254, \"y4\": 572, \"x1\": 242, \"y1\": 556, \"x4\": 242, \"y2\": 556}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"1\"}, {\"quad\": {\"x2\": 280, \"y3\": 572, \"x3\": 280, \"y4\": 572, \"x1\": 266, \"y1\": 558, \"x4\": 266, \"y2\": 558}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 10, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 572, \"x3\": 352, \"y4\": 572, \"x1\": 312, \"y1\": 552, \"x4\": 312, \"y2\": 552}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 398, \"y3\": 572, \"x3\": 398, \"y4\": 572, \"x1\": 358, \"y1\": 550, \"x4\": 358, \"y2\": 550}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 10, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 568, \"x3\": 620, \"y4\": 568, \"x1\": 546, \"y1\": 544, \"x4\": 546, \"y2\": 544}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"18,000\"}], \"category\": \"menu.price\", \"group_id\": 10, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 256, \"y3\": 598, \"x3\": 256, \"y4\": 598, \"x1\": 244, \"y1\": 582, \"x4\": 244, \"y2\": 582}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"1\"}, {\"quad\": {\"x2\": 280, \"y3\": 598, \"x3\": 280, \"y4\": 598, \"x1\": 264, \"y1\": 582, \"x4\": 264, \"y2\": 582}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 11, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 596, \"x3\": 352, \"y4\": 596, \"x1\": 312, \"y1\": 576, \"x4\": 312, \"y2\": 576}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 434, \"y3\": 596, \"x3\": 434, \"y4\": 596, \"x1\": 358, \"y1\": 576, \"x4\": 358, \"y2\": 576}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"Orange\"}], \"category\": \"menu.nm\", \"group_id\": 11, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 594, \"x3\": 620, \"y4\": 594, \"x1\": 544, \"y1\": 570, \"x4\": 544, \"y2\": 570}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"29,000\"}], \"category\": \"menu.price\", \"group_id\": 11, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 258, \"y3\": 622, \"x3\": 258, \"y4\": 622, \"x1\": 246, \"y1\": 606, \"x4\": 246, \"y2\": 606}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"1\"}, {\"quad\": {\"x2\": 282, \"y3\": 622, \"x3\": 282, \"y4\": 622, \"x1\": 268, \"y1\": 608, \"x4\": 268, \"y2\": 608}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 12, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 624, \"x3\": 364, \"y4\": 624, \"x1\": 312, \"y1\": 602, \"x4\": 312, \"y2\": 602}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"Ayam\"}, {\"quad\": {\"x2\": 422, \"y3\": 620, \"x3\": 422, \"y4\": 620, \"x1\": 370, \"y1\": 600, \"x4\": 370, \"y2\": 600}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"Suir\"}, {\"quad\": {\"x2\": 478, \"y3\": 620, \"x3\": 478, \"y4\": 620, \"x1\": 428, \"y1\": 598, \"x4\": 428, \"y2\": 598}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"Bali\"}], \"category\": \"menu.nm\", \"group_id\": 12, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 620, \"x3\": 618, \"y4\": 620, \"x1\": 544, \"y1\": 596, \"x4\": 544, \"y2\": 596}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"85,000\"}], \"category\": \"menu.price\", \"group_id\": 12, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 260, \"y3\": 650, \"x3\": 260, \"y4\": 650, \"x1\": 242, \"y1\": 628, \"x4\": 242, \"y2\": 628}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"2\"}, {\"quad\": {\"x2\": 282, \"y3\": 648, \"x3\": 282, \"y4\": 648, \"x1\": 266, \"y1\": 632, \"x4\": 266, \"y2\": 632}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 13, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 648, \"x3\": 364, \"y4\": 648, \"x1\": 312, \"y1\": 626, \"x4\": 312, \"y2\": 626}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"Tahu\"}, {\"quad\": {\"x2\": 444, \"y3\": 648, \"x3\": 443, \"y4\": 645, \"x1\": 370, \"y1\": 625, \"x4\": 369, \"y2\": 628}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"Goreng\"}], \"category\": \"menu.nm\", \"group_id\": 13, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 619, \"y3\": 644, \"x3\": 620, \"y4\": 647, \"x1\": 543, \"y1\": 622, \"x4\": 544, \"y2\": 619}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"36,000\"}], \"category\": \"menu.price\", \"group_id\": 13, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 260, \"y3\": 674, \"x3\": 260, \"y4\": 674, \"x1\": 242, \"y1\": 654, \"x4\": 242, \"y2\": 654}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"2\"}, {\"quad\": {\"x2\": 284, \"y3\": 674, \"x3\": 284, \"y4\": 674, \"x1\": 268, \"y1\": 660, \"x4\": 268, \"y2\": 660}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 14, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 376, \"y3\": 674, \"x3\": 376, \"y4\": 674, \"x1\": 314, \"y1\": 652, \"x4\": 314, \"y2\": 652}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"Tempe\"}, {\"quad\": {\"x2\": 458, \"y3\": 672, \"x3\": 458, \"y4\": 672, \"x1\": 384, \"y1\": 650, \"x4\": 384, \"y2\": 650}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"Goreng\"}], \"category\": \"menu.nm\", \"group_id\": 14, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 668, \"x3\": 620, \"y4\": 668, \"x1\": 546, \"y1\": 644, \"x4\": 546, \"y2\": 644}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"36,000\"}], \"category\": \"menu.price\", \"group_id\": 14, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 258, \"y3\": 700, \"x3\": 258, \"y4\": 700, \"x1\": 244, \"y1\": 682, \"x4\": 244, \"y2\": 682}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"1\"}, {\"quad\": {\"x2\": 282, \"y3\": 700, \"x3\": 282, \"y4\": 700, \"x1\": 266, \"y1\": 686, \"x4\": 266, \"y2\": 686}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 15, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 698, \"x3\": 364, \"y4\": 698, \"x1\": 312, \"y1\": 676, \"x4\": 312, \"y2\": 676}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"Tahu\"}, {\"quad\": {\"x2\": 434, \"y3\": 696, \"x3\": 434, \"y4\": 696, \"x1\": 370, \"y1\": 674, \"x4\": 370, \"y2\": 674}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"Telor\"}, {\"quad\": {\"x2\": 494, \"y3\": 694, \"x3\": 494, \"y4\": 694, \"x1\": 440, \"y1\": 672, \"x4\": 440, \"y2\": 672}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"Asin\"}], \"category\": \"menu.nm\", \"group_id\": 15, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 630, \"y3\": 690, \"x3\": 630, \"y4\": 690, \"x1\": 548, \"y1\": 668, \"x4\": 548, \"y2\": 668}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"40,000.\"}], \"category\": \"menu.price\", \"group_id\": 15, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 256, \"y3\": 726, \"x3\": 256, \"y4\": 726, \"x1\": 244, \"y1\": 708, \"x4\": 244, \"y2\": 708}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"1\"}, {\"quad\": {\"x2\": 282, \"y3\": 726, \"x3\": 282, \"y4\": 726, \"x1\": 268, \"y1\": 710, \"x4\": 268, \"y2\": 710}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 16, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 724, \"x3\": 364, \"y4\": 724, \"x1\": 312, \"y1\": 702, \"x4\": 312, \"y2\": 702}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"Nasi\"}, {\"quad\": {\"x2\": 446, \"y3\": 722, \"x3\": 446, \"y4\": 722, \"x1\": 372, \"y1\": 700, \"x4\": 372, \"y2\": 700}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"Goreng\"}, {\"quad\": {\"x2\": 505, \"y3\": 715, \"x3\": 506, \"y4\": 718, \"x1\": 453, \"y1\": 696, \"x4\": 454, \"y2\": 693}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"Samb\"}], \"category\": \"menu.nm\", \"group_id\": 16, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 626, \"y3\": 716, \"x3\": 626, \"y4\": 716, \"x1\": 550, \"y1\": 692, \"x4\": 550, \"y2\": 692}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"70,000\"}], \"category\": \"menu.price\", \"group_id\": 16, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 256, \"y3\": 752, \"x3\": 256, \"y4\": 752, \"x1\": 242, \"y1\": 734, \"x4\": 242, \"y2\": 734}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"3\"}, {\"quad\": {\"x2\": 280, \"y3\": 752, \"x3\": 280, \"y4\": 752, \"x1\": 266, \"y1\": 738, \"x4\": 266, \"y2\": 738}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 17, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 750, \"x3\": 352, \"y4\": 750, \"x1\": 312, \"y1\": 728, \"x4\": 312, \"y2\": 728}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"Bbk\"}, {\"quad\": {\"x2\": 457, \"y3\": 747, \"x3\": 458, \"y4\": 749, \"x1\": 357, \"y1\": 726, \"x4\": 358, \"y2\": 723}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"Panggang\"}, {\"quad\": {\"x2\": 508, \"y3\": 742, \"x3\": 508, \"y4\": 742, \"x1\": 466, \"y1\": 722, \"x4\": 466, \"y2\": 722}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"Sam\"}], \"category\": \"menu.nm\", \"group_id\": 17, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 630, \"y3\": 742, \"x3\": 630, \"y4\": 742, \"x1\": 538, \"y1\": 716, \"x4\": 538, \"y2\": 716}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"366,000\"}], \"category\": \"menu.price\", \"group_id\": 17, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 778, \"x3\": 254, \"y4\": 778, \"x1\": 242, \"y1\": 762, \"x4\": 242, \"y2\": 762}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"1\"}, {\"quad\": {\"x2\": 280, \"y3\": 778, \"x3\": 280, \"y4\": 778, \"x1\": 266, \"y1\": 764, \"x4\": 266, \"y2\": 764}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 18, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 778, \"x3\": 364, \"y4\": 778, \"x1\": 312, \"y1\": 754, \"x4\": 312, \"y2\": 754}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"Ayam\"}, {\"quad\": {\"x2\": 447, \"y3\": 771, \"x3\": 448, \"y4\": 774, \"x1\": 371, \"y1\": 750, \"x4\": 372, \"y2\": 747}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"Sambal\"}, {\"quad\": {\"x2\": 508, \"y3\": 772, \"x3\": 508, \"y4\": 772, \"x1\": 454, \"y1\": 746, \"x4\": 454, \"y2\": 746}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"Hija\"}], \"category\": \"menu.nm\", \"group_id\": 18, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 632, \"y3\": 768, \"x3\": 632, \"y4\": 768, \"x1\": 554, \"y1\": 742, \"x4\": 554, \"y2\": 742}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"92,000\"}], \"category\": \"menu.price\", \"group_id\": 18, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 806, \"x3\": 254, \"y4\": 806, \"x1\": 236, \"y1\": 784, \"x4\": 236, \"y2\": 784}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"2\"}, {\"quad\": {\"x2\": 278, \"y3\": 804, \"x3\": 278, \"y4\": 804, \"x1\": 262, \"y1\": 788, \"x4\": 262, \"y2\": 788}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 19, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 802, \"x3\": 352, \"y4\": 802, \"x1\": 310, \"y1\": 780, \"x4\": 310, \"y2\": 780}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"Hot\"}, {\"quad\": {\"x2\": 400, \"y3\": 800, \"x3\": 400, \"y4\": 800, \"x1\": 358, \"y1\": 778, \"x4\": 358, \"y2\": 778}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 19, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 634, \"y3\": 796, \"x3\": 634, \"y4\": 796, \"x1\": 554, \"y1\": 770, \"x4\": 554, \"y2\": 770}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"44,000\"}], \"category\": \"menu.price\", \"group_id\": 19, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 252, \"y3\": 834, \"x3\": 252, \"y4\": 834, \"x1\": 240, \"y1\": 816, \"x4\": 240, \"y2\": 816}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"1\"}, {\"quad\": {\"x2\": 278, \"y3\": 832, \"x3\": 278, \"y4\": 832, \"x1\": 262, \"y1\": 816, \"x4\": 262, \"y2\": 816}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 20, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 830, \"x3\": 352, \"y4\": 830, \"x1\": 312, \"y1\": 808, \"x4\": 312, \"y2\": 808}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 412, \"y3\": 830, \"x3\": 412, \"y4\": 830, \"x1\": 360, \"y1\": 804, \"x4\": 360, \"y2\": 804}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"Kopi\"}], \"category\": \"menu.nm\", \"group_id\": 20, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 636, \"y3\": 826, \"x3\": 636, \"y4\": 826, \"x1\": 556, \"y1\": 798, \"x4\": 556, \"y2\": 798}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"32,000\"}], \"category\": \"menu.price\", \"group_id\": 20, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 862, \"x3\": 250, \"y4\": 862, \"x1\": 238, \"y1\": 844, \"x4\": 238, \"y2\": 844}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 862, \"x3\": 276, \"y4\": 862, \"x1\": 260, \"y1\": 844, \"x4\": 260, \"y2\": 844}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 21, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 860, \"x3\": 364, \"y4\": 860, \"x1\": 310, \"y1\": 836, \"x4\": 310, \"y2\": 836}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"Tahu\"}, {\"quad\": {\"x2\": 438, \"y3\": 858, \"x3\": 438, \"y4\": 858, \"x1\": 372, \"y1\": 834, \"x4\": 372, \"y2\": 834}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"Telor\"}, {\"quad\": {\"x2\": 500, \"y3\": 854, \"x3\": 500, \"y4\": 854, \"x1\": 444, \"y1\": 832, \"x4\": 444, \"y2\": 832}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"Asin\"}], \"category\": \"menu.nm\", \"group_id\": 21, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 638, \"y3\": 854, \"x3\": 638, \"y4\": 854, \"x1\": 558, \"y1\": 826, \"x4\": 558, \"y2\": 826}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"40,000\"}], \"category\": \"menu.price\", \"group_id\": 21, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 892, \"x3\": 250, \"y4\": 892, \"x1\": 238, \"y1\": 872, \"x4\": 238, \"y2\": 872}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 890, \"x3\": 276, \"y4\": 890, \"x1\": 260, \"y1\": 872, \"x4\": 260, \"y2\": 872}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 22, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 888, \"x3\": 364, \"y4\": 888, \"x1\": 310, \"y1\": 866, \"x4\": 310, \"y2\": 866}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"Free\"}, {\"quad\": {\"x2\": 414, \"y3\": 886, \"x3\": 414, \"y4\": 886, \"x1\": 374, \"y1\": 864, \"x4\": 374, \"y2\": 864}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 464, \"y3\": 884, \"x3\": 464, \"y4\": 884, \"x1\": 422, \"y1\": 862, \"x4\": 422, \"y2\": 862}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 22, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 640, \"y3\": 878, \"x3\": 640, \"y4\": 878, \"x1\": 622, \"y1\": 856, \"x4\": 622, \"y2\": 856}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"0\"}], \"category\": \"menu.price\", \"group_id\": 22, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 920, \"x3\": 250, \"y4\": 920, \"x1\": 236, \"y1\": 900, \"x4\": 236, \"y2\": 900}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 920, \"x3\": 276, \"y4\": 920, \"x1\": 260, \"y1\": 902, \"x4\": 260, \"y2\": 902}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 23, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 376, \"y3\": 916, \"x3\": 376, \"y4\": 916, \"x1\": 308, \"y1\": 892, \"x4\": 308, \"y2\": 892}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"Bebek\"}, {\"quad\": {\"x2\": 464, \"y3\": 914, \"x3\": 464, \"y4\": 914, \"x1\": 384, \"y1\": 890, \"x4\": 384, \"y2\": 890}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"Street\"}], \"category\": \"menu.nm\", \"group_id\": 23, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 641, \"y3\": 908, \"x3\": 642, \"y4\": 911, \"x1\": 559, \"y1\": 884, \"x4\": 560, \"y2\": 881}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"44,000\"}], \"category\": \"menu.price\", \"group_id\": 23, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 948, \"x3\": 250, \"y4\": 948, \"x1\": 238, \"y1\": 930, \"x4\": 238, \"y2\": 930}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 946, \"x3\": 276, \"y4\": 946, \"x1\": 260, \"y1\": 930, \"x4\": 260, \"y2\": 930}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 24, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 946, \"x3\": 352, \"y4\": 946, \"x1\": 312, \"y1\": 924, \"x4\": 312, \"y2\": 924}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 402, \"y3\": 944, \"x3\": 402, \"y4\": 944, \"x1\": 360, \"y1\": 922, \"x4\": 360, \"y2\": 922}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"Tea\"}, {\"quad\": {\"x2\": 480, \"y3\": 942, \"x3\": 480, \"y4\": 942, \"x1\": 412, \"y1\": 920, \"x4\": 412, \"y2\": 920}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"Tawar\"}], \"category\": \"menu.nm\", \"group_id\": 24, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 642, \"y3\": 938, \"x3\": 642, \"y4\": 938, \"x1\": 564, \"y1\": 912, \"x4\": 564, \"y2\": 912}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"18,000\"}], \"category\": \"menu.price\", \"group_id\": 24, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 479, \"y3\": 998, \"x3\": 481, \"y4\": 1005, \"x1\": 360, \"y1\": 979, \"x4\": 362, \"y2\": 973}, \"is_key\": 1, \"row_id\": 2179915, \"text\": \"Sub-Total\"}, {\"quad\": {\"x2\": 645, \"y3\": 995, \"x3\": 646, \"y4\": 998, \"x1\": 527, \"y1\": 970, \"x4\": 528, \"y2\": 967}, \"is_key\": 0, \"row_id\": 2179915, \"text\": \"1,346,000\"}], \"category\": \"sub_total.subtotal_price\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 481, \"y3\": 1027, \"x3\": 482, \"y4\": 1030, \"x1\": 387, \"y1\": 1007, \"x4\": 388, \"y2\": 1004}, \"is_key\": 1, \"row_id\": 2179916, \"text\": \"Service\"}, {\"quad\": {\"x2\": 646, \"y3\": 1026, \"x3\": 646, \"y4\": 1026, \"x1\": 554, \"y1\": 998, \"x4\": 554, \"y2\": 998}, \"is_key\": 0, \"row_id\": 2179916, \"text\": \"100,950\"}], \"category\": \"sub_total.service_price\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 482, \"y3\": 1056, \"x3\": 482, \"y4\": 1056, \"x1\": 438, \"y1\": 1032, \"x4\": 438, \"y2\": 1032}, \"is_key\": 1, \"row_id\": 2179917, \"text\": \"PB1\"}, {\"quad\": {\"x2\": 648, \"y3\": 1052, \"x3\": 648, \"y4\": 1052, \"x1\": 556, \"y1\": 1026, \"x4\": 556, \"y2\": 1026}, \"is_key\": 0, \"row_id\": 2179917, \"text\": \"144,695\"}], \"category\": \"sub_total.tax_price\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 481, \"y3\": 1085, \"x3\": 482, \"y4\": 1088, \"x1\": 375, \"y1\": 1063, \"x4\": 376, \"y2\": 1061}, \"is_key\": 1, \"row_id\": 2179918, \"text\": \"Rounding\"}, {\"quad\": {\"x2\": 648, \"y3\": 1078, \"x3\": 648, \"y4\": 1078, \"x1\": 606, \"y1\": 1054, \"x4\": 606, \"y2\": 1054}, \"is_key\": 0, \"row_id\": 2179918, \"text\": \"-45\"}], \"category\": \"sub_total.etc\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 334, \"y3\": 1162, \"x3\": 334, \"y4\": 1162, \"x1\": 266, \"y1\": 1142, \"x4\": 266, \"y2\": 1142}, \"is_key\": 1, \"row_id\": 2179919, \"text\": \"Grand\"}, {\"quad\": {\"x2\": 408, \"y3\": 1160, \"x3\": 408, \"y4\": 1160, \"x1\": 340, \"y1\": 1138, \"x4\": 340, \"y2\": 1138}, \"is_key\": 1, \"row_id\": 2179919, \"text\": \"Total\"}, {\"quad\": {\"x2\": 647, \"y3\": 1153, \"x3\": 649, \"y4\": 1161, \"x1\": 418, \"y1\": 1117, \"x4\": 420, \"y2\": 1108}, \"is_key\": 0, \"row_id\": 2179919, \"text\": \"1,591,600\"}], \"category\": \"total.total_price\", \"group_id\": 26, \"sub_group_id\": 0}], \"roi\": {}, \"repeating_symbol\": [], \"dontcare\": []}\n" + ] + } + ], + "source": [ + "# let's load the corresponding JSON dictionary (as string representation)\n", + "ground_truth = example['ground_truth']\n", + "print(ground_truth)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8V8Rgq4jwoqL" + }, + "source": [ + "We can also parse the string as a Python dictionary using `ast.literal_eval`. Each training example has a single \"gt_parse\" key, which contains the ground truth parsing of the document:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0iODZViTwqVf", + "outputId": "9e269cf8-79d1-4660-9254-10a5a25c61bf" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'menu': [{'nm': 'Nasi Campur Bali', 'cnt': '1 x', 'price': '75,000'},\n", + " {'nm': 'Bbk Bengil Nasi', 'cnt': '1 x', 'price': '125,000'},\n", + " {'nm': 'MilkShake Starwb', 'cnt': '1 x', 'price': '37,000'},\n", + " {'nm': 'Ice Lemon Tea', 'cnt': '1 x', 'price': '24,000'},\n", + " {'nm': 'Nasi Ayam Dewata', 'cnt': '1 x', 'price': '70,000'},\n", + " {'nm': 'Free Ice Tea', 'cnt': '3 x', 'price': '0'},\n", + " {'nm': 'Organic Green Sa', 'cnt': '1 x', 'price': '65,000'},\n", + " {'nm': 'Ice Tea', 'cnt': '1 x', 'price': '18,000'},\n", + " {'nm': 'Ice Orange', 'cnt': '1 x', 'price': '29,000'},\n", + " {'nm': 'Ayam Suir Bali', 'cnt': '1 x', 'price': '85,000'},\n", + " {'nm': 'Tahu Goreng', 'cnt': '2 x', 'price': '36,000'},\n", + " {'nm': 'Tempe Goreng', 'cnt': '2 x', 'price': '36,000'},\n", + " {'nm': 'Tahu Telor Asin', 'cnt': '1 x', 'price': '40,000.'},\n", + " {'nm': 'Nasi Goreng Samb', 'cnt': '1 x', 'price': '70,000'},\n", + " {'nm': 'Bbk Panggang Sam', 'cnt': '3 x', 'price': '366,000'},\n", + " {'nm': 'Ayam Sambal Hija', 'cnt': '1 x', 'price': '92,000'},\n", + " {'nm': 'Hot Tea', 'cnt': '2 x', 'price': '44,000'},\n", + " {'nm': 'Ice Kopi', 'cnt': '1 x', 'price': '32,000'},\n", + " {'nm': 'Tahu Telor Asin', 'cnt': '1 x', 'price': '40,000'},\n", + " {'nm': 'Free Ice Tea', 'cnt': '1 x', 'price': '0'},\n", + " {'nm': 'Bebek Street', 'cnt': '1 x', 'price': '44,000'},\n", + " {'nm': 'Ice Tea Tawar', 'cnt': '1 x', 'price': '18,000'}],\n", + " 'sub_total': {'subtotal_price': '1,346,000',\n", + " 'service_price': '100,950',\n", + " 'tax_price': '144,695',\n", + " 'etc': '-45'},\n", + " 'total': {'total_price': '1,591,600'}}" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from ast import literal_eval\n", + "\n", + "literal_eval(ground_truth)['gt_parse']" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BCjMK93Cz3zf" + }, + "source": [ + "## Load model and processor\n", + "\n", + "Next, we load the model (Donut is an instance of [VisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/vision-encoder-decoder)), and the processor, which is the object that can be used to prepare inputs for the model.\n", + "\n", + "We'll update some settings for fine-tuning, namely the image size and the max length of the decoder." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "ddd6a6f26e4a40de85db830c02834c4c", + "646592d608724342ad765c7e7457740d", + "c46ec088b99646f091f934536af46d5e", + "3ce6f898ce604f258efab30dd9f65b79", + "38fff333701c4678b5c69863aa8992ac", + "2472d601c42041e6acb51d19de547a0a", + "59585c4440a64e1fb76601df8aee255d", + "2a459b1c958240d89f753fe695b457e0", + "7939062da2ee4ebabadb0a5f06ee3276", + "ac08a565f2d5447a95d2e6af307f3f09", + "4ed83abdd375497f9edb35c828d70be7" + ] + }, + "id": "ahkkeo8_o69z", + "outputId": "ea22fae8-ca64-49d1-c886-046140d0d2a1" + }, + "outputs": [], + "source": [ + "from transformers import VisionEncoderDecoderConfig\n", + "\n", + "image_size = [1280, 960]\n", + "max_length = 768\n", + "\n", + "# update image_size of the encoder\n", + "# during pre-training, a larger image size was used\n", + "config = VisionEncoderDecoderConfig.from_pretrained(\"naver-clova-ix/donut-base\")\n", + "config.encoder.image_size = image_size # (height, width)\n", + "# update max_length of the decoder (for generation)\n", + "config.decoder.max_length = max_length\n", + "# TODO we should actually update max_position_embeddings and interpolate the pre-trained ones:\n", + "# https://github.com/clovaai/donut/blob/0acc65a85d140852b8d9928565f0f6b2d98dc088/donut/model.py#L602" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MUiQda9_mjAC" + }, + "source": [ + "Next, we instantiate the model with our custom config, as well as the processor. Make sure that all pre-trained weights are correctly loaded (a warning would tell you if that's not the case)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279, + "referenced_widgets": [ + "f0e0d969d5f943c3ac158a6a443bceee", + "c21173370f63409b84b9f40abc202efd", + "cd63bf0c96b6466586c66240f67b35a5", + "ab6b00b5c38d40e4878e5de67bba6b95", + "0f2dc68b57614e79b95ddeb715f124af", + "2781fb98daf147638db891d565d2f194", + "da910c9d7bc94d6fabe99bfcd626d9a2", + "5b515a9e88074259b1067880ad7aa637", + "6dd394d212694b969b540123f515957a", + "262f11dfba44467c882893cec6523189", + "3e8e09b6655a4c8fb3995915a69c795f", + "0c565bd0bd89433286f309c0a728e020", + "9ab3a07b87854294b687ab1bd1ce2fe1", + "61c95b7243604620a9151ce8b6fcc910", + "f21af123c24f43498942dd4f3e91c54f", + "f6c554c9119f4152bd747905b3b2ade3", + "45c29055f8a74361b562fb2baaa3b71f", + "731ee8128e584ddcbe117dd03612467d", + "d68dcd34129d4922b23a3bc96739814f", + "2e682e41d92343b792991eaa2b72d7de", + "c6656f51d29747c7a831f8b4739b8cd7", + "ed98bdb5c8364a6782a1883411acd5f5", + "def152f1a9e84c7e90e6e24f001f29a2", + "140f7d5cb0fb4b4b8598d1552a429052", + "ad391511f2ec4e3ebb69865afee7ae6b", + "c5083eb93376434e9a53fc44d7d215b9", + "56fea1b142db47fbab0b118185587e76", + "a4eacb994f2147d29d2d68e9b3c456aa", + "205926dbd19445c08bd1b8a02e33634f", + "9479170c55a34e5a9ccce3115f01b68e", + "0fedf481a76a4d319ddc6afe51345a36", + "394b5ca6361e4d38ba6cca638de5cdcb", + "7b2f94dc358c4e5cb6662463e771bb2d", + "efbbbb45e1554253bbf331525f219e4c", + "ab1c3ba6663a40c383a57333f5b13ddb", + "4664a4a1ab034098a12b6ad238c0391b", + "257fa5076dd74486b7751bffa39c2ef8", + "b02d03f2ac8d47559d03eb83a01d467e", + "3612afa317c5414bbffdbc1f241eb133", + "ca6747f101dc44fa8d3b85f668fff5ed", + "f8c2d38923c948cf8f2cf8c49ffb2c8d", + "37c969be0a7946c6a7d45940fcde5cf9", + "b3a98298b4ea434da0d8815ba0f2c4a4", + "e6523a394c4442bd949cae3f7666b6d4", + "9a45e993bffc469a8a156cba70774d25", + "82f65ddff78c4c528169704a78d6d9f5", + "7bd828ddfe814d05a62736a9d91a8272", + "9da3a58c74e64d4d8e39921e472fb6ea", + "c253f1450fdc49939ad663b6f98b6929", + "4f2be832c1f04902af8bfc4f5d971057", + "dda5061d7d3d4a2cb166bb9473dc3fbb", + "d3ff6bc3da3b4754af245dcbacd0914c", + "87407d9ae1f54c3c8383e2934aef15b4", + "617aea856f93495d9f56dfc83a33d4bb", + "23e4cf09102a4753844ceed08a211d53", + "9bce140411404cad931ec4022a76989e", + "50ce7fc092624343a610286377ecd39a", + "b28110567ad04fdeafea8f405f71e7ef", + "f578278adfb146e8bdf89810a39d43cb", + "fbed03f8b8ad47638a418b9f423e4c26", + "840a81ea307a4633bfd9846f89121257", + "7a2a38deff05410b92c7f0aca5e2f906", + "690c1c1fdb98452ea766955c7a4966be", + "c08e405d7915496089723b6d5e78d163", + "8f12f7c6ea604de7ab155971ffea8275", + "165a9c0135cb45869feb49beacb8101a", + "2ca98f8a45fb4335ac197e9b7c019e41", + "6d146fd4003e47978a253192463dd514", + "33596291f0c344ad9219c9a7eb6c5c90", + "30374f50d4af4b9598cb13823ad7780c", + "6c9cca8ae41441b29f2dd7ac81cd35d4", + "9525813936a14ac49a7ca525a411c2f9", + "6a6be6466e6a4814870c38d55279e1c1", + "fe5fe724aaa14f2bb80e84fc589103fc", + "c65a6cc99b06467cbc7f4efe8d80aae0", + "6a3d2f0a94ea4f72bc81400880f8c430", + "c3735a62d26743cc88f0bb71712edaa2" + ] + }, + "id": "84TkZP5zz4hE", + "outputId": "9d49492d-5b3f-41b1-88a6-4c8a85e3cdd3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-30 11:46:46.237889: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2024-04-30 11:46:46.861365: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", + "Could not find image processor class in the image processor config or the model config. Loading based on pattern matching with the model's feature extractor configuration. Please open a PR/issue to update `preprocessor_config.json` to use `image_processor_type` instead of `feature_extractor_type`. This warning will be removed in v4.40.\n" + ] + } + ], + "source": [ + "from transformers import DonutProcessor, VisionEncoderDecoderModel\n", + "\n", + "processor = DonutProcessor.from_pretrained(\"naver-clova-ix/donut-base\")\n", + "model = VisionEncoderDecoderModel.from_pretrained(\"naver-clova-ix/donut-base\", config=config)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b46s3KR-x8Iv" + }, + "source": [ + "## Create PyTorch dataset\n", + "\n", + "Here we create a regular PyTorch dataset.\n", + "\n", + "The model doesn't directly take the (image, JSON) pairs as input and labels. Rather, we create `pixel_values` and `labels`. Both are PyTorch tensors. The `pixel_values` are the input images (resized, padded and normalized), and the `labels` are the `input_ids` of the target sequence (which is a flattened version of the JSON), with padding tokens replaced by -100 (to make sure these are ignored by the loss function). Both are created using `DonutProcessor` (which internally combines an image processor, for the image modality, and a tokenizer, for the text modality).\n", + "\n", + "Note that we're also adding tokens to the vocabulary of the decoder (and corresponding tokenizer) for all keys of the dictionaries in our dataset, like \"\\\". This makes sure the model learns an embedding vector for them. Without doing this, some keys might get split up into multiple subword tokens, in which case the model just learns an embedding for the subword tokens, rather than a direct embedding for these keys." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "7tWX_qJDvw_S" + }, + "outputs": [], + "source": [ + "import json\n", + "import random\n", + "from typing import Any, List, Tuple\n", + "\n", + "import torch\n", + "from torch.utils.data import Dataset\n", + "\n", + "added_tokens = []\n", + "\n", + "class DonutDataset(Dataset):\n", + " \"\"\"\n", + " PyTorch Dataset for Donut. This class takes a HuggingFace Dataset as input.\n", + " \n", + " Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),\n", + " and it will be converted into pixel_values (vectorized image) and labels (input_ids of the tokenized string).\n", + " \n", + " Args:\n", + " dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl\n", + " max_length: the max number of tokens for the target sequences\n", + " split: whether to load \"train\", \"validation\" or \"test\" split\n", + " ignore_id: ignore_index for torch.nn.CrossEntropyLoss\n", + " task_start_token: the special token to be fed to the decoder to conduct the target task\n", + " prompt_end_token: the special token at the end of the sequences\n", + " sort_json_key: whether or not to sort the JSON keys\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " dataset_name_or_path: str,\n", + " max_length: int,\n", + " split: str = \"train\",\n", + " ignore_id: int = -100,\n", + " task_start_token: str = \"\",\n", + " prompt_end_token: str = None,\n", + " sort_json_key: bool = True,\n", + " ):\n", + " super().__init__()\n", + "\n", + " self.max_length = max_length\n", + " self.split = split\n", + " self.ignore_id = ignore_id\n", + " self.task_start_token = task_start_token\n", + " self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token\n", + " self.sort_json_key = sort_json_key\n", + "\n", + " self.dataset = load_dataset(dataset_name_or_path, split=self.split)\n", + " self.dataset_length = len(self.dataset)\n", + "\n", + " self.gt_token_sequences = []\n", + " for sample in self.dataset:\n", + " ground_truth = json.loads(sample[\"ground_truth\"])\n", + " if \"gt_parses\" in ground_truth: # when multiple ground truths are available, e.g., docvqa\n", + " assert isinstance(ground_truth[\"gt_parses\"], list)\n", + " gt_jsons = ground_truth[\"gt_parses\"]\n", + " else:\n", + " assert \"gt_parse\" in ground_truth and isinstance(ground_truth[\"gt_parse\"], dict)\n", + " gt_jsons = [ground_truth[\"gt_parse\"]]\n", + "\n", + " self.gt_token_sequences.append(\n", + " [\n", + " self.json2token(\n", + " gt_json,\n", + " update_special_tokens_for_json_key=self.split == \"train\",\n", + " sort_json_key=self.sort_json_key,\n", + " )\n", + " + processor.tokenizer.eos_token\n", + " for gt_json in gt_jsons # load json from list of json\n", + " ]\n", + " )\n", + "\n", + " self.add_tokens([self.task_start_token, self.prompt_end_token])\n", + " self.prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token)\n", + "\n", + " def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):\n", + " \"\"\"\n", + " Convert an ordered JSON object into a token sequence\n", + " \"\"\"\n", + " if type(obj) == dict:\n", + " if len(obj) == 1 and \"text_sequence\" in obj:\n", + " return obj[\"text_sequence\"]\n", + " else:\n", + " output = \"\"\n", + " if sort_json_key:\n", + " keys = sorted(obj.keys(), reverse=True)\n", + " else:\n", + " keys = obj.keys()\n", + " for k in keys:\n", + " if update_special_tokens_for_json_key:\n", + " self.add_tokens([fr\"\", fr\"\"])\n", + " output += (\n", + " fr\"\"\n", + " + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)\n", + " + fr\"\"\n", + " )\n", + " return output\n", + " elif type(obj) == list:\n", + " return r\"\".join(\n", + " [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]\n", + " )\n", + " else:\n", + " obj = str(obj)\n", + " if f\"<{obj}/>\" in added_tokens:\n", + " obj = f\"<{obj}/>\" # for categorical special tokens\n", + " return obj\n", + " \n", + " def add_tokens(self, list_of_tokens: List[str]):\n", + " \"\"\"\n", + " Add special tokens to tokenizer and resize the token embeddings of the decoder\n", + " \"\"\"\n", + " newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)\n", + " if newly_added_num > 0:\n", + " model.decoder.resize_token_embeddings(len(processor.tokenizer))\n", + " added_tokens.extend(list_of_tokens)\n", + " \n", + " def __len__(self) -> int:\n", + " return self.dataset_length\n", + "\n", + " def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:\n", + " \"\"\"\n", + " Load image from image_path of given dataset_path and convert into input_tensor and labels\n", + " Convert gt data into input_ids (tokenized string)\n", + " Returns:\n", + " input_tensor : preprocessed image\n", + " input_ids : tokenized gt_data\n", + " labels : masked labels (model doesn't need to predict prompt and pad token)\n", + " \"\"\"\n", + " sample = self.dataset[idx]\n", + "\n", + " # inputs\n", + " pixel_values = processor(sample[\"image\"], random_padding=self.split == \"train\", return_tensors=\"pt\").pixel_values\n", + " pixel_values = pixel_values.squeeze()\n", + "\n", + " # targets\n", + " target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1\n", + " input_ids = processor.tokenizer(\n", + " target_sequence,\n", + " add_special_tokens=False,\n", + " max_length=self.max_length,\n", + " padding=\"max_length\",\n", + " truncation=True,\n", + " return_tensors=\"pt\",\n", + " )[\"input_ids\"].squeeze(0)\n", + "\n", + " labels = input_ids.clone()\n", + " labels[labels == processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token\n", + " # labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA)\n", + " return pixel_values, labels, target_sequence" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KBseZac0m_W8" + }, + "source": [ + "Next, we instantiate the datasets:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3JpazNkf8CnA", + "outputId": "2532ee02-08cb-4e10-cf61-87e9c28ba46d" + }, + "outputs": [], + "source": [ + "# we update some settings which differ from pretraining; namely the size of the images + no rotation required\n", + "# source: https://github.com/clovaai/donut/blob/master/config/train_cord.yaml\n", + "processor.image_processor.size = image_size[::-1] # should be (width, height)\n", + "processor.image_processor.do_align_long_axis = False\n", + "\n", + "train_dataset = DonutDataset(\"naver-clova-ix/cord-v2\", max_length=max_length,\n", + " split=\"train\", task_start_token=\"\", prompt_end_token=\"\",\n", + " sort_json_key=False, # cord dataset is preprocessed, so no need for this\n", + " )\n", + "\n", + "val_dataset = DonutDataset(\"naver-clova-ix/cord-v2\", max_length=max_length,\n", + " split=\"validation\", task_start_token=\"\", prompt_end_token=\"\",\n", + " sort_json_key=False, # cord dataset is preprocessed, so no need for this\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QWYmtYxIoHnX" + }, + "source": [ + "Let's check which tokens are added:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IfvtQVenFIy1", + "outputId": "d3abb09b-2baa-49c2-8332-43849a78745f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "56" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(added_tokens)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "E2hTrsrCB1rp", + "outputId": "e3d6601f-2d2d-4a11-8399-e4cf4ea41c3b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '']\n" + ] + } + ], + "source": [ + "print(added_tokens)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W0Z9JhK3E7WR", + "outputId": "2873d2fb-bf4f-4f94-8175-1a1dddaba4d1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original number of tokens: 57522\n", + "Number of tokens after adding special tokens: 57580\n" + ] + } + ], + "source": [ + "# the vocab size attribute stays constants (might be a bit unintuitive - but doesn't include special tokens)\n", + "print(\"Original number of tokens:\", processor.tokenizer.vocab_size)\n", + "print(\"Number of tokens after adding special tokens:\", len(processor.tokenizer))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tPnYfnwYoMHB" + }, + "source": [ + "You can verify that a token like `` was added to the vocabulary of the tokenizer (and the model):" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "OLySqOmgE_QC", + "outputId": "ab70eb94-9414-43fa-e3e1-c454b45f11e4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "processor.decode([57560])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bd5mNnuPqUAN" + }, + "source": [ + "As always, it's very important to verify whether our data is prepared correctly. Let's check the first training example:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "mkHzamYl90we" + }, + "outputs": [], + "source": [ + "pixel_values, labels, target_sequence = train_dataset[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "07bHWGlFtpIg" + }, + "source": [ + "This returns the `pixel_values` (the image, but prepared for the model as a PyTorch tensor), the `labels` (which are the encoded `input_ids` of the target sequence, which we want Donut to learn to generate) and the original `target_sequence`. The reason we also return the latter is because this will allow us to compute metrics between the generated sequences and the ground truth target sequences." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kNyN_Af0-QMA", + "outputId": "6e255ca3-6e8d-47a0-9599-2cd5faf53231" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([3, 1280, 960])\n" + ] + } + ], + "source": [ + "print(pixel_values.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uvrqeUmwcNY0", + "outputId": "2e049f5b-60d3-48b8-8656-247290172a10" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Nasi\n", + "Camp\n", + "ur\n", + "Bali\n", + "\n", + "\n", + "1\n", + "x\n", + "\n", + "\n", + "7\n", + "5,000\n", + "\n", + "\n", + "\n", + "B\n", + "b\n", + "k\n", + "Ben\n", + "gil\n", + "Nasi\n", + "\n", + "\n", + "1\n", + "x\n", + "\n", + "\n", + "12\n" + ] + } + ], + "source": [ + "# let's print the labels (the first 30 token ID's)\n", + "for id in labels.tolist()[:30]:\n", + " if id != -100:\n", + " print(processor.decode([id]))\n", + " else:\n", + " print(id)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cwCgvma4z_kp", + "outputId": "a94a538c-199a-4e4e-cc85-5935292d9964" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nasi Campur Bali1 x75,000Bbk Bengil Nasi1 x125,000MilkShake Starwb1 x37,000Ice Lemon Tea1 x24,000Nasi Ayam Dewata1 x70,000Free Ice Tea3 x0Organic Green Sa1 x65,000Ice Tea1 x18,000Ice Orange1 x29,000Ayam Suir Bali1 x85,000Tahu Goreng2 x36,000Tempe Goreng2 x36,000Tahu Telor Asin1 x40,000.Nasi Goreng Samb1 x70,000Bbk Panggang Sam3 x366,000Ayam Sambal Hija1 x92,000Hot Tea2 x44,000Ice Kopi1 x32,000Tahu Telor Asin1 x40,000Free Ice Tea1 x0Bebek Street1 x44,000Ice Tea Tawar1 x18,0001,346,000100,950144,695-451,591,600\n" + ] + } + ], + "source": [ + "# let's check the corresponding target sequence, as a string\n", + "print(target_sequence)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "poYwvFdAdikM" + }, + "source": [ + "Another important thing is that we need to set 2 additional attributes in the configuration of the model. This is not required, but will allow us to train the model by only providing the decoder targets, without having to provide any decoder inputs.\n", + "\n", + "The model will automatically create the `decoder_input_ids` (the decoder inputs) based on the `labels`, by shifting them one position to the right and prepending the decoder_start_token_id. I recommend checking [this video](https://www.youtube.com/watch?v=IGu7ivuy1Ag&t=888s&ab_channel=NielsRogge) if you want to understand how models like Donut automatically create decoder_input_ids - and more broadly how Donut works." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "VgRLEVMdc1lx" + }, + "outputs": [], + "source": [ + "model.config.pad_token_id = processor.tokenizer.pad_token_id\n", + "model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids([''])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bTn0nmssdRWE", + "outputId": "9532a846-7b7f-4214-860a-c2d85ca739a3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pad token ID: \n", + "Decoder start token ID: \n" + ] + } + ], + "source": [ + "# sanity check\n", + "print(\"Pad token ID:\", processor.decode([model.config.pad_token_id]))\n", + "print(\"Decoder start token ID:\", processor.decode([model.config.decoder_start_token_id]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ygTIylugfasG" + }, + "source": [ + "## Create PyTorch DataLoaders\n", + "\n", + "Next, we create corresponding PyTorch DataLoaders, which allow us to loop over the dataset in batches:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "nLQ_Vl5MLugu" + }, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader\n", + "\n", + "# feel free to increase the batch size if you have a lot of memory\n", + "# I'm fine-tuning on Colab and given the large image size, batch size > 1 is not feasible\n", + "train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=4)\n", + "val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AxtTVgNnfdkD" + }, + "source": [ + "Let's verify a batch:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WHurHlLnL8Xm", + "outputId": "3489d45e-8761-40dc-d6c9-1b60af7d8edb" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 3, 1280, 960])\n" + ] + } + ], + "source": [ + "batch = next(iter(train_dataloader))\n", + "pixel_values, labels, target_sequences = batch\n", + "print(pixel_values.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "f8ehAwgPZrcc", + "outputId": "786ddcaa-4cf7-4613-d3e4-325df6738c7a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "HA\n", + "ZE\n", + "LN\n", + "UT\n", + "C\n", + "HO\n", + "CO\n", + "III\n", + "(\n", + "R\n", + ")\n", + "\n", + "\n", + "1\n", + "x\n", + "\n", + "\n", + "1\n", + ",\n", + "500\n", + "\n", + "\n", + "2\n", + "4,000\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for id in labels.squeeze().tolist()[:30]:\n", + " if id != -100:\n", + " print(processor.decode([id]))\n", + " else:\n", + " print(id)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IoXL0MnTzmdZ", + "outputId": "e9500613-d241-420f-feac-e94ac78ee387" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "800\n", + "100\n" + ] + } + ], + "source": [ + "print(len(train_dataset))\n", + "print(len(val_dataset))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SYdUWe1YzDE8", + "outputId": "c38fc7bd-8287-4008-fb69-a8159fa13c9f" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 3, 1280, 960])\n" + ] + } + ], + "source": [ + "# let's check the first validation batch\n", + "batch = next(iter(val_dataloader))\n", + "pixel_values, labels, target_sequences = batch\n", + "print(pixel_values.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xbCw5mYH0Mvu", + "outputId": "d321a64e-a911-446f-ea2e-a3ce221133de" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "REAL GANACHE116,500EGG TART113,000PIZZA TOAST116,00045,50050,0004,500\n" + ] + } + ], + "source": [ + "print(target_sequences[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mnmD7rRy2WLI" + }, + "source": [ + "## Define LightningModule\n", + "\n", + "Next, we define a [LightningModule](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html), which is the standard way to train a model in PyTorch Lightning. A LightningModule is an `nn.Module` with some additional functionality. \n", + "\n", + "Basically, PyTorch Lightning will take care of all device placements (`.to(device)`) for us, as well as the backward pass, putting the model in training mode, etc." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "oRm5i4gWG-sb" + }, + "outputs": [], + "source": [ + "import re\n", + "from nltk import edit_distance\n", + "import numpy as np\n", + "\n", + "import pytorch_lightning as pl\n", + "\n", + "\n", + "class DonutModelPLModule(pl.LightningModule):\n", + " def __init__(self, config, processor, model):\n", + " super().__init__()\n", + " self.config = config\n", + " self.processor = processor\n", + " self.model = model\n", + "\n", + " def training_step(self, batch, batch_idx):\n", + " pixel_values, labels, _ = batch\n", + " \n", + " outputs = self.model(pixel_values, labels=labels)\n", + " loss = outputs.loss\n", + " self.log(\"train_loss\", loss)\n", + " return loss\n", + "\n", + " def validation_step(self, batch, batch_idx, dataset_idx=0):\n", + " pixel_values, labels, answers = batch\n", + " batch_size = pixel_values.shape[0]\n", + " # we feed the prompt to the model\n", + " decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device)\n", + " \n", + " outputs = self.model.generate(pixel_values,\n", + " decoder_input_ids=decoder_input_ids,\n", + " max_length=max_length,\n", + " early_stopping=True,\n", + " pad_token_id=self.processor.tokenizer.pad_token_id,\n", + " eos_token_id=self.processor.tokenizer.eos_token_id,\n", + " use_cache=True,\n", + " num_beams=1,\n", + " bad_words_ids=[[self.processor.tokenizer.unk_token_id]],\n", + " return_dict_in_generate=True,)\n", + " \n", + " predictions = []\n", + " for seq in self.processor.tokenizer.batch_decode(outputs.sequences):\n", + " seq = seq.replace(self.processor.tokenizer.eos_token, \"\").replace(self.processor.tokenizer.pad_token, \"\")\n", + " seq = re.sub(r\"<.*?>\", \"\", seq, count=1).strip() # remove first task start token\n", + " predictions.append(seq)\n", + "\n", + " scores = []\n", + " for pred, answer in zip(predictions, answers):\n", + " pred = re.sub(r\"(?:(?<=>) | (?=\", \"\", answer, count=1)\n", + " answer = answer.replace(self.processor.tokenizer.eos_token, \"\")\n", + " scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))\n", + "\n", + " if self.config.get(\"verbose\", False) and len(scores) == 1:\n", + " print(f\"Prediction: {pred}\")\n", + " print(f\" Answer: {answer}\")\n", + " print(f\" Normed ED: {scores[0]}\")\n", + "\n", + " self.log(\"val_edit_distance\", np.mean(scores))\n", + " \n", + " return scores\n", + "\n", + " def configure_optimizers(self):\n", + " # you could also add a learning rate scheduler if you want\n", + " optimizer = torch.optim.Adam(self.parameters(), lr=self.config.get(\"lr\"))\n", + " \n", + " return optimizer\n", + "\n", + " def train_dataloader(self):\n", + " return train_dataloader\n", + "\n", + " def val_dataloader(self):\n", + " return val_dataloader" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0ZoPiDOPKg0o" + }, + "source": [ + "## Train!\n", + "\n", + "Next, let's train! This happens instantiating a PyTorch Lightning `Trainer`, and then calling `trainer.fit`.\n", + "\n", + "What's great is that we can automatically train on the hardware we have (in our case, a single GPU), enable mixed precision (`fp16=True`, which makes sure we don't consume as much memory), add Weights and Biases logging, and so on. " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "pxNJhCGjKhtR" + }, + "outputs": [], + "source": [ + "config = {\"max_epochs\":30,\n", + " \"val_check_interval\":0.2, # how many times we want to validate during an epoch\n", + " \"check_val_every_n_epoch\":1,\n", + " \"gradient_clip_val\":1.0,\n", + " \"num_training_samples_per_epoch\": 800,\n", + " \"lr\":3e-5,\n", + " \"train_batch_sizes\": [8],\n", + " \"val_batch_sizes\": [1],\n", + " # \"seed\":2022,\n", + " \"num_nodes\": 1,\n", + " \"warmup_steps\": 300, # 800/8*30/10, 10%\n", + " \"result_path\": \"./result\",\n", + " \"verbose\": True,\n", + " }\n", + "\n", + "model_module = DonutModelPLModule(config, processor, model)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6l4byTwPRBZx" + }, + "source": [ + "We'll use a custom callback to push our model to the hub during training (after each epoch + end of training). For that we'll log into our HuggingFace account." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "d135d783486d456494d15ef2a339ebff", + "74478f6d2baf47999e56952b01ba938f", + "24e315cb82a747d6b9566b461db6aee9", + "0d2f68be02e7495fab83926f99b93586", + "65277dbddbb34381b788a0ee526a0245", + "fe0bc6d3aa0b4d88a63aa611af3bf65d", + "73094daa6d4c4bbf93bd29b8c0253e09", + "f98e3325c6b64df7b028a71eb6c1aa5e", + "c5f481bd341a48668518912efbd6a35a", + "bfc5138baadf4385a0ed6b87107fabec", + "b760aaf9ca3047378404f446549355ef", + "5536aeeebaad4d158a11a706940a0220", + "3427bc46e6f84ac5a403b42afcde9b08", + "b294221a318349228f631ca89407740b", + "45df3e9080c7437680d57cb5936dc1de", + "4a86c267cbe34ba3bbe0ec2e0035bbbb", + "3bcce8d28d894837824f52bae420976a", + "ae1f8706e72943989d91f9a44a40eeeb", + "bc7bb44709434398a99c395a01d2b3b6", + "0e2de7dbc3f3450bb17060ce2687c3ed", + "44a17877ab654e0481b0fe827a991e5a", + "083ca4f1dea5421bb07bf9cfc802871d", + "8249f31d416e4ed388233cd633c212a7", + "de3f7930ae454905be655bf33f045280", + "5628c489cf31430c8b7efe8118c64815", + "b04b0c322c624afa8bb5a128b2af08b6", + "b71da8215fd74394aeef7b2835ebdce2", + "aad2e43eeafa4cccb5e476d3fce4dacb", + "18db9e56c0354600851d762c8de0f774", + "a524d30afbdc4574be77a664888d32e6", + "30f78b0e910549a6a5e79e8a49c4c67d", + "b12a725c43db4fa4ad13d82c75738994", + "144e18e547844b1789fa6759bad4b1a2", + "cdf0d854eba142779798e0ac495c02af", + "bfc6976f3a4b4de3bd42aa1dc9ab73e5", + "74cbba5d476540188be2501bf934b5cd", + "c08394b19b98474798fc290bc540ddd5", + "6fcd1c300caa489dadeaa50c6c814a14", + "f60b9e69e69e40189644c2cde41fae18", + "297ba8af5a704c5ca34d0f406de3e918", + "95ec17f083be45d1a48d643e62f4dbf8", + "8a3af3818f69463f845e95c933ac00cd", + "b968d28f243543b29cf0733e2d9fc516", + "e0f0d44a4e834e9291b2c021fcb1dad9", + "e0732c157cbf446f80cd1b4d52f7f6b8", + "259d3cba0a5b4943b4b025f921edf06b", + "4d6704d874404c9996e32b16b7773169", + "0c44b50f550a42d5a89d35c0233fa0bb", + "bf3538bb8a33408088307bb3dba05a14", + "24c7acb091ab4037a6b4a2eb8a1085e3", + "fad67a0d8f834d6eb9609fc0ecec94c8", + "9c081ba4b4b7409caef98b8c7754c9b6", + "a535138c7cfc454e8a096f31b4625331", + "745bf50f671a44bc9abddcc6efb736ee", + "07b75ae72a6a4d16a3ff73a1debe2ee5", + "082d0b472b90409f8ab9b02391df63a4", + "1c2bd9e72e334917b3ce39810bf5ea0b", + "2aa84a0d65254ef49ee100f66e393ae9", + "87a1b92e248549a5b9b9833d52e85c76", + "1cda98448c074471ae879ab9410e49d5", + "9a7cb4d7e9514575a93e2f86fc32fb4b", + "1c7a17fb7dd041c2949e5df85ee78570", + "c6e7bfb4e3144b16bcfd3fd12673d853", + "1eecabada33e46da975375f9fce5517e", + "1674e26429bc4c80991bb8942b56a7d7", + "72e608fe672b40c99de89ad5ce1e33c0", + "a35f8906c1ae46828120319694065815", + "6340e0aa27c04db0b48448513e9875c4", + "c97025e7d015445fafa406c4c1a89af7", + "1dc7760bdd2944ad9c4991c82dc86e25", + "144c2d74865e41c19a4a6efb4b120ca9", + "e8dba2b5fdc94b5598e6ab9f75671cbb", + "1c1855ade6204625bfaab54ca2159af5", + "210766df14774c1e89d0df73f294daa6", + "7171afc8b8dd4e64966065b7f39f2dd6", + "6fe01f5548f947d2aebc95273a592581", + "c2f3547e877a4f2dac7a1130e6f9acab", + "67b22ef1c41541dd99fc2b8d445513d2", + "9bbc7693c651492f843088817a65497f", + "20eb3303eb2b429891247566f52218c0", + "25721e39542d43029d26ac34b4af6d89", + "aef15ac1c7214177b7a890917b2a350d", + "75e8cbe174904f91b3a9ee3f4572625b", + "484fac29339449d58309c92dbbbd2af2", + "d216a5de8270482b90d297cf31a09d35", + "fc4c72e25d9a4b648c14d03560bba0a2", + "58a4b18d859e4c47bc97f2e6ce8c6c73", + "6a63b2bbe3f34bc6b9a4258a04ca9104", + "9812cfa5ccd14b7aa756a383c793c2c5", + "4a2f2fa2885347aebb436467a49b8857", + "a7fb70b9171c4958bc5f5c37e51f8cd6", + "31d5cb042096428fa4e8a0cd682ddc09", + "9f546de07edf4386ae8ef9394eb6c692", + "3350308cf34f4c02bd89f6e2a345ed12", + "7ec029d2493f40649921347adbb03ae7", + "c922e749c8464d2f9080b3bd2333d04f", + "1646a7c133a94af7bcfda5fb6ca800bc", + "80cc4498465e4fecba040320c9bf1af6", + "55e69f30eb7f44dfb9fa64f938cd41dd", + "ea7c0bd905074e5d8105bb82036bea1c", + "e529a78e1aba43d980b2953aef3cdfba", + "25296141a79c4477aac6635dd30a80e5", + "2ee2d4a8635f45dba573b749244f9e2a", + "404fed29990348b7ac2fba4a5b61aa89", + "9b045fecb5c24541b6611ba71237f6f7", + "3528f8245a2044c4b2037481bdaf39a7", + "047bdaa0ff9d4a4f8d6f46fca23bd0d2", + "91f16cb20b2d4590ab22a4b964290569", + "82e30cf225894092a6be203ae026b742", + "4a987dc4a0e54e5da442be8d6a1c7f09", + "cd21d646227b4d478abb70ba04588215", + "01b01e7329334686ba39c11ec18e9df5", + "2e8a6bd2ef104b32868443ac711c88b6", + "0e590d1bb05d4bfaa6c0c41cb41e4794", + "279ce49322904b87b2ec18b4f497465c", + "15799ffca3624428926e2ddb16728b68", + "ac96d471b96049c4aace63a7d88ec166", + "86a4453fe0d7495aafe95e8f68f7a44c", + "fcb2db503d9a49c3b45282bebec92322", + "1384b04401ee4d5e9a7ab9574e660ee6", + "86b758931e9b4f6c81b2b5d61bb0ed86", + "ca8a046ed39e45f79234a10f85ed09d4", + "9d0bb9e6cae5452a8f7909340d0ab21c", + "9db7c2d529ea46d48e22271d8432f137", + "6d6241a0e8544b03bd406739bd2e3914", + "3475f0d8415b4f3ba6b5ad701c365e61", + "bb1ee26e35f04a429d3df1f7273b4603", + "5b72a50beccd472399740c67d5b8a775", + "488139fa453f40e6895a0bac7d5cf840", + "d6e90d985e8b4f7fa5d8258c72a8ba9e", + "5053663ab6874c378d764dc8584b6aca", + "873c26ebd5a0403885933700f87ae39f", + "4058a3b2505f441f84f78fe4f7188aa8", + "d525b6ed32414b8583d8726d83dd747b", + "932854c5974142b3b906ac1db17725fc", + "baad5e47bfc940229c7c19cb8372b59c", + "3ca24d66c54b42868c814abb11d4214e", + "0fe66bd8c6314fdb86ea236d9638f538", + "10e6ba61808f471d82b431c607b65d99", + "5c9eb0211674488bbe8ec74c68a6e9a3", + "f71dd43430aa4d4cb5168644a972df59", + "92f74f940eb74ceb89139e25dc1fe869", + "b6168e1cb7354844a2ac17dee7a31168", + "324b10e8d5ea4f1598111ce9321f5809", + "b3d5b8a11f8948d0bb7273e036841869", + "caf81cab2e1c45c38007dc88bc9a9e0e", + "b30a4626320c4e78b3a033cf257946fe", + "d22010093bc54928b96389c8cc48d409", + "148b60b8a9a44244874d2db13de48a00", + "311acaa0e5844400b54281fe18b50b34", + "6016947c02af4021851e950c72479029", + "3a6dce72d0ed40c48bbd91b3f07aa67a", + "36777dc617bf4589a8ab9802f363ecf4", + "f2e58d8539584eebae048ed68d50a641", + "9dde5575c8e7438fa2d86e4b9a4fb33f", + "18e8af9f9ff247c88797e03d48b675f9", + "8cef8071dc984acc8a003134e8d64a11", + "cd80b89157374e759c3a24091fced46b", + "3563de5d5e394c578b7667bdae8644e6", + "2040593b2df341c68670f38512b423d0", + "16ea181fc8694d29b499b46678fbdaf3", + "e6b5096cac864d27ad88010c2180db29", + "e32e4cee40f14064b9cd93b7688c3ff5", + "e82ab023dc0e4a2dbe8da18f1b346ca0", + "542c34c7d55c400a8f623232403fe250", + "0759cda7bd084b02921689bc5e319ba5", + "543c3f05eb0547298950b7e7d8c64467", + "f414756091e34756a98d812bcf299f69", + "d510866a711a4f5bb98748690dc89fbe", + "56959726851f49a9b05b1b92cfdd6e74", + "3f10740717d4479ba2acf18f7957fc44", + "31081f8d85954a33bcc789b1f5f93c56", + "ec2fc9e744d9460f9063f9c0aac4c3d5", + "8206f8f3de1a4907ae54d474d422633f", + "3880476d3f0e4962be29180763486deb", + "ce88d1d6c0494245b812ae65ea2654ad", + "18f20450f84d48d7839bb3c676cb53d4", + "4619abf6125240f7862c7583a6f68af1", + "f24b9f61a1fe4c3f86e5086676a5e5d5", + "8299c1ef69414603a1604699c777e1f4", + "648f377c77da4818b1817ab95677d5bc", + "ccd7cb252ac34be1afa95313cd576555", + "75469c205b314779aef9d1e7ff2fd612", + "2dd3e0f914f6471587bbe40beeacd7f3", + "e6f8227c5e914a279428bfc620591ef0", + "79c3843d7f6045799cfc76b2bc4f0837", + "33170adc2cbe4b3daa9073cee501d854", + "8f6e8799b4e1454ea04bb9c94b70fdb8", + "9ea85c5be7104fdbb67f52414ba1a1bd", + "81ae284f0d064843be6279936fba8a13", + "1e25f97059cf482587bc1dcb055d4f7c", + "583a3d03b1f344d6b7424589c4db1634", + "56628597cea5425684265b293010eefe", + "a999d2c30b9644a7967b7109c3aae629", + "08c07275cbbe4fd0822c354d99c303ea", + "ee9eb1bc7197470487cf0dea02a3d8f9", + "a4ddea7815394732a0125128fcd9e1f2", + "3da1fd9a348f4c7bb07889c017cc0c2a", + "62bad7effcf24059b293404071b83263", + "c5d372a9962c49ada49b96a66c5ecd7e", + "c2a0bcc5ca8e42439ef2e153193714be", + "dd4114a8f79b4725951e78ab4f31d19b", + "0dfe3ae073634ba8a1747bc96b30e2bd", + "9dcbe88c6ba446ea9584331776d2748a", + "9b6856e1b63c46b78a50bee3336577e7", + "9cc8e3acf3d74f9796353f621fb6dfbf", + "ab1569f009a54b018f8e1d90a51172ed", + "d2d0f66f84874e679594bc856182c6c2", + "e5562397a34348be901b498203690a42", + "cfdf85f797074bc8af900f5623b63e67", + "ee26b20d24b94233b242a490bbb528bd", + "b64f8b95e23c4baf87fcec7fb16aedfa", + "f9bf6bbc52ea46bc8204f3756f2f981b", + "f3cb306bf10b448ab173861f392ad1d7", + "52cbbbf6bc6643e9b43d844586ab453e", + "a071ed8d726f45b4a07251b60793dc6a", + "5f71880b66d1458e923cc893a88f91bf", + "3e528e7f8cbf4ca597c63d1789a556a5", + "4184d862482d4589806f8d09b5b85737", + "c99fc92b5c87414faa6bafd1d91ce9c4", + "098aae301ab04e688652dd0c05f8de1c", + "aff4e5ac7e384d408fc23ca0a8d3658f", + "c0cf700f7872458385250ba075a8edb1", + "2e6a63d04fd747a280f813b1335a52b1", + "dd41ea80146343bcbee92bed78324879", + "04b01b03fcc143fa8633b52ec231f026", + "10d449f46d9c4502baaad1606f873c09", + "44b4f06f3c0841d2ac960337d18de7a3", + "dbe52dd9651f42238a11351f10b22b4a", + "3f76ca5381b64731af382a63b890292b", + "5af452039cad49ee92c938aaffa25765", + "05c1c99b4aff486a9c5eeadf9bd8230a", + "167cf75950f6434293f6809a84f998f3", + "d3995239fdf54fabb7fb42417dd2d1e2", + "32cb9bbc1e4547cfbe4df1e4ca70e254", + "3e9927167bb84cac9cf56f350bee5aae", + "ff830930e9e04bdaa73f57e4eafe1979", + "72254d54d49a4054b49882200eecc49b", + "cfa9b34f74b541fc9c54b905cffa05ad", + "ea0303a1646b454cb26f023c0d8b7804", + "a4dc6daaa87e4a4689ffc623b0a3b259", + "24b5e61aecd84402a6261b4b06146559", + "db3b31f6234f4c0781e02e27c0a78139", + "c1f64aaadd484bb2900aaebadeb305d5", + "97e80dbb785548e0ad4b7724e91a27f7", + "20e0bf2b09d841d6bc9e1f36ec4079bc", + "bf9d9715e7684c4e8ac29cbcabf1c600", + "e71b1fe193ba49afb42fe50f96663070", + "c0c9ce38c68446ddad343c8abc4aa3a9", + "a7f7c95743214d17a1cd103c2add1b3c", + "699755e8ae9840f0a87246bd89608f67", + "1e6e26bf5f3e4322b0f9ff4352976adb", + "b38da01ce29b4009bf824a779d4cafe7", + "5f3800af43c84d3596987e49afd4961d", + "d34ff744caf646e88cb0606d7a6de704", + "5c6c3811d9e04247abd52e0f835b6a5e", + "fdf8fb828c1d4ad6b864b9197a0aa486", + "bb888b3abe26402897177229c0a6ab01", + "009ae1d114cb48d0990e934e19ee961f", + "aaa6238192004463834b5ee1b3464cff", + "299e59499eda4a1db01880e4fb1d5cd2", + "b50f6068222b4b7d9c8a865bd41ce277", + "ca44a4c94aea499ea738f536eacf4b9b", + "582d8cd7787443f59398e2f79c328b51", + "821ebf47157741ae9045004304e1d66d", + "8f29c28a5f154fcfb6cb2f382eb1e1b1", + "c5f9fb53d093461282bc9ebd4a68ead4", + "7ddc094c928a4b87a7d5895dc558b15b", + "554913277fc34084990cd041ca766701", + "e8f2e16d8a9f4091a2d6438892c731b4", + "0ce302531a69423aa36a39e0502f7970", + "d80a188b254f4bd1be7b3c18442547ea" + ] + }, + "id": "NiK6-vQHKnBy", + "outputId": "7b5b64fc-9eae-43e0-8598-7bc5f3608cfe" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/env/lib/python3.8/site-packages/lightning_fabric/connector.py:563: `precision=16` is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!\n", + "Using 16bit Automatic Mixed Precision (AMP)\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "You are using a CUDA device ('NVIDIA A100-SXM4-80GB') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2,3,4]\n", + "\n", + " | Name | Type | Params\n", + "----------------------------------------------------\n", + "0 | model | VisionEncoderDecoderModel | 201 M \n", + "----------------------------------------------------\n", + "201 M Trainable params\n", + "0 Non-trainable params\n", + "201 M Total params\n", + "807.633 Total estimated model params size (MB)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 20%|██ | 160/800 [00:25<01:40, 6.37it/s, v_num=1]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/src/transformers/generation/configuration_utils.py:543: UserWarning: `num_beams` is set to 1. However, `early_stopping` is set to `True` -- this flag is only used in beam-based generation modes. You should set `num_beams>1` or unset `early_stopping`.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction: REAL GANACHE116,500113,000111111111111111114,5004,500\n", + " Answer: REAL GANACHE116,500EGG TART113,000PIZZA TOAST116,00045,50050,0004,500\n", + " Normed ED: 0.5036231884057971\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/env/lib/python3.8/site-packages/pytorch_lightning/utilities/data.py:77: Trying to infer the `batch_size` from an ambiguous collection. The batch size we found is 1. To avoid any miscalculations, use `self.log(..., batch_size=batch_size)`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction: Kopi Susu Kolonel123.00023.00050.00027.000\n", + " Answer: Kopi Susu Kolonel123.00023.00050.00027.000\n", + " Normed ED: 0.0\n", + "Prediction: S-Ovaltine120,00020,00018,18120,000100,00080,000\n", + " Answer: S-Ovaltine 50%20,000120,00010% Tax Included18,1811,81820,000100,00080,000\n", + " Normed ED: 0.32460732984293195\n", + "Prediction: M-Caramel Black Tea128,0001X28,0001X28,00028,00028,0000\n", + " Answer: M-Caramel Black Tea@28,0001X28,00070%Less Ice28,000028,00028,0000\n", + " Normed ED: 0.3009950248756219\n", + "Prediction: BBQ Chicken141,00041,000- Sedang1041,00050.0009000\n", + " Answer: BBQ Chicken141,000Sedang1041,00041,00050.000:9,0001\n", + " Normed ED: 0.3447368421052632\n", + "Prediction: LE MINERAL18,0007277278,0008,000\n", + " Answer: LE MINERAL1.008,0007,2737278,0008,000\n", + " Normed ED: 0.22304832713754646\n", + "Prediction: POTATO SAUSAGE BREAD119,0001111152,000123,000123,000123,000\n", + " Answer: POTATO SAUSAGE BREAD119,000OREO GREEN TEA SPREAD152,000WHITE CHOCO BANANA SPREAD152,000123,000123,000\n", + " Normed ED: 0.39893617021276595\n", + "Prediction: Choco Devil463.63663.636-9,545-9,5455,40959,500100,50040,500:\n", + " Answer: Choco Devil4-9,54563,63663,636-9,5455,40959,500100,00040,500\n", + " Normed ED: 0.321353065539112\n", + "Prediction: TALAM UNGU3X19,500TALAM UNGU119,500-40.000%-7,80004.00xITEMs11,70011,7008,300\n", + " Answer: TALAM UNGU@65003X-7,80019,500MIKA KECIL@01X011,70011,70020,0008,3004.00xITEMs\n", + " Normed ED: 0.46107784431137727\n", + "Prediction: Tahu Ikan Oma Gisk120.00020.00020.0000\n", + " Answer: Tahu Ikan Oma Giok120,00020,00020,0000\n", + " Normed ED: 0.01904761904761905\n", + "Prediction: Serbu140.000220.00060.00060.0000\n", + " Answer: Serbu 1240.000Choco Peanut Bread220.00060.00060.0000\n", + " Normed ED: 0.1371841155234657\n", + "Prediction: Se'I Sapi Sambal Matah ( R )120.00020.00035.00010.000210.00016.00010010010010010089.100\n", + " Answer: Se'I Sapi Sambal Matah ( R )120.000Se'I Sapi Lada Hitam (J)135.000Nasi Putih210.000Milk Shake Coklat116.00081.0008.10089.100089.100\n", + " Normed ED: 0.4283185840707965\n", + "Prediction: ES KOPI SUSU472.00072.00072.0000\n", + " Answer: ES KOPI SUSU472.00072.000072.000\n", + " Normed ED: 0.14903846153846154\n", + "Prediction: MINERAL 600 ML17,7277,72733,63641,3644,13645,50050,000-4,500\n", + " Answer: MINERAL 600 ML17,727BULGOGI RICE R133,63641,3644,13645,50050,000-4,500\n", + " Normed ED: 0.25176470588235295\n", + "Prediction: Arem Arem Arem Arem Arem Arem Arem2x24.0002x24.0001x12.0001x12.000Rp 36.000Rp 39.600Rp 39.600Rp 39.6000\n", + " Answer: Arem Arem@ 12.0002 x24.000Kroket@ 12.0001 x12.000Rp 36.000Rp 3.600Rp 39.600Rp 39.600\n", + " Normed ED: 0.38875878220140514\n", + "Prediction: Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem Arem AremployRp 54.000Rp 59.400Rp 100.000Rp 40.600\n", + " Answer: Arem Arem12.000224.000Pepenero Pastel15.000230.000Rp 54.000Rp 5.400Rp 59.400Rp 100.000Rp 40.600\n", + " Normed ED: 0.5032258064516129\n", + "Prediction: 20,000120,00020,000100,00080,000\n", + " Answer: TT20,000120,00020,000100,00080,000\n", + " Normed ED: 0.0944206008583691\n", + "Prediction: LEMONADE 16OZ120.000120.00020,00020.000100,00080,00080,000\n", + " Answer: LEMONADE 16OZ20,000120,00020,00020,000100,00080.000\n", + " Normed ED: 0.14681440443213298\n", + "Prediction: beef C roll 3pcs110,000110,00015,00015,000215,00025,00075,000\n", + " Answer: beef C roll 3pcs10,000110,000kaya bred15,000115,00025,000100,00075,0002\n", + " Normed ED: 0.31758530183727035\n", + "Prediction: FUTAMI GREEN TEA (CLAS112,500113,00017,00042,50050,0007,500\n", + " Answer: FUTAMI 17 GREEN TEA (CLAS112,500EGG TART113,000GRAIN CROQUE MONSIEUR117,00042,50050,0007,500\n", + " Normed ED: 0.2648648648648649\n", + "Prediction: JAMUR210,00015,00015,0001,50020,0003,500\n", + " Answer: JAMUR210,000TAHU15,00015,0001,50016,50020,0003,500\n", + " Normed ED: 0.16939890710382513\n", + "Prediction: Mango Lemon Tea1Rp29,090Rp113,636Rp86,363Rp34,363Rp9,736Rp20,446Rp224,908\n", + " Answer: Mango Lemon Tea1Rp 29,090Sliders Set1Rp 113,636Chicken Vege Rice Bowl1Rp 86,363Discount BCA 15%1-Rp 34,363Rp 194,726Rp 9,736Rp 20,446Rp 224,908Rp 224,908\n", + " Normed ED: 0.4500846023688663\n", + "Prediction: RedVelvet Nutella1280,000280,000280,00028,000308,000\n", + " Answer: RedVelvet Nutella1280,000Free Mini Candle.5Large Box1280,00028,000308,000308,000\n", + " Normed ED: 0.4339152119700748\n", + "Prediction: BUBBLE GUM118,18218,181818181811820.00020.00020.000\n", + " Answer: BUBBLE GUM118,18218,1821,81820.00020.0001\n", + " Normed ED: 0.5249110320284698\n", + "Prediction: PAIN AU CHOCOLATE111,00011111119,000113,50020,000100,50019,500\n", + " Answer: PAIN AU CHOCOLATE111,000CHOCO CUSTARD PASTRY112,000MILK PASTRY ROLL19,000REAL CHEESE INSIDE BREAD113,500SAUSAGE BREAD115,000HAM CHEESE FLAT BREAD120,00080,500100,00019,500\n", + " Normed ED: 0.3848684210526316\n", + "Prediction: Prs Sop Sui Jiao1Prs Ha Kaou Udng1Prs Sio May Kpting1Prs Siomay1Prs Siomay1Prs Licp Sniったり1Prs Mio1Prs Mio1Prs Mio1Prs Siomay1Prs Mio1Prs Mio1Prs1Prs1Prs1Prs1Prs1Prs7,000180,00018,900207,900777\n", + " Answer: Sop Sui Jiao1Prs33,000Ha Kaou Udng1Prs28,000Sio May Kpting1Prs23,500Siomay Kmbinasi1Prs23,000Leng Hong Kien1Prs30,000Mie Trsi Kgkung1Prs35,500Es Teh Tawar1Gls7,000180,0009,00018,900207,90077\n", + " Normed ED: 0.4827586206896552\n", + "Prediction: NASI MERAH/PUTIH1x5,0001x5,0005,0001x6.0002x68,0002.0002.0001x14.0001x6.0001x6.0001x6.000\n", + " Answer: NASI MERAH/PUTIH5.0001x5.000SAYUR4.0002x8.000KERUPUK/SAMBEL2.0001x2.000AYAM14.0001x14.000MINUMAN KEMASAN/REFILL6.0001x6.000Rp. 35.000\n", + " Normed ED: 0.47474747474747475\n", + "Prediction: THAI ICED TEA (L)116,36316,36116,99916,99916,917,99916,9\n", + " Answer: THAI ICED TEA (L)16,363116.36316,3631,63617,9991\n", + " Normed ED: 0.3487179487179487\n", + "Prediction: ELEPHANT READ BEAN112,000112,0001110,000110,000110,00022,00022,00022,00022,00022,00022,00020\n", + " Answer: ELEPHANT READ BEAN12,000112,000chapsal twister donnut10,000110,00022,00022,00002\n", + " Normed ED: 0.46557377049180326\n", + "Prediction: Sabun Beras13000030000130000333350000200002000020000\n", + " Answer: Sabun Beras3000013000030000Discount(0%)5000020000\n", + " Normed ED: 0.41371158392434987\n", + "Prediction: REDBEAN BREAD19,00012,00021,00050,00029,000\n", + " Answer: REDBEAN BRE/D19,000FRANKFRUT S/USAGE ROLL112,00021,00050,00029,000\n", + " Normed ED: 0.16838487972508592\n", + "Prediction: PREMIUM TOAST PAN BREAD124,00024,00024,00024,0000\n", + " Answer: PREMIUM TOAST PAN BREAD124,00024,00024,0000\n", + " Normed ED: 0.14\n", + "Prediction: Nasi (MLY)16.0006.0006.0006.0000\n", + " Answer: Nasi (MLY)16.0006.0006.0006.000\n", + " Normed ED: 0.23333333333333334\n", + "Prediction: GRAINS PAN BREAD120,50020,50020,50037,00057,50050,0007,500\n", + " Answer: GRAINS PAN BREAD120,500ICED HIBISCUS LYCHEE TEA137,00057,50050,0007,5000\n", + " Normed ED: 0.3152454780361757\n", + "Prediction: GRILLED BABY POTATO (R150,50076,00070,50046,000243,00014,58025,758283,338283,338283,3585962\n", + " Answer: GRILLED BABY POTATO (R150,500TRUFFLE CREAM176,000CARBONARA170,500ORIGINAL BREWED TEA246,000243,00014,58025,758283,338283,3385962\n", + " Normed ED: 0.4353146853146853\n", + "Prediction: BLACK PERPER MEATBALL176,50076,50082,00056,00046,000BREWED TEA2261,00015,66027,666304,326\n", + " Answer: BLACK PEPPER MEATBALL176,500QUARTO FORMANGGI PASTA182,500GREEN TEA WITH CRUMBLE156,000ORIGINAL BREWED TEA246,000261,00015,66027,666304,326\n", + " Normed ED: 0.4823091247672253\n", + "Prediction: Soft Ori 3 Top117,27217,27217,2717,2718,99918,99918,99918,99918,99918,99918,999\n", + " Answer: Soft Ori 3 Top117,272Top Oreo0Top Oreo0Top Banana017,2721,72718,99918,999\n", + " Normed ED: 0.4378698224852071\n", + "Prediction: Ice Lemon Tea113,650,00063,6366,36470,00070,00050,000\n", + " Answer: Ice Lemon Tea13,636-Gyro Platter Regular50,00063,6366,36470,00070,000\n", + " Normed ED: 0.34782608695652173\n", + "Prediction: TT120,00020,00020,000100,000-80.000\n", + " Answer: TT20,000120,00020,000100,00080,000\n", + " Normed ED: 0.2966101694915254\n", + "Prediction: PKT TEL OR VERKEDEL「26,00026,00025,00025,00020,0008,000100,0002,100\n", + " Answer: PKT TELOR/PERKEDEL26,000TERONG12,000PARU23,000SBL GR ATI/AMPLA20,000NESTLE 330 ML8,00089,0008,90097,900100,0002,1005.00\n", + " Normed ED: 0.37636363636363634\n", + "Prediction: Gojek Chicken195,00095,00095,0001180,00070,000345,00034,500379,500379,500379,500379,500379,500379,500379,500काे පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර පියවර\n", + " Answer: Gojek Chicken Chilli Sauce H195,000Gojek Chicken Soy Sauce F1180,000Gojek French Fries170,000345,0000034,500379,500\n", + " Normed ED: 0.9254208395482634\n", + "Prediction: 01150,00011230,000230,000230,000230,000230,000230,000390,0000390,0000390,0000390,0000\n", + " Answer: SOGOGI JAPCHAE1150,000GONG GIBAB7105,000CHULPAN CHEESE DAK GALBI1230,000CREAM TEOK PO KI195,000EL KEUN HWANGTAE1120,000SUNDUBU(TUKBEGI) CHAM KKOT SAL2620,000U SAM GYEOP2290,000U SEOL2390,000U SAM GYEOP10ICE COFFE MIX30ICE BLACK COFFE102,000,0000140,000212,4602,352,46002,352,460\n", + " Normed ED: 0.5826839826839827\n", + "Prediction: STIX CINNAMON119,00019,000119,000117,000117,00017,00053,00053,00018510\n", + " Answer: STIX CINNAMON19,000119,000CINNAMON SUGAR17,000117,000TRIPPLE CHEESE17,000117,00053,00053,000053,000\n", + " Normed ED: 0.3838951310861423\n", + "Prediction: ROTI UNYIL170272.000272.0006.000278.000300.00022.000171\n", + " Answer: ROTI UNYIL170272.000PAPER BAG BESAR16.000278.000300.00022.000171\n", + " Normed ED: 0.29444444444444445\n", + "Prediction: THAI ICED TEA (L)116,36316,36116,99916,99916,917,99916,9\n", + " Answer: THAI ICED TEA (L)16,363116.36316.3631,63617,9991\n", + " Normed ED: 0.35128205128205126\n", + "Prediction: AOP Seafood185,0000murice Katsu Curry195,00035,00025,000240,00021,60026,160287,7,760\n", + " Answer: AOP Seafood185,000Omurice Katsu Curry195,000Earl Gray Tea135,000Hot Tea125,000240,00021,60026,160287,760\n", + " Normed ED: 0.32803180914512925\n", + "Prediction: MARBLE CASTELA22,000122,000122,00022,00022,00022,0000\n", + " Answer: MARBLE CASTELA22,000122,00022,00022,00001\n", + " Normed ED: 0.29357798165137616\n", + "Prediction: Seaweed Chicken142,00042,00042,00042,00050,0008,000\n", + " Answer: Seaweed Chicken142,000- Sedang1042,00042,00050,0008,0001\n", + " Normed ED: 0.2051948051948052\n", + "Prediction: SB OR128,636Chokocha Flt113,63613,63655,9085,59261,50070,0008,500\n", + " Answer: SB 1 OR128,636Chokocha Flt113,636Bbq Bento113,63655,9085,59261,50070,0008,5003\n", + " Normed ED: 0.2698744769874477\n", + "Prediction: 52.0001x52.0001x52.0001x52.0001x22.0001x22.0001x22.00074.0007.40081-4000\n", + " Answer: Nasi CampurBali52.0001x52.000Lemon22.0001x22.00074.0007.40081.400\n", + " Normed ED: 0.38169642857142855\n", + "Prediction: CHOCOLATE ECLAIRIN26,00026,00025,0000\n", + " Answer: CHOCOLATE ECLAIR226,00026,00026,0000\n", + " Normed ED: 0.10096153846153846\n", + "Prediction: 118 Round Wagyu (1gr)147.20010.00057.20057.20057.200\n", + " Answer: Round Wagyu (1gr)11847.200Wagyu Rice Box110.00057.20057.20057.200\n", + " Normed ED: 0.31343283582089554\n", + "Prediction: KENTHIR242.0006.0008.00056.00056.0000\n", + " Answer: KENTHIR 2242.000KOL GORENG26.000TEH MANIS28.00056.00056.00056.0000\n", + " Normed ED: 0.24754901960784315\n", + "Prediction: Lar ge111.00011.0001020.000031.00040.0009.000\n", + " Answer: Large 1111.000*Rhum10Pastry Keju120.000*Plastik kcl1031.00040.0009.0004\n", + " Normed ED: 0.36585365853658536\n", + "Prediction: 4003-Blueberry Fuji4003-40.000x 140.0006001-Plastic Bag Small0x 102\n", + " Answer: 4003-Blueberry Fuji40.000x140.0006001-Plastic Bag Small0x1040.00050.00010.0002\n", + " Normed ED: 0.47164948453608246\n", + "Prediction: Cha Keaw160.00060.00060.00060.00060.00060.000\n", + " Answer: Cha Keaw L...x260.000Cha Keaw L...x260.000)60.00060.00060.000\n", + " Normed ED: 0.40397350993377484\n", + "Prediction: Thai Iced T.x」20.00020.00020.0000\n", + " Answer: Thai Iced T. .x120.00020.00020.00020.0000\n", + " Normed ED: 0.2862595419847328\n", + "Prediction: SEAFOOD MARINARA185,000185,500247,50014,850PB16\n", + " Answer: SEAFOOD MARINARA185,000CREAMY MARINARA SALMON185.500LYCHEE ICE TEA277,000247,50014,85026,235288,585\n", + " Normed ED: 0.43820224719101125\n", + "Prediction: Viet Milk Coffee125.000+Hot125.00025.000Rp 0\n", + " Answer: Viet Milk Coffee125.000+Hot+M25.00025.00025.0000\n", + " Normed ED: 0.3413897280966767\n", + "Prediction: XLB Org Pork 10x178,00065,00058,000DF Fish Fillet Garic1108,00088,00038,00038,00042,00060,394\n", + " Answer: XLB Org Pork 10x178,000Sicito Babi165,000Hotplate Tahu158,000DF Fish Fillet Garlc1108,000LM Pork Belly188,000Siew Mai138,800Kwan Yin Cup550,000Herbal Jelly138,000Onde-Onde138,000561,80042,13560,394664,32913\n", + " Normed ED: 0.5460599334073252\n", + "Prediction: VANILLA CHOCO HEART CAKE1180,000180,000180,000\n", + " Answer: VANILLA CHOCO HEART CAKE1180,000180,000180,000\n", + " Normed ED: 0.1407035175879397\n", + "Prediction: Copuluire Cho ulate14,5004,5004,5004,5003,0003,0007,500(10%)8,25010,000501,800\n", + " Answer: Populaire Chocolate4,50014,500Paddle Pop Choco Magma3,00013,0007,5007508,2505010,0001,800\n", + " Normed ED: 0.381651376146789\n", + "Prediction: French Fries110,9092,0000236,3649,0915,636100,00038,000\n", + " Answer: French Fries110,909Cheese Burger236,364Milo19.09156,3645,63662,000100,00038,000\n", + " Normed ED: 0.30580357142857145\n", + "Prediction: ISI CAMPUR143.63643.6368.0008.00051,6365,16456,800110.00053,200\n", + " Answer: ISI CAMPUR43,636143.636A.MINERAL BOTOL8.00018.00051,6365,16456,800110,00053.200\n", + " Normed ED: 0.3857758620689655\n", + "Prediction: WHOLE WHEAT PAN BREAD120,00020,000100,00080,000\n", + " Answer: WHOLE WHEAT PAN BREAD120,00020,000100,00080,000\n", + " Normed ED: 0.0410958904109589\n", + "Prediction: BASO TAHU143.643.63643.6366.000149.6364.9654.60060.1005.500Terima0\n", + " Answer: BASO TAHU43.636143.636NASI PUTIH6.00016.00049.6364.96454.60060.1005.500\n", + " Normed ED: 0.3927893738140417\n", + "Prediction: AIR MINERAL7,0007,0007,0007,000\n", + " Answer: AIR MINERAL7,0007,0007,000\n", + " Normed ED: 0.22043010752688172\n", + "Prediction: PAKET BER2169,091PAKET BER2169,09169,90976,00076,00076,00076,000\n", + " Answer: PAKET BER2169,091BREAD N CHEESE DEL1MAC N CHEESE DEL1PEPSI DEL1P/P THUOSAND ISL DEL1LIPTON ICE TEA DEL169,0916,90976,000\n", + " Normed ED: 0.5059523809523809\n", + "Prediction: Honey Mandarin2X13,00026,00026,00030,0004,000\n", + " Answer: Honey Mandarin13,0002 X26,00026,00030,0004,000\n", + " Normed ED: 0.15730337078651685\n", + "Prediction: SOTO MEDAN+NASI159.500GADO-GRDO134.50057.500151.5007.57515.908174.983\n", + " Answer: SOTO MEDAN+NASI159.500GADO-GADO134.500SOTO BETAWI + NASI157.500151.5007.57515.908174.983\n", + " Normed ED: 0.31105990783410137\n", + "Prediction: KaraageCurryTeishoku169,00019,00015,000103,0007,725\n", + " Answer: KaraageCurryTeishoku169,000Lemon Plate119,000Ocha Hot115,000103,0007,72511,073121,79833\n", + " Normed ED: 0.5734406438631791\n", + "Prediction: Dum Dum Thai Coffee119.0001.00020.00050.00030.000\n", + " Answer: Dum Dum Thai Coffee119.000Ice11.00020.00020.00050.00030.000\n", + " Normed ED: 0.3081232492997199\n", + "Prediction: STIX CINNAMON119,00019,000119,000117,000117,000117,00036,00046070\n", + " Answer: STIX CINNAMON19,0001 x19,000TRIPPLE CHEESE17,0001 x17,00036,00036,000036,000\n", + " Normed ED: 0.419953596287703\n", + "Prediction: ICED TT20,00020,00050,00050,000.30,000\n", + " Answer: ICED TT20,00020,00050,00030,000\n", + " Normed ED: 0.2072072072072072\n", + "Prediction: THAI ICED TEA1@20.000120.000120.00020.0000\n", + " Answer: THAI ICED TEA@20.000120.00020.00020.00020.0000\n", + " Normed ED: 0.28802588996763756\n", + "Prediction: KFC Winger HC240,00013,6365,90900960,4546,046100,00033,500\n", + " Answer: KFC Winger HC240,000Ori Bento113,636Mango Float15,909F.Wngr GES-HC10CHARGE TA190960,4546,04666,500100,00033,5006\n", + " Normed ED: 0.3656957928802589\n", + "Prediction: Enting2 Dua Bandeng Ori131.00031.000168.00099.00099.000\n", + " Answer: Enting2 Dua Bandeng Ori0106931.000131.000TAHU BAKSO Grg Ayam VC [biji071656.8001068.00099.00099.000211\n", + " Normed ED: 0.46710526315789475\n", + "Prediction: Cheese Tart*Rp58000.00Rp58000.00Rp5272.73Rp58000.00Rp58000.00Rp100Rp42000.00\n", + " Answer: Cheese Tart*2Rp 58000.00Bag-SPS CarrierRp 58000.00Rp 5272.73Rp 58000.00Rp 100000.00Rp 42000.00\n", + " Normed ED: 0.37681159420289856\n", + "Prediction: Mineral Water218000111.00011.0009000154,00010016 170177.870177.870177.870\n", + " Answer: Mineral Water218 000Teh Tawar Dingin111.000Soto Betawi2116.000NASI PUTIH19.000154 0007 70016 170177.8706\n", + " Normed ED: 0.4250936329588015\n", + "Prediction: Crab Stick19.00010.0007.0008.000224.0006.00072.00072.000\n", + " Answer: Crab Stick19.000Bakso Lobster110.000Sawi Putih17.000Jamur Enoki18.000Jamur Kuping18.000Maling12000224.000Nasi (MLY)16.00072.00072.00072.000\n", + " Normed ED: 0.5221112696148359\n", + "Prediction: Sate Padang125.00025.00025.000\n", + " Answer: Sate Padang125.00025.00025.0001\n", + " Normed ED: 0.1724137931034483\n", + "Prediction: SURIMI129,091CREAMY CHK CLS FTC142,727MIX 4FUN CHOCOLATE119,09160,90999,091250,909\n", + " Answer: SURIMI129,091CREAMY CHK CLS FTC142,727MIX 4FUN CHOCOLATE119,091GREEN ITSODA PITCHER160,909SC/R GRILLED STEAK199,091250,90925,091276,000\n", + " Normed ED: 0.4438405797101449\n", + "Prediction: PEARL CHOCO TEA117,000GREEN TEA LYCHEE118.00035.000100.000\n", + " Answer: PEARL CHOCO TEA117.000GREEN TEA LYCHEE118.000TUTUP SEAL20CUP 14 OZ2035.00035.000100.00065.0006\n", + " Normed ED: 0.5288461538461539\n", + "Prediction: S-Milk tea@17,0001X17,00017,00017,0000\n", + " Answer: S-Milk tea@17,0001X17,000100%17,000017,00017,0000\n", + " Normed ED: 0.37329700272479566\n", + "Prediction: HAZELNUT CHOCO MT ( R )124,00024,00024,00022222252,00052,00052,00052,00052,0000\n", + " Answer: HAZELNUT CHOCO MT (R)1 x24,000PEARL (R)4,000HAZELNUT CHOCO MT (R)1 x24,00052,00052,00052,0002\n", + " Normed ED: 0.4675090252707581\n", + "Prediction: Peanut & Cheese113,63613,6361,36415,00020,0005,000\n", + " Answer: Peanut & Cheese113,63613,6361,36415,00020,0005,000\n", + " Normed ED: 0.09063444108761329\n", + "Prediction: LEMONADE22OZ126,00026,00026,00026,0000\n", + " Answer: LEMONADE22OZ126,00026,00026,00026,000026,000\n", + " Normed ED: 0.2893081761006289\n", + "Prediction: M-Passion Fruit Mac1X29,0001X29,0001X29,00030,000\n", + " Answer: M-Passion Fruit Mac@29,0001X29,00025%Less Ice29,000029,00030,0001,000\n", + " Normed ED: 0.4975369458128079\n", + "Prediction: PAKET BER4 UP31154,545BREAD CHEESE DEL11111111111115DEL1111111111111111111111154,545170,000170,000170,000115,455\n", + " Answer: PAKET BER4 UP31154,545BREAD N CHEESE DEL1TUNA DEL1CRABSTICK FUSILLI DEL1LEMON TEA HANGAT DEL1BLACKCURRANT DEL1SC/P THOUSAND IS DEL1SCSC/P BBQ BEEF DEL1CR/P BEEF MAYO DEL1SUNRISE ITALIAN SODA1SUNRISE ITALIAN SODA1154,54515,455170,000\n", + " Normed ED: 0.5075834175935288\n", + "Prediction: 1023-Chocochip & Walnut1029,00029.0006001-Plastic Bag Small0029.000100.00071.000\n", + " Answer: Chocochip & Walnut1023-29.000x129.000Plastic Bag Small6001-0x1029.000100.00071.0002\n", + " Normed ED: 0.375886524822695\n", + "Prediction: CINEMAXX CINEMAXX CINEL CINE REGULAR235000.0070000.0070000.00CINEMAXX0.00CINEMAXX2\n", + " Answer: REGULAR35000.00270000.0070000.0070000.000.00\n", + " Normed ED: 0.4604105571847507\n", + "Prediction: K71217ADD1239,09190940,0004,000Rp.50,000Rp.50,000\n", + " Answer: K7 121739,091ADD CHICKEN BOX90940,0004,00044,000Rp. 50,000Rp. 6,000\n", + " Normed ED: 0.3453038674033149\n", + "Prediction: 120,00020,00020,00020,00025,0002,000\n", + " Answer: 120,000CHARGE TA190920,9092,09123,00025,0002,0002\n", + " Normed ED: 0.31784841075794623\n", + "Prediction: PAKET BER41138.182BREAD N CHEESE DEL1111111DEL111111111111111111111111111111111111115,6172,000172,000172,000172,000172,000172,000172,000172,000171111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000\n", + " Answer: PAKET BER41138,182BREAD N CHEESE DEL1BREAD N CHEESE DEL1CRABSTICK FUSILLI DEL1LIME SQUASH DEL1LIME SQUASH DEL1P/P SPICY TUNA DEL1P/P THUOSAND ISL DEL1P/P BEEF CORN1SUNRISE ITALIAN SODA1LIPTON ICE TEA DEL150% CHICKEN ROYAL118,182156,36415,636172,000\n", + " Normed ED: 0.8715419257988419\n", + "Prediction: Emily's Shrimp Scampi169.00069.0000SERVICE7.280+2580.10080.1000\n", + " Answer: Emily's Shrimp Scampi Fettucine169.00069.00003.7957.280+2580.10080.1000\n", + " Normed ED: 0.3157894736842105\n", + "Prediction: SAYOR113.613.63627.272.70030,00050,00020,000\n", + " Answer: SAYAP113,636PAHA BAWAH113,63627,2722,70030,00050,00020,0002\n", + " Normed ED: 0.29310344827586204\n", + "Prediction: Choco Cheese113,636-2,04513,636-2,0451,15912,75012,75012,75012,750\n", + " Answer: Choco Cheese13,6361-2,04513,636-2,0451,15912,75012,750\n", + " Normed ED: 0.3868131868131868\n", + "Prediction: Lemon Tea (L)125.00025.00030.0005.000\n", + " Answer: Lemon Tea (L)125.00025.00030.0005.000\n", + " Normed ED: 0.0\n", + "Prediction: Hulk Topper Package1100.000100.000100.0000\n", + " Answer: Hulk Topper Package1100.000100.000100.0000\n", + " Normed ED: 0.0\n", + "Prediction: Giant Squidx」Rp. 39.000Rp. 0Rp. 0Rp. 39.000Rp. 39.000Rp. 50.000Rp. 50.000\n", + " Answer: Giant Squidx1Rp. 39.000C.Finishing - CutRp. 0B.Spicy Level - Extreme HotRp. 0A.Flavour- Salt & PepperRp. 0Rp. 39.000Rp. 39.000Rp. 50.000Rp. 11.000\n", + " Normed ED: 0.35445544554455444\n", + "Epoch 0: 40%|████ | 320/800 [01:47<02:40, 2.99it/s, v_num=1]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction: REAL GANACHE116,500EGG TART113,000PIZZA TOAST116,000TOTAL145,5004,50050,0004,500\n", + " Answer: REAL GANACHE116,500EGG TART113,000PIZZA TOAST116,00045,50050,0004,500\n", + " Normed ED: 0.16058394160583941\n", + "Prediction: Kopi Susu Kolonel123.000Total23.000Tunai23.000Kembali23.000Tunai50.000Kembali 27.0001\n", + " Answer: Kopi Susu Kolonel123.00023.00050.00027.000\n", + " Normed ED: 0.5014245014245015\n", + "Prediction: S-Ovaltine120,00050%11,818PB1:18,181Subtotal:20,000Total:20,000Cash:100,00080,000100,00010%\n", + " Answer: S-Ovaltine 50%20,000120,00010% Tax Included18,1811,81820,000100,00080,000\n", + " Normed ED: 0.44017094017094016\n", + "Prediction: Black Tea1X28,000M-Caramel Black Tea1X28,00070%28,000Less Ice0-PB1:0-Subtotal:28,000Total:28,000Cash:28,000CHANGE:28,000\n", + " Answer: M-Caramel Black Tea@28,0001X28,00070%Less Ice28,000028,00028,0000\n", + " Normed ED: 0.4961089494163424\n", + "Prediction: BBQ Chicken141,000- Sedang10ITEMS:1141,000Total10-0-0ITEMS:1141,000Total141,000Cash 50.00019,000\n", + " Answer: BBQ Chicken141,000Sedang1041,00041,00050.000:9,0001\n", + " Normed ED: 0.5175438596491229\n", + "Prediction: LE MINERAL8,0001.00NETI ANT7,273TAX AMT727TOTAL8,000CASH8,0008,0008,0008,000\n", + " Answer: LE MINERAL1.008,0007,2737278,0008,000\n", + " Normed ED: 0.5085158150851582\n", + "Prediction: POTATO SAUSAGE BREAD119,000OREO GREEN TEA SPREAD1WHITE CHOCO BANANA SPREAD152,000OREO GREEN TEA SPREAD152,000WHITE152,000WHITE CHOCO BANANA SPREAD152,000TOTAL1123,000123,000123,000\n", + " Answer: POTATO SAUSAGE BREAD119,000OREO GREEN TEA SPREAD152,000WHITE CHOCO BANANA SPREAD152,000123,000123,000\n", + " Normed ED: 0.4555921052631579\n", + "Prediction: Choco Devil63,636CP 360 Club Card-9,545SubTotal:63,636Discount:-9,545PB1:5,40959,500100,00040,500\n", + " Answer: Choco Devil4-9,54563,63663,636-9,5455,40959,500100,00040,500\n", + " Normed ED: 0.3108433734939759\n", + "Prediction: TALAM UNGU19,500DISC ITEM-40.000嵗AMOUNT-7,800MIKA KECIL04.00xITEMs11,700SUBTOTAL1X11,700TOTAL11,70020,0008,300\n", + " Answer: TALAM UNGU@65003X-7,80019,500MIKA KECIL@01X011,70011,70020,0008,3004.00xITEMs\n", + " Normed ED: 0.4444444444444444\n", + "Prediction: Tahu Ikan Oma Glok120.000Tahu Ikan Oma Glok120.000TOTAL20.000CASH20.000CHANGED120.00020.00020.0000\n", + " Answer: Tahu Ikan Oma Giok120,00020,00020,0000\n", + " Normed ED: 0.5420353982300885\n", + "Prediction: Serbu240.000Choco Peanut Bread220.000TOTAL60.00060.00060.0000\n", + " Answer: Serbu 1240.000Choco Peanut Bread220.00060.00060.0000\n", + " Normed ED: 0.1574074074074074\n", + "Prediction: Se'I Sapi Sambal Matah ( R )120.000Se'I Sapi Lada Hitam (J)135.000Nasi Putih2Milk Shake Coklat210.000Milk1Milk1Milk1Subtotal1PB1Bi.00010%18.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.10089.1000\n", + " Answer: Se'I Sapi Sambal Matah ( R )120.000Se'I Sapi Lada Hitam (J)135.000Nasi Putih210.000Milk Shake Coklat116.00081.0008.10089.100089.100\n", + " Normed ED: 0.49637305699481865\n", + "Prediction: ES KOPI SUSU72.000Total72.000GoPay72.000Kembali72.000GoPay72.000Kembali0Kembali0GoPay72.000Kembali0\n", + " Answer: ES KOPI SUSU472.00072.000072.000\n", + " Normed ED: 0.6114649681528662\n", + "Prediction: MINERAL 600 ML17,727BULGOGI RICE R133,636Subtotal141,364Tax14,136Total145,500CASH50,000-4,500-4,500\n", + " Answer: MINERAL 600 ML17,727BULGOGI RICE R133,63641,3644,13645,50050,000-4,500\n", + " Normed ED: 0.3088235294117647\n", + "Prediction: Arem Arem Arem@12.000Kroket24.000@12.000Rp 36.0002xRp 3.600Rp 39.600Rp 39.600Rp 39.600\n", + " Answer: Arem Arem@ 12.0002 x24.000Kroket@ 12.0001 x12.000Rp 36.000Rp 3.600Rp 39.600Rp 39.600\n", + " Normed ED: 0.3981264637002342\n", + "Prediction: Arem Arem Arem12.000224.000Pepenero Pastel15.000Rp 54.000Rp 5.4002Rp 5.400Rp 59.400Rp 100.000Rp Rp Rp 40.600Rp 100.000Rp Rp 40.600Rp 100.000\n", + " Answer: Arem Arem12.000224.000Pepenero Pastel15.000230.000Rp 54.000Rp 5.400Rp 59.400Rp 100.000Rp 40.600\n", + " Normed ED: 0.4043010752688172\n", + "Prediction: TT20,000TOTAL20,000CASH100,000CHANGE80,000CASH100,000CHANGE80,000CASH100,000CHANGE80,000\n", + " Answer: TT20,000120,00020,000100,00080,000\n", + " Normed ED: 0.569377990430622\n", + "Prediction: LEMONADE 16OZX20.000X20.000SUB TOTAL20,000GRAND TOTAL20,000CASHIDR100,00020,000100,00080,000\n", + " Answer: LEMONADE 16OZ20,000120,00020,00020,000100,00080.000\n", + " Normed ED: 0.3767772511848341\n", + "Prediction: beef C roll 3pcs10,000Kaya bred10,000Kaya bred10,000110,000115,000TOTAL225,000CASH1100,00075,000100,0007\n", + " Answer: beef C roll 3pcs10,000110,000kaya bred15,000115,00025,000100,00075,0002\n", + " Normed ED: 0.4036697247706422\n", + "Prediction: FUTAMI 17 GREEN TEA (CLAS112,500EGG TART113,000GRAIN CROQUE MONSIEUR117,000GRAIN CROQUE117,00042,50050,0007,500\n", + " Answer: FUTAMI 17 GREEN TEA (CLAS112,500EGG TART113,000GRAIN CROQUE MONSIEUR117,00042,50050,0007,500\n", + " Normed ED: 0.16289592760180996\n", + "Prediction: JAMUR210,000TAHU25,000SUBTOTAL115,000PB 11,500TOTAL20,000CASH3,500Change2\n", + " Answer: JAMUR210,000TAHU15,00015,0001,50016,50020,0003,500\n", + " Normed ED: 0.39900249376558605\n", + "Prediction: Mango Lemon Tea1Rp 29,090Sliders Set1Rp 113,636Chicken Vege Rice Bowl1Rp 86,363Discount BCA 15%1- Rp 34,363Net Total: Rp 194,726Rp 9,736Rp 224,908Rp 224,908Rp 224,908\n", + " Answer: Mango Lemon Tea1Rp 29,090Sliders Set1Rp 113,636Chicken Vege Rice Bowl1Rp 86,363Discount BCA 15%1-Rp 34,363Rp 194,726Rp 9,736Rp 20,446Rp 224,908Rp 224,908\n", + " Normed ED: 0.2825719120135364\n", + "Prediction: RedVelvet Nutella1280,000Free Mini Candle15Large Box1280,000SUBTOTAL1280,000PB 128,000308,000308,000308,000\n", + " Answer: RedVelvet Nutella1280,000Free Mini Candle.5Large Box1280,00028,000308,000308,000\n", + " Normed ED: 0.33052631578947367\n", + "Prediction: BUBBLE GUM118,182Subtotal118,182PAJAK 10%11,818Total120,00020,00020.00020.000\n", + " Answer: BUBBLE GUM118,18218,1821,81820.00020.0001\n", + " Normed ED: 0.40931372549019607\n", + "Prediction: PAIN AU CHOCOLATE111,000CHOCO CUSTARD PASTRY112,000MILK PASTRY ROLL1REAL CHEESE INSIDE BREAD1SAUSAGE BREAD1HAM CHEESE FLAT BREAD120,000TOTAL1100,000CASH1CHANGE119,500\n", + " Answer: PAIN AU CHOCOLATE111,000CHOCO CUSTARD PASTRY112,000MILK PASTRY ROLL19,000REAL CHEESE INSIDE BREAD113,500SAUSAGE BREAD115,000HAM CHEESE FLAT BREAD120,00080,500100,00019,500\n", + " Normed ED: 0.2878289473684211\n", + "Prediction: Prs Sop Sui Jiao1Prs Na Kaou Udng1Prs Sio May Kpting1Prs1Prs28,000Siomay Kmbinasi1Prs1Prs Lio Kong Kien1Prs1Prs1Prs1Prs1Prs1Prs1Prs1Prs1Prs1Prs1Prs123,000Mic Kokung Trsi1Teh Jawar1Teh1180,000Service19,000Pb118,900Total207,900iPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPodiPod1Prs Sop Sui丁戶戶戶戶戶戶戶戶戶 PIC Sui1Prs Sop Sui Xiao1Prs Sop Sui1Prs Sop Sui Xiao1Prs Sop Sui1Prs Sop Sui1Prs Sop Sui1Prs Sop Sui1Prs Sop Sui1Prs Sui1Prs Sui1Prs Sui1Prs Sui1Prs Sui1Prs Sui1Prs Sui1Prs Sui1Prs Sui1Prs Sui事 PIC Sui1Prs Sui1Prs Sui1Prs Sui事 PIC Sui1Prs Sui1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui事1Prs Sui 1Prs Sui 1Prs Sui 1Prs Sui 1Prs Sui 1Prs Sui\n", + " Answer: Sop Sui Jiao1Prs33,000Ha Kaou Udng1Prs28,000Sio May Kpting1Prs23,500Siomay Kmbinasi1Prs23,000Leng Hong Kien1Prs30,000Mie Trsi Kgkung1Prs35,500Es Teh Tawar1Gls7,000180,0009,00018,900207,90077\n", + " Normed ED: 0.826215505913272\n", + "Prediction: NASI MERAH/PUTIH5,0005,0005,0004.000KERUPUK SAMBEL8,000KERUPUK SAMBEL2.0001x2.000AYAM2.0001x14.000MINUMAN KEMASAN/REFILL014.000KEMASAN/REFILL6.000Total0\n", + " Answer: NASI MERAH/PUTIH5.0001x5.000SAYUR4.0002x8.000KERUPUK/SAMBEL2.0001x2.000AYAM14.0001x14.000MINUMAN KEMASAN/REFILL6.0001x6.000Rp. 35.000\n", + " Normed ED: 0.39603960396039606\n", + "Prediction: THAI ICED TEA (L)16,36316,363Jumlah Item16,363Sub Total16,363Pajak Resto1,636Grand Total17,999TH C InvestTHAI THAI ITE (THAI ITEATHAI ITEATHAI ITEA代表 ITEATHAI ICEDTHAI ICED ICED ICED ICED ICED ICED ICED TEA (L)THAI TEA (L)THAI TEA (L)THAI TEA (L)THAI ICED TEA (L) TEA (L)16,36316,36316,36316,36316,36316,36316,36316,36316,36316,36316,363 ICED ICED ICED TEA (L) ICED TEA (L) TEA (L) TEA16,363 ICED TEA16,363 TEA16,363 ICED TEA16,363 TEA16,363 ICED TEA16,363 TEA16,363 ICED ICED TEA16,363 ITE (L) ITE (L) ITE (L) ITE (L) ITE (L) ITE (L) ITE (L) ITE) ITE (L) ITE) ITE) ITE (L) ITE) ITE) ITE (L) ITE) ITE (L) ITE) 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,36316,36316,36316,36316,36316,36316,36316,36316,36316,363Jumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemSumlah ItemSumlah ItemSumlah ItemSub\n", + " Answer: THAI ICED TEA (L)16,363116.36316,3631,63617,9991\n", + " Normed ED: 0.9081412103746398\n", + "Prediction: ELEPHANT READ BEAN112,000chapsal twister donnat112,000twilister110,000TOTAL22,000CASH222,0002\n", + " Answer: ELEPHANT READ BEAN12,000112,000chapsal twister donnut10,000110,00022,00022,00002\n", + " Normed ED: 0.4117647058823529\n", + "Prediction: Sabun Beras130000Sabun Beras13000030000130000Sub Total30000Discount (0 %)0Tunai500000\n", + " Answer: Sabun Beras3000013000030000Discount(0%)5000020000\n", + " Normed ED: 0.4801980198019802\n", + "Prediction: REDBEAN BREAD19,000FRANKFRUT SAUSAGE ROLL112,000TOTAL121,000CASH150,00021,00050,00029,000\n", + " Answer: REDBEAN BRE/D19,000FRANKFRUT S/USAGE ROLL112,00021,00050,00029,000\n", + " Normed ED: 0.3119047619047619\n", + "Prediction: PREMIUM TOAST PAN BREAD124,000TOTAL124,000CASH24,00024,00024,0000\n", + " Answer: PREMIUM TOAST PAN BREAD124,00024,00024,0000\n", + " Normed ED: 0.3445121951219512\n", + "Prediction: Nasi (MLY)16.000Subtotal6.000TOTAL6.000Go-Pay static QR6.000G.000G.CO6.0006.0006.000QR6.000\n", + " Answer: Nasi (MLY)16.0006.0006.0006.000\n", + " Normed ED: 0.5514223194748359\n", + "Prediction: GRAINS PAN BREAD120,500ICED HIBISCUS LYCHEE TEA137,000TOTAL157,500GIFT50150,0008119232703117,5005,0000\n", + " Answer: GRAINS PAN BREAD120,500ICED HIBISCUS LYCHEE TEA137,00057,50050,0007,5000\n", + " Normed ED: 0.34913793103448276\n", + "Prediction: GRILLED BABY POTATO (R150,500TRUFFLE CREAM176,000CARBONARA170,500ORIGINAL BREWED TEA2SUBTTL246,000SUC CHG 6%114,580PB110%225,758283,338283,3385962\n", + " Answer: GRILLED BABY POTATO (R150,500TRUFFLE CREAM176,000CARBONARA170,500ORIGINAL BREWED TEA246,000243,00014,58025,758283,338283,3385962\n", + " Normed ED: 0.268370607028754\n", + "Prediction: BLACK PEPPER MEATBALL176,500QUARTO FORMANGGI PASTA182,500GREEN TEA WITH CRUMBLE1ORIGINAL BREWED TEA2SUBTTL2SVC CHG 6%1SVC CHG 6%1ORIGINAL1261,000SVC CHG 6%1PB110%1SB 1SB7,666BLACK P BLACK PEPPER BLACK PEPPER BLACK PEPPER BLACK PEPPER MEA 1BLACK PEPPER MEAリスト BLACK PEPPER MEAリスト BLACK PEPPER MEATRE 1BRACK PEPPER MEATRE 11BRACK PEPPER MEATRE BRACK PEPPER MEATS ALLOCK PEPPER MEATS ALLOCK PEPPER MEATBALL1BRACK PEPPER MEATBALL1BRACK PEPPER MEATS ALLOPER MEATBALL1QUARTO BRACK PEPPER MEATBALL1BRACK PEPPER1QUARTO BRACK PEPPER MEATS PEPPER1BRACK PEPP ER BRACK PEPP ER WITHALL1QUARTO GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK BRACK TEA WITH CRUNGGI PASTA WITH CRUNGGI PASTA WITH CRUNGGI PASTA WITH CRUMBLE1GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN\n", + " Answer: BLACK PEPPER MEATBALL176,500QUARTO FORMANGGI PASTA182,500GREEN TEA WITH CRUMBLE156,000ORIGINAL BREWED TEA246,000261,00015,66027,666304,326\n", + " Normed ED: 0.8583038869257951\n", + "Prediction: Soft Ori 3 Top117,2722Top OreoTop Oreo10Top Oreo10Top Banana10SubTotal:117,272PB1:1,72718,99918,999\n", + " Answer: Soft Ori 3 Top117,272Top Oreo0Top Oreo0Top Banana017,2721,72718,99918,999\n", + " Normed ED: 0.28378378378378377\n", + "Prediction: Ice Lemon Tea13,636Gyro Platter - Regular150,000Subtotal63,636PB1-TAX Tax6,364Here Total70,00070,00070,00070,000\n", + " Answer: Ice Lemon Tea13,636-Gyro Platter Regular50,00063,6366,36470,00070,000\n", + " Normed ED: 0.38990825688073394\n", + "Prediction: TT20,000TOTAL20,000CASH100,000CHANGE-80,000CASH100,000CHANGE-80,000TOTAL20,000CASH100,000CHANGE-80,000\n", + " Answer: TT20,000120,00020,000100,00080,000\n", + " Normed ED: 0.6017316017316018\n", + "Prediction: PKT TEL OR PERK EDI C 26,000TERONG12,000P K P Kraft C P Kraft C P Kraft C P Kraft C P Kraft C P Kraft C P Kraft C P Kraft C PKT TER G PKT TER G PKT TER Gの方が TER Gの方が TER Gの方が TER G TER OKE TER OKE TER OKE TER OKE TERONG TER ONG TER ONG TER ONG TER ONGPKT TER ONGTER ONGTER ONGTER ONGTER ONGTER ONGTER ONGTER ONGTER ONGTER ONGTER ONGTER G TERONGTER G TERONGTER G PARU SBL GR TER G PARU SBL GR ARI PERK TER G PARU SBL GR ARI PERK ARI PERK ARIZ PERK ARIZ PERK ATE/AMPLA12,000ATE TER G PARU SBL GR ARI ATE ATE/AMPLAATE/AMPLA20,000 °C ATE/AMPLA 20,000 °C 20,000 °CAL 20,000 °CAL 20,000 °CAL 20,000 °CAL TER G PARU SBL GR 20,000 °CAL 20,000 °CAL ATE/AMPLA 20,000 °CAL 20,000 °CAL 20,000 °CAL 20,000 °CAL 20,000 °CAL 20,000 °CAL 20,000 °CAL 20,000 °CAL TER OPERKEDEL TERONGTER G TERONGTER G TERONGTER G PARU SBL GR 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限 限優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠優惠\n", + " Answer: PKT TELOR/PERKEDEL26,000TERONG12,000PARU23,000SBL GR ATI/AMPLA20,000NESTLE 330 ML8,00089,0008,90097,900100,0002,1005.00\n", + " Normed ED: 0.8754578754578755\n", + "Prediction: Gojek Chicken195,000Chilli Sauce H1180,00Gojek Chicken1Soy Sauce F1Gojek French1Fries1Sub Total1Service1Tax1Discount1BiBiChickenChickenChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek ChickenGojek Chicken Quick ChickenGojek Chicken Quick ChickenGojek Chicken Quick ChickenGojek Chicken Quick ChickenGojek Chicken Quick ChickenGojek ChickenGojek ChickenGojek Chicken Quick ChickenGojek ChickenGojek Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce H1Gojek Chilli Sauce H1Gojek Chilli Sauce H CHI Chilli Sauce H1Gojek Chilli Sauce H1Gojek Chilli Sauce H1Gojek Chilli Sauce H1Gojek Chilli Sauce H1Gojek Chilli Sauce HGojek Chilli Sauce H CHI Chilli Sauce H CHI Chilli Sauce HGojek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chilli Cajek Chicken CHI Gojek Chicken CHI Gojek Chicken CHI Gojek Chicken CHI Chicken CHI Chicken CHI SíochánGojek Chilli Sauce f CHI Gojek Chilli Sauce f CHI Gojek Chilli Sauce f CHI Suce f\n", + " Answer: Gojek Chicken Chilli Sauce H195,000Gojek Chicken Soy Sauce F1180,000Gojek French Fries170,000345,0000034,500379,500\n", + " Normed ED: 0.880388978930308\n", + "Prediction: SOGOGI JAPCHAE1150,000labelCREAM TEOK PO KI PO KI PO KI KI 1CREA丁 以來,丁 CHEESE PO KICHEM CHEESECREAM C風 CHEM C風 CHEM C風 CHEM CREAM TEOK PO KI C風 ONE C風 ONE C風 ONE C風 ONE C風 ONE C風 ONE C風 ONE ONEOK PO KI PO KIМЕНТ МЕНТ МЕНТ МЕНТ МЕНТ МЕНТ МЕНТ МЕНТ МЕНТ МЕНТ МЕНТ МЕНТ CHEAM TEOK PO KI00000嵗 CHEAM TEOK PO KI EK KEUN GI KEUN GI KEUN GI KEUN GI KEUN GI KEUN GI) KIP CREAM KIP CREAM KEUN GI KEUN GI) GYE CREAM CREAM KEUN GI) GYE CREAM KEUN GI) GYE CREAM KEUN GI) GYE CREAM KEUN GI) GYE CREAM KEUN G YE C E SUNDUB PO KI PO KI PO KI EK PO KI EK SUNDUB PO KI EK SUNDUB PO KI EK SUNDUB C E G E G E GUE PO K SUNDUB SUNDUB C ICE C ICE COFFE MIX ICE COFFE MIX ICE COFFE MIX ICE COFFE MIX ICE COFFE MIX ICE COFFE MIX BLACK COFFE MIX BLACK COFFE MIX BLACK COFFE MIX BLACK COFFE MIX BLACK COFFE MIX BLACK COFFE MIX BLACK COFFE MIX ICE BLACK COFFE MIX BLACK COFFE MIX ICE BLACK COFFE MIX ICE BLACK COFFE MIX ICE BLACK COFFE MIX ICE ICE BLACK COFFEE COFFEE COFFEE MIX BLACK COFFEE COFFEE MIX BLACK COFFEE COFFEE COFFEE MIX BLACK COFFEE COFFEE CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES CHEES\n", + " Answer: SOGOGI JAPCHAE1150,000GONG GIBAB7105,000CHULPAN CHEESE DAK GALBI1230,000CREAM TEOK PO KI195,000EL KEUN HWANGTAE1120,000SUNDUBU(TUKBEGI) CHAM KKOT SAL2620,000U SAM GYEOP2290,000U SEOL2390,000U SAM GYEOP10ICE COFFE MIX30ICE BLACK COFFE102,000,0000140,000212,4602,352,46002,352,460\n", + " Normed ED: 0.835204081632653\n", + "Prediction: STIX CINNAMON19,000CINNAMON SUGAR119,000CINNAMON SUGAR117,000TRIPPLE CHEESE1TRIPPLE117,00017,000CHEESE117,00017,000SUB TOTAL 5,0001STIX CINNAMON SUBIKSTIX CINNAMON SUBT ONL SUBT OTAL CINNAMON SUBT OTAL CINNAMON SUGARSTIX CINNAMONSTIX CINNAMON19,000STIX CINNAMON19,000STIX CINNAMON19,000CINNAMON19,000CINNAMON19,000CINNAMON19,000CINNAMON19,000CINNAMON19,000CINNAMON19,000CINNAMON19,000CINNAMONCINNAMON19,000CINNAMONCINNAMONCINNAMONCINNAMONCINNAMON19,000CINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMONCINNAMON SUGARCINNAMONCINNAMON SUGARCINNAMON SUGARTRY TRY TRY CINNAMON SUGARCINNAMON SUGARTRY CINNA\n", + " Answer: STIX CINNAMON19,000119,000CINNAMON SUGAR17,000117,000TRIPPLE CHEESE17,000117,00053,00053,000053,000\n", + " Normed ED: 0.8720641061066593\n", + "Prediction: ROTI UNYIL1701272.000PAPER BAG BESAR16.000Total1278.000Cash1300.00022.000171Qty.122.000\n", + " Answer: ROTI UNYIL170272.000PAPER BAG BESAR16.000278.000300.00022.000171\n", + " Normed ED: 0.43907563025210083\n", + "Prediction: THAI ICED TEA (L)16,36316,363Jumlah Item16,363Sub Total16,363Pajak Resto1,636Grand Total17,999TH C InvestTHAI THAI ITE (THAI ITEATHAI ITEATHAI ITEA代表 ITEATHAI ICEDTHAI ICED ICED ICED ICED ICED ICED ICED TEA (L)THAI TEA (L)THAI TEA (L)THAI TEA (L)THAI TEA (L) ICED TEA (L)16,36316,36316,36316,36316,36316,36316,36316,36316,36316,36316,363 ICED ICED ICED TEA (L) ICED TEA (L) TEA (L) TEA16,363 ICED TEA16,363 TEA16,363 ICED TEA16,363 TEA16,363 ICED TEA16,363 TEA16,363 ICED ICED TEA16,363 ITE (L) ITE (L) ITE (L) ITE (L) ITE (L) ITE (L) ITE (L) ITE) ITE (L) ITE) ITE) ITE) ITE (L) ITE) ITE (L) ITE) ITE) ITE) 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,363 016,36316,36316,36316,36316,36316,36316,36316,36316,36316,363Jumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemJumlah ItemSumlah ItemSumlah ItemSumlah ItemSumlah Item\n", + " Answer: THAI ICED TEA (L)16,363116.36316.3631,63617,9991\n", + " Normed ED: 0.9094151212553495\n", + "Prediction: AOP Seafood185,000Omurice Katsu Curry195,000Earl Gray Tea1Hot Tea1Hot Tea135,000Hot Tea1SUBTOTAL1240,00Service121,60028,7,760AOP SeafoodAOP SeafoodAOP SeafoodAOP SeafoodAOP SeafoodAOP SeafoodAOP SeafoodAOP SeafoodAOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP Seafood1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP1AOP Seafood1AOP Seafood1AOP1AOP Seafood1AOP Seafood1AOP Seafood1AOP\n", + " Answer: AOP Seafood185,000Omurice Katsu Curry195,000Earl Gray Tea135,000Hot Tea125,000240,00021,60026,160287,760\n", + " Normed ED: 0.8896120150187735\n", + "Prediction: MARBLE CASTELA22,00022,000122,000TOTAL122,000CASH122,00022,00000\n", + " Answer: MARBLE CASTELA22,000122,00022,00022,00001\n", + " Normed ED: 0.44556962025316454\n", + "Prediction: Seaweed Chicken142,000Seaweed Chicken10- Sedang10ITEMS:1142,000Total142,000Cash 50,00018,000\n", + " Answer: Seaweed Chicken142,000- Sedang1042,00042,00050,0008,0001\n", + " Normed ED: 0.4485981308411215\n", + "Prediction: SB 1 OR128,636Chokocha Flt113,636Bbq Bento113,636Sub Total155,908P.Rest 1015,59261,50070,0008,500\n", + " Answer: SB 1 OR128,636Chokocha Flt113,636Bbq Bento113,63655,9085,59261,50070,0008,5003\n", + " Normed ED: 0.25614754098360654\n", + "Prediction: 52.000Nasi Campur Bali1x52.000Nasi Campur Bali1x 22.000Lemon22.000SubTTL74.000TAX7.40081-40081-40081.400\n", + " Answer: Nasi CampurBali52.0001x52.000Lemon22.0001x22.00074.0007.40081.400\n", + " Normed ED: 0.4592274678111588\n", + "Prediction: CHOCOLATE ECLAIRY226,000TOTAL26,000CASH26,000CHANGE0CASH26,000CHANGE0TOTAL26,000CASH26,000CHANGE26,000CHANGE CHANGE CHANGE GCHANGE CHANGE CHANGE CHANGE G caisCHANGE CHANGE CHANGE CHANGE G cais nacionaisCHANGECHANGECHANGE2,000,000CHANGE2,000,000CHANGE2,000,000 CHANGECHANGE ECLAIRCHANGE E CHANGE ECLAIR20,000CHANGE E CHANGE E CHANGE E CHANGE E CHANGE E CHANGE E CHANGE E CHANGECLASH OCOOLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECLATE ECL Across Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen Citroen निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगम निगमCHANGE 6,000CHANGE BLUE E CHANGE 6,0006,0006,0006,0006,0006,0006,0006,0006,0006,0006,0006,0006,0006,0006,0006,0006,000\n", + " Answer: CHOCOLATE ECLAIR226,00026,00026,0000\n", + " Normed ED: 0.9509536784741145\n", + "Prediction: 118 Round Wigyu (1gr)147.200Wagyu Rice Box110,000Subtotal157.200TOTAL157.200BCA157.20057.20057.200BCA\n", + " Answer: Round Wagyu (1gr)11847.200Wagyu Rice Box110.00057.20057.20057.200\n", + " Normed ED: 0.41649484536082476\n", + "Prediction: KENTHIR 242.000KOL GORENG6.000TEH MANIS8.000Subtotal56.000Total56.000CASH56.000Kembalan56.000Kembalan0\n", + " Answer: KENTHIR 2242.000KOL GORENG26.000TEH MANIS28.00056.00056.00056.0000\n", + " Normed ED: 0.4652777777777778\n", + "Prediction: Large111.000*Rhum10Pastry Keju120.000*Plastik KCL10Total131.000Bayar140.0009.000\n", + " Answer: Large 1111.000*Rhum10Pastry Keju120.000*Plastik kcl1031.00040.0009.0004\n", + " Normed ED: 0.296137339055794\n", + "Prediction: 4003-Blueberry Fuji40.0006001-Plastic Bag Small06001-Plastic Bag Small0Total Item;0Cash0Cash0Tendered:50.000Change:\n", + " Answer: 4003-Blueberry Fuji40.000x140.0006001-Plastic Bag Small0x1040.00050.00010.0002\n", + " Normed ED: 0.3752808988764045\n", + "Prediction: Cha Keaw L... x260.000Cha Keaw L... x260.000BCA PAY... (100%)60.000Total60.000EDC60.000B CBCA(100%)60.000Total60.00060.00060.000\n", + " Answer: Cha Keaw L...x260.000Cha Keaw L...x260.000)60.00060.00060.000\n", + " Normed ED: 0.5323886639676113\n", + "Prediction: Thai Iced T..x]20.000Subtotal20.000Total20.000Cash20.000Change20.00020.00020.00020.000\n", + " Answer: Thai Iced T. .x120.00020.00020.00020.0000\n", + " Normed ED: 0.41012658227848103\n", + "Prediction: SEAFOOD MARINARA185,000CREAMY MARINARA SALMON185,500LYCHEE ICE TEA277,000SUBTTL1247,500SVC CHG 6%114,850PBl 10%126,235LYCHEE ICE TEA2SUBTTL1SVC CHG 6%1CHG1PBl 10%1PBl 10%1ICE TEA1LYCHEE ICE TEA2| SEAFOOD MARINARAFOOD MARINARA績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績績SEAFOOD MARINARASEAFOOD MARINARASEAFOOD MARINARASEAFOOD MARINARASEAFOOD MARINARASEAFOOD MARINARAPICNICHIY MARINARA1PICNICHINESSEAFOOD MARINARAPICNICHINESSEAFOOD MARINARA1SEAFOOD MARINARAPICNICHINESSEAFOOD MARINARAPICNICHINESSEAFOOD MARINARAPICNICHINESSEAFOOD MARINARA1\n", + " Answer: SEAFOOD MARINARA185,000CREAMY MARINARA SALMON185.500LYCHEE ICE TEA277,000247,50014,85026,235288,585\n", + " Normed ED: 0.8889568675435913\n", + "Prediction: Viet Milk Coffee125.000+Hot+M25.00025,00025.000Rp 0\n", + " Answer: Viet Milk Coffee125.000+Hot+M25.00025.00025.0000\n", + " Normed ED: 0.22054380664652568\n" + ] + } + ], + "source": [ + "from pytorch_lightning.loggers import WandbLogger\n", + "from pytorch_lightning.callbacks import Callback, EarlyStopping\n", + "\n", + "wandb_logger = WandbLogger(project=\"Donut\", name=\"demo-run-cord\")\n", + "\n", + "class PushToHubCallback(Callback):\n", + " def on_train_epoch_end(self, trainer, pl_module):\n", + " print(f\"Pushing model to the hub, epoch {trainer.current_epoch}\")\n", + " pl_module.model.push_to_hub(\"nielsr/donut-demo\",\n", + " commit_message=f\"Training in progress, epoch {trainer.current_epoch}\")\n", + "\n", + " def on_train_end(self, trainer, pl_module):\n", + " print(f\"Pushing model to the hub after training\")\n", + " pl_module.processor.push_to_hub(\"nielsr/donut-demo\",\n", + " commit_message=f\"Training done\")\n", + " pl_module.model.push_to_hub(\"nielsr/donut-demo\",\n", + " commit_message=f\"Training done\")\n", + "\n", + "early_stop_callback = EarlyStopping(monitor=\"val_edit_distance\", patience=3, verbose=False, mode=\"min\")\n", + "\n", + "trainer = pl.Trainer(\n", + " accelerator=\"gpu\",\n", + " devices=1,\n", + " max_epochs=config.get(\"max_epochs\"),\n", + " val_check_interval=config.get(\"val_check_interval\"),\n", + " check_val_every_n_epoch=config.get(\"check_val_every_n_epoch\"),\n", + " gradient_clip_val=config.get(\"gradient_clip_val\"),\n", + " precision=16, # we'll use mixed precision\n", + " num_sanity_val_steps=0,\n", + " # logger=wandb_logger,\n", + " callbacks=[early_stop_callback],\n", + ")\n", + "\n", + "trainer.fit(model_module)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LjDHXmhFprFw" + }, + "source": [ + "## Evaluate\n", + "\n", + "After training, we can evaluate the model on the test set.\n", + "\n", + "As we pushed the model to the hub, we can very easily load it back again using the `from_pretrained` method. You can see in the [repo](https://huggingface.co/nielsr/donut-demo/tree/main) that we have the following files:\n", + "\n", + "![Screenshot 2022-08-16 at 11.05.59.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NpHF6EdN6WLr" + }, + "source": [ + "Note that you can also easily refer to a specific commit in the `from_pretrained` method using the [`revision`](https://huggingface.co/docs/transformers/v4.21.1/en/main_classes/model#transformers.PreTrainedModel.from_pretrained.revision) argument, or use the private hub in case you'd like to keep your models private and only shared with certain colleagues for instance.\n", + "\n", + "Here we're just loading from the main branch, which means the latest commit." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 396, + "referenced_widgets": [ + "da517c560a174ed3b3a0d342ab9531d4", + "0d29cb058287441397849858958eecc5", + "971fb37793b04b02916266e0606a8cd3", + "f397c359a4844fe0b43cbd55f7e45e2c", + "5be79748747e48dc9557e635185b09b7", + "5cf9cf4d06af477aaadf2c2eafb21a0f", + "acb18d163a98436abc6a34c80d0b9875", + "9e5391e58b654a54af53ca6b156d4027", + "a772a8f8485b4cbc954363c5d25a1355", + "c8d62278ed494aa1948d4ddac0b5e94c", + "9ef9d3b7c4e141c99299d21e270347af", + "c5810b986d064e93ac00ff911d3d09de", + "0d5904889d6246e4b0bd8223d9ce79ab", + "09e57cfef8d04198b07337e6adfd3cfd", + "9460488365d343e887fb88aafc4c434b", + "8ad84d92e3f2470084c072e64a46cfb3", + "8b4f59bf71c64c2293a9e089b963b914", + "7372f1fa693345ad8f26f0148b2f527b", + "3b5d54289850421e821f88fc5f0c0421", + "bcaced45f306473887ab7c07df871481", + "4cacd92cb1f04dcea344f93e816d6244", + "fd4d064de57d469c977318add3069303", + "5d99e7c78ae54a2fa6824cfe36498ab4", + "6eec510e0a3844dfb7c7bcb3a6b9d910", + "dcbf40b9f3d04a29abb5b82cc4f4f43a", + "03a5186fafe7424c896a5c8f4b356098", + "0c9bb2443ecf460a876558b547c3b97f", + "e797e849c5e0443e84af5c12061589d4", + "422523d56ec74035b0a55b9c97d1ed19", + "acfeebabb13647ddbbe4372e192b235a", + "b2f81adfc7624d0ebec30a6f49d3b0d3", + "f1a2bee7a7dc408087833912c951119d", + "8eef683c23a14e9ca9cc8e260a8d25aa", + "314069aa673f41f9abd2c6d2b634a64c", + "7df7c889e4794145ba5b20177df36189", + "f16c7f25616a478ab6ba69ce88a69724", + "e9b2a001c8dc4591b00a21893c56dceb", + "96b45a24defe461998123ec31aba1d97", + "f387bdb0ba094db2892ed92e786886f6", + "1510960e07b742c4b1d838b2d533439b", + "bcb3bc46a920467d8441c8fe2c0081f7", + "212fc0393d3a4ea9a76571c9b636ae20", + "a9ed7db85a364e6384f84f216080d24a", + "98c6ca051cde41cf806b1b8bd9caf6c9", + "183c1ce81c8544719ce85a79cf44f9e9", + "538e66a6277b478db47627b3f38b7da0", + "7de626274586484c966e3fcd322559af", + "07a8d73caf1741d78f637c5093884834", + "049b89f7db7b4b278b2b266771a22ef1", + "53f439b9ac714080972b77d4ce2e15ed", + "8d98ed226dd1489e83099782d51d7b55", + "202cb4369e4845a6a60408400f88b0ed", + "92c719b392564d339ff73ccc83c966d0", + "938da511fca04f77af54fe3b34287e6c", + "3f2d02e521e848398853c526866d3585", + "ce963a069b50408abc6cf6073857c5ee", + "21d179e89c8d47768585c9d9d3bd6e20", + "f88cf9ec7d8b4faa80017e24f99d5dc8", + "7a20309eef57435f9f35082d5285f444", + "6d669ab16e374f0faa089a183bd52532", + "7d207f93b4a24696abf379bcc01723dc", + "b0ab92d005974b959f7cb0f2cb9b11d6", + "7b93f73af3274920ab2b51418e95cff6", + "e4dd0f4da33c453e886144de5c93aeb3", + "6d34020216d74b588708e9c9f33f800b", + "b0ee851984d9431597446f79d656d64a", + "c75e6f8363fc4bd1ab7d1c6513f60dd5", + "56c8c883282e4f74ae1c353455136380", + "e13b3d868fe3450cac508a8799743696", + "3a1168d83bbd44c887b93d20f8eb59a6", + "64f05915a7b040f9a73dfba9e02d249d", + "5ec271f8377a43878a090aaecdde01e6", + "8473ba1cc0d44bba85462cdbf12e9514", + "2a058b66d21642f3ab38b917a57ead4c", + "0eccda6238eb4756863a6efeeadc9efb", + "4db3cc54264240ccac6402b67dfa1049", + "ec11d0d99c684e2c87c1bf1c05220a95", + "84a6704158ab4806a23226678b1be9a8", + "7b6f963d98df4d36b01e21a89fafd957", + "19026bb7f79446bc970e1210cccf206f", + "e45b9b8af30042d0a0f91ef4ec1aad76", + "3735eff345c9459a986b52ac7c469a33", + "7d99b26699f0438ea804db1871d2a172", + "791025ac27604718a24542401ab225e2", + "230aa7332e4e4114a923b317b4e71991", + "45b9943cd00546afad178c901cd94ade", + "11e6194ce58c4c05a4cf3c9c55b4acc4", + "5f177c38708d4492909da4b8ae0a4120", + "b9b02352a20e45ac8128f58b9387435d", + "07054014fd004b44993a392856f25f58", + "b4afe9af86d1487cbe0cb9f4956db2e2", + "abd398c4b93343a49f7882d3b141ccf4", + "3fda98dab7574ba489090143ce8a0e82", + "8b00742b502d493094ad605fc90b5b09", + "e05ca35fa13a42e0bfb8daef4706d291", + "a27fc920f8c94953a0c3e9b2120f1b86", + "722dd7a1bb984a22ad1b4da14741d7fd", + "7c8f64cb9eda44eca40a6ef5a203afc0", + "10aad821076a43b88b833f52d41df0ef" + ] + }, + "id": "HRyAujuuw0IG", + "outputId": "d806f452-f0c0-4571-ed6d-a568be3106fb" + }, + "outputs": [], + "source": [ + "from transformers import DonutProcessor, VisionEncoderDecoderModel\n", + "\n", + "processor = DonutProcessor.from_pretrained(\"nielsr/donut-demo\")\n", + "model = VisionEncoderDecoderModel.from_pretrained(\"nielsr/donut-demo\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r5uhIMxCw-ZI" + }, + "source": [ + "As we don't have a test split here, let's evaluate on the validation split.\n", + "\n", + "We'll use the `token2json` method of the processor to turn the generated sequences into JSON, and the `JSONParseEvaluator` object available in the Donut package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EDdzbjIOuCfI", + "outputId": "702b39c7-5e75-4072-fb6e-965b899314b9" + }, + "outputs": [], + "source": [ + "!pip install -q donut-python" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 123, + "referenced_widgets": [ + "674feecda5844fc8b669e8153a982b3f", + "9ed0a46f8705464f81f2c8e1a4b8cc89", + "0f6e284513e94a3f8681d4b4e39fcb54", + "7208cb24790c447aae18746d11b7cc7e", + "c1fe650a41b14253b0c398f09293310c", + "a105133b82344a97b79250d8cde50f74", + "c474aabdf84b459aae6c9c0de4526b47", + "75a3f953de714650a03ad3b2319f8a82", + "b49ab085f6e04c7398e90e09eda48c5a", + "0755ff4ddf1c453f8f6ca501001fc486", + "43d49626f9284b23b3bca84aaf9f4616" + ] + }, + "id": "PZSG38-10YVL", + "outputId": "ca551149-e451-4233-ab31-5d9d7bcc818f" + }, + "outputs": [], + "source": [ + "import re\n", + "import json\n", + "import torch\n", + "from tqdm.auto import tqdm\n", + "import numpy as np\n", + "\n", + "from donut import JSONParseEvaluator\n", + "\n", + "from datasets import load_dataset\n", + "\n", + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "\n", + "model.eval()\n", + "model.to(device)\n", + "\n", + "output_list = []\n", + "accs = []\n", + "\n", + "dataset = load_dataset(\"naver-clova-ix/cord-v2\", split=\"validation\")\n", + "\n", + "for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):\n", + " # prepare encoder inputs\n", + " pixel_values = processor(sample[\"image\"].convert(\"RGB\"), return_tensors=\"pt\").pixel_values\n", + " pixel_values = pixel_values.to(device)\n", + " # prepare decoder inputs\n", + " task_prompt = \"\"\n", + " decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors=\"pt\").input_ids\n", + " decoder_input_ids = decoder_input_ids.to(device)\n", + " \n", + " # autoregressively generate sequence\n", + " outputs = model.generate(\n", + " pixel_values,\n", + " decoder_input_ids=decoder_input_ids,\n", + " max_length=model.decoder.config.max_position_embeddings,\n", + " early_stopping=True,\n", + " pad_token_id=processor.tokenizer.pad_token_id,\n", + " eos_token_id=processor.tokenizer.eos_token_id,\n", + " use_cache=True,\n", + " num_beams=1,\n", + " bad_words_ids=[[processor.tokenizer.unk_token_id]],\n", + " return_dict_in_generate=True,\n", + " )\n", + "\n", + " # turn into JSON\n", + " seq = processor.batch_decode(outputs.sequences)[0]\n", + " seq = seq.replace(processor.tokenizer.eos_token, \"\").replace(processor.tokenizer.pad_token, \"\")\n", + " seq = re.sub(r\"<.*?>\", \"\", seq, count=1).strip() # remove first task start token\n", + " seq = processor.token2json(seq)\n", + "\n", + " ground_truth = json.loads(sample[\"ground_truth\"])\n", + " ground_truth = ground_truth[\"gt_parse\"]\n", + " evaluator = JSONParseEvaluator()\n", + " score = evaluator.cal_acc(seq, ground_truth)\n", + "\n", + " accs.append(score)\n", + " output_list.append(seq)\n", + "\n", + "scores = {\"accuracies\": accs, \"mean_accuracy\": np.mean(accs)}\n", + "print(scores, f\"length : {len(accs)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hN-FiUAJy1YX", + "outputId": "e8943e8f-a936-4c00-8f96-a055924ec8ad" + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'np' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMean accuracy:\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[43mnp\u001b[49m\u001b[38;5;241m.\u001b[39mmean(accs))\n", + "\u001b[0;31mNameError\u001b[0m: name 'np' is not defined" + ] + } + ], + "source": [ + "print(\"Mean accuracy:\", np.mean(accs))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3R6rov0i0bkN" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "authorship_tag": "ABX9TyMs0jX0vkostGjO0/wWd8Do", + "include_colab_link": true, + "machine_shape": "hm", + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "008e77e9b3cb4cc4b37e875cab3f3d6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d77a9f92e984ac7b9350addc57cb577", + "placeholder": "​", + "style": "IPY_MODEL_2d476a17141343508bcac54393555e9b", + "value": " 100/100 [00:01<00:00, 93.70 examples/s]" + } + }, + "0098775e311344f681335445edadd72f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "009ae1d114cb48d0990e934e19ee961f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "00d41781e51e4adb823c44a68727693a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "012b26d0aed048628e59dbb0c02f76e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b132e3a6f07e452382eadbedff054b94", + "IPY_MODEL_3920ef1a0817495696b874cc61516d7b", + "IPY_MODEL_24d17f7c48fb4d41b02ec4731d629758" + ], + "layout": "IPY_MODEL_d91e67e21bfa49888bf6316c154bcf77" + } + }, + "01b01e7329334686ba39c11ec18e9df5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "02700c32e4d64a66818ac92209384b14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2d4f64a23cc846a48f0906c74d1502b9", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c6e2d6abd785494ca143b5978811c326", + "value": 100 + } + }, + "03a5186fafe7424c896a5c8f4b356098": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f1a2bee7a7dc408087833912c951119d", + "placeholder": "​", + "style": "IPY_MODEL_8eef683c23a14e9ca9cc8e260a8d25aa", + "value": " 489/489 [00:00<00:00, 8.52kB/s]" + } + }, + "0459618abd954a9a95c3eb137954523c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5947ad0e06a54e38b8d09d160bffb0d2", + "IPY_MODEL_5cc9c7f2db1846b6905452d7a9568919", + "IPY_MODEL_dd0b6870c8b6435691009ca66fa71b09" + ], + "layout": "IPY_MODEL_c663b10ffce1432c89a3948e324571b0" + } + }, + "047bdaa0ff9d4a4f8d6f46fca23bd0d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "049b89f7db7b4b278b2b266771a22ef1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04b01b03fcc143fa8633b52ec231f026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "04fa08f418e74bfe8d274620cd07e448": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d1837ece0226413489f3df0dfd7f3279", + "placeholder": "​", + "style": "IPY_MODEL_b0095f1cb2364fc991f05f312656947f", + "value": "Downloading data: 100%" + } + }, + "053e5fb5ff954b1bb8099c07ad77c35d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05c1c99b4aff486a9c5eeadf9bd8230a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72254d54d49a4054b49882200eecc49b", + "placeholder": "​", + "style": "IPY_MODEL_cfa9b34f74b541fc9c54b905cffa05ad", + "value": " 1/1 [01:03<00:00, 63.26s/it]" + } + }, + "07054014fd004b44993a392856f25f58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b00742b502d493094ad605fc90b5b09", + "placeholder": "​", + "style": "IPY_MODEL_e05ca35fa13a42e0bfb8daef4706d291", + "value": "Downloading: 100%" + } + }, + "0755ff4ddf1c453f8f6ca501001fc486": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0759cda7bd084b02921689bc5e319ba5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_31081f8d85954a33bcc789b1f5f93c56", + "placeholder": "​", + "style": "IPY_MODEL_ec2fc9e744d9460f9063f9c0aac4c3d5", + "value": " 1/1 [01:03<00:00, 63.02s/it]" + } + }, + "07a8d73caf1741d78f637c5093884834": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_938da511fca04f77af54fe3b34287e6c", + "placeholder": "​", + "style": "IPY_MODEL_3f2d02e521e848398853c526866d3585", + "value": " 4.02M/4.02M [00:00<00:00, 14.3MB/s]" + } + }, + "07acf858ebad4351bfd3cfdb339dddcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "07b75ae72a6a4d16a3ff73a1debe2ee5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1cda98448c074471ae879ab9410e49d5", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a7cb4d7e9514575a93e2f86fc32fb4b", + "value": 100 + } + }, + "082d0b472b90409f8ab9b02391df63a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c7a17fb7dd041c2949e5df85ee78570", + "placeholder": "​", + "style": "IPY_MODEL_c6e7bfb4e3144b16bcfd3fd12673d853", + "value": " 100/100 [01:21<00:00, 1.22it/s]" + } + }, + "083ca4f1dea5421bb07bf9cfc802871d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b71da8215fd74394aeef7b2835ebdce2", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_aad2e43eeafa4cccb5e476d3fce4dacb", + "value": 100 + } + }, + "08c07275cbbe4fd0822c354d99c303ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "098aae301ab04e688652dd0c05f8de1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10d449f46d9c4502baaad1606f873c09", + "placeholder": "​", + "style": "IPY_MODEL_44b4f06f3c0841d2ac960337d18de7a3", + "value": " 100/100 [01:25<00:00, 1.17it/s]" + } + }, + "09c44c23e97c4293bc1d30f234634c42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00d41781e51e4adb823c44a68727693a", + "max": 441418432, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d56998a0695e434bb7fe3857f5075083", + "value": 441418432 + } + }, + "09e57cfef8d04198b07337e6adfd3cfd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b5d54289850421e821f88fc5f0c0421", + "max": 362, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcaced45f306473887ab7c07df871481", + "value": 362 + } + }, + "0bb2e5d6e3544a44940c79b7a5543407": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8eda879a6d224fb091f538c2806d7890", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c34474a8f453410f8f3dc39c835e3a2d", + "value": 3 + } + }, + "0c44b50f550a42d5a89d35c0233fa0bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0c565bd0bd89433286f309c0a728e020": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9ab3a07b87854294b687ab1bd1ce2fe1", + "IPY_MODEL_61c95b7243604620a9151ce8b6fcc910", + "IPY_MODEL_f21af123c24f43498942dd4f3e91c54f" + ], + "layout": "IPY_MODEL_f6c554c9119f4152bd747905b3b2ade3" + } + }, + "0c9bb2443ecf460a876558b547c3b97f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ce302531a69423aa36a39e0502f7970": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d29cb058287441397849858958eecc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5cf9cf4d06af477aaadf2c2eafb21a0f", + "placeholder": "​", + "style": "IPY_MODEL_acb18d163a98436abc6a34c80d0b9875", + "value": "" + } + }, + "0d2f68be02e7495fab83926f99b93586": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bfc5138baadf4385a0ed6b87107fabec", + "placeholder": "​", + "style": "IPY_MODEL_b760aaf9ca3047378404f446549355ef", + "value": " 477/1300 [05:37<09:42, 1.41it/s, loss=0.301, v_num=n3o8]" + } + }, + "0d5904889d6246e4b0bd8223d9ce79ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b4f59bf71c64c2293a9e089b963b914", + "placeholder": "​", + "style": "IPY_MODEL_7372f1fa693345ad8f26f0148b2f527b", + "value": "Downloading: 100%" + } + }, + "0dfe3ae073634ba8a1747bc96b30e2bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e2de7dbc3f3450bb17060ce2687c3ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44a17877ab654e0481b0fe827a991e5a", + "IPY_MODEL_083ca4f1dea5421bb07bf9cfc802871d", + "IPY_MODEL_8249f31d416e4ed388233cd633c212a7" + ], + "layout": "IPY_MODEL_de3f7930ae454905be655bf33f045280" + } + }, + "0e590d1bb05d4bfaa6c0c41cb41e4794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0eccda6238eb4756863a6efeeadc9efb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0f2dc68b57614e79b95ddeb715f124af": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f6e284513e94a3f8681d4b4e39fcb54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_75a3f953de714650a03ad3b2319f8a82", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b49ab085f6e04c7398e90e09eda48c5a", + "value": 100 + } + }, + "0fb032afb0904c358aaa984c8556d0c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0fe66bd8c6314fdb86ea236d9638f538": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0fedf481a76a4d319ddc6afe51345a36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "10153cc99ab24f089bc2c964eb5f4806": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "107117ee9e3947058cf7586eba69cf6e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10aad821076a43b88b833f52d41df0ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "10d449f46d9c4502baaad1606f873c09": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10e6ba61808f471d82b431c607b65d99": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1105d8a1da0146e0963254b901f6fd80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_439674cf49124161b3783a681b407ed2", + "placeholder": "​", + "style": "IPY_MODEL_10153cc99ab24f089bc2c964eb5f4806", + "value": "100%" + } + }, + "11e6194ce58c4c05a4cf3c9c55b4acc4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "12636a29bb09482693911ac3c6ab429a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1355cef1e865410182443c3b8ba73fd2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1384b04401ee4d5e9a7ab9574e660ee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9db7c2d529ea46d48e22271d8432f137", + "placeholder": "​", + "style": "IPY_MODEL_6d6241a0e8544b03bd406739bd2e3914", + "value": "Validation DataLoader 0: 100%" + } + }, + "140f7d5cb0fb4b4b8598d1552a429052": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a4eacb994f2147d29d2d68e9b3c456aa", + "placeholder": "​", + "style": "IPY_MODEL_205926dbd19445c08bd1b8a02e33634f", + "value": "Downloading (…)ncepiece.bpe.model";: 100%" + } + }, + "144c2d74865e41c19a4a6efb4b120ca9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "144e18e547844b1789fa6759bad4b1a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6fcd1c300caa489dadeaa50c6c814a14", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f60b9e69e69e40189644c2cde41fae18", + "value": 100 + } + }, + "148b60b8a9a44244874d2db13de48a00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1510960e07b742c4b1d838b2d533439b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15799ffca3624428926e2ddb16728b68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15f7ce33a6304293939d23084881a33e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_414f4fac280c49db98080b31e3facc69", + "IPY_MODEL_3752aef8ee5147e2b603a691f233cc24", + "IPY_MODEL_45ce4745da5840a090620d59ce4eb1e5" + ], + "layout": "IPY_MODEL_c3f54d242da14b689f6e213867b81cec" + } + }, + "1646a7c133a94af7bcfda5fb6ca800bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80cc4498465e4fecba040320c9bf1af6", + "IPY_MODEL_55e69f30eb7f44dfb9fa64f938cd41dd", + "IPY_MODEL_ea7c0bd905074e5d8105bb82036bea1c" + ], + "layout": "IPY_MODEL_e529a78e1aba43d980b2953aef3cdfba" + } + }, + "165a9c0135cb45869feb49beacb8101a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1674e26429bc4c80991bb8942b56a7d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c97025e7d015445fafa406c4c1a89af7", + "placeholder": "​", + "style": "IPY_MODEL_1dc7760bdd2944ad9c4991c82dc86e25", + "value": "Validation DataLoader 0: 100%" + } + }, + "167cf75950f6434293f6809a84f998f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "16ea181fc8694d29b499b46678fbdaf3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "183c1ce81c8544719ce85a79cf44f9e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_538e66a6277b478db47627b3f38b7da0", + "IPY_MODEL_7de626274586484c966e3fcd322559af", + "IPY_MODEL_07a8d73caf1741d78f637c5093884834" + ], + "layout": "IPY_MODEL_049b89f7db7b4b278b2b266771a22ef1" + } + }, + "18db9e56c0354600851d762c8de0f774": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "18e8af9f9ff247c88797e03d48b675f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "18f20450f84d48d7839bb3c676cb53d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_75469c205b314779aef9d1e7ff2fd612", + "placeholder": "​", + "style": "IPY_MODEL_2dd3e0f914f6471587bbe40beeacd7f3", + "value": " 100/100 [01:23<00:00, 1.20it/s]" + } + }, + "19026bb7f79446bc970e1210cccf206f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_230aa7332e4e4114a923b317b4e71991", + "max": 4900, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_45b9943cd00546afad178c901cd94ade", + "value": 4900 + } + }, + "1a457a54c55f4aab95a9c3cfaa2a23b5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b07db1c1be94ffe98ca2e23ca97e187": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed76219299d54f908eff9c9678e1e00f", + "placeholder": "​", + "style": "IPY_MODEL_76839f93896d43dabcb10f14b031c037", + "value": "Downloading data: 100%" + } + }, + "1c1855ade6204625bfaab54ca2159af5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1c2bd9e72e334917b3ce39810bf5ea0b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "1c7a17fb7dd041c2949e5df85ee78570": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cda98448c074471ae879ab9410e49d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d3f96ad71b74c31b18b50d0dafefb6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe170e9c276f49b6927ffcbf3809de3e", + "placeholder": "​", + "style": "IPY_MODEL_07acf858ebad4351bfd3cfdb339dddcb", + "value": "Downloading data: 100%" + } + }, + "1dc7760bdd2944ad9c4991c82dc86e25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1df30bb3175541a7b7a6541b38d51b89": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e25f97059cf482587bc1dcb055d4f7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1e6e26bf5f3e4322b0f9ff4352976adb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c6c3811d9e04247abd52e0f835b6a5e", + "placeholder": "​", + "style": "IPY_MODEL_fdf8fb828c1d4ad6b864b9197a0aa486", + "value": "Validation DataLoader 0: 100%" + } + }, + "1eecabada33e46da975375f9fce5517e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1674e26429bc4c80991bb8942b56a7d7", + "IPY_MODEL_72e608fe672b40c99de89ad5ce1e33c0", + "IPY_MODEL_a35f8906c1ae46828120319694065815" + ], + "layout": "IPY_MODEL_6340e0aa27c04db0b48448513e9875c4" + } + }, + "202cb4369e4845a6a60408400f88b0ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2040593b2df341c68670f38512b423d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "205926dbd19445c08bd1b8a02e33634f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "20e0bf2b09d841d6bc9e1f36ec4079bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "20eb3303eb2b429891247566f52218c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "210766df14774c1e89d0df73f294daa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "212fc0393d3a4ea9a76571c9b636ae20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "21d179e89c8d47768585c9d9d3bd6e20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d207f93b4a24696abf379bcc01723dc", + "placeholder": "​", + "style": "IPY_MODEL_b0ab92d005974b959f7cb0f2cb9b11d6", + "value": "Downloading: 100%" + } + }, + "230aa7332e4e4114a923b317b4e71991": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23e4cf09102a4753844ceed08a211d53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2472d601c42041e6acb51d19de547a0a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24b5e61aecd84402a6261b4b06146559": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf9d9715e7684c4e8ac29cbcabf1c600", + "max": 809404185, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e71b1fe193ba49afb42fe50f96663070", + "value": 809404185 + } + }, + "24c7acb091ab4037a6b4a2eb8a1085e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "24d17f7c48fb4d41b02ec4731d629758": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3335761da6f84b2bb970a32f27f5abc4", + "placeholder": "​", + "style": "IPY_MODEL_69f55ea05abe4ca9b21135169edc7a71", + "value": " 800/800 [00:08<00:00, 90.56 examples/s]" + } + }, + "24d1c38ed9e241c2b13abd30ead9a8de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb5f6ef011b44f7d8a62a35ee66899db", + "IPY_MODEL_0bb2e5d6e3544a44940c79b7a5543407", + "IPY_MODEL_5517cbf80d8b448d9a511070dfb4dc1d" + ], + "layout": "IPY_MODEL_107117ee9e3947058cf7586eba69cf6e" + } + }, + "24e315cb82a747d6b9566b461db6aee9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f98e3325c6b64df7b028a71eb6c1aa5e", + "max": 1300, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c5f481bd341a48668518912efbd6a35a", + "value": 477 + } + }, + "25296141a79c4477aac6635dd30a80e5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25721e39542d43029d26ac34b4af6d89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "257fa5076dd74486b7751bffa39c2ef8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3a98298b4ea434da0d8815ba0f2c4a4", + "placeholder": "​", + "style": "IPY_MODEL_e6523a394c4442bd949cae3f7666b6d4", + "value": " 4.01M/4.01M [00:01<00:00, 2.27MB/s]" + } + }, + "259d3cba0a5b4943b4b025f921edf06b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "259d56ea4f394fe591b26941164dcae9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "262f11dfba44467c882893cec6523189": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26bb592b09c94ba081cd1f913c318f73": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2781fb98daf147638db891d565d2f194": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "279ce49322904b87b2ec18b4f497465c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "293e17ab3b4a462ba7d4adc2de35aa05": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "297ba8af5a704c5ca34d0f406de3e918": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "299e59499eda4a1db01880e4fb1d5cd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2a058b66d21642f3ab38b917a57ead4c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a459b1c958240d89f753fe695b457e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2aa84a0d65254ef49ee100f66e393ae9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b1ecdea6e49453588fdca19fc19eaaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2b8a201c62c241a89625630f550f6c02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2ca98f8a45fb4335ac197e9b7c019e41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d146fd4003e47978a253192463dd514", + "IPY_MODEL_33596291f0c344ad9219c9a7eb6c5c90", + "IPY_MODEL_30374f50d4af4b9598cb13823ad7780c" + ], + "layout": "IPY_MODEL_6c9cca8ae41441b29f2dd7ac81cd35d4" + } + }, + "2d476a17141343508bcac54393555e9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2d4f64a23cc846a48f0906c74d1502b9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2dd3e0f914f6471587bbe40beeacd7f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e682e41d92343b792991eaa2b72d7de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2e6a63d04fd747a280f813b1335a52b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e8a6bd2ef104b32868443ac711c88b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ee2d4a8635f45dba573b749244f9e2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "30374f50d4af4b9598cb13823ad7780c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6a3d2f0a94ea4f72bc81400880f8c430", + "placeholder": "​", + "style": "IPY_MODEL_c3735a62d26743cc88f0bb71712edaa2", + "value": " 809M/809M [00:06<00:00, 137MB/s]" + } + }, + "30f78b0e910549a6a5e79e8a49c4c67d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b12a725c43db4fa4ad13d82c75738994", + "IPY_MODEL_144e18e547844b1789fa6759bad4b1a2", + "IPY_MODEL_cdf0d854eba142779798e0ac495c02af" + ], + "layout": "IPY_MODEL_bfc6976f3a4b4de3bd42aa1dc9ab73e5" + } + }, + "31081f8d85954a33bcc789b1f5f93c56": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "311acaa0e5844400b54281fe18b50b34": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "314069aa673f41f9abd2c6d2b634a64c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7df7c889e4794145ba5b20177df36189", + "IPY_MODEL_f16c7f25616a478ab6ba69ce88a69724", + "IPY_MODEL_e9b2a001c8dc4591b00a21893c56dceb" + ], + "layout": "IPY_MODEL_96b45a24defe461998123ec31aba1d97" + } + }, + "31d2bbdfa41b451eb71eba642b3db4e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31d5cb042096428fa4e8a0cd682ddc09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "324b10e8d5ea4f1598111ce9321f5809": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_311acaa0e5844400b54281fe18b50b34", + "placeholder": "​", + "style": "IPY_MODEL_6016947c02af4021851e950c72479029", + "value": " 100/100 [01:22<00:00, 1.21it/s]" + } + }, + "32cb9bbc1e4547cfbe4df1e4ca70e254": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "330b85404fe84761a72a8cbfb696eae1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33170adc2cbe4b3daa9073cee501d854": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_583a3d03b1f344d6b7424589c4db1634", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_56628597cea5425684265b293010eefe", + "value": 100 + } + }, + "3335761da6f84b2bb970a32f27f5abc4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3350308cf34f4c02bd89f6e2a345ed12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "33596291f0c344ad9219c9a7eb6c5c90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe5fe724aaa14f2bb80e84fc589103fc", + "max": 809168699, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c65a6cc99b06467cbc7f4efe8d80aae0", + "value": 809168699 + } + }, + "337672b1b8894951810dc1c645f66dbd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33a65dc99580418cb494e29ae5a0fb9a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3427bc46e6f84ac5a403b42afcde9b08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "LabelModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a86c267cbe34ba3bbe0ec2e0035bbbb", + "placeholder": "​", + "style": "IPY_MODEL_3bcce8d28d894837824f52bae420976a", + "value": "Waiting for wandb.init()...\r" + } + }, + "3475f0d8415b4f3ba6b5ad701c365e61": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3528f8245a2044c4b2037481bdaf39a7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35560ff2bef140aea29689440aa8f741": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f794d85eed554a6ea4dabf8420da0160", + "placeholder": "​", + "style": "IPY_MODEL_f6679d2887ae4c759e6fe58b01a9d546", + "value": " 6/6 [00:06<00:00, 1.04s/it]" + } + }, + "3563de5d5e394c578b7667bdae8644e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3612afa317c5414bbffdbc1f241eb133": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "36777dc617bf4589a8ab9802f363ecf4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8cef8071dc984acc8a003134e8d64a11", + "placeholder": "​", + "style": "IPY_MODEL_cd80b89157374e759c3a24091fced46b", + "value": "pytorch_model.bin: 100%" + } + }, + "36c149d0545d43d7ac1cb34f4e3c33bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "36c215478b2f415e904a24de4b91d9d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3735eff345c9459a986b52ac7c469a33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3752aef8ee5147e2b603a691f233cc24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_618716c2a7dc4557873d08a9ea2b0b22", + "max": 234202795, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_663d883b5cbf4a6998db3319c55ee3d8", + "value": 234202795 + } + }, + "37c969be0a7946c6a7d45940fcde5cf9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3880476d3f0e4962be29180763486deb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f24b9f61a1fe4c3f86e5086676a5e5d5", + "placeholder": "​", + "style": "IPY_MODEL_8299c1ef69414603a1604699c777e1f4", + "value": "Validation DataLoader 0: 100%" + } + }, + "38fff333701c4678b5c69863aa8992ac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3920ef1a0817495696b874cc61516d7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be37899db94d4c15b8e194c03b057a45", + "max": 800, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4ec3f7acd47c476fbf7e030426c51a7a", + "value": 800 + } + }, + "394b5ca6361e4d38ba6cca638de5cdcb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3a1168d83bbd44c887b93d20f8eb59a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4db3cc54264240ccac6402b67dfa1049", + "placeholder": "​", + "style": "IPY_MODEL_ec11d0d99c684e2c87c1bf1c05220a95", + "value": " 355/355 [00:00<00:00, 5.12kB/s]" + } + }, + "3a6dce72d0ed40c48bbd91b3f07aa67a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_36777dc617bf4589a8ab9802f363ecf4", + "IPY_MODEL_f2e58d8539584eebae048ed68d50a641", + "IPY_MODEL_9dde5575c8e7438fa2d86e4b9a4fb33f" + ], + "layout": "IPY_MODEL_18e8af9f9ff247c88797e03d48b675f9" + } + }, + "3a78f6a7e4814c23b19458c6f2857754": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3b5d54289850421e821f88fc5f0c0421": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3bcce8d28d894837824f52bae420976a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c7e904af22f42dca56b6421d35412ff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ca24d66c54b42868c814abb11d4214e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ce6f898ce604f258efab30dd9f65b79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac08a565f2d5447a95d2e6af307f3f09", + "placeholder": "​", + "style": "IPY_MODEL_4ed83abdd375497f9edb35c828d70be7", + "value": " 4.74k/4.74k [00:00<00:00, 212kB/s]" + } + }, + "3da1fd9a348f4c7bb07889c017cc0c2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0dfe3ae073634ba8a1747bc96b30e2bd", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9dcbe88c6ba446ea9584331776d2748a", + "value": 100 + } + }, + "3db9e9823c2d4f418cd6707058ff07ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e528e7f8cbf4ca597c63d1789a556a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4184d862482d4589806f8d09b5b85737", + "IPY_MODEL_c99fc92b5c87414faa6bafd1d91ce9c4", + "IPY_MODEL_098aae301ab04e688652dd0c05f8de1c" + ], + "layout": "IPY_MODEL_aff4e5ac7e384d408fc23ca0a8d3658f" + } + }, + "3e8e09b6655a4c8fb3995915a69c795f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3e9927167bb84cac9cf56f350bee5aae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f10740717d4479ba2acf18f7957fc44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3f2d02e521e848398853c526866d3585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3f76ca5381b64731af382a63b890292b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3995239fdf54fabb7fb42417dd2d1e2", + "placeholder": "​", + "style": "IPY_MODEL_32cb9bbc1e4547cfbe4df1e4ca70e254", + "value": "Upload 1 LFS files: 100%" + } + }, + "3fda98dab7574ba489090143ce8a0e82": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "404fed29990348b7ac2fba4a5b61aa89": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4058a3b2505f441f84f78fe4f7188aa8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10e6ba61808f471d82b431c607b65d99", + "placeholder": "​", + "style": "IPY_MODEL_5c9eb0211674488bbe8ec74c68a6e9a3", + "value": " 100/100 [01:21<00:00, 1.23it/s]" + } + }, + "414f4fac280c49db98080b31e3facc69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ba402e291fd94f8ab8f1a74c5c1ac551", + "placeholder": "​", + "style": "IPY_MODEL_fe92ba127a624524bfe051a6040b4c45", + "value": "Downloading data: 100%" + } + }, + "4184d862482d4589806f8d09b5b85737": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c0cf700f7872458385250ba075a8edb1", + "placeholder": "​", + "style": "IPY_MODEL_2e6a63d04fd747a280f813b1335a52b1", + "value": "Validation DataLoader 0: 100%" + } + }, + "422523d56ec74035b0a55b9c97d1ed19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "439674cf49124161b3783a681b407ed2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43d49626f9284b23b3bca84aaf9f4616": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44a17877ab654e0481b0fe827a991e5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5628c489cf31430c8b7efe8118c64815", + "placeholder": "​", + "style": "IPY_MODEL_b04b0c322c624afa8bb5a128b2af08b6", + "value": "Validation DataLoader 0: 100%" + } + }, + "44b4f06f3c0841d2ac960337d18de7a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "45684f2d86954453b3f7059f847028c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc2651a0102d49c7b6a9ac6e82db8c9a", + "placeholder": "​", + "style": "IPY_MODEL_3a78f6a7e4814c23b19458c6f2857754", + "value": " 3/3 [00:00<00:00, 76.29it/s]" + } + }, + "45b9943cd00546afad178c901cd94ade": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "45c29055f8a74361b562fb2baaa3b71f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45ce4745da5840a090620d59ce4eb1e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_337672b1b8894951810dc1c645f66dbd", + "placeholder": "​", + "style": "IPY_MODEL_2b1ecdea6e49453588fdca19fc19eaaf", + "value": " 234M/234M [00:03<00:00, 72.9MB/s]" + } + }, + "45df3e9080c7437680d57cb5936dc1de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4619abf6125240f7862c7583a6f68af1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "4664a4a1ab034098a12b6ad238c0391b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8c2d38923c948cf8f2cf8c49ffb2c8d", + "max": 4011031, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_37c969be0a7946c6a7d45940fcde5cf9", + "value": 4011031 + } + }, + "484fac29339449d58309c92dbbbd2af2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "487685e439f647efbc2350f87ae5d275": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "488139fa453f40e6895a0bac7d5cf840": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a2f2fa2885347aebb436467a49b8857": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a86c267cbe34ba3bbe0ec2e0035bbbb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a987dc4a0e54e5da442be8d6a1c7f09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_279ce49322904b87b2ec18b4f497465c", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_15799ffca3624428926e2ddb16728b68", + "value": 100 + } + }, + "4c06e9c680b6471c8305042a7e3757e3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4cacd92cb1f04dcea344f93e816d6244": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d6704d874404c9996e32b16b7773169": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4db3cc54264240ccac6402b67dfa1049": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ebee50caff240aea9377fa4a2d0d7cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ec3f7acd47c476fbf7e030426c51a7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4ed83abdd375497f9edb35c828d70be7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4f2be832c1f04902af8bfc4f5d971057": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4fefc71218894bd4a6b2e95ff3a882e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5053663ab6874c378d764dc8584b6aca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_932854c5974142b3b906ac1db17725fc", + "placeholder": "​", + "style": "IPY_MODEL_baad5e47bfc940229c7c19cb8372b59c", + "value": "Validation DataLoader 0: 100%" + } + }, + "507d4fec2b8847d79a884853b4d81dad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "50ce7fc092624343a610286377ecd39a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_840a81ea307a4633bfd9846f89121257", + "placeholder": "​", + "style": "IPY_MODEL_7a2a38deff05410b92c7f0aca5e2f906", + "value": "Downloading (…)cial_tokens_map.json: 100%" + } + }, + "5253bf28cfe948fd8520b5aefd5cdeff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52cbbbf6bc6643e9b43d844586ab453e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "538e66a6277b478db47627b3f38b7da0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53f439b9ac714080972b77d4ce2e15ed", + "placeholder": "​", + "style": "IPY_MODEL_8d98ed226dd1489e83099782d51d7b55", + "value": "Downloading: 100%" + } + }, + "53f439b9ac714080972b77d4ce2e15ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "542c34c7d55c400a8f623232403fe250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56959726851f49a9b05b1b92cfdd6e74", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f10740717d4479ba2acf18f7957fc44", + "value": 1 + } + }, + "543c3f05eb0547298950b7e7d8c64467": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "548572561a0045b485ef9dde63326446": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e30df53a96fc474da072e8692a0d1d58", + "max": 27, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c3fc7e7b9354d0fb59602100bc5ab1f", + "value": 27 + } + }, + "54e45826ac5f44d3b315e59391fbc347": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5517cbf80d8b448d9a511070dfb4dc1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1a457a54c55f4aab95a9c3cfaa2a23b5", + "placeholder": "​", + "style": "IPY_MODEL_fe52a9c056f843068d5588e488f490db", + "value": " 3/3 [00:00<00:00, 147.78it/s]" + } + }, + "5536aeeebaad4d158a11a706940a0220": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "VBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3427bc46e6f84ac5a403b42afcde9b08", + "IPY_MODEL_b294221a318349228f631ca89407740b" + ], + "layout": "IPY_MODEL_45df3e9080c7437680d57cb5936dc1de" + } + }, + "554913277fc34084990cd041ca766701": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55e69f30eb7f44dfb9fa64f938cd41dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_404fed29990348b7ac2fba4a5b61aa89", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b045fecb5c24541b6611ba71237f6f7", + "value": 100 + } + }, + "561abfbe2ed9405d8bc9c67f3a4c4c8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_259d56ea4f394fe591b26941164dcae9", + "placeholder": "​", + "style": "IPY_MODEL_31d2bbdfa41b451eb71eba642b3db4e4", + "value": " 441M/441M [00:06<00:00, 49.4MB/s]" + } + }, + "5628c489cf31430c8b7efe8118c64815": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "565a3479b2f140c4bdba43ba99d71c2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa5080966e724cf2901654c57dbe8abd", + "IPY_MODEL_6394dfa7856b4bf49a9325f22dfe1cc1", + "IPY_MODEL_baa432ed76ae437e8946ebe41301453c" + ], + "layout": "IPY_MODEL_6ce260c95cfa4736a22d77f5faba3888" + } + }, + "56628597cea5425684265b293010eefe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56959726851f49a9b05b1b92cfdd6e74": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "56c8c883282e4f74ae1c353455136380": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ec271f8377a43878a090aaecdde01e6", + "placeholder": "​", + "style": "IPY_MODEL_8473ba1cc0d44bba85462cdbf12e9514", + "value": "Downloading: 100%" + } + }, + "56fea1b142db47fbab0b118185587e76": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "582d8cd7787443f59398e2f79c328b51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_554913277fc34084990cd041ca766701", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8f2e16d8a9f4091a2d6438892c731b4", + "value": 57 + } + }, + "583a3d03b1f344d6b7424589c4db1634": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "58a4b18d859e4c47bc97f2e6ce8c6c73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7fb70b9171c4958bc5f5c37e51f8cd6", + "placeholder": "​", + "style": "IPY_MODEL_31d5cb042096428fa4e8a0cd682ddc09", + "value": "pytorch_model.bin: 100%" + } + }, + "5915cae6f7ba4d5caa52ff5c8f854b38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_487685e439f647efbc2350f87ae5d275", + "placeholder": "​", + "style": "IPY_MODEL_ca6fcf9c01fe4f2db382b6b0f8cb169d", + "value": " 456M/456M [00:27<00:00, 17.4MB/s]" + } + }, + "5947ad0e06a54e38b8d09d160bffb0d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebeb73a097574a8597d3592329674e44", + "placeholder": "​", + "style": "IPY_MODEL_81255865450c47ea8a9de6b7996514a3", + "value": "Downloading data files: 100%" + } + }, + "59585c4440a64e1fb76601df8aee255d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5af452039cad49ee92c938aaffa25765": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e9927167bb84cac9cf56f350bee5aae", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ff830930e9e04bdaa73f57e4eafe1979", + "value": 1 + } + }, + "5b515a9e88074259b1067880ad7aa637": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b72a50beccd472399740c67d5b8a775": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5be79748747e48dc9557e635185b09b7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c6c3811d9e04247abd52e0f835b6a5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c9eb0211674488bbe8ec74c68a6e9a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5cc9c7f2db1846b6905452d7a9568919": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_507d4fec2b8847d79a884853b4d81dad", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ef6284ce29684d8b9b16875076cd579f", + "value": 3 + } + }, + "5cf9cf4d06af477aaadf2c2eafb21a0f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d99e7c78ae54a2fa6824cfe36498ab4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6eec510e0a3844dfb7c7bcb3a6b9d910", + "IPY_MODEL_dcbf40b9f3d04a29abb5b82cc4f4f43a", + "IPY_MODEL_03a5186fafe7424c896a5c8f4b356098" + ], + "layout": "IPY_MODEL_0c9bb2443ecf460a876558b547c3b97f" + } + }, + "5e592f3705ce411dbfccc726d2348933": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_749592c5ae004de4a5f31bab3c2d31f3", + "IPY_MODEL_548572561a0045b485ef9dde63326446", + "IPY_MODEL_674e652801844a33ba01395ebdb40263" + ], + "layout": "IPY_MODEL_d06409a05ec640f9a6a87a8925dd23c1" + } + }, + "5ec271f8377a43878a090aaecdde01e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f177c38708d4492909da4b8ae0a4120": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5f3800af43c84d3596987e49afd4961d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aaa6238192004463834b5ee1b3464cff", + "placeholder": "​", + "style": "IPY_MODEL_299e59499eda4a1db01880e4fb1d5cd2", + "value": " 100/100 [01:25<00:00, 1.18it/s]" + } + }, + "5f71880b66d1458e923cc893a88f91bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6016947c02af4021851e950c72479029": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "61223d9e086a42ab94927964a4455894": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "617aea856f93495d9f56dfc83a33d4bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "618716c2a7dc4557873d08a9ea2b0b22": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "61c95b7243604620a9151ce8b6fcc910": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d68dcd34129d4922b23a3bc96739814f", + "max": 518, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e682e41d92343b792991eaa2b72d7de", + "value": 518 + } + }, + "62bad7effcf24059b293404071b83263": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9b6856e1b63c46b78a50bee3336577e7", + "placeholder": "​", + "style": "IPY_MODEL_9cc8e3acf3d74f9796353f621fb6dfbf", + "value": " 100/100 [01:21<00:00, 1.22it/s]" + } + }, + "632cbce9ea2f4cc5a87028463a877a5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6340e0aa27c04db0b48448513e9875c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "6394dfa7856b4bf49a9325f22dfe1cc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95594c0d3f7d4aafb3f61b21b823b32f", + "max": 490224630, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_effb0f0cff3c4cc6a8321d0c411a86f6", + "value": 490224630 + } + }, + "6412ab45ef6c45fd88462f76731675f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "646592d608724342ad765c7e7457740d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2472d601c42041e6acb51d19de547a0a", + "placeholder": "​", + "style": "IPY_MODEL_59585c4440a64e1fb76601df8aee255d", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "648f377c77da4818b1817ab95677d5bc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64f05915a7b040f9a73dfba9e02d249d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "65277dbddbb34381b788a0ee526a0245": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "100%" + } + }, + "663d883b5cbf4a6998db3319c55ee3d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "67446ba01e9c4922b041e4ef36ff8774": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33a65dc99580418cb494e29ae5a0fb9a", + "placeholder": "​", + "style": "IPY_MODEL_c419e4cb99994a5bb0cbccca9c0bc5c6", + "value": " 444M/444M [00:06<00:00, 69.3MB/s]" + } + }, + "674e652801844a33ba01395ebdb40263": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_835bd092bfb64a47b104d20092d61a14", + "placeholder": "​", + "style": "IPY_MODEL_91d8224cea5940bb9858f43b42869729", + "value": " 27.0/27.0 [00:00<00:00, 1.73kB/s]" + } + }, + "674feecda5844fc8b669e8153a982b3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9ed0a46f8705464f81f2c8e1a4b8cc89", + "IPY_MODEL_0f6e284513e94a3f8681d4b4e39fcb54", + "IPY_MODEL_7208cb24790c447aae18746d11b7cc7e" + ], + "layout": "IPY_MODEL_c1fe650a41b14253b0c398f09293310c" + } + }, + "67b22ef1c41541dd99fc2b8d445513d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_484fac29339449d58309c92dbbbd2af2", + "placeholder": "​", + "style": "IPY_MODEL_d216a5de8270482b90d297cf31a09d35", + "value": " 1/1 [01:03<00:00, 63.09s/it]" + } + }, + "690c1c1fdb98452ea766955c7a4966be": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "699755e8ae9840f0a87246bd89608f67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e6e26bf5f3e4322b0f9ff4352976adb", + "IPY_MODEL_b38da01ce29b4009bf824a779d4cafe7", + "IPY_MODEL_5f3800af43c84d3596987e49afd4961d" + ], + "layout": "IPY_MODEL_d34ff744caf646e88cb0606d7a6de704" + } + }, + "69f55ea05abe4ca9b21135169edc7a71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6a3d2f0a94ea4f72bc81400880f8c430": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a63b2bbe3f34bc6b9a4258a04ca9104": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f546de07edf4386ae8ef9394eb6c692", + "max": 809404185, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3350308cf34f4c02bd89f6e2a345ed12", + "value": 809404185 + } + }, + "6a6be6466e6a4814870c38d55279e1c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6c9cca8ae41441b29f2dd7ac81cd35d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ce260c95cfa4736a22d77f5faba3888": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d146fd4003e47978a253192463dd514": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9525813936a14ac49a7ca525a411c2f9", + "placeholder": "​", + "style": "IPY_MODEL_6a6be6466e6a4814870c38d55279e1c1", + "value": "Downloading (…)"pytorch_model.bin";: 100%" + } + }, + "6d34020216d74b588708e9c9f33f800b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d6241a0e8544b03bd406739bd2e3914": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6d669ab16e374f0faa089a183bd52532": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6dd394d212694b969b540123f515957a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6eec510e0a3844dfb7c7bcb3a6b9d910": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e797e849c5e0443e84af5c12061589d4", + "placeholder": "​", + "style": "IPY_MODEL_422523d56ec74035b0a55b9c97d1ed19", + "value": "Downloading: 100%" + } + }, + "6fcd1c300caa489dadeaa50c6c814a14": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fe01f5548f947d2aebc95273a592581": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20eb3303eb2b429891247566f52218c0", + "placeholder": "​", + "style": "IPY_MODEL_25721e39542d43029d26ac34b4af6d89", + "value": "Upload 1 LFS files: 100%" + } + }, + "6ff5e86e93914a9ab2ac20d2a32a206e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_330b85404fe84761a72a8cbfb696eae1", + "max": 242080800, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8030efae633f4b018e7863f46267e575", + "value": 242080800 + } + }, + "7171afc8b8dd4e64966065b7f39f2dd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6fe01f5548f947d2aebc95273a592581", + "IPY_MODEL_c2f3547e877a4f2dac7a1130e6f9acab", + "IPY_MODEL_67b22ef1c41541dd99fc2b8d445513d2" + ], + "layout": "IPY_MODEL_9bbc7693c651492f843088817a65497f" + } + }, + "7208cb24790c447aae18746d11b7cc7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0755ff4ddf1c453f8f6ca501001fc486", + "placeholder": "​", + "style": "IPY_MODEL_43d49626f9284b23b3bca84aaf9f4616", + "value": " 100/100 [02:47<00:00, 1.43s/it]" + } + }, + "72254d54d49a4054b49882200eecc49b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "722dd7a1bb984a22ad1b4da14741d7fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72e608fe672b40c99de89ad5ce1e33c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_144c2d74865e41c19a4a6efb4b120ca9", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8dba2b5fdc94b5598e6ab9f75671cbb", + "value": 100 + } + }, + "73094daa6d4c4bbf93bd29b8c0253e09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "731ee8128e584ddcbe117dd03612467d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7372f1fa693345ad8f26f0148b2f527b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "74478f6d2baf47999e56952b01ba938f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe0bc6d3aa0b4d88a63aa611af3bf65d", + "placeholder": "​", + "style": "IPY_MODEL_73094daa6d4c4bbf93bd29b8c0253e09", + "value": "Epoch 3: 37%" + } + }, + "745bf50f671a44bc9abddcc6efb736ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2aa84a0d65254ef49ee100f66e393ae9", + "placeholder": "​", + "style": "IPY_MODEL_87a1b92e248549a5b9b9833d52e85c76", + "value": "Validation DataLoader 0: 100%" + } + }, + "749592c5ae004de4a5f31bab3c2d31f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe66b6883afa471eb687430534bd0820", + "placeholder": "​", + "style": "IPY_MODEL_2b8a201c62c241a89625630f550f6c02", + "value": "Downloading readme: 100%" + } + }, + "74cbba5d476540188be2501bf934b5cd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75469c205b314779aef9d1e7ff2fd612": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75a3f953de714650a03ad3b2319f8a82": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75e8cbe174904f91b3a9ee3f4572625b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "76839f93896d43dabcb10f14b031c037": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "791025ac27604718a24542401ab225e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7939062da2ee4ebabadb0a5f06ee3276": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7982ba1cd95e4347ad3fca29f38d0638": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3c7e904af22f42dca56b6421d35412ff", + "placeholder": "​", + "style": "IPY_MODEL_efb2989e68d844bb875fbdbd5c79d780", + "value": "Generating validation split: 100%" + } + }, + "79c3843d7f6045799cfc76b2bc4f0837": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81ae284f0d064843be6279936fba8a13", + "placeholder": "​", + "style": "IPY_MODEL_1e25f97059cf482587bc1dcb055d4f7c", + "value": "Validation DataLoader 0: 100%" + } + }, + "7a20309eef57435f9f35082d5285f444": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d34020216d74b588708e9c9f33f800b", + "placeholder": "​", + "style": "IPY_MODEL_b0ee851984d9431597446f79d656d64a", + "value": " 1.52k/1.52k [00:00<00:00, 22.3kB/s]" + } + }, + "7a2a38deff05410b92c7f0aca5e2f906": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b2f94dc358c4e5cb6662463e771bb2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b6f963d98df4d36b01e21a89fafd957": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d99b26699f0438ea804db1871d2a172", + "placeholder": "​", + "style": "IPY_MODEL_791025ac27604718a24542401ab225e2", + "value": "Downloading: 100%" + } + }, + "7b93f73af3274920ab2b51418e95cff6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7bd828ddfe814d05a62736a9d91a8272": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3ff6bc3da3b4754af245dcbacd0914c", + "max": 71, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_87407d9ae1f54c3c8383e2934aef15b4", + "value": 71 + } + }, + "7c8f64cb9eda44eca40a6ef5a203afc0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d207f93b4a24696abf379bcc01723dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d77a9f92e984ac7b9350addc57cb577": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d99b26699f0438ea804db1871d2a172": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ddc094c928a4b87a7d5895dc558b15b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7de626274586484c966e3fcd322559af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_202cb4369e4845a6a60408400f88b0ed", + "max": 4021706, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_92c719b392564d339ff73ccc83c966d0", + "value": 4021706 + } + }, + "7df7c889e4794145ba5b20177df36189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f387bdb0ba094db2892ed92e786886f6", + "placeholder": "​", + "style": "IPY_MODEL_1510960e07b742c4b1d838b2d533439b", + "value": "Downloading: 100%" + } + }, + "7ec029d2493f40649921347adbb03ae7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8030efae633f4b018e7863f46267e575": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "80cc4498465e4fecba040320c9bf1af6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25296141a79c4477aac6635dd30a80e5", + "placeholder": "​", + "style": "IPY_MODEL_2ee2d4a8635f45dba573b749244f9e2a", + "value": "Validation DataLoader 0: 100%" + } + }, + "81255865450c47ea8a9de6b7996514a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "81ae284f0d064843be6279936fba8a13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8206f8f3de1a4907ae54d474d422633f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3880476d3f0e4962be29180763486deb", + "IPY_MODEL_ce88d1d6c0494245b812ae65ea2654ad", + "IPY_MODEL_18f20450f84d48d7839bb3c676cb53d4" + ], + "layout": "IPY_MODEL_4619abf6125240f7862c7583a6f68af1" + } + }, + "821ebf47157741ae9045004304e1d66d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ce302531a69423aa36a39e0502f7970", + "placeholder": "​", + "style": "IPY_MODEL_d80a188b254f4bd1be7b3c18442547ea", + "value": " 57/100 [00:46<00:34, 1.24it/s]" + } + }, + "8249f31d416e4ed388233cd633c212a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_18db9e56c0354600851d762c8de0f774", + "placeholder": "​", + "style": "IPY_MODEL_a524d30afbdc4574be77a664888d32e6", + "value": " 100/100 [01:05<00:00, 1.53it/s]" + } + }, + "8299c1ef69414603a1604699c777e1f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "82e30cf225894092a6be203ae026b742": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e8a6bd2ef104b32868443ac711c88b6", + "placeholder": "​", + "style": "IPY_MODEL_0e590d1bb05d4bfaa6c0c41cb41e4794", + "value": "Validation DataLoader 0: 100%" + } + }, + "82f65ddff78c4c528169704a78d6d9f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4f2be832c1f04902af8bfc4f5d971057", + "placeholder": "​", + "style": "IPY_MODEL_dda5061d7d3d4a2cb166bb9473dc3fbb", + "value": "Downloading (…)in/added_tokens.json: 100%" + } + }, + "835bd092bfb64a47b104d20092d61a14": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "840a81ea307a4633bfd9846f89121257": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8473ba1cc0d44bba85462cdbf12e9514": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "848f3079a55c475f91f8efd0f02d72e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1b07db1c1be94ffe98ca2e23ca97e187", + "IPY_MODEL_9f4c3f2e2b17443b9f104bf7e1bc80ea", + "IPY_MODEL_67446ba01e9c4922b041e4ef36ff8774" + ], + "layout": "IPY_MODEL_5253bf28cfe948fd8520b5aefd5cdeff" + } + }, + "84a6704158ab4806a23226678b1be9a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b6f963d98df4d36b01e21a89fafd957", + "IPY_MODEL_19026bb7f79446bc970e1210cccf206f", + "IPY_MODEL_e45b9b8af30042d0a0f91ef4ec1aad76" + ], + "layout": "IPY_MODEL_3735eff345c9459a986b52ac7c469a33" + } + }, + "8544e6360d83437cb03e028051e96be4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "86a4453fe0d7495aafe95e8f68f7a44c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "86b758931e9b4f6c81b2b5d61bb0ed86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3475f0d8415b4f3ba6b5ad701c365e61", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bb1ee26e35f04a429d3df1f7273b4603", + "value": 100 + } + }, + "873c26ebd5a0403885933700f87ae39f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ca24d66c54b42868c814abb11d4214e", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0fe66bd8c6314fdb86ea236d9638f538", + "value": 100 + } + }, + "87407d9ae1f54c3c8383e2934aef15b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "87a1b92e248549a5b9b9833d52e85c76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8a3af3818f69463f845e95c933ac00cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b968d28f243543b29cf0733e2d9fc516", + "IPY_MODEL_e0f0d44a4e834e9291b2c021fcb1dad9", + "IPY_MODEL_e0732c157cbf446f80cd1b4d52f7f6b8" + ], + "layout": "IPY_MODEL_259d3cba0a5b4943b4b025f921edf06b" + } + }, + "8ad84d92e3f2470084c072e64a46cfb3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8b00742b502d493094ad605fc90b5b09": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8b4f59bf71c64c2293a9e089b963b914": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c3fc7e7b9354d0fb59602100bc5ab1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cef8071dc984acc8a003134e8d64a11": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8d98ed226dd1489e83099782d51d7b55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8eda879a6d224fb091f538c2806d7890": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8eef683c23a14e9ca9cc8e260a8d25aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f12f7c6ea604de7ab155971ffea8275": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f29c28a5f154fcfb6cb2f382eb1e1b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "100%" + } + }, + "8f6e8799b4e1454ea04bb9c94b70fdb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a999d2c30b9644a7967b7109c3aae629", + "placeholder": "​", + "style": "IPY_MODEL_08c07275cbbe4fd0822c354d99c303ea", + "value": " 100/100 [01:20<00:00, 1.24it/s]" + } + }, + "90761ecf88ad4a1c8dc190928b48fdba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f51518a3bf3b4a7582dbe26fca21ca6e", + "IPY_MODEL_09c44c23e97c4293bc1d30f234634c42", + "IPY_MODEL_561abfbe2ed9405d8bc9c67f3a4c4c8a" + ], + "layout": "IPY_MODEL_c44ea4249c324b7cbbb69798e034cb85" + } + }, + "90d6691af3fd49899b196ff7337d71b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "91d8224cea5940bb9858f43b42869729": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91f16cb20b2d4590ab22a4b964290569": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82e30cf225894092a6be203ae026b742", + "IPY_MODEL_4a987dc4a0e54e5da442be8d6a1c7f09", + "IPY_MODEL_cd21d646227b4d478abb70ba04588215" + ], + "layout": "IPY_MODEL_01b01e7329334686ba39c11ec18e9df5" + } + }, + "92c719b392564d339ff73ccc83c966d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "92f74f940eb74ceb89139e25dc1fe869": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_caf81cab2e1c45c38007dc88bc9a9e0e", + "placeholder": "​", + "style": "IPY_MODEL_b30a4626320c4e78b3a033cf257946fe", + "value": "Validation DataLoader 0: 100%" + } + }, + "932854c5974142b3b906ac1db17725fc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "938da511fca04f77af54fe3b34287e6c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9460488365d343e887fb88aafc4c434b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4cacd92cb1f04dcea344f93e816d6244", + "placeholder": "​", + "style": "IPY_MODEL_fd4d064de57d469c977318add3069303", + "value": " 362/362 [00:00<00:00, 8.92kB/s]" + } + }, + "9479170c55a34e5a9ccce3115f01b68e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9525813936a14ac49a7ca525a411c2f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95594c0d3f7d4aafb3f61b21b823b32f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95ec17f083be45d1a48d643e62f4dbf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "96b45a24defe461998123ec31aba1d97": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "971fb37793b04b02916266e0606a8cd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e5391e58b654a54af53ca6b156d4027", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a772a8f8485b4cbc954363c5d25a1355", + "value": 0 + } + }, + "97e80dbb785548e0ad4b7724e91a27f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9812cfa5ccd14b7aa756a383c793c2c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7ec029d2493f40649921347adbb03ae7", + "placeholder": "​", + "style": "IPY_MODEL_c922e749c8464d2f9080b3bd2333d04f", + "value": " 809M/809M [01:03<00:00, 14.0MB/s]" + } + }, + "986ff3190ef14c5c907d83383571f267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f59a9d0b14c348d6b9c221744c256afc", + "placeholder": "​", + "style": "IPY_MODEL_4fefc71218894bd4a6b2e95ff3a882e5", + "value": " 242M/242M [00:03<00:00, 65.5MB/s]" + } + }, + "98c6ca051cde41cf806b1b8bd9caf6c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "99bcc899c1d54ea6b6a95fdda3d4e54f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cbf0235e60724033a400c2cb38b3971a", + "max": 1048, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_90d6691af3fd49899b196ff7337d71b3", + "value": 1048 + } + }, + "9a45e993bffc469a8a156cba70774d25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82f65ddff78c4c528169704a78d6d9f5", + "IPY_MODEL_7bd828ddfe814d05a62736a9d91a8272", + "IPY_MODEL_9da3a58c74e64d4d8e39921e472fb6ea" + ], + "layout": "IPY_MODEL_c253f1450fdc49939ad663b6f98b6929" + } + }, + "9a7cb4d7e9514575a93e2f86fc32fb4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9aaff87ef6bf4f71b67dc13553aa73b2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ab3a07b87854294b687ab1bd1ce2fe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_45c29055f8a74361b562fb2baaa3b71f", + "placeholder": "​", + "style": "IPY_MODEL_731ee8128e584ddcbe117dd03612467d", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "9b045fecb5c24541b6611ba71237f6f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9b0fe2691d7041fe8841d87beed2bf7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f0d43f6407674c12b85a6292284b4ba4", + "IPY_MODEL_99bcc899c1d54ea6b6a95fdda3d4e54f", + "IPY_MODEL_9c138abac1894ebebb334b8044ee6ca9" + ], + "layout": "IPY_MODEL_26bb592b09c94ba081cd1f913c318f73" + } + }, + "9b6856e1b63c46b78a50bee3336577e7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bbc7693c651492f843088817a65497f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bce140411404cad931ec4022a76989e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_50ce7fc092624343a610286377ecd39a", + "IPY_MODEL_b28110567ad04fdeafea8f405f71e7ef", + "IPY_MODEL_f578278adfb146e8bdf89810a39d43cb" + ], + "layout": "IPY_MODEL_fbed03f8b8ad47638a418b9f423e4c26" + } + }, + "9c081ba4b4b7409caef98b8c7754c9b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c138abac1894ebebb334b8044ee6ca9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9aaff87ef6bf4f71b67dc13553aa73b2", + "placeholder": "​", + "style": "IPY_MODEL_4ebee50caff240aea9377fa4a2d0d7cf", + "value": " 1.05k/1.05k [00:00<00:00, 41.0kB/s]" + } + }, + "9cc8e3acf3d74f9796353f621fb6dfbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d0bb9e6cae5452a8f7909340d0ab21c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "9da3a58c74e64d4d8e39921e472fb6ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_617aea856f93495d9f56dfc83a33d4bb", + "placeholder": "​", + "style": "IPY_MODEL_23e4cf09102a4753844ceed08a211d53", + "value": " 71.0/71.0 [00:00<00:00, 4.02kB/s]" + } + }, + "9db7c2d529ea46d48e22271d8432f137": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9dcbe88c6ba446ea9584331776d2748a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9dde5575c8e7438fa2d86e4b9a4fb33f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_16ea181fc8694d29b499b46678fbdaf3", + "placeholder": "​", + "style": "IPY_MODEL_e6b5096cac864d27ad88010c2180db29", + "value": " 809M/809M [01:03<00:00, 14.1MB/s]" + } + }, + "9e5391e58b654a54af53ca6b156d4027": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "9e5bbac1661d4385b06a3caa40cfce63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a867c537beb34cdf905e80246d31dd97", + "placeholder": "​", + "style": "IPY_MODEL_ab41966250404933aea9736461583520", + "value": " 100/100 [00:00<00:00, 124.87 examples/s]" + } + }, + "9ea85c5be7104fdbb67f52414ba1a1bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "9ed0a46f8705464f81f2c8e1a4b8cc89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a105133b82344a97b79250d8cde50f74", + "placeholder": "​", + "style": "IPY_MODEL_c474aabdf84b459aae6c9c0de4526b47", + "value": "100%" + } + }, + "9ef9d3b7c4e141c99299d21e270347af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f4c3f2e2b17443b9f104bf7e1bc80ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d75985c018114da8943c9bad0c61869b", + "max": 443802181, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc88c486f35747cd8a3e0eeaf67ebfb6", + "value": 443802181 + } + }, + "9f546de07edf4386ae8ef9394eb6c692": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a071ed8d726f45b4a07251b60793dc6a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a105133b82344a97b79250d8cde50f74": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a27fc920f8c94953a0c3e9b2120f1b86": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a35f8906c1ae46828120319694065815": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c1855ade6204625bfaab54ca2159af5", + "placeholder": "​", + "style": "IPY_MODEL_210766df14774c1e89d0df73f294daa6", + "value": " 100/100 [01:21<00:00, 1.22it/s]" + } + }, + "a4dc6daaa87e4a4689ffc623b0a3b259": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_97e80dbb785548e0ad4b7724e91a27f7", + "placeholder": "​", + "style": "IPY_MODEL_20e0bf2b09d841d6bc9e1f36ec4079bc", + "value": "pytorch_model.bin: 100%" + } + }, + "a4ddea7815394732a0125128fcd9e1f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2a0bcc5ca8e42439ef2e153193714be", + "placeholder": "​", + "style": "IPY_MODEL_dd4114a8f79b4725951e78ab4f31d19b", + "value": "Validation DataLoader 0: 100%" + } + }, + "a4eacb994f2147d29d2d68e9b3c456aa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a524d30afbdc4574be77a664888d32e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a535138c7cfc454e8a096f31b4625331": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_745bf50f671a44bc9abddcc6efb736ee", + "IPY_MODEL_07b75ae72a6a4d16a3ff73a1debe2ee5", + "IPY_MODEL_082d0b472b90409f8ab9b02391df63a4" + ], + "layout": "IPY_MODEL_1c2bd9e72e334917b3ce39810bf5ea0b" + } + }, + "a772a8f8485b4cbc954363c5d25a1355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a7f7c95743214d17a1cd103c2add1b3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a7fb70b9171c4958bc5f5c37e51f8cd6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a867c537beb34cdf905e80246d31dd97": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a999d2c30b9644a7967b7109c3aae629": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9ed7db85a364e6384f84f216080d24a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aaa6238192004463834b5ee1b3464cff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aad2e43eeafa4cccb5e476d3fce4dacb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ab1569f009a54b018f8e1d90a51172ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d2d0f66f84874e679594bc856182c6c2", + "IPY_MODEL_e5562397a34348be901b498203690a42", + "IPY_MODEL_cfdf85f797074bc8af900f5623b63e67" + ], + "layout": "IPY_MODEL_ee26b20d24b94233b242a490bbb528bd" + } + }, + "ab1c3ba6663a40c383a57333f5b13ddb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3612afa317c5414bbffdbc1f241eb133", + "placeholder": "​", + "style": "IPY_MODEL_ca6747f101dc44fa8d3b85f668fff5ed", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "ab41966250404933aea9736461583520": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab6b00b5c38d40e4878e5de67bba6b95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_262f11dfba44467c882893cec6523189", + "placeholder": "​", + "style": "IPY_MODEL_3e8e09b6655a4c8fb3995915a69c795f", + "value": " 362/362 [00:00<00:00, 16.7kB/s]" + } + }, + "abd398c4b93343a49f7882d3b141ccf4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7c8f64cb9eda44eca40a6ef5a203afc0", + "placeholder": "​", + "style": "IPY_MODEL_10aad821076a43b88b833f52d41df0ef", + "value": " 809M/809M [00:19<00:00, 43.4MB/s]" + } + }, + "ac08a565f2d5447a95d2e6af307f3f09": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac96d471b96049c4aace63a7d88ec166": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "acb18d163a98436abc6a34c80d0b9875": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "acfeebabb13647ddbbe4372e192b235a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad251dd399bf4671978561773be7da7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1d3f96ad71b74c31b18b50d0dafefb6e", + "IPY_MODEL_6ff5e86e93914a9ab2ac20d2a32a206e", + "IPY_MODEL_986ff3190ef14c5c907d83383571f267" + ], + "layout": "IPY_MODEL_4c06e9c680b6471c8305042a7e3757e3" + } + }, + "ad391511f2ec4e3ebb69865afee7ae6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9479170c55a34e5a9ccce3115f01b68e", + "max": 1296245, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0fedf481a76a4d319ddc6afe51345a36", + "value": 1296245 + } + }, + "ae1f8706e72943989d91f9a44a40eeeb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae8b189059e94a7ab73fb256432c18df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0098775e311344f681335445edadd72f", + "max": 455555434, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_632cbce9ea2f4cc5a87028463a877a5c", + "value": 455555434 + } + }, + "aeccbc9b9c3e4038874656c34f12d9f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aef15ac1c7214177b7a890917b2a350d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aff4e5ac7e384d408fc23ca0a8d3658f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "b0095f1cb2364fc991f05f312656947f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b02d03f2ac8d47559d03eb83a01d467e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b04b0c322c624afa8bb5a128b2af08b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b0ab92d005974b959f7cb0f2cb9b11d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b0ee851984d9431597446f79d656d64a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b12a725c43db4fa4ad13d82c75738994": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74cbba5d476540188be2501bf934b5cd", + "placeholder": "​", + "style": "IPY_MODEL_c08394b19b98474798fc290bc540ddd5", + "value": "Validation DataLoader 0: 100%" + } + }, + "b132e3a6f07e452382eadbedff054b94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bd0e4a5ac7b5440a8b403a36fdaae181", + "placeholder": "​", + "style": "IPY_MODEL_fd3d2e91c7a64c2782727d2c29020fbc", + "value": "Generating train split: 100%" + } + }, + "b28110567ad04fdeafea8f405f71e7ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_690c1c1fdb98452ea766955c7a4966be", + "max": 355, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c08e405d7915496089723b6d5e78d163", + "value": 355 + } + }, + "b294221a318349228f631ca89407740b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ae1f8706e72943989d91f9a44a40eeeb", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc7bb44709434398a99c395a01d2b3b6", + "value": 1 + } + }, + "b2f81adfc7624d0ebec30a6f49d3b0d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b30a4626320c4e78b3a033cf257946fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b38da01ce29b4009bf824a779d4cafe7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bb888b3abe26402897177229c0a6ab01", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_009ae1d114cb48d0990e934e19ee961f", + "value": 100 + } + }, + "b3a98298b4ea434da0d8815ba0f2c4a4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3d5b8a11f8948d0bb7273e036841869": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "b49ab085f6e04c7398e90e09eda48c5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b4afe9af86d1487cbe0cb9f4956db2e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a27fc920f8c94953a0c3e9b2120f1b86", + "max": 809400699, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_722dd7a1bb984a22ad1b4da14741d7fd", + "value": 809400699 + } + }, + "b50f6068222b4b7d9c8a865bd41ce277": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca44a4c94aea499ea738f536eacf4b9b", + "IPY_MODEL_582d8cd7787443f59398e2f79c328b51", + "IPY_MODEL_821ebf47157741ae9045004304e1d66d" + ], + "layout": "IPY_MODEL_8f29c28a5f154fcfb6cb2f382eb1e1b1" + } + }, + "b6168e1cb7354844a2ac17dee7a31168": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d22010093bc54928b96389c8cc48d409", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_148b60b8a9a44244874d2db13de48a00", + "value": 100 + } + }, + "b64f8b95e23c4baf87fcec7fb16aedfa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b71da8215fd74394aeef7b2835ebdce2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b760aaf9ca3047378404f446549355ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b968d28f243543b29cf0733e2d9fc516": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d6704d874404c9996e32b16b7773169", + "placeholder": "​", + "style": "IPY_MODEL_0c44b50f550a42d5a89d35c0233fa0bb", + "value": "Validation DataLoader 0: 100%" + } + }, + "b9b02352a20e45ac8128f58b9387435d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07054014fd004b44993a392856f25f58", + "IPY_MODEL_b4afe9af86d1487cbe0cb9f4956db2e2", + "IPY_MODEL_abd398c4b93343a49f7882d3b141ccf4" + ], + "layout": "IPY_MODEL_3fda98dab7574ba489090143ce8a0e82" + } + }, + "ba402e291fd94f8ab8f1a74c5c1ac551": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ba77336ed8a64ce1b7b3a561844b53ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee9f3bdcf3814bbbac4e053b4c169704", + "placeholder": "​", + "style": "IPY_MODEL_cebe7c4bb7e447949431cf58deedef30", + "value": "Generating test split: 100%" + } + }, + "baa432ed76ae437e8946ebe41301453c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1df30bb3175541a7b7a6541b38d51b89", + "placeholder": "​", + "style": "IPY_MODEL_e563fc2ca1ef4b668604bea1c50674e2", + "value": " 490M/490M [00:07<00:00, 80.9MB/s]" + } + }, + "baad5e47bfc940229c7c19cb8372b59c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bb1ee26e35f04a429d3df1f7273b4603": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bb888b3abe26402897177229c0a6ab01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc7bb44709434398a99c395a01d2b3b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcaced45f306473887ab7c07df871481": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcb3bc46a920467d8441c8fe2c0081f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd0e4a5ac7b5440a8b403a36fdaae181": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be37899db94d4c15b8e194c03b057a45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bf2d692c9fd24236a6a760a293cb5a13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "bf3538bb8a33408088307bb3dba05a14": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bf9d9715e7684c4e8ac29cbcabf1c600": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfc5138baadf4385a0ed6b87107fabec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfc6976f3a4b4de3bd42aa1dc9ab73e5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "c08394b19b98474798fc290bc540ddd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c08e405d7915496089723b6d5e78d163": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c0c9ce38c68446ddad343c8abc4aa3a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0cf700f7872458385250ba075a8edb1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1f64aaadd484bb2900aaebadeb305d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1fe650a41b14253b0c398f09293310c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c21173370f63409b84b9f40abc202efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2781fb98daf147638db891d565d2f194", + "placeholder": "​", + "style": "IPY_MODEL_da910c9d7bc94d6fabe99bfcd626d9a2", + "value": "Downloading (…)rocessor_config.json: 100%" + } + }, + "c253f1450fdc49939ad663b6f98b6929": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2a0bcc5ca8e42439ef2e153193714be": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2f3547e877a4f2dac7a1130e6f9acab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aef15ac1c7214177b7a890917b2a350d", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_75e8cbe174904f91b3a9ee3f4572625b", + "value": 1 + } + }, + "c34474a8f453410f8f3dc39c835e3a2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c3735a62d26743cc88f0bb71712edaa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c3f54d242da14b689f6e213867b81cec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c419e4cb99994a5bb0cbccca9c0bc5c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c44ea4249c324b7cbbb69798e034cb85": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c46ec088b99646f091f934536af46d5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a459b1c958240d89f753fe695b457e0", + "max": 4742, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7939062da2ee4ebabadb0a5f06ee3276", + "value": 4742 + } + }, + "c474aabdf84b459aae6c9c0de4526b47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c5083eb93376434e9a53fc44d7d215b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_394b5ca6361e4d38ba6cca638de5cdcb", + "placeholder": "​", + "style": "IPY_MODEL_7b2f94dc358c4e5cb6662463e771bb2d", + "value": " 1.30M/1.30M [00:00<00:00, 24.7MB/s]" + } + }, + "c5810b986d064e93ac00ff911d3d09de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0d5904889d6246e4b0bd8223d9ce79ab", + "IPY_MODEL_09e57cfef8d04198b07337e6adfd3cfd", + "IPY_MODEL_9460488365d343e887fb88aafc4c434b" + ], + "layout": "IPY_MODEL_8ad84d92e3f2470084c072e64a46cfb3" + } + }, + "c5d372a9962c49ada49b96a66c5ecd7e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "c5f481bd341a48668518912efbd6a35a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c5f9fb53d093461282bc9ebd4a68ead4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c61132d2ccbb404ea969d7701fbc3ed7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1355cef1e865410182443c3b8ba73fd2", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ef4bc97031ee4e798ec0ccb3c1b76e2c", + "value": 3 + } + }, + "c65a6cc99b06467cbc7f4efe8d80aae0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c663b10ffce1432c89a3948e324571b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6656f51d29747c7a831f8b4739b8cd7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6e2d6abd785494ca143b5978811c326": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c6e7bfb4e3144b16bcfd3fd12673d853": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c75e6f8363fc4bd1ab7d1c6513f60dd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_56c8c883282e4f74ae1c353455136380", + "IPY_MODEL_e13b3d868fe3450cac508a8799743696", + "IPY_MODEL_3a1168d83bbd44c887b93d20f8eb59a6" + ], + "layout": "IPY_MODEL_64f05915a7b040f9a73dfba9e02d249d" + } + }, + "c8d62278ed494aa1948d4ddac0b5e94c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c922e749c8464d2f9080b3bd2333d04f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c97025e7d015445fafa406c4c1a89af7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c99fc92b5c87414faa6bafd1d91ce9c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd41ea80146343bcbee92bed78324879", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_04b01b03fcc143fa8633b52ec231f026", + "value": 100 + } + }, + "ca44a4c94aea499ea738f536eacf4b9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5f9fb53d093461282bc9ebd4a68ead4", + "placeholder": "​", + "style": "IPY_MODEL_7ddc094c928a4b87a7d5895dc558b15b", + "value": "Validation DataLoader 0: 57%" + } + }, + "ca6747f101dc44fa8d3b85f668fff5ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ca6fcf9c01fe4f2db382b6b0f8cb169d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ca8a046ed39e45f79234a10f85ed09d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b72a50beccd472399740c67d5b8a775", + "placeholder": "​", + "style": "IPY_MODEL_488139fa453f40e6895a0bac7d5cf840", + "value": " 100/100 [01:24<00:00, 1.19it/s]" + } + }, + "caf81cab2e1c45c38007dc88bc9a9e0e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cbf0235e60724033a400c2cb38b3971a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc2651a0102d49c7b6a9ac6e82db8c9a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ccd7cb252ac34be1afa95313cd576555": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cd21d646227b4d478abb70ba04588215": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac96d471b96049c4aace63a7d88ec166", + "placeholder": "​", + "style": "IPY_MODEL_86a4453fe0d7495aafe95e8f68f7a44c", + "value": " 100/100 [01:28<00:00, 1.13it/s]" + } + }, + "cd63bf0c96b6466586c66240f67b35a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b515a9e88074259b1067880ad7aa637", + "max": 362, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6dd394d212694b969b540123f515957a", + "value": 362 + } + }, + "cd80b89157374e759c3a24091fced46b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cdf0d854eba142779798e0ac495c02af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_297ba8af5a704c5ca34d0f406de3e918", + "placeholder": "​", + "style": "IPY_MODEL_95ec17f083be45d1a48d643e62f4dbf8", + "value": " 100/100 [00:58<00:00, 1.71it/s]" + } + }, + "ce88d1d6c0494245b812ae65ea2654ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_648f377c77da4818b1817ab95677d5bc", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ccd7cb252ac34be1afa95313cd576555", + "value": 100 + } + }, + "ce963a069b50408abc6cf6073857c5ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_21d179e89c8d47768585c9d9d3bd6e20", + "IPY_MODEL_f88cf9ec7d8b4faa80017e24f99d5dc8", + "IPY_MODEL_7a20309eef57435f9f35082d5285f444" + ], + "layout": "IPY_MODEL_6d669ab16e374f0faa089a183bd52532" + } + }, + "cebe7c4bb7e447949431cf58deedef30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cf862b504d86425f886ed6d19b55b05a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cfa9b34f74b541fc9c54b905cffa05ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cfdf85f797074bc8af900f5623b63e67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a071ed8d726f45b4a07251b60793dc6a", + "placeholder": "​", + "style": "IPY_MODEL_5f71880b66d1458e923cc893a88f91bf", + "value": " 100/100 [01:25<00:00, 1.17it/s]" + } + }, + "d06409a05ec640f9a6a87a8925dd23c1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d135d783486d456494d15ef2a339ebff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74478f6d2baf47999e56952b01ba938f", + "IPY_MODEL_24e315cb82a747d6b9566b461db6aee9", + "IPY_MODEL_0d2f68be02e7495fab83926f99b93586" + ], + "layout": "IPY_MODEL_65277dbddbb34381b788a0ee526a0245" + } + }, + "d1837ece0226413489f3df0dfd7f3279": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d216a5de8270482b90d297cf31a09d35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d22010093bc54928b96389c8cc48d409": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2d0f66f84874e679594bc856182c6c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b64f8b95e23c4baf87fcec7fb16aedfa", + "placeholder": "​", + "style": "IPY_MODEL_f9bf6bbc52ea46bc8204f3756f2f981b", + "value": "Validation DataLoader 0: 100%" + } + }, + "d34ff744caf646e88cb0606d7a6de704": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "d3995239fdf54fabb7fb42417dd2d1e2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d3ff6bc3da3b4754af245dcbacd0914c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d494ec40fa104f16ace482fa5738e771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba77336ed8a64ce1b7b3a561844b53ef", + "IPY_MODEL_02700c32e4d64a66818ac92209384b14", + "IPY_MODEL_9e5bbac1661d4385b06a3caa40cfce63" + ], + "layout": "IPY_MODEL_bf2d692c9fd24236a6a760a293cb5a13" + } + }, + "d510866a711a4f5bb98748690dc89fbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d525b6ed32414b8583d8726d83dd747b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "d5667dae1b4d479db3745879a34b9ab5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d56998a0695e434bb7fe3857f5075083": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d643c6ffb4964990899a47cc02a63b9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04fa08f418e74bfe8d274620cd07e448", + "IPY_MODEL_ae8b189059e94a7ab73fb256432c18df", + "IPY_MODEL_5915cae6f7ba4d5caa52ff5c8f854b38" + ], + "layout": "IPY_MODEL_3db9e9823c2d4f418cd6707058ff07ba" + } + }, + "d68dcd34129d4922b23a3bc96739814f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6e90d985e8b4f7fa5d8258c72a8ba9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5053663ab6874c378d764dc8584b6aca", + "IPY_MODEL_873c26ebd5a0403885933700f87ae39f", + "IPY_MODEL_4058a3b2505f441f84f78fe4f7188aa8" + ], + "layout": "IPY_MODEL_d525b6ed32414b8583d8726d83dd747b" + } + }, + "d75985c018114da8943c9bad0c61869b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d80a188b254f4bd1be7b3c18442547ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d91e67e21bfa49888bf6316c154bcf77": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "da517c560a174ed3b3a0d342ab9531d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0d29cb058287441397849858958eecc5", + "IPY_MODEL_971fb37793b04b02916266e0606a8cd3", + "IPY_MODEL_f397c359a4844fe0b43cbd55f7e45e2c" + ], + "layout": "IPY_MODEL_5be79748747e48dc9557e635185b09b7" + } + }, + "da910c9d7bc94d6fabe99bfcd626d9a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db3b31f6234f4c0781e02e27c0a78139": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c0c9ce38c68446ddad343c8abc4aa3a9", + "placeholder": "​", + "style": "IPY_MODEL_a7f7c95743214d17a1cd103c2add1b3c", + "value": " 809M/809M [01:03<00:00, 13.5MB/s]" + } + }, + "dbe52dd9651f42238a11351f10b22b4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3f76ca5381b64731af382a63b890292b", + "IPY_MODEL_5af452039cad49ee92c938aaffa25765", + "IPY_MODEL_05c1c99b4aff486a9c5eeadf9bd8230a" + ], + "layout": "IPY_MODEL_167cf75950f6434293f6809a84f998f3" + } + }, + "dcaa8093d0194d76871523cd07347bd6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dcbf40b9f3d04a29abb5b82cc4f4f43a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_acfeebabb13647ddbbe4372e192b235a", + "max": 489, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b2f81adfc7624d0ebec30a6f49d3b0d3", + "value": 489 + } + }, + "dd0b6870c8b6435691009ca66fa71b09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eee6b3f385774227b35fc4d83eb0171f", + "placeholder": "​", + "style": "IPY_MODEL_f20da578968f43c3ac44efa032dbd6e2", + "value": " 3/3 [01:08<00:00, 22.16s/it]" + } + }, + "dd4114a8f79b4725951e78ab4f31d19b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dd41ea80146343bcbee92bed78324879": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dda5061d7d3d4a2cb166bb9473dc3fbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddd6a6f26e4a40de85db830c02834c4c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_646592d608724342ad765c7e7457740d", + "IPY_MODEL_c46ec088b99646f091f934536af46d5e", + "IPY_MODEL_3ce6f898ce604f258efab30dd9f65b79" + ], + "layout": "IPY_MODEL_38fff333701c4678b5c69863aa8992ac" + } + }, + "de3f7930ae454905be655bf33f045280": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "def152f1a9e84c7e90e6e24f001f29a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_140f7d5cb0fb4b4b8598d1552a429052", + "IPY_MODEL_ad391511f2ec4e3ebb69865afee7ae6b", + "IPY_MODEL_c5083eb93376434e9a53fc44d7d215b9" + ], + "layout": "IPY_MODEL_56fea1b142db47fbab0b118185587e76" + } + }, + "df11ed2a5b2f4264b82cfd95724e7a32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dcaa8093d0194d76871523cd07347bd6", + "max": 6, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8544e6360d83437cb03e028051e96be4", + "value": 6 + } + }, + "e05ca35fa13a42e0bfb8daef4706d291": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e0732c157cbf446f80cd1b4d52f7f6b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fad67a0d8f834d6eb9609fc0ecec94c8", + "placeholder": "​", + "style": "IPY_MODEL_9c081ba4b4b7409caef98b8c7754c9b6", + "value": " 100/100 [01:55<00:00, 1.16s/it]" + } + }, + "e0da7e4a45a846c0ac14269e5bbb77f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "e0f0d44a4e834e9291b2c021fcb1dad9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf3538bb8a33408088307bb3dba05a14", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_24c7acb091ab4037a6b4a2eb8a1085e3", + "value": 100 + } + }, + "e13b3d868fe3450cac508a8799743696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a058b66d21642f3ab38b917a57ead4c", + "max": 355, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0eccda6238eb4756863a6efeeadc9efb", + "value": 355 + } + }, + "e30df53a96fc474da072e8692a0d1d58": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e32e4cee40f14064b9cd93b7688c3ff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e82ab023dc0e4a2dbe8da18f1b346ca0", + "IPY_MODEL_542c34c7d55c400a8f623232403fe250", + "IPY_MODEL_0759cda7bd084b02921689bc5e319ba5" + ], + "layout": "IPY_MODEL_543c3f05eb0547298950b7e7d8c64467" + } + }, + "e347c9815ff64f93884e65d882c8dc64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_293e17ab3b4a462ba7d4adc2de35aa05", + "placeholder": "​", + "style": "IPY_MODEL_36c215478b2f415e904a24de4b91d9d7", + "value": "Computing checksums: 100%" + } + }, + "e45b9b8af30042d0a0f91ef4ec1aad76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11e6194ce58c4c05a4cf3c9c55b4acc4", + "placeholder": "​", + "style": "IPY_MODEL_5f177c38708d4492909da4b8ae0a4120", + "value": " 4.90k/4.90k [00:00<00:00, 102kB/s]" + } + }, + "e4dd0f4da33c453e886144de5c93aeb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e529a78e1aba43d980b2953aef3cdfba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "e5562397a34348be901b498203690a42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3cb306bf10b448ab173861f392ad1d7", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_52cbbbf6bc6643e9b43d844586ab453e", + "value": 100 + } + }, + "e563fc2ca1ef4b668604bea1c50674e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e6523a394c4442bd949cae3f7666b6d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e6b5096cac864d27ad88010c2180db29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e6f8227c5e914a279428bfc620591ef0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79c3843d7f6045799cfc76b2bc4f0837", + "IPY_MODEL_33170adc2cbe4b3daa9073cee501d854", + "IPY_MODEL_8f6e8799b4e1454ea04bb9c94b70fdb8" + ], + "layout": "IPY_MODEL_9ea85c5be7104fdbb67f52414ba1a1bd" + } + }, + "e71b1fe193ba49afb42fe50f96663070": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e797e849c5e0443e84af5c12061589d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e82ab023dc0e4a2dbe8da18f1b346ca0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f414756091e34756a98d812bcf299f69", + "placeholder": "​", + "style": "IPY_MODEL_d510866a711a4f5bb98748690dc89fbe", + "value": "Upload 1 LFS files: 100%" + } + }, + "e8dba2b5fdc94b5598e6ab9f75671cbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e8f2e16d8a9f4091a2d6438892c731b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e9b2a001c8dc4591b00a21893c56dceb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9ed7db85a364e6384f84f216080d24a", + "placeholder": "​", + "style": "IPY_MODEL_98c6ca051cde41cf806b1b8bd9caf6c9", + "value": " 1.30M/1.30M [00:00<00:00, 1.15MB/s]" + } + }, + "ea0303a1646b454cb26f023c0d8b7804": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4dc6daaa87e4a4689ffc623b0a3b259", + "IPY_MODEL_24b5e61aecd84402a6261b4b06146559", + "IPY_MODEL_db3b31f6234f4c0781e02e27c0a78139" + ], + "layout": "IPY_MODEL_c1f64aaadd484bb2900aaebadeb305d5" + } + }, + "ea7c0bd905074e5d8105bb82036bea1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3528f8245a2044c4b2037481bdaf39a7", + "placeholder": "​", + "style": "IPY_MODEL_047bdaa0ff9d4a4f8d6f46fca23bd0d2", + "value": " 100/100 [01:20<00:00, 1.24it/s]" + } + }, + "eb5f6ef011b44f7d8a62a35ee66899db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_61223d9e086a42ab94927964a4455894", + "placeholder": "​", + "style": "IPY_MODEL_aeccbc9b9c3e4038874656c34f12d9f4", + "value": "Extracting data files: 100%" + } + }, + "ebeb73a097574a8597d3592329674e44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec11d0d99c684e2c87c1bf1c05220a95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec2fc9e744d9460f9063f9c0aac4c3d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ed76219299d54f908eff9c9678e1e00f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ed98bdb5c8364a6782a1883411acd5f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ee26b20d24b94233b242a490bbb528bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": "100%" + } + }, + "ee9eb1bc7197470487cf0dea02a3d8f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4ddea7815394732a0125128fcd9e1f2", + "IPY_MODEL_3da1fd9a348f4c7bb07889c017cc0c2a", + "IPY_MODEL_62bad7effcf24059b293404071b83263" + ], + "layout": "IPY_MODEL_c5d372a9962c49ada49b96a66c5ecd7e" + } + }, + "ee9f3bdcf3814bbbac4e053b4c169704": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eee6b3f385774227b35fc4d83eb0171f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ef4bc97031ee4e798ec0ccb3c1b76e2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ef6284ce29684d8b9b16875076cd579f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "efb2989e68d844bb875fbdbd5c79d780": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "efbbbb45e1554253bbf331525f219e4c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab1c3ba6663a40c383a57333f5b13ddb", + "IPY_MODEL_4664a4a1ab034098a12b6ad238c0391b", + "IPY_MODEL_257fa5076dd74486b7751bffa39c2ef8" + ], + "layout": "IPY_MODEL_b02d03f2ac8d47559d03eb83a01d467e" + } + }, + "effb0f0cff3c4cc6a8321d0c411a86f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f09e42ab2e9f4560aa68de42fbc4d4e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f0b290d10e694b4c86355bdba583261a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f0d43f6407674c12b85a6292284b4ba4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6412ab45ef6c45fd88462f76731675f9", + "placeholder": "​", + "style": "IPY_MODEL_f09e42ab2e9f4560aa68de42fbc4d4e2", + "value": "Downloading metadata: 100%" + } + }, + "f0e0d969d5f943c3ac158a6a443bceee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c21173370f63409b84b9f40abc202efd", + "IPY_MODEL_cd63bf0c96b6466586c66240f67b35a5", + "IPY_MODEL_ab6b00b5c38d40e4878e5de67bba6b95" + ], + "layout": "IPY_MODEL_0f2dc68b57614e79b95ddeb715f124af" + } + }, + "f16c7f25616a478ab6ba69ce88a69724": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bcb3bc46a920467d8441c8fe2c0081f7", + "max": 1296245, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_212fc0393d3a4ea9a76571c9b636ae20", + "value": 1296245 + } + }, + "f1a2bee7a7dc408087833912c951119d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f20da578968f43c3ac44efa032dbd6e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f21af123c24f43498942dd4f3e91c54f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6656f51d29747c7a831f8b4739b8cd7", + "placeholder": "​", + "style": "IPY_MODEL_ed98bdb5c8364a6782a1883411acd5f5", + "value": " 518/518 [00:00<00:00, 36.1kB/s]" + } + }, + "f24b9f61a1fe4c3f86e5086676a5e5d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f2d79a145b3c45389a473ae2fb94e0fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e347c9815ff64f93884e65d882c8dc64", + "IPY_MODEL_df11ed2a5b2f4264b82cfd95724e7a32", + "IPY_MODEL_35560ff2bef140aea29689440aa8f741" + ], + "layout": "IPY_MODEL_36c149d0545d43d7ac1cb34f4e3c33bd" + } + }, + "f2e58d8539584eebae048ed68d50a641": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3563de5d5e394c578b7667bdae8644e6", + "max": 809404185, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2040593b2df341c68670f38512b423d0", + "value": 809404185 + } + }, + "f387bdb0ba094db2892ed92e786886f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f397c359a4844fe0b43cbd55f7e45e2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c8d62278ed494aa1948d4ddac0b5e94c", + "placeholder": "​", + "style": "IPY_MODEL_9ef9d3b7c4e141c99299d21e270347af", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "f3cb306bf10b448ab173861f392ad1d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f414756091e34756a98d812bcf299f69": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f51518a3bf3b4a7582dbe26fca21ca6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54e45826ac5f44d3b315e59391fbc347", + "placeholder": "​", + "style": "IPY_MODEL_f0b290d10e694b4c86355bdba583261a", + "value": "Downloading data: 100%" + } + }, + "f5449d2c5013488ab7396dc95604be0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1105d8a1da0146e0963254b901f6fd80", + "IPY_MODEL_c61132d2ccbb404ea969d7701fbc3ed7", + "IPY_MODEL_45684f2d86954453b3f7059f847028c4" + ], + "layout": "IPY_MODEL_053e5fb5ff954b1bb8099c07ad77c35d" + } + }, + "f578278adfb146e8bdf89810a39d43cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f12f7c6ea604de7ab155971ffea8275", + "placeholder": "​", + "style": "IPY_MODEL_165a9c0135cb45869feb49beacb8101a", + "value": " 355/355 [00:00<00:00, 20.0kB/s]" + } + }, + "f59a9d0b14c348d6b9c221744c256afc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f60b9e69e69e40189644c2cde41fae18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f6679d2887ae4c759e6fe58b01a9d546": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f6c554c9119f4152bd747905b3b2ade3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f71dd43430aa4d4cb5168644a972df59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_92f74f940eb74ceb89139e25dc1fe869", + "IPY_MODEL_b6168e1cb7354844a2ac17dee7a31168", + "IPY_MODEL_324b10e8d5ea4f1598111ce9321f5809" + ], + "layout": "IPY_MODEL_b3d5b8a11f8948d0bb7273e036841869" + } + }, + "f75aeb7b8cc74ef488ac24f02b208535": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d5667dae1b4d479db3745879a34b9ab5", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0fb032afb0904c358aaa984c8556d0c8", + "value": 100 + } + }, + "f794d85eed554a6ea4dabf8420da0160": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f88cf9ec7d8b4faa80017e24f99d5dc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b93f73af3274920ab2b51418e95cff6", + "max": 1516, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4dd0f4da33c453e886144de5c93aeb3", + "value": 1516 + } + }, + "f8c2d38923c948cf8f2cf8c49ffb2c8d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f98e3325c6b64df7b028a71eb6c1aa5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9bf6bbc52ea46bc8204f3756f2f981b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa5080966e724cf2901654c57dbe8abd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cf862b504d86425f886ed6d19b55b05a", + "placeholder": "​", + "style": "IPY_MODEL_12636a29bb09482693911ac3c6ab429a", + "value": "Downloading data: 100%" + } + }, + "fad67a0d8f834d6eb9609fc0ecec94c8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fbed03f8b8ad47638a418b9f423e4c26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc4c72e25d9a4b648c14d03560bba0a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58a4b18d859e4c47bc97f2e6ce8c6c73", + "IPY_MODEL_6a63b2bbe3f34bc6b9a4258a04ca9104", + "IPY_MODEL_9812cfa5ccd14b7aa756a383c793c2c5" + ], + "layout": "IPY_MODEL_4a2f2fa2885347aebb436467a49b8857" + } + }, + "fc88c486f35747cd8a3e0eeaf67ebfb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fcb2db503d9a49c3b45282bebec92322": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1384b04401ee4d5e9a7ab9574e660ee6", + "IPY_MODEL_86b758931e9b4f6c81b2b5d61bb0ed86", + "IPY_MODEL_ca8a046ed39e45f79234a10f85ed09d4" + ], + "layout": "IPY_MODEL_9d0bb9e6cae5452a8f7909340d0ab21c" + } + }, + "fd3d2e91c7a64c2782727d2c29020fbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fd4d064de57d469c977318add3069303": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fdf8fb828c1d4ad6b864b9197a0aa486": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe0bc6d3aa0b4d88a63aa611af3bf65d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe170e9c276f49b6927ffcbf3809de3e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe52a9c056f843068d5588e488f490db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe5fe724aaa14f2bb80e84fc589103fc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe66b6883afa471eb687430534bd0820": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe92ba127a624524bfe051a6040b4c45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fee13e5677e84373a18a0f68feb13ab5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7982ba1cd95e4347ad3fca29f38d0638", + "IPY_MODEL_f75aeb7b8cc74ef488ac24f02b208535", + "IPY_MODEL_008e77e9b3cb4cc4b37e875cab3f3d6c" + ], + "layout": "IPY_MODEL_e0da7e4a45a846c0ac14269e5bbb77f8" + } + }, + "ff830930e9e04bdaa73f57e4eafe1979": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/src/transformers/models/idefics2/fine_tune_idefics2.ipynb b/src/transformers/models/idefics2/fine_tune_idefics2.ipynb new file mode 100644 index 00000000000000..244f34181979ac --- /dev/null +++ b/src/transformers/models/idefics2/fine_tune_idefics2.ipynb @@ -0,0 +1,851 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"CUDA_DEVICE_ORDER\"] = \"PCI_BUS_ID\"\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/env/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n", + "`low_cpu_mem_usage` was None, now set to True since model is quantized.\n", + "Loading checkpoint shards: 100%|██████████| 7/7 [00:06<00:00, 1.12it/s]\n" + ] + } + ], + "source": [ + "import torch\n", + "from peft import LoraConfig\n", + "from transformers import BitsAndBytesConfig, Idefics2ForConditionalGeneration\n", + "\n", + "DEVICE = \"cuda:0\"\n", + "USE_LORA = False\n", + "USE_QLORA = True\n", + "\n", + "# Three options for training, from the lowest precision training to the highest precision training:\n", + "# - QLora\n", + "# - Standard Lora\n", + "# - Full fine-tuning\n", + "if USE_QLORA or USE_LORA:\n", + " lora_config = LoraConfig(\n", + " r=8,\n", + " lora_alpha=8,\n", + " lora_dropout=0.1,\n", + " target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',\n", + " use_dora=False if USE_QLORA else True,\n", + " init_lora_weights=\"gaussian\"\n", + " )\n", + " if USE_QLORA:\n", + " bnb_config = BitsAndBytesConfig(\n", + " load_in_4bit=True,\n", + " bnb_4bit_quant_type=\"nf4\",\n", + " bnb_4bit_compute_dtype=torch.float16\n", + " )\n", + " model = Idefics2ForConditionalGeneration.from_pretrained(\n", + " \"HuggingFaceM4/idefics2-8b\",\n", + " torch_dtype=torch.float16,\n", + " quantization_config=bnb_config if USE_QLORA else None,\n", + " )\n", + " model.add_adapter(lora_config)\n", + " model.enable_adapters()\n", + "else:\n", + " model = Idefics2ForConditionalGeneration.from_pretrained(\n", + " \"HuggingFaceM4/idefics2-8b\",\n", + " torch_dtype=torch.float16,\n", + " _attn_implementation=\"flash_attention_2\", # Only available on A100 or H100\n", + " ).to(DEVICE)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import load_dataset\n", + "\n", + "dataset = load_dataset(\"naver-clova-ix/cord-v2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 800\n", + " })\n", + " validation: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 100\n", + " })\n", + " test: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 100\n", + " })\n", + "})" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGEAQMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDjPEglh0v7VEPngYOM/l/WuNk8S6vIpX7WVU8bVUYrVv8Axn9us5rb7AAkilcmTJ5/CuWC59qmK7ms5XejJEuJkQosrKp6gHGaRG+bJJqSOEOcZANdJ4UsLSXVWS6iSQhcqGGRnNNshK7NHwZLGsk0Qxk4au9vIwdNklxnYu/8uazLnS4La4gu4IkjP3G2KBkVvRYlsyh6Fcfpis3qbrRDLWRWtgQflIzWPpjGW7KHHDuOPQE1Qt/Etnp9l9mup1SZAUxyeQcU7wjeR3+ozshyMsw9s4pdQudYsYAzipFWpQgApwWqGMWP5uakC0uKcBQAgFOoApwGKQCCl70tHFABThTadzQA7FOxTQeafQAlApcUYoAKZIgkjaMjIYFSPrT6OlAHz+9ykMrp5aqUYqRjpg1JBcSXkwht7VppG6Kgyat63p6Qa7fqvUXD9/8AaNS+Fboab4ggdyPLlPlvn36frirMeo3UPDOt2Nm169kywAZY7gSv1FYJSZz1r6GiZJoCrBWUjGCOorxzUNNn/tm9sLGxlkMUrBfLQnAzkfoaSZTVjnlteQWbFbs/i3VBZrbwzLGirtyoGSOnesq6gu7WZoZ7aSGQdVk4NUxFK5yQcetMk9e8Gal9u8PW5dsyR5jb8P8A62K3xIIrsqT/AKxQQPpXkGj67caJbPFCFbed2W7Gr2m+L7+78TWRu5FMW/y9qrjAbj+eKlotSPYAQwzRVUSnAwOKKmxZ81bSTwDTljYnsPrTlySMVaLoFwSv6Vrc5izo2h3OrXLRQyKmwZLGtyPSbzQNfsmmIaOVtu5Rx9KoeH9fTRrqR2Rniccqo71rar4vTVIYo0snj2yBw7OOx9KjW5rHlsegTRmXS29VG78qnsAZIRj0zTrXEtiR/eSl0o4t156cH/P50jQ8f8XW32XxXepjAdg4/EZ/nmui+G8o/ti4izyYN35ED+tdDqem28niuK5liV90GBuGeVP/ANcVf0+0ij1zzo0VT5DLwMdx/hVX0M1HW5u0oFKKXpSNAxzTgKaGGaeMYzQAUZHqKRmUjAqPFAEuR60bgOpqNRk0Pz0oAk3L604MD3qvTlODRYCyKeKjVuKUSCgCSimhgaX8aBBS0lLQB5Tf6Pb3/wASb60upXSORhIoQ4LEqDjP510epfDvT5bAyaaHgvE+ZHZywJHY5rL8Y6XqcXicaxZWryRRJHIzpjgr1469BXfaXdC5tI5FOVdAwptkpFTSpTNZQuRgsgJHofSpI0jgvJsABpCHP8v6VHaRG0vLi3/h3l0+jc/zzVHWbk2Ws6ZKTiKcvA/1Iyv6gj8aRRW8d6ZDd+H5L0RAz22HDY5255H0xz+FeVTuWTzAreXgcheK942JdWjxSKGR1KkEcEGoY7S2ksPszQR+Xt2lNvHp0oTsJxueAnzJDhFNT21rJDPHOSoKMGGfar0lncQ6tdWlvayymKV0UIhPQ8dqzrxbuGQxzxSRv/ddSP51RmdQfG2pqdomjAHYJRXHbJTzgUUWDmZT2ccE/SgKAeRXo3g3wvYzWMd7cxLM0mcBxkAZ9PwpPH+iWljp0F1bW8cREgQ7FxwQf8KVw5NLnnqkA9DUwlGAMEfrULHjnn6mkGW+6pP0FMk7e18fXNtaxQR2aOyqFLyP1P0Fdd4S1JtQ0sTSBQ/mMGC9Bz/9evH41k8wLgKR/fbaK6Tw34mTRFnjmDyIx3KI+ee/9KTRal3PStQCfaoJCQCCVH4j/wCtUtlj+0cj/nmf51wo8YNql/axC18pTMPmL5Pp6V3GmlTfgZyfLP8ASlYtO5rl8dqTfntT9gPamkBT0/WmMaPpUqnjGKZx6Cnj6CgBdoHrRge9L94fSmZOaQDvujNM60/OR0pAOelMBMD3pRj0P508KMU3HtQA4MB2o49DSfhSj6UAKGAPQ08tgZxTQPapNoI5oAFbd2p4poAXpS5pANY5k2HB3L0rJ0gfZZJrPoIJCFH+yeR/PH4VpysEnjPqDWZdyeR4ggbotzGU/wCBLyP0J/KkBB4wvrjR7FNUtYVkKHY4Y4AB6H8/515nrXifVNTjh8+SPYjiVQiY2sPevXNds/7U8O3dqPvSRMF+uOK8x0vwBqmp2PmvPDAGGVByT+NUrEO56VoN6l9ptvcqeJYw304q8CEndT35Fcf4HM9nZ3GmXQ2z2cxQj2PI/nXV3D7SknYHB/GpZSK7yW9pNIWCJuO8np9a4P4h3dhe2lsbaeGW5jc8RsCQpHOcfhW14+tFufD7XGSHtmDjHcdCP6/hXmC3q+Xh0zj0FUl1FJ9Cntl/umipzex5+6R+H/16KZmejeEILzTIpNPvAA0TZXByMHn/ABrS8W6f/aehvFzkOjcf7wz+mavXvlw3luxwGkJTPrxn/Gp7v/kHyt6IT/WoubWMfT/Cuk29mI1sYXIHLuu4n8TXlWrebZ6reWcbmOOKZlwvHGa9usW3wgjuM1xlz4Mg1PxZfy3MrrEWVwicE5X1+oqkyZLseaZ5Pf3NGcV3HjXwpYaJpcN1ZIwJlCPuYnqD/hXDjpyeKpGbViSKVkdWXgqcg+9el+C9fbVNcNuYioW3ZixOckEf415h5gHArsvhnJu8VOOebZ/5rQxxep62xI6VHkk81PikxUGpHinoPUCnjApaAGZOcYFDKB0FScUdcg9KAIefSnlflzjmpQB6UuOKdwIBmngU8AU4AUARYpdtTYHpSYFFwIgOafkg0/A9KUdM0AN7UdDTsUhFIClfyCIQOxx8+38xWB4n1G2gtIJ/PjM0E6SBQwyRnB4+hNWPHKA+F5ZCzL5ciNlTg9cf1rx+eRHPA6dMU7Et2PfbaUSwgg8MM1W0wiGSe36COQgD2PI/Q1k+E9TW60K0d2+ZYwjEnuOKW41W3h8UQQxzRuLqEg7HBwynIz+BP5UrDuXrzThb64NRi4W4jEco/wBpT8p/IkflVi6j+0WMsO4qXUqGHUe9WbiP7VZNHnDEZU+hHINee3/ji7tDLAunqJImKP5sncdeBRuF0jir+4uJGeKe6mkdGKOGkJGQfTNZu1M9yfapLhpbieWZtoMjlj6cnNQvFJ17VRkO8mPuW/L/AOvRU8F8kUKo1nbuR/EynJ/WigD13xN8ukmcEgwSJJkex5/TNZl14u0l9JlQ3SiV0ZdnfNdFqluLvSriI9JImX8xXgYDKxB+8Dg/WpSuaSlY9w8NXIudKtpM53Rj+VWJF2a4G7SRfqD/APXrn/AV35ujIhxuiYof5/4V0WqHypLa47B9p+jcfzxQxoy/Gtl9u8OSRdDvQg+nzD/GseH4e6THZqZ2mkl7kvgfgK63Ubcahpk9sW2mRCAw7GvNLnx7qMYNqtvEjx/I7SZJJHB47U1cUrdTB8QaXFpOry20WTFgMhPoa3fhs3/FWKPW3k/pXM399PqVyZ7hwzn0GMCuj+HW1fGEHOcxSD/x2q6Ga3PYW3ZG1gPXIzSYkx95M/7v/wBenEgUm9fWoNxMSf3l/wC+f/r0v73H3k/75/8Ar0odfWh/uEigQuJOcMv/AHz/APXpQJP7y/8AfJ/xqOJjnmps0AH7wY+ZPy/+vTgJMfeX8v8A69JTqAGlXz1X8qdh/wC8v/fP/wBelzSjmgBuH9V/KlxJ6p+Rp1KSBQAgD+q/lS4k9V/KkDrTwRQAihx1KkewpSuaAwp4oA5zxpCZvCGpIPvCMMPwYGvG47cbPmQc9zk17rr9s11oN/DGhd3gcKo6sccCvCdQjvrO4NvdQNDIADsbsD0qkZyJxdLBB5KySMg52b/lz9Kq2d2bPVre7Q4ZJVbj681GkTSdW/Kplt41wX5I9TTJPZv+Eh06CHfcXkMQIz8zjOPpXk/inU4bvxDdzWbrJA5GHXoTgZNUZZ0VSqgc9feqjBTz/PiklYpu5F5pJ5JFbPhmxs9W1mOzu53RHHy7RgsfSsxIvNYIgLMeiryT+VaUOia1pjR6mLC4SKBhJvZcYwaZKPTR8P8Aw+QM2zE+pkb/ABorbtbtZrWKUNw6hh9KKjU1sBIaHHtXFaH4Y01tVvnurdJWSdwFcZABOR+hrr7dt8Q+lVIIhBqlwR/y1KsfrjH9KEBVisINJ1QpbRrFFMu7aowMj/Iq/qoMukzY5ZU3D6jkfypdVVfKiuCceW2SfY8U5HVocE5BFIZy6+PtHihVXkld8chEzj8a831me3vNWubm1DiOVy4DLjGev60zVrf7BrF3bAcRysF+mcj9KqbxnoatKxjJthsJ7mup+H3yeMrTJ6pIP/HDXOwwTTSIkcZLMcAZruPCfhu907xHZXdw0QVS2VUknlSP602EVqenvjucUzaP7wpzkHvTQV9ak2F24GcinhlIxmkBBGAabgKetAEi7R0pd4BpikCkOCaAJt4NL5i+9RClAyaAJPMFPVw3SoSmO9OQhaAJx1oIzTd4NAcZpAL5Y9acBgUdaWgAC808U2nCgBW5Uj2rzL4nadJJc6bcwRM7uGiIUZJ7j+temkcVj6t5a2K3Uqgi2YSfTHB/Q0XsxNXPKIPBviGS181bHaMZw7Lk/QVzuJnlMb/IQcEHsfpXtz+KtHgixJfxA4+6p3H8hXkGsKbrW7y5tVP2eWUupIxnPP8AOqTuZtWKv2JFQszkn06VSkjMZzk4PfFXfJmBySB9KilhJPzsSfSmIveFr0WXiG0kfBjL7Wz6HivWtT8RaPb2LJc3kADKRs3ZJ46YFeKHbGODg/SoXfNJq407HpWi+KbKHSLeKVsMgK49gSB+mKK83XeVGFOKKLDuz0fT/HenQabE1zKxn2fMiKSc1c0fxFBrerS/Z1kCpGPvjHc15EZBnoK2/C+srpWrLLI22F12OfTuDRYFNnsepQ/bNJuYAeXiYL9ccV483irWwoiF88YXjCgD9etdxJ8QdIiQopmlPqkfH64rzO/kiub+eaBWWOSQsobGQCc0kgk+w2aWS5maaaUySNyzE8mmYHehUBGCW/OporZS67mITPOPSqILGnzLb3cExGPLkVj9M16/aFWvrVlxgnj8qyLfwlof2EbLRWZlyHZiTWhpp8qW2jP/ACzbZz+VJs0irHSMu7vTTGR3oYKw+Y8fXFJ5Sk9/X7xpFj0GD1pxXdyKi8tM9D+ZpwWMYB7f7VAEgjpdnNM2R917Y6mkKxAbiBjHXNAEoWnqmO9Q7IiMhQc0oWLP3F60ATlQe9G0etRBYSuQq/L7dKVfJxkKvTpjn8qAJAqj+KjCg/eH50wLGSQEXP0p4VP7q+vSkA/ev94fnS+Yg/jX86iZkjIBUc9wKVZEKbwMg9OKAJPNT++v51IDUHmx+h9uKlByM0CH1nOkd1aTW8vKOGRh7Hg1fzXjuseJtVg13UbVL54oo7h1URgAgBj+NFribsctPusr2aDPzRSMhPrg4pTfSn7zEn35qeWNZZWkdy7udxY8kn1qMpCPQfU/4VZmRG8kPGep9hXbaT8Pb7UYFlvL6KBWGVCJuI/kK4kxRuT5YMhHZBk17B4I1E3fh62DcvEDEc9eOP5UmVFHm3iPwpNoGoC3eTzYXG6OXpuHf8RWL5KRn19zXsHjnR7vWILCOzKLIJiCznAAI/8ArVy2ofDXU4rJriG7inkA3GJVIJ+houDRxHmAcZopfsh75Bopkmafn5OOPQUblXtXfS/DN4rKSVtQMkqqWCKmBXAEKDgKKSYNNCmX0FAdj2NKlWI34weaYhkMU00iRomWcgAZ7muwtfAGsyW++SS3iz/CWJP6CubtrkW9zFMMZjcMB64Nenjx3oqQqDO7uRnbHGTj+lJtlRS6k/h7zI9Kit7n/Ww5jb3xSsRDqKgHguD+v/1qztD1qPVL69Masq7gw3DGQeP6VdvyY54ZP9r/AD/KpLOjb54yuQM9zUjrvGM4qoW8yNlBAyO9TnLpgNg+tMompkihnUlwp7e9ANMlUOVJcLj9aEAqQ7cfvATg9utP42iPeNwA/wA4qKOIRspMg4zx0olRHfJkAyvSmArW+9izOTn2p6wDOS/JPYU37KgQhSMnjkVMIsZG/uD0pAKgSNfLyFBFBhjXkORwR1H40xxHIwO4g9B2p4gjAUiU8gjqOaBEqAKchicgDmpA1RIV+4G3FRz604UhiM6cMd3BIyB0oUxlA4LbT6nvn+dMIVWGS5yxIwe9C7Cm758dME8k5pgP3RD+E1YBGOKqb4iPuk5qwCCAR0oYD814X4ntg3ivVCJNqm4Y8KT35r3LNeJeJrwp4m1JAv3bhug96aImYhgO7kuyD14pZdmAFtVUAg7i5JP51J9sdjgRfpXS2XgbXdSgEvkw26MMgvJyR9BmmQek+F/sMmjW01pbxRpLGDhVA+opYtOi03UbjyBtS5fzto6BsAHH5A1j+CorrSYrnSLzHm2smVKngq3II9s7q6fUR8kU46o3P0NQaIjv5kjt45WAAVxyfc4/rViE74+TWT4gXzPDl8AcEQllPoRyP1FSaHqC3+m21yp4ljDfjjmgDzLXPDGtDXL02dkZLdpWZGDAcHn196K9beEM5PHNFHMLlR53cfEfSljKxQ3ExxjIUKD+ZzXmNxskuJJI12IzEhc9B6VACwp2WPYfnVJWIbbHKme9PKjHf86taTpcuqahHapIqF+S3XArv7f4cad5GZr2eSTH8ICjNO4KLZ5sNo6CpY3Cn0NPvrX7Df3FoRkxSFMn2NQYApiN/wAO6xHpmoNJK2InTa3Ga29Q8V210EWBJThxlmGAOa4TzAKcs3BAByaVhqTPcIyXgUg/eUfyq4FLxABucDkVzmkXrzaPZu2NzQrnP0rSilkaFV3jgAZAqTY2V6UyRFYgswGOBn1qlHM6qATnA61YEyvhSwU5zz7c0gJ/KYgDcMZJ+760ggG7BfjGCMdfrTRADtO77pzwOtSNHv3HeQrLg4FMQLbqGJ8ztjHoKniREZmU5JPPtVeOCPAYScY68VNEiRn5SD60MBEiiBOGwdx6gDmpY4I/LIB3ds5qLETtktjDd+Of8ipovLhG3d1yeTQALCqHK5p1LkMAVIORmkqRkUhAKlgevY9PrSAoyhxnbjaBTpNo2swJx6Gm/uyu7aRjjb+NMQgaIf8ALM88flVlTkAjpVUtHjiPOeKsAjAI6dqGMkzxXiXilI/+Ep1PJwfPava68Y1yKObx3eRzMwie72sQexxTiRMwZFRef517T4H1T+0PDtqznLxjy2PuOP5fzp+neGNDtIQI9PgZv77ruP5ms3w+sOl+JNV0uD5YgyzovpuHI/MChu4JWNTUx9l8T2dwBhLmJoG/3h8y/purYkX7RZPHnG5SM+lZfiYFdKF2o+a1lSb8Afm/QmtK0cPH1z3pDPF9V1nWnM9pdahMDG5jZFO0HHGMDrXYfDq+87R2ty2WgkK/geR/M0l94AbVPEd/cPe+TBI4fYqZJyBn9c0ui6FJ4W8SS2YlaS2uYd8Tt1JU8g/99VV0SrpneA5GaKjVxtFFQWfNOVHfFG5expYtsZyY0f8A3smuo8HCG41+MSxRcRkqAnfitDFK5neHbiaw1i3uTDJ5e7azbTjB4r16C43wipLmCK5s3hdBsZSMY6VlWcpVNhPK/KfwqG7msVY5DVfDFxq3i66WGRIkcLIWYZ6jH8xTNc8CJo+kyXq3jztHgsNgUYziuzEgXUQ2OWTGfof/AK9Sa7H9r0G7hHJeJgPrincTijxsFCpCwoM9zkmgPs4DYz1rc0/wfquoW6zKscUbYwXbnH0rN1fSJtHvzazOHbaGDL0INVoZ2Z6B4cff4esz/skfkTWtEMxbVYHtkVieEsHw5bj+6zj/AMeNbUajYRuzknmpN1sW0baoXPQUr7WA3PtANRxqFQDOaVwnBY4ANIZpQxK6q2/ndnOKsLGBEULZBzyBjGaz4I4mT7wBLbs+tXIVjiUqrjk9zTJHLFGQSJCFYdz7+9SKkcA35JGMZAz/ACqNI4yqp5mSV9sn3p+6JV8otjaO9DAUxwk5Z8/N0yPypyQxgjGePU1AVtwSS/Vs9e9T+apQupyB1xQBaRFwG5Jxjk0MOeKhtp1chQeSM4NWCM1LGRlQeozTTGmRx2xQ8gQgHqelMEuY923B6bc0wFfYq/cBzxipFIKgioDOCMFM+x9anUggEd6AFNeM+Joj/wAJTqTFgP35Ir2fivFPFcjDxTqYyeJz3xTiRMlm8Uaw0HlC/kRcYwny/rUvg3UZE8WRyXEzyGZWRndiSe45P0rm1DueBVu2jkt5knSTy5EOVb0qrEXPdbvyrnT5oJACrxsp+mKoeGbsXWkWr7txCbCfdeD/ACNeQahq17cR7Jb64kHfLkD8uldx8OL4No8luT80Uxx9Dg/41NtC07s7tm2Xw9HX+VQaxaCWOC6X79u+4fQjBH6/pVPWNTSzuNP3HiabyifTIOP1ArXRxLCVbkMMGpGU0OUHNFc1eeJoNMvJbKdZvMhO0lYyQfQ/liimF0eRaZpd7q1z9ntYVZwMks2ABXU2PhLVdFu7e/lkg2xuNyoxJweD296zvBV+LfXkjPImUp+PX+leo3oE9hIg6lTim2TGK3HxS74AK52ObydYurdjgEiRfoRj+YNalhNvtlPcrXJeNJZ9PvLa9tm2s6mMnH4j+tT1Lbtqb88gjv7ZvUkVqE74sHkEYNeWWmt3s+pWzXNwzqJBwcY5+len27b4abVhJ3G6MQLAR45QlPyOK47xtp013rVoLdcySIV5OOhz/WutsnEd5cQ/7W7H1H+NUPEx+zRW1+BxBIN3+6eD/MUJ6g1oReHbGfTtIW3uNpcOx+U5GDWmirhgDnJOfaqmk30F/bu8MgcK+0keuKuALlsEk55zQUtiWEBUCq2QKdIAVySRjnIqKDaq4Q5HWpmI8ttwO3HOKBk0McQhKCRVOcknGatBEiIPzHcevXmoAtuIvmYgcEgnoassyLtyCR1GP8+9MklhMS7dkhPYc9alMS7y2DuPNVYxbx7WHbO081OJ48ZJP5GhgPEEZ5K8k5696cEVQQBwetOUggEHgilxSuMjSNI5Q4X5h3zV0nK57VTYVLA/VG/ChgJNsGCyg+57d6ijkQxbiqg4I2+1TTHaVwqsSeATz+FQB12Z2KrYOF6cZ/lTEL5w/wCea89/p/SrAOQCKq+accKPTntVgHgdjSYyVa8i+IFmln4oeQDAuIxKfr0P8q9dXtWXqOjWd7q9tdXFvHKyRlRvXOOcihOxMlc8WDlIg6xsQf4scfnUcjTlSeB/sg8/kK941fSbfUdAubPykRWjOzaoG1sZBrwWIgSYbj1qk7kNWHRQGQZffz2Xj9f/AK1amnX91oyyC2nWMSYPQHGPrWXJdDOF5HbNQkyPyAMflTEaN7rN9d3Ecs97NL5Th0Vm4BHfHSvZ9Lv47q0hlQja6BvzFeFJbSSdSB9BW7DrepWVokEd55aIuAEwDSaGnY9amFu8rM8KM3clRRXiUmqanI5dtTu8n/pof8aKOUfMj0HUtL06xhjntrWKFomBBRQO9aQfdbZBryu48T6rexmOa5Pln+FVAFej6XcCfTom3A7owf0qWik09hunPgvH/dcisnxvatPogdBlo5FP58f1rQtmCalPH3OGx+FWdYt/P0u4jxklCR9RyKXUb1RwFv4L1WWD7QTFGANwGcn9K7vSJS9tHv8AvbQD9a0NPxJYxHHVAf0rPhX7NezR/wAO7cv0PP8AOm3cSSRHdsbTXLeQfcuFMZ9iOR/M1a1m3W90W6hIzujOPr2rO8YI50M3ELFZLd1kUjt2P864F9c1KdCsl/NtPGN2B+lCVwcrHU+Axu068XuJR/KupWPDPtBzxmua+HqlrfUDkFd6fng12SqBIw2kHue1D3HF6FKJQpIX15+tTYARt/3cc1ajVDnaO/P1qbyVKn5AR6UdSiNfIMPzA4xkjJqdPLlOAMlakEcW0Ex8soO3r3/+vUsUaEEooGevFMkroYpMEpgjgA1IixO33CSVBPHFKvlgcxKMc8CpFZVYKImBx0AFACfaFVmVlIxwMd6ergkD1JHWnR7JGYBBkYPIHNTCNQegH4UgI2XioGJVgR2q6VprQg0hkEkg/dsFUk+vampIJEDkLvweByMf4UrB7Z14yjHnjJp6yF0DhCHI6YqhEXnPn7o/L/PWrIXIzjmmnzeoXA+lWUQkDKkHHSkwIwvNUdTn+zyWT5wGmKH8QcfqK1PLI6VxnjPXLO2tzai4X7ZDMknl9xgg0gZ2ML+ZHiuT07wXosV5M8tqsr+axHmEkAZz0+hrodMmE0KOpyrLkGkkXytSJ7OA349DSEec/ErRrXTpbK7tIUiWQGN1RcDI5H9a4iKVAMk4r2zxZpltqOnQfa03xRXCOwz2Py/1qXT9D0e0i/0ewtk46iMZ/OrUtCXG7PDXvix2oufw/wD10zFzJwE2j3/wrd8ZWkGl+KbmO3VVjfEgUdBnqPzzWL9sbGNxx6Af/qqiCuYpgTRUhfJyM0UAZ6o2a1YNd1G2tkt4rpo41GBtAz+dZqrLI22ONif5UCBjJtkkVPUk5x+VAHV+FtReTWH8+Z3aSPq7EkkGvQJJVa356YxXkNs0FhcxzwTvNIjZ4TaP1rck8Z3bR+XHBGg9SSxqWrlxlZanoWkSCSzjK9MYqjrlwLHUbV2wEmyhJ7Ecj+tV/C155ukwOWBY5zj6mjxzEtx4ckf+KJlcH9D+hpdSr6XG6nqmnTabNby3kIEkZUjdk9K82jt7fZukumDf3UjJ/WoBKoGMUvmjsKtKxm5XPRPhyoFpqABJHmJ1+hrtY41ErfLyRyfWuK+Gx3Wd+2DjzFH6Gu5iCCR8LhuMn1qXuaR2FREJO0d+eKmC4HFNjZWB2jHOD9aecgEjH40iiRZYlC7o/mKjoM0/zY1+6hyT2AqqJhlfkBfA6fyq1bzo2cKPU8UxCyARlcRrjr0pd+VL7M7ep4qRJyWAK5yTyBjFKJnwPkycehFAEYZVBk2YJ96tCMUyQv5YAUFj1oEkhOChHPp2oEP2LnpTtgHamKzYy4APtTvMUipGJJuAGzOc84FCvIU+ZMPyAcU2QM6/u2wc5pw3rnvk9c9PemIXM2O+Pwzj/GpVyVG7hsc4qDy5D/Fj8akQFVAJ/WhjJK8g+IsYh8TyEj/WxJJ09tv/ALLXr4rH1LQNN1TUI7i8tEmkWPYpfkAZz0/GhOwmrmT4MvRdaFatnlVCH8OK2dTYpJbyjoWKH8R/9asTSrNNI1O8sY12RbxLEOwVh/iDW7qI83S3cfej+cfhzSY0NvIRqOjT24OGkiIB9Djj9a8mTxvrUCm28yKLZ8jHZlgRx3rv4fFmk29t+8vYQcE43ZP5D615FrTi71y9uLUHyJZmdCBjgnNOKIk7bE147X9wbm7uGmlbq7f5xUPlQr1YD3/zxVLypcdwaaYJOp/MmrILpWA9CP8AvqitnTJ/Dy6dCt7abrkAhzjOef8ACigdjN8aWy23iedY12o6q4A4HT/61YJITtXpuv8AhpNb161LytEnlMGKjJ4P/wBesTxV4T0/RdGFxbGVpRIoLO2cg1KY5Re5xZlJ6ZpMs1KMU7zFHaqINvQ9ek0mNoyjSLnKjOMVe1Lxfc6haPbfZ40jddpOSTiuV870FGZG6CixXM9iYKvoKeGUelQCKVutbGg6EmqzSJLOUEYBwOpzQJK53Xw6AbR7tx3nx/46K7BMb3woBGMn1rG8LaZb6Tp0kEBYq0pYljk5wK20I3sNqj3Hep3NkrIdEysCFGMHB4pzsUQsOSBSRsHUlRjnFEjFY2YdhStqMjFzyfk5Az+tTxy7ywxjGP5VWFw/9znjpU7F/l28etNgOiuJlJ+Un6irKzyuQNoGRnOO9UhLKf4MDPcUqzynGOcg44xmgDRjkkMhVxxjPApMTBm285bue1V1nm2/N+QAzViRXdF29c5POKBCfvgAWP1ximljQ6z7eWAweme1JSYIG+ZCvHPrUkRYE4wenftVV4yzZG0cYz3oUSKSQ4YkdKBlwxEn749P/r/WpoxtXGQee1Ulxk7nA+tWYgFBwwNDET5qOVwpU++KXNQ3RxAWHVSD+tIDO1eErdW90mMglH91PT9f51at5VeEhumMGlu4ftenyRj7zIQD79q8/Tx5FbboDaStKpKtuIUAj/8AVQlcNjh9XQaXr15bRn5YpmC49O36VX+3K3Gzn/Z/ya0dRlN/qM160USmVtxH3sVTMTLJvR8MOBs7flWhkMaSUJvNu4XGclcfzra0vwnrGtRJLBAiROMh5JMAj6cmsCZSx+d2bHTc3SvVfhzqIuNCEBP7y3cp+HUfz/SkxpXZysnw51iOQp5sLY7jOKK9iznmip5mXyo5KfiaKTuGx+YrE8aoJfDVyMZI2ke3zCtm5P7gnuvP5VXvYI77TpYH5SRCppIpq6ON0jwPZ3NrHPdXEpLqG2pgCsrxZoVrozW5td2x8g5OeRVmw8Vy6VCbOaEyPESgO7HQ1n61rsusqqvEkaKdwwcmq1uZvlsYYYelPEnpSiNaeFQDgZqiBokdjgCtHStQk02684AsCMFc4zWeZAPSk8454FAHsvhG+bUNHNzIgXdKwABzwMVvRkfNgAc4471zPgRSvhO2Yjl3dv8Ax7H9K6KJyQxIXr2qTZbE0biRMgYHSlclUJAJPtTYpA6bgMCldyFyoycgYpDGfaG2Z2HOOlPidnLbk2gdPeohO5XIQA8Z4NTOWO3axHPOKYDN8wHCk89xSB585Knp0xQs0p25jPLYPHQVYoAZEX35YEZXn0zUqPKrHncueB+NNFOBwaQFh/Mb7h43c59KYwwcU6KTPBp0gyM96AIXAdCp6GogjJjbsyF4PfNPboRnHv6VCkbJtJbJUEdKAHsmSTuHr/8ArqW3IiYjcDxjFVypJ3EgHr+Pp9KEXa2d2eKANQMCMioLtgLSYnshP5VFHLtOM8U65/e2cyKfvxso/EUAMtrpWgGCCMdq8W8XBYvFN+YQAjSbuPUgE/rmki1nUZUMUl9cbcY2o+P5VQl2bzuJZu+Tz/jTSsZt3K32mYj73T15ppnmbgyZH51KTGfQfSlis7i6cLawSTMTgCNSxqiDrtD8CPq9lDePqAEUi52onI9q39F0hfDHiR7KKR3guYBIhc87lOD/ADpfh3cTR6bNY3KMkltMVKtwRnn+ZNa/iWMRXul368eXP5bfRxt/nipvqaJKx0iSoUBNFUo5lEYzRU2KOeLb4SPUVQs7oPbbSfmQlD9RxU8Mo8sZNeceJZ57TXbmJJ5FiciQKrEDkf40JXCTsU/EsPk67cFR8sh3jHv1/WsnLmpWkDHJYk+pPNN3j1rQxYgVz3rsfD/gtNUtIrq6upERxkKgH8zXIpudtsalj6AZr0jwbeyf2cltMrI8R24YY4PI/nSZUEmzK8V+FLDSNKS4tA+4SBWLNnINcegUdq9U8XRG60CeNepwfyOa5q28DKYBJcXbEkZ2ouP1oTHKOuh2nhEBPCungDgoT+bGtlGHlkhQBzxVLR7ZbPR7S3XJWOMKM1bQqIs7cLycAUjRbEiSB0DDoac77ULZAwO9MRgy5XoelI7lUJGMj1oAGuSuflBwcdf1qR3ZQpA6nn2FQtc4YqBkjr70+OdZMgduvNAAtw5IBUA59DU8bblyc5z3FVjMysAfmJYgHpil+0NwBhs5/nQBc4oziodzeVnHzY6CozLKMqUP3TzjvRYC4GqZJNy4NUkZy3zDC9uKlDUgJZkxyKphCGU7AOSc56VeVt6bTVAxShuT/F2P+femAFXkAP3SRzz0pURlfOQB7fypjb2IIBHbr0poRw4J4A9+g9KALOakifnaeh4qvShipFIDwiSN/tksYbaBIy8845pk0MiMQ0mR+VWtRhddYvQCBi4k6/7xprwlgCW4+lWYFWEiKZHI3BWBIPeveNKlsksY3g8tIigI6AdK8M8pB71JJNJ5YUyOVHAXcSBSauUnY9RtL61XxzdwW8sbpNArExsCNw4PTvzWx4pRpfDd0yffjTzF+qkMP5V5J4Tufsvia0c8KzFT+Ir1bV9c0220yZLq6iQMhXYWyTkelS1qWndFm1mSe1ilB4dAw+hornvDuqwv4fst8gDLHs6+hI/pRQO5zv8AwkMFujwzyiOaNirLgnp9K5bXby21K7SWIudq4LEYzS+KFEOv3DqPllw4/rWP5p9KaRnKXQdsjzwD+JqVVU9FH4Cq+5ifu1v2HhDW79EkjgVI2GQzuBx9KolK+x6P4XtrWPR7Vo4owzRgkheaXUIY4bpJkGC3yn3qt4Ygn0+zFjcMDJCSuR0x1qfxASlg0w6xOr/hnn9M1HU6FsQ6jJ5lsAPQ0Rzb7cEHsKgmcNENvTbSWrA2ykHtQJnT23FpD/uD+VOUp5QIGEx0NMhOLeMHpsH8qVSghABOzHc9qYyRGUqCv3famyyeWm7GeQMU0EBRsxt7YpJJAibmGeRSAX7QigkoeDg4HenxTLIWCgjHc96r/aIGOMbs8kYqRZot3yDqcEgdaYEomIbbgdSODToZvOXcAV+tRSMEI+UHJ5OOlCTkHGwgkngY6CgRKLkqVDDOc8ipo5fMjDYxntVVbsMQoRsmpo3MiKxwCRyM0MCfNFR7sUu6kMnibDU6dcHIquGwRUjPNIj/ACnqMdOlNAMNROGMikdKdNu3YTPBx07/AOFQETZH3uv/AOv8OtKwE5Bo7UZp2ARQB4lrbeXr+oLjkXL/APoRpttFd3g8u3tpZW9EQk1d1xBb+Lb2Q4wt0WI/HNes6bOhhUx42lRjFU3YyUbs8SuI5ra4eCaJo5UOGVhgimiJ3PX8q6/4k28cOq2t2gAM8ZV/cqev5H9K5WHzTAZEjdwvJKrkAep4pktWdhywrCA7YB7HvUFy+5M+9N8x5m4GfrwKlW1LDMhGPSgAgv7iGFY42wo6UU4wwZ56/XFFINSpfahNfyiSfbkcDAxiqu8DvUeyRv8A61KsJzhmApiJRMteweFr4Xmj2rj+4FP1HFYuj+EdHWGOSSLz3IBy5yPyrZ02KO0upYIgFRWyqgYAFS2awi1uWJx5OrE9BIgP4jin6lCLqwmiPR0K/mKTVflkt5B/e2/nUucwD6VJoeTNrmohfJafaE+XAGDxXVeH7jztJiLNuYZBJ+tczfaJe3OsXi20W5RMe+OvNbmjWFzpMbQzup3HcAO3rVGSvc9AiceRH/uj+VKu0xAbsrjqT2qCEkwR/wC6P5VIqkRBMk8YzSNSZQAgAPA4FNkC7CXBIHPBojAVAozgetOZQ6lT0IxQIgP2cFsgDpkc1KdioGVAQSOlMa3Rshs4JyRmpdqldpHy+lO4AZ4T9/Bwe46GnO2xlwikscHtTPJiPVO+evennBxntQAwXEIPQA5wOBT0nVjhVNJ5aADCr+VKAEBwoH0FFwJd1Luqv5gz91j/AMBNHm4/hf8AKkBYDGnC5dUcKwypGKqm4C/wt+VOW6YA4RuntQgZLNc5+7178e1VzNOTyCOew7+n0oEjc4jb8xTw7f3D+YpgSBmqRWbFRg04UgOJ1TwXdanrd5d/aY4opJNwwCT0rZ0BpbS2S1uP9ZEfLJ9cHGa2o2H2h0NZ94og1MdhIu4fUcf4UXElYdqtra3dxbS3MKSiMkAOARz/APqrRtlt3smtvJjWN1KsqqACDwaydYl2Wkco6LIufoTj+tXLF9w60BY8ZuY/sWqXFqc/uZWj/I4ptxNJuAZWUH7oIPP517BDpGnJqs8z2kLTO+8uyAnJrC+JtjGul2l6qANFL5fA/hI/xFO5m4WR5vhzzj9aKjE5x0opklQ7z0FAVu5pS2Fphf0FAjobXxVqVpbpBC6AKMBiuTW94R1W5vdWnN1MZHZAefY1wA3mtHTL+bS7tbmPBYDGD3osUpO+p6/qvzWe7P3CG/I0sTbrY49MivM7vxXqd+hiaVYoiMYjGM/jXfaTdLNpcD5yWQZ/KpaNoyTehBBGE1K6OPvYNQ6iu1kf0OD9KnMqjUXXuVqLUgWtnx12nFCBm/b/APHvF/uD+VS5xVeyfzLC2cjBaJTj6gVPmgY8NRuyaYaTOKQEpbimtIEGTn8Bmm7h60x1Ei7ScfhmmBIZ0QAlwAe9K0wX1IJxxzVV4o0BLOwzxUg8kLxtAGOlAExuYlI+YHJ28etSCZWICnPODjsaos0acbjnIxz0/wA802N4FOA4HzZ+93oCxolwKiZs5qPdQSDSAb5mUDcAkZwTUX2raeV525/GnsqgZCjgYAqIyjAGwEYxg/yqgLQnXblSM8de1HntjoBkZ+lQrKoi3hBnGCKct0xIzGBnoc0CLyNkAkY4p4NV43DKG9Rmp1PFIZUMmzUj6YFM15kitYbtiFET4YnsDx/PFV7tjFq/J+WRAR+HB/pVzU7UaloN1bEf6yEgexxx+tAjl9a1+wbRZoVukeZhhAhzyK3NEuRPawyg/eUH+teRRyKIypAyDXo3g+6E+lxLnmPK/kf8KbWhMZXZ011mK+jcdGX+RqzqtrDe6aROiuqMr4YZHBqvqB+S3b0fBP1FaEWy4sWhb+JNufwxUlMox2lkEAW3gAx/cFFeVz+KdbsbiW1e4QNC5jOU9DiinZkcyOgs/AmjxKHm82Y+jvgfpXGeJ7KCw16WC3jCRbVKgfSvSLO8MsAPqK5vWfDzazrcbCYRKY8M2M9D/wDXoT7hKOmhwu5R1qMuSa9AvPA1hZ6PczCSaW4SMspJwMgegrgl2qOgqk0ZuLW4Rglgc8e9dHpfiNtLtfJ8tpcH5cnGK5xpvSmb2NAKVtjtdK1uTUdbBkCoCh4FdDPIrRnntivM7KWS1uY51cAqeme1dG/iKExYUSM30xSaLUtNT0W2wLSEDoI1x+VS7qpafP5um2smMbolP6VOWqTYl3YpN4NRA00sFNAE4b0NLvHc1W870pu8nvQOxNKwdce/WoFhUSbic855pd2e9LmgBroinliMnPFRgRMVBYnBwAf8+1SMFZlyenOKTyVxnODuzmmhFtTmncVAj+tPVqQEhIIPGars8SkcDlc/hUuaYUQY4+70zTQhiPGI/Nx1GMf0p5mAchYtxI7d6j2RjkgAAYp3mRH5QofjPFNAW42DKGHQjNW4TlaoqwKggcVPFLjj1pAUNe+SS0kHQOVP4j/61aFlLvtsVk+J5li03zCfuspH51Y0qXfEPcf5/nSAwrHwnpZu5GlgLkO3DMcdfSp7K1TSdXuLaMBYnYOgHQAjBrVU+VqkynoxDD8v/wBdRaralTHdKDlDtb6H/wCvRcVkaV0TJpTyAElMPge3NMtNShWDe0yKpGclgOKk0mdWjZH5UjBrx7WIjpWv3dpkskUp2g85U8j9DQhSdh/iQRXfiK+uIZUZHkyCvIPAzRVX7bB/zzA9gKKsyO+ibybqWLI+U8D2PSnPKVvbcjoSQfyqhqkhtvEFuc4WaPafqDn+tTXsqIYZCQNrg/0rM2OmdBPbMhGQykH8RXA6V4BN7uee88tAxG1FyeDjrXfWjb4R9Kj08GG5uYuxfcPxGaadgcU9zyzxPo0Oh6qttAWaMxhgX696xwR3xXofjLRf7S1iwIcoHV0LY9OR/M1DF4DsYot01xLK2M+gqroycHfQ4LzFHegTZ7E0t1CLe7lh6hHKj86YjBTVEHrmiSb9CsG/6YL/ACq/k4rF8PTbtAsuc4jx+RNam/jrWbOpbErPgVEWzURfJ60gYUhk2adnNQ780gkwxyaAFMRLMwbGT9KUQuRhpMrS789qUNTuIaIDzhhkkHJHvmneTjODyeuacGpWdVXLMAB3NFwHBsE808NVRngxvLAjPXPenIYGTeCpUd6YFsPTTIM9RUQRB0VfyprGNBkqAOnSkBOJE/vD86N0ROWK9OuagMqR44/ACnmZVxxkHnj09aYFlWG0bcbe2KeGwc1CGyODmng5FAHI+PJi32GMk4O8kZ+la3h+7V7GBg2cqM1h+NGtmvbVZmk3LGSFXvk//WrG0/W5tOj8uKJWAORuOMUPVGfMlLU726vFXV4o/wCJoyfyNbTr9qsXjB+ZkwD715fb6zcXeuW8s7jg7AFGAAa9IsLhfLAJzUvQpO5h2PiLT7VSs9yqyDIZOSQR7fhXH6xcWuo6xcXi2zSK5GCxIzgYpvjCFLHxPc+VwkuJR7E9f1zWSNQlPbNWkZylfQmcKXJW2hUdh6UVH/aM/wDc/SiixOh1fjdGW0t7lCVeKT7w7ZrjGv7iUhpZ5HIOeTXoniWAXei3KLyQu4fhzXK6T4Pl1GFZ3uQkRGcAZNJNWKknfQ9C0ScTWcTg5yoP6VZkcQ6krf31/lWPoC/Y4xa5J8v5cmr2rt5fkT54R8E+x4qTZFTxazwaYl5GMtbSq/4dD/OuauvGolszFbxN5hGNzdq6vUil5pE8Dc+ZEV/HFePMHRipBBBwapK5nOTi9CeU+bIzueScmmhEqHc9SQRTXEyxRjLscAVVjE9B8Myf8SKAA/dLD9a2PMOOtc/oEE9lpxhnADbyRg54OK1w/FS9zojsTLKCeCKeHB71nqihsk5x2NPSJQc7iaLFXLwYEEqc49Kb5isNwNMh2xrgHPNLtWkBIsi44PHWpNwZevBFVtgznJ9OtSAqq47D1oAdbOq245yBnnPvT2eKWDcX+Q4wwqLfGq4GFHsKElhjTaDwOvFPzAcU3A7XyEOVc8545poAWzdpMEvz0/Kni5jxgHAHoKT7Umcc9cdKLgTtMsduJOWAA6VFcEFkzvC4yCoyc0ecjLghsZwaX7QOyN6dKAI13oVdgWyuOnPXvT0DxcbS2Vxx2NL557Rt09KPMfjER6UXAsRnYir6DFP8w4JNRoSVBIwfSlJqRnBeNLkf22qd1hX+ZrmxPID8px9OK1fFzhvEc4znaqj9KxRIBWi2OaT95liORkkV9/zKQRXUWXi2aMBFg3NjqzcVx/mGnRyMGGBk0rApNbGxqd1NqV61zc7RIRjCjgAVSEcY680xnuHPK4+vNCRsXBduM80BuSfJ6UV3EHgzTXgR2aZiQDkP1opcyL5GXpJEkiKsMgjBo8Pr5GnJEeq5X8jWatyCvJq7Y3KGI7DwDUFrckmf7NqXmD7r81a1Vft+iXCRth/LJXH94cj+VYWu3620SSZG7PCk9R3rEh8YyQy7HizEeCVPIqkricktGZp8Q6jLCImuyqgY4GDWazbiSW3EnJ5p1xHA13KY5cRFiVwO1RBUz1Yir0MW29xdwqxp9wIL+CRugbmpdMs4brUYIpF/ds2CM9a7+Pw3plvBuitUyR948n9aTaHGDZSim3ZqcS8dao7TBMYz24qQPUmqJ/M5p6y1SL4alElA7mis3vUglyOtZyyVKsh9aB3LvmHHWjeT1qr5uKUS+1Ay2GGeQDUylT2H5VSElOSYg0wLoIHYU8GqyyZ7U7dikBaDUu6q6uakVqBk2aUc1GpzUgpAPFITQeBUYO+QL2zzQByWteH1vPE0od2TzIkkGPpj+laFp4E0w25MjzO5HBLYA/Kp/GE5067sNQA+TDQv9Oo/rVKPxpZJEwVJXbHAPAp6mdo31OCuITbXMsD/AHo3KH8DQkgUg4q5dlLq8muGUAyOWwT0zUYijHpV3MSQzq+D7c0BmY8CpIo4u2Pw5qV7iGEYQZNIZt2viS8gtYovJ3bFC5ornDfvnrRSsiudk0OqSJEFbLEd81ZtteltkcCMEk5GT0rJCjFRTSBOB1o3ZPMybUtQmvZd0rZbHboB6Vn05gepPJptWlYhu4uTSgtnGDmhc7SR0H6VZtJFW7iZ+QHGSee9DBFrTIL/AO1RzRW8hWNgxbbxj616rYP59sAfrVSxCS2ZQAEMKNFkwWiPVcqfw/8A1Vk3c6ox5TM1aDyb8gdWXeP5GqG4g4IIrW8WuLP7HekHYrlH+h//AFVz97r9jPAqQ72fIOcYpoluzJ2bmgPit2ysbW6t1LRg5HWs+704w6j5KjEbAEUXHYqbzThIafd2jWtu0wyduMg+lRRo0i5UincCUSGpFfisy51OCym8qYkNjPAzTU1yyJ/12PqpFAuZGyrmpY2y3NZSavZEf8fMf4mrMWpWRP8Ax9wj6uKB3Rpbyp4p28mqf9p2Pe7g/wC+xTxqVl/z9Q/99ikO5cRyT1qZWqqsqNyrAj2NKtxGWK+YuR1GaBl5TUoPFVBIByTgepqwsi7Mgg/SkMcz4FVvOMd1GrZBPPPpUdvfLcXflqpAVsEt7VW8ZzzWFta30Cg7XMbZ9COP5UuthN2VyTxgFuvDUwIy0ZWRT7j/AOtmvLfm9DXQ3Pia61CAwzsixnqir1rPM8WMDAq46GE2m7ozwHJ4Bp6xylgNpz71c+0IDwcU4yLwQ2c+1VcmxtaX4M1W9wS8McZHVmzj8Kq+JvDsmgXMCGYyxypkORjkdR/KvQ/DGoLcadbvnnaAfr0qt480+TVbC0jg2h1m6t6EGoUtTVwVtDywRjHSiumTwJfsgP2m35GejUU7ojkl2OZdjVQHfJk+tFFOJDEcksSaVPvUUVYhU6OParOnWyXNxscsBjPFFFJjW56N4edjaoCc/LU1sdmuSqvALc0UVkzr6Id4yjWTwxcFhkrtYfXIrykMQcUUVUNjGp8R6hoEjNZwZ/uirOqDFxbuOpyKKKnqarYW6iSawmVxkFDXmS6vexoY0mIH05oopxIqFKSR5XLyOWY9STTcUUVoc4UCiigBwJHQ4qWL5m5JoooZSO00udzaqxOTjvVPTrl59YuS+Oo4AoorM27HWzANpr5H8FRaUA2QehFFFSX1GyxrDqjbBjJBP5U3xb+88L3IbnAVh9ciiijqhP4WeW1PaQrcTBHJAJ7UUVszmRuzaJaQS2oXzGErgNuavQNK8N6RbqsiWUZf1f5v50UVlJm0EirpkS219dwxDCJOwUenetnUgGtFz2cUUVDNUJExEQAxRRRQUf/Z", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAGECAIAAAC9BtL8AAEAAElEQVR4AYT9aZNkS5rfh8WWERkZkftSe9WtuvvSt/v29DI9g5kBwTFBMpGiGWkywoxv9Cn0cfRGklEGASRICBA4RoDEoGemZ+np/W6175X7vmdG6Pf7+4msuj0D6mTViXP8uD/+7P74cvzU/6//zf+5XmsMBoPz87NXmxu//vLLW9euX5pf7I53Ou0O59ZYq16vnZydHZ6fff34+Y//+qe1emOs2Zqdnry8uNgZb2/vbK6sbZyenu0dHB+fndZrtbFmvT3WbjaaAG02641ardFo3nnr5sfv3JnpT/a6E2PtVrfb40GzUR8Mh/XG8OXL1e3NnaWFxfHxsfFevzU2Nt7tNOr1RqNxcnZ6cnz49MGDs7NBtzfZajUpMhwMFhcuD2vkqA/PzxsAajSHtUFKNJrNpk+ouAYMzv7naDZb5KkNuawDo1au6vVmqwkTuBUceYFLwWaDm/MhMANgQKkh+ORm6E+DWmq1wdASEGMpUKNmntWHA+/rHGYCMmePYT3VBwtQ5JastToI1GvD82QTBLdgyOElXEqtXHvLNQwYUuEQsmGuFXor+amNG+kXNgwuGFituEEYHBsMB4UW6k5lA6pPJWZSJGBh/edhirfDAeiZZxAy2+Od/+nf/fv/7l/+q874OFDBpNWC80BtoDOtRuv8/DxVAg9GDs9Oz8/Ozqx5eE4SKgdx8EPmg4GIUsP52fnZyfERJdCZk9PT84GomldiJZNTc2zsH/7oB5+9/8Hk1FSj1QQI2ToTE7/8+S+ev3j5g+9/f2FhHjTQQJ5xFo2axKytr3e6nfmZeeqJYtfb7THwHJwPW9BArgaCqDUmOl3YtrO/P9WfpMKzYX1jb29QHx4fH0P88dlgY3cbToAY5fYODx8+e3p0fIKmnolxRK+C1E/PBmdnx9DSHvMemTVb9TaGNd5BF4EsO2oDEYVjA5RiODM9c7h/cg4vKB8RpCDIq4hQOzbePtzaHzs9g0LMloKKFMGDD9fwEmNAObUCpQHro0XVj6yoNUBRDUVD8gzuJqfKU9RJ7FEDJQNSIClMeTgYaCL89wnPcvbCS/hRq6ElyVw9AYhAk5WnyQooUsVMPFRiyE2OYkbg4x0VwpOQRnUkonqALrioruCDvCCB0uGe2FtMO4gRSAO0kAdY4iVdnD0o7c9rq1WelMQoSw4lmSyCoqzoBh/tFmQG5D3n5/z86pWrs7OzzdaYolR3ZRKKRSl85VhrzFoGIkBuXdBwiDGcnavZoICX1HQlYoAaAZALlGmA+Z2RN0jwWO3nX8Vo7vBP29vbR0eH4xNdhAp6m9vb5+uba1vbD5+++Oijw+mZwUR3DDDWM8QdW0vBcW9nb3Z2HlqpjXQygB46qr+nRqupaR+tsfby5k59rHN8erqyvrmxvX18dqZgop3QUtTh8PiE+jFuGQyk8CvikJtwhGv8QmdsDJgyjuPsHJdRPKjqgIyVOvBQg/r4+PhEr3N6ejzRGwf5QbglbqqKhorFH69sjWOqOiRMBn9MvZKIleZSswJPhSUTK8HGIYEUKeQCojkiFFLEI2inoFZHafyf9KaIQAAWghoCHaLBpEmkTEtFMEVauPGJBaHK4j61QnCkEAdwSeNCJFI9dZUCqrwH5wK4ctYlLxA5eABQmY1XRS9lRRgEWgCNhZtGDg9sXkPALCweXMRBFeNJAyYUDH0mVuQODlwLIdfiEsdRAQAJ+JPi54O5mRmMYWdnl5BBEdM4yx1pQ8+4hG8oT7M5htMiugDifrO5s7tLOvWRfzA8HRyfn5wc12u4NdxU4VDQ9wQMKJM8bsQxomi320fHp2tbW9sHexs7exubW8ur669WV4+Oj2HQ85evFhYXer3u+ekJGFAI8gpPsb2jQyzoqNtpR0lqNActDKI5bI0EI9+JSbr9/sN7j56vb+HrsdCCSCGuSFcdCdsBml8lhdxVBrEtByTr62kcavXzqd44Gotun56ethutZJTLirOtZySlMcTvNw+OT0gXjNwM9eqXGQbnZ+sbK93eRLs2RgPUGKMtxoxl+phRilwPLaUsCcD1kOlKNsiFqYVkzIlHQlBeCMEi6lChR4IiAZ+Sp2gwjxWVD2lQeWBCNAhRB1GaJrHVE9vOWiyQKxA6bWEAEBgIGvmHF6TKbGBaA4/kw+gvaJqURKVqdBGq6k2dbp6o4cKUhlFmqyhqJALR6QJGPahYEnAaBffwCsyDUoEZJwhu0f6AVTWBSXDVxHNubm7u7R/YaMt/XL5tIxpOCEBcg98S92jk6cnJ2Bi56p12+/Ts7ITQ5+wMhOEVyNCW1M+BcC4iMi3oxKcrCQUo/uhsp0MwVlvd2PrJz399RuRMIzMYHB+fHB4fUQiR3H/8+JOPPiCQkdmFlcCT3bX2eLc1hpYdj7WaIaFeP4M4wqe6yqSqDBtEQc3GcGZm9ujsLiTAHloTuFEpVPyPYIMR6aIqD8NYagKY1/DIBz7yCb9UWTs7Odve2jk8POl1JuSO6ckDhYpqYNvRGd9Z25iFm4Mz2ibdPsokOOpCNvXd/X1oPqfJs9UbpD1Q6o0WbAoanuAqblCsSaRsWEF+6yQVuhEGmWJHphFNqdDkLCoo+iluQoHLuRArOA/CCVqe86KMVU0VzWbhMkzlEtTSekawPhKDwiVNjVYiGqluBQ5Zwkuw5F7ig4JQS45izJKdjKmMWko2fkA0WAaifMmdpVV+EQh8Sfbw1sJhtEnhRKAGJfModDlCcfEhh4E+ALvjXUoSHeOoTmidhrXT83NkR6R0dnCEiaZpx+3CqSFSIkyYIJ5pNlr1sc3NbR4g4QgPuAQqaZNVOe64tVdm5marPTbGU5Jx1vZBZE5t//AQ/hBsYAzYFUyXjNrw+asXO3s7ExPjrXq8PeUIw6R9SGPSneiC1cnpyVizSaNEEeQIEi2eSz1/8rA5Nz3V7YzTB0gapQu/kimKFWZFQkmLsQlBJCREyaFRVIZ5Dmvn7bGhqtZsnhyf7h/sz/T7MIgQET6aXodB4EDThDG0dnZ2jo8XOm2Q7IAfGYK/cSTyIoKiGsNMZZLub4wuIrrA0wsYFM9YFFy9LIlcRKPj+iOCPJIw4naB5qC4lKCy1Cc0CCtP+LGjkfrVUijwufSrGXl65g3670lMrMKOsXCSBa8rygK3qEeBLxxSKGcN4lBaTOCKg2LWhcYGwgMAmAnqhAgQkAaAZQtQknBqgR57JNVsnGOjopcDR44sMPALrLBfqyWxZOCJII34ww1rqdEsk7h7cNBUOVFa46vj0xNbA9sDUJMEdAH8Udj9swNgLi3MT0z0lmbn9g8OltdW9w8PUFi4QU78Le5PUPQn0aKzM5BHfYvq6xnTS9QdEoDhFmkUznGPokSKSttobu/tPV9evrS4QP/SbLXzquGF8Aa21MJwjk9pCcaN3BrDs/PTVmMMCtDSFrDAptasTfV7U/3+3v6+rXzMoPARUqyocLHSv5IQceJkVRFSFCr/FBTBVaMFEw6PjtWTs7Od3b1Lc/NU3B5SIxJF0QGJolgIRT86Odrb3+2Njw/aFD/D/ItkIRlWSgNuJPJp2Brb6YE4Ho3qrXQiyOonQVr4ykSpWJn4SgelcmF6tCfYj0g2R+GthbjmqUogo+KQSEMw5KEKnSoI5prMXmAkKWLt5aD2gc0DPgyvJshycEFxKwdLqxQb78is6wVxb1JgBM0AhrQIxfIjaAVoyezT6j4AycRhYkmFJESg+7NCuGFVGo4Zkqfk43lBNFRZGRckkb/JIMjly5cfPXsG/vjX4zygAHInH/ZQvJZk1Yc42bdv3nr/vbdvXb82OzNNDIAlfP3g0T/7H//lweHBOP4Px2+bDysVDhaBSsQqyuCPaPBUftH70NjO0dJWvdU2ghjsHx1iOSB3dj589OTZpx98yBgmvVPF27R5CX02NXRsZuemAUAVOqeBQym0PPwR06vLgB9vteZnpp6/eqVIQnt4JzMKywpfRpwSZ/gmjmqbWkHGkgg1tlzHUVX61rXa9u4evW9GvMiDOTdbE1RpXCt3B5A9ToC0s7swOwd2KlzxjcPh6ckpGQBHb2d8vAuvsPLi1YKXIgQIR7DVvQV/9V5UjVAGxF/iGa1KNrInoZwsDSX+ceSRJUNRpR+USuekREcQrPL4DFXigj5fCtsWjgqGCee06WIWhVAkPBeuWkgRnhCaWhbnWRyz0IDRNISmZxu64hfLYE4MngIFy6o6S8hMhxO4yv9ypfYXWmAU6fI/uQUvBvWYtAQJs4Kq+M2VlKCfMmbiQdSKU6/bRTqgDWhEhoIy7kO8RD1UA2lIcXKy9947t7/10Yfv3bmNF+h2O3ZSG412Z/L7n32LMfJ/9W/+BBVGrNSVvoSdQERWKizaDyiq1URyxp96j2RxtQcHcA7fDxboOwMzyyuru7s72E1LM2nVTk+JODBegdfrL1+96k9OnLZODTpsB9NvpijgbHYU1LDTql2an6Nxkh8j1hSEUm9oU5T+IcSKLfzaX+KOUhaFtb3xLkNs1y9fhlTSXi0vn9BFMmyyIHTCObud8ITC58xCtBbmF169euEw09lZo06XC2DhJzylrmbt6JjQcFYWWQl063GpmAv5kpTIXUmTJSbiBTQXqdPwSg6StZ3hCljk4j4EhRlmEKpnHoEqBxBKLaTDM6mFPwoLo1RRZBmZeWKFNjUykMctYj/1QmUXI+nPIxwQzSY3JlGX5Xgm8DRiXNFsOt4qWGvyeXIK2IukiH85oErgOUgRZnDjApghFl9OulRzXxWTfJPziGSylmwFggZTygs4Yi4AGSxfXFiALSoEDoswA9Vrdlrj8IoofLC3v4dZLC3Of+vD925du0oVeDswYUIAVAmakduPfvg7OLh/+6c/hhrG2ell6NrpuQI2fDY0FrxoIARueUI8dnSIl1V42gTjH+TWg8Dm4f7e/vr6Jg1Th5FICvIMPlNZIqpnz18sXZqnP8PQppF73XEjR/cLXzDeMbIPGrNT0+PtsZMzw5ARV+UAFXEru0xFMdUCZVEeQV69hjniZXrj7Xdv3rxz/caN61d6Ex2Ywljxr37z+avlFXoqtEe2P7jQRovOsaAwTKhotaampx89enh0jOOfoK0iHegJBDENx9oGwzGsBHE7gAD/jZXsFkWiekqR81/cs3evSZCzYK5uhIqMGFh1MZ3KufuYYqE3P7lnOg9mkTMEN7mCcBouRyM1CGUTZlhQkeQmVFodleL1OfPntAdVgCzu3iCHv2QXkPoXQJbiIizWR1EDUKiW0oqanEHMehzGMaoOegUAl7lL3QUkZ5DEaZQHnEt68BMBbpNYwUk2UZPoHKRwLQj7b3leq83Pzxthg7VMZ87LGSp4isDI0umMNTqdw4MjDIT6Gkb/OgPcH2SgGFLUbP0nf/QHa2sbdx8+pLie0c4AVsZYI76zOKx4e7TLkGLAiBFaZE/8TG2iaoDDB/jFD7yh97CxsTXV6ci1c3puPDnD3ZO+f7i7ubP94NHTmelZhn7xv7Q5dEzjrhRMiWzsSk+ght3u8c4OiFJxaJQTcgEx223xTOOGUpLqLIEWjO8z1Do/Pb9x+fK33n//0sxsd2LcYQIamkHr9vWre7s7YA+bhEVorekb9VzoTr/fI+Xw8LA7ftxu02m2vWNUmDnmsOb8+OxADzGsddrjugM7M/FXuGSC7wg+eMoQdQoRoWBFIQCtvIqCcQYOOlQuirQVtc9TzKJRDkglyewcKjqKCLs0Qm7Bn9EN5Bt9rfKJCXACK8QGYrqbqYm8pRILoRnC0apsIHxibWp8apXAWBfoAMxzsoRztKe2hyJnGf5LOJlMNF+V2WuOZONXeIEmvSSSfwSzVDDKGHRSheBkVwogF0s1ml2i1e44GKMtQYQCSBZx0SQ4JkO0sb27/fT5s5vXr5EDzW0124zo4/7JghmgY51W63uffXrv8aPp6WnQZnKNDJgBKOnmaHozkIgDVSJQQS+csVPiwNxKc0WCiMjFen1vb2f/oEeAWTuqb+8d4Dk2t7ZfvFphdPXl6vrxyemnH31k49N2gpwOeOvwlOm9o5jW4Ohof/fg8OjcRmrswHkQbDu8FbRcQDhwln+q8znMA9GSQVwgv3ZOkzM7PcsA1NiYcQgZ4BE6s7g4f2P32vGJClT8AobEwBHhIUYk44d1RuXwAHQn+hP9s/EuJDVrDczgcG+b81h7bG/7ALuQvaBvwEOnx6YDVMWL1NEBslR6kRJJk4HHJa+ZqdR6U7Dk5FwuzDd6WkCWJ5GFUIzoVGK5XlR5xBoq4EGK4/UlNlW+gZsAAeTZ2q1HGCSAcNIq7M0GV3lIFvMRKaEWZARqDjiQ+lNakJJcoJaLcn1h8I6OBJaIedjqlML61NeHYuVp4VvJM8o24hiPB+fzszML83OMF4EofwTroEAvgckaumWoGgSh659/8dV3v/0d+oHYx1kND4hfP80wkbXgxudmp7udDjPH9MLRMhqDYwdamOPSweK2j06OiZrVMDQGd1qctOOI4WG4T/cDHNS91tizV68OTw7Rxr39w/XtXQAeHBzsHTCZ4Pgpozirm5u3p6bgLWQDsvWv/8NfbO3uEqhRq3Zsb9+BECoL/ZU+yfnIPH4wPgUNp1VGF5h2wCzOTqGHLrzz5mcM+2BIKaT7IeOw0e0uLC4uv1yNt3Ay8vzkrNUdo5XAEqyO1RkMILQ7r5ZXF2fnTvQKJ2PjzeOjw/39nc2tTYkf1pj8diUUIKsISLSCKmc1Bk0gIx6KdG6TAnEcFffAnsRSpDxVs9QhVVrrshFQUS7Kcs1hrdHxokXe6Brkm1QKgzszUjA1mBGhJdUHQraZRZtBQMU2yCplrM46cmf93HqjZts8cAVygAj8kmgB2O5D/ot/wdluPPDAMJhw0ndwoO74EMGmshQkpwVjVKkxGSlLeooUmCmfnILhENiA5Wn9Xu98N91apBwOME0FRDIkbjX31s7ek2cvp6enqBpVTvMhVQ6NNBvIlMVLvV5v9dnzVusI5WHR29ERjv98b28/Yrc61AvN1BagQl2AOi2BLhycp0ZCHWL0lqs86hs7+1v7R4QgomKP1DEprn1aq+Hwv7738K0bt4i+6DCT0vry0SM9NJdwGgCcVKZyw6/6Ec9X5ZFCsZJlmGDGvhzuhecnx8dAgTt7B3tMIA7pGzEZnNCiOdaGnn5vcrO9hSzJQyUgQbOKEcMz67Pn0JydmVtZfr69u3t8eDw4P51dmj89Zz1SY3WDYeJD7OXg8HCyR2tD/eAixihbZBbpyh+f8YvA+FfyiLPXRZxmSKlS3DMZIvvSysmOpKh2pRAIB0jULuRzi5aDhIy2LvJGSbyyXlXdczHI9AGSWfKDW3hq+wq+KDkEkV5o8sr6KAAIqybTyJFbj4or4nTO1PL8Cw7WXpAODpU2+0gAQVCkXvcuSlpVhJtyX+rlGsjWHgbmoaVLMmSg0xMTE6w9IwP+lFYgho/SWIQlSuRV4PXBvQcP3r1zh9gFtWEdGjyg04CmQjY5ibFZmuncM07x8BC3jfQJ608JIpj1RQWd+2Kss4luw49MxCELbQ06Gf8co69u7E6KJ6mgjaKbQQZ86gnLhmgYMIc01MPhw8fPsQd4B/9wq86IGFpBWYiWSkiv5FE4XCyFZA+yqvfoNzc2f7KA/qu8cbjgDHfHvMH+0dHUxASjJuSUztYYDQXzi4yUIkL1ADYhfHjB40ptVZuZmZm7d79C69dOT1+uLO/83EUfdpxOGYan+ubswcHkRC/2JbH8D+6VpMUptlzRkacmvqaPx7phNct0ClK9eJpJ+iSlHJa2oHmSuRANRag1xVRAkBdQlNbr5Cws9UZ9VWvRaXpRgCOP7kygajsXyhLm2XmWIWJjIijZMQUBSoBFELCiYnXRtWBKGQ/5rPC9ljCD0gptnwSOmPqfsCdyCTqFETzwz6wSX2i0ulIm8At6elCs32xIllXDnc4RMYXutjk+jlukGT89PDwgQ4dFmM4CnRHhrKyubG3vNOr0YxnZRE0oXWhz2AfjmJ2ZOTw8wpJo7BevXF6cnZ2cnDw4OGJBx5MXz5FMm5Jj7YIgmn1ywrKiGtGT2Kj8cpBr0CuqZRCVJWzhTLDmoXm83tje3N0/6E/gjZuwtPQyeVBAlFqKmakZmomCg8VyibYMNoBo7QxO1sswWLrdA5YeKodMdhDSsXhvcXoKRlFYAwZVKGnX6UMf7NPr9bAXAGTw1ySoBNnXpiYn9o6Pv3z8eHN3d21jCxVos5CPobVm45Cp/POTmZ29K4tLgvOwqEhSA/gZ16o3Cs8UgSpMFU3BlSKRtgLOvarvEWMgjasADsVegRvJ6lkAluocWhVCAvcUMYN5/E/lqmuqBYL9XeoLtoFOFvAxX0CaU1PhJkcBJHAbdwiD2MIhQZIvSg+CBoiizwVluPKp2pXaQhdQyCIschWelXypmyxyb1SxOQUjLvwW2YUjirDAgbYACCE1ApLmWIelEKyIbLLkgSU9SKQz1ulOTBDUYgOkIDYQYEjw+csXHcYtmfBi2hf4DcZzsHYNDDQuLS2xZP/alUsfvvPuu++8vTg/M94dZ+R9e2v7L/76b3/6i18yKAJq1GJ3oUbM0aHriPlxIA6GasRZV4BW+C+HyEYUMkFKZYUJdJ3pQy/MTDGGaW8EJDjIZD6AhHGqFIX4ATg8kWoMwiz8STYtEF6L+ur0C3DbTpxBMNXTWSImW9/ewh7oeNNK0OsFUXSXf7QJ+7t73JrTpRNnzTEtMgKg8sbU1DSL8e49faY47YdIJ/6GR/yB3+HRCaoB7iHKB1HWogQISbaCLanRYa4K5dJAZqgClLzSb6sFjr3xCCqj3HIuqiF8//KPC92tWICYtNPGqjJqDcQUuzM/h75DkF5bu/GRlXpE/YWZmzwWJy78KfAgSuCZabKU8KhP6+EmRQNWaFU5G43yoAgL1aKIdYyONHpQKv6ULkWJbmxjSv1BhjIph0yKAatbWrKeQlrEsxiDNaEJmGNzZXUdVxWdJNwgO8l1lJi6UA+l7Bq24atXy7euXqFGAmMaCwYxXfcW4EgL1f/RZ996/913b9++QyVkAFJvvDWxMPaP/9E/nJ6a/l9//Gd7B3aCWX/RaU8EE90/4+xQp/qBtKoFzVqCpMs4TZqnPBN/9QpWo5PDjc2Ng8U50EV8vlQhKuWopEcBw7iiHYFX2Cwj6BtTH00YIRcYGLcQIDHODxusQEmjuVubWAKDvvXBWWVUaRYajM9WpDvswwJVbCAyswsvGgxbMcqUYTi5DsDzc4eVMS9YABPgK43eESujIhv8HFxQOqGbUwopW+CV9FEGa8aKTNQYJJCeq0oK5iQDi983CQ7QIOysNocloxB5wiltjUbKoZ/XvJS6dXDIsGJ7EQp38DVmCiZiSL3ceukBfFU/B7cl3TseRUReAZFHEg17Qmhgc+k/yXLOeIQA9+a3L5HLKHSeFjhCESgHMkcIguaMMod9+iMj65GSpC5VypoE3ZifmVP/HMw4290/3Nk9WF1e393eZXQVpehPTHQ6HTPW6itra6E90Yvd5QpIMGhMTfZvXL22tHQJrWUtBhDREApiYSyi/ge/94N//Md/bDsw1obDrErmwJUrFJd48laDdo5hSgp8zcEEBYNV9rV57KC8CkpLK77DAetXT494u+yE0UmHLy+IpNqwLe5SJOWVP4VmmURjUeRoCIIwAHjGcOoZLNgnq+aJpdRqOzt7mO/CDApMa9CCU7gOKnf2u0XgiKqfdupd1FxGY67ymnKEfY1LCwuyRo0LQqgprPPtH1se+j78wy0Q3mWQN8WCZyB4G+kCwTgb4qNGBX6EpwB0oiBPzlhGVMravBcPaufsvermDwkhHWaE0WYSTlAVrkwmX8FHwVuczDzy4NdLM9DSEh2MIGodwkznO7UlZzTdgiXYA6zAAFGqKEIBrUIFUGNSPC51VdlG+FgO3YjDNOIq6Kjr1Q31kBhtiJtAdRyw9SmHapCyYmBiXIcP6jqvw/2j1jir4xvtVnN2evqT9z4kyLl27Qpj3+32+JOnz/70L37y4MnTF69e8WoXPttJpUBkgEKShFPrYzpdFhrpc8I2q+EaZ8GgEGP+P/yd7969f/+r+w/brTbDTePtNm6YrgWecsQEVjrZJw47US5QPj/VEoRXeT+wj3BxynQ2Xq6svFhdWdveNkDiAdqV1VLyQtrR8zSvYQNcANNwGJTz3F9YY1RMfEQbydJyBNki0sD2+GNNFSMJIuIrf4kfogf0ren3nB4dWZjF4TQKafybNdAAKBrYnJ+ZhaeFP1QEFQ4QFPdQbzCg4IJ4ZytBssiIXzVSLHWyagxJ6qm4c2ldZs4B5l77wMRK90YPw3w6MI5z8hhdCAiuxCicIN0aKIgSx6RSOOB8ImhrqGrBX8RgwEizs1iI89e8JR/y4bI8ov2EP1XzUvLaVsHoCstQZA1A47+AAocauQitXlJjKZAKuS1Ih3xrBdmQSS6qE93S3qlMAuef4ACU21QE8Aq+z2TsRG+C13nhxNzczEfv3Pnkw/evXr02MzXVZqkPgOr161cv0wf4p//iXzx9+XJre3tpYc6q5af1VCQ4otCamZ1FuSfbkyg068S4ZuIutWgb443hJx9+8NX9B7hbIgX6CBVa+Lw0YHlPLqvU6gOmI6hFHqE/dCQwZLCF/9CY7g2PHjx9wnuXYjCst4jiQEed4Qhakl5xQD6GP/JQAHAk+RL31lkOem3x0tRkb2l+fm93uzfRf76ytsNq0v0DokMWtDqLZkvtsiI4Atm8E4fhn/pSBcy3UryDvMACEIdj+bXJqUnGmPYPj6zdYEPsYUSaFJcq7RzsZxymaICAgWNmKVBf0Cow5kJGx7nLdGkxm6wIubEZE3hINjEpmWAHOW2TEJdOoQpNCiihCAeIYYf1FkWidNUulAeBJg7iH87JBFS8DAqVvMkULAqOoQRAEKC3KE/ohQknt0IQJE+SF7TN7kGJ/MoJc5mcYoYQHiTxrECNfSZJ7KuKtNmIWQ3KnzFfnkeNvLZM4U3e1ZxjkKff293bm+73333rrUtLlwhhIgqXiZq1WXv/3Xf+yX/5X/0//uk/W15Ze+/tO+KHHIwpfAc9OCKCGr3E42NGI60FjShRMU9RDikY1C5fuoQBYCFt1nGw1P/UNxOQI1aE8qTLqj6TwSZM+WXtGsPwTOLaFKBMZK6Pj7EIqHF8wjJQono7S5aXM8UhewHr9K9FS1RELxkMY8S2QZyO56II077cvn3t+qfvv7M4P82SWijDbV9+sfLFvfvpJJ2yqhTbBRQaRiF4jUsEdLfb3d7aAIgU8r4lK+tAEbNu4u9PyDHZn5js9Rk+gyHlRR/QcL1UC9awKHXI20lgD6qqgNpQyTiSVvOBpjKr38QD5JGPoc1rjYNXgPJAAMpZEJzhTq5UDCSuiXmp2ABFHjVMaAxWOFJRPaq4FVwCLiqk+qiwFKOuFC/Vk8/qKG9mf6PLnioJ0AUqrWLBQ4lUT0hIsSpK9Tr/rEoOc5QQyCtryWEhaTRRkCYLyYvkomEng7AsFZZ5XW4FkUSNgmpKUUso2CFhBqN7Z7zWsn9AoYyZsr6aDokLkAiGqRbtwRj+i//s//gXf/kTx1XUigELceCl1YgDGoBWosf0AYmpxvhhXIiFrgQRxDmKplabm8Hqpl4sv0LFURjCY+ghsMEeaCcIm0mnUvCNqfEQvWIJKlEb/WHsAFds5wJ8eEeCkISYBdtjvqGMHWmOyCwaKXlUqo+ONqG+DHeCE6LjBUxZMaR/7Lv687PTC3Mz05OTtD7dXpeVIG93++yHsbL+5/sHdJgdNBgx0TeYqZ/CvLAMfvCLw5fozk/r7QlsQZbZmTlniHd6avLl6gpLzykuauEvlGJaoLGzvRvIrBiBOtyt/QfF6E+RNIYHP0RVR3ChqWbjiKJq8elIKn+yhrKUx4ZKpQHCUzUMZkTTiFcNQK3anoYXujANj8uAz6mqAwwQcjCRkRlhiyKqXOS5UK7gPyKAbIArd0GOp9RHCmX0G+lAk1j0w1QOzkWPKShx5jPd0S0yqN8FQhKrk1j4wBritZJOPss6rpZWEb2Sj1SQ/LIW4Pq4GmvA3KgB7WGE/+v799+6cwtdR5WB5zA/4weK3ZdsP/ngg6++/pqoocML6ahGKzESxhTvRcVoHR0JQKNvAEHXmVzLrDCVw+7z3niH1xseP3sK69gjgOWvZ8dnLFKCPrvFYURxB1hVkMS+AIYbHWOug6oYkkJe9J6J36mCf26ecnLSYq6C8pSJj/UtJOwBufrHgK/00r854/WHwlaeQjQNDFbGNHtvoteyoQGEaoG/v3nj2vtv3/z60ROmmUkhL9AZ9YSlXMIZCHPyAf2lM91hiWKNAWkNr8Y04RjvbtKXWFpc/Pze/YhQC+ftZzDRrHWFQ4aoj095B7xvBv4iO66jrJhrhKh8lR3F08WIGHNVSd4f/VqhSxhkjTKDijxVawJb9Qpwmzc4zp+FvZZujxEO5e6NczTGKkDDIjQPRZc4B1g4LMbccQ5CpXy5Kylc8wxbSkZxthWHZP9rJBaJ2FQnmAk8rNQ8Psg/8qROU3Af3qagvTgISZCgulOq5JPXBodpMKiGR+Jh2yi2Fuc0YMJ0fmFh/8kTRhG/vPfwBz/YH+/o2hgWwRejbAiO3JgSM2PXrl5dXVtdnFuQo7FqnuiEAhbtYtAJBhN9oMpER2BFn4CAAEyiBUNecvj3f/Znx4Oz3vj03NI8jhiF5KWfx0+f8fYc7QNWSXUoGbrmcGNWgMMUQwFg5sUGbrQBKvAVU3dnIXZq0kREQyAbb2dvibEq2AHX4RHU44khMu5HJYDhJE5P8/bBDFXBUmrgzMwAnQKWfL//zq3j48OXa7tMXjDxAhzwo5g+VYVuOCt5eARt0EuNDBbAWfQNOxmc0p42r1y6wpYzpEz3+gzSvfPOO0i235vg5df17c31tTWdoqLgv39FFWJOqhMsrpSjEh5JklOyUkYSLE2aspUm78FPTKIkaoFe1XsLoIUYc2UESeEBj6r8/HL9zQPIowSH5OOYS64CM0VCQslnqgc/Sa3OBcprYCKDDQd1i2gOhd5CS9VSgXzI4hHSAVfvYh42eNBJxEYsoa5DZGgLI1V0LAPmyx5ZHIzklrWEkoIhvUVZwLxvH4dIzFFvsOnJr7/4gjcnWYlNVHPWcoGZzUIOJoEWFxc+//ILfGs8fYFtFZEBIZDvIa4srxBxUYoogyEphurtbygOMg5u37j+wZ236I7/8Ic/vHr5MvtuESDwQsKDh0/+9C//ivc2IdzYn0pllO0MCmh7DF0u9vYgHnIOwB0n3C+LBU0t5gNYNAoGqrhBFiyh56Fjob3Dnni1AqQJ2ihLigLBmAitsA3W21Bi2Gg3XUBE9dQEHBZVwBWWuO7s72HfjOWyNhvgUAILQJS4DUugjggZ/Og2RVp6Opjf4N2O7nh7brL3we07169dX7q0xMAwL8Kycdh4u8noQFHhhPqKR1bmjLDVZ/la/H3F5DhHUhFxdMCnXKkBakkOIQSSyk0aGU03F+k+qTImd04kYj/lvvx8I0uSOFGadA1RMKNzufwGsIsbwUgLP/7/5iGepEJOgNooquXgH2/lBVKwjP4l2pp+f9yunFBoYuPZW/7D+DCMa4qi00BEGaTbCBPphFvM/yQ7OcggHnjAVoMtVbhA5dqNsbv37n//u5/1mQLAEk7dmcrGX2MgQKDLu/SzX/yCoU+CEZSFCAONyUvLAJYAPOnPf/31tevXWKlG0oDeBCSQMzEeBE5OTvzv/uj3+1OTMzNzhCQg2G620NHJb33Y7fX/2//uvz/SaxMPudKOKIOtNGgb9vZ3ME5qhD7el4RMo1zErwvAEjKEjSJiJVgIKh7aCnnGV1wRQrFBDHoPc2kcEhoMCLYODg6/vnt3e3uLVUEAIOCK9dgI9fr9xaVFAjQmGegE+z6hNKuhviEkmqwV0XKcInB2UHQ8zKaxTfcnUXred2PFL++CaOO4HIar28xSj81MTWZ2XDxVidEBgNxKLWm5VgUBK3xkZ+aIn6K0dRDsXAb5K30jF1d24Wm5qNRcOkENNTdi9/ceJfk/8rCUENib6P69cP5uoqRIT369HlUiscWKC9icVSb104rKOUUggwTtwqfQgi5oLKZqUWiHrlBXoQisJVRDbsmYWkXBWiOjmAQptk+sHU6NwBisb2w+efLYcfkBE8y820xHlrlXwZNndmaSIabtrS2VECcqWbgn68PpUP0UXcRXK6xdZW0NKKCXPMF7g3OhBLVcWlro9SdKIETIxMpVfCuW9947d959+w41IlYOtJqohFj68GifuzCLxXg2CCYeHjoxzBI/BvoxfuKiVIG84ZFk4wmIl0Cdg/JkZn0VZMiydPjIwBPeyXy18pLdKHZ3906ODhwYJfH0lGkEUugxMwrAdnoUR60snuDVbjtvanR4hU8nRkXYrKEbLM4B8dhLv9fnpW+Q4zUQznCe7OgmY2fESOw5AJpUBxNloFIb/XiJIP3JEQWOciBtNAcKoVSI6oMX8let0Fr4ByDopCy/CY+IAaxCOSn0Krd5U8wfj5FOJqv3SeVktmQCpppmJRx5kMflsihieZQ8ZktiChcopWCBCZwEMcKoEC5CUzzWz2NOwSNKqBKLiWTpyDNFA51wIVwnpwwKegXHQIBFMIfhCp7QVBR4GAy5Ma/iGZnuBYRdyGS+9/ARlsCfhKDv6csCm8pYfXfz2tWNtXU8rATKJUGiUYqgXgMUZH3x9deoMo/wsSCPspqnsLHB5g9dpgtQJGDT2gCHeiGHYaIb168TO2gH7kTaZE8XOrNHR8e7TH0fMDKfgRzABX/Qoy7UHX/tdC9AUAdFpHKoOvQ1oAubw31TjTy1CZF4Ayl7DrYO+JXVzXXUfXJ3ZpPx5P3D7d0dBhBOj08PaUlOThkl8C3QZh17yEI9qaY4LSO3Mp0FdmPMUO5DicxFV+UMbU5jkTmK/W13RzUki3xQRjd+ojQTzIgHpDiqIZ1RlgBAA1CdXJYf3RFxjoBUWX7x9TBB0esC/C3p5pdDVuZ1ckRigiyKQHYfkBDdqgpXOFro4kjO6g4UINNhIY8KP8DkbnRb7nwuylU9arwF7BvpjLLmXswwTdUFLuRcCgcrMKYwtiCa0TcepoSEh5TkBmx6RE77hIDq3tKVTmjAprKMxjz8WtyC+TVtst8nmS3osBiePXrynJ0mukfdsX4fTXEcCXKIwKNCvNX77OkzXjthcpp08qNfqDE1gCkvKuDy791/+IPvfpteL54Tw0br0GzNDHFjCQzE726jumDTZGcKV17H5IZDJjcwcmJ+vPLZ6RhoH7Bn0fGhrESqGq7KDzR0Go8BS/VvDF2q2LLR9h/SHVXKHguE/ITyEZ6MkBWhmzftAVNYvLl7+NPP7wGRCW9eRgNMe5zFp4KBMCAfaIKuN6R6DuyHngeAMD0Mmi5LWyQMfcJcK1EuEtu4tLh4cLADZpqhrkhnbrtc581Yd0HjisgmvzBIrShH0e/oXJUCEFiQG+DEL1qRMqVdtNxF8cIwHRtUwKw843kpXXighhbtoKh4gW6YQyaBk1rwST7xDPeZUFcjSbQ+CpY/knKIxujwOvTEgM3toSCLeXIlgKR5QoFMqvKlhlIR2AX1ADNdlFjun1/Lp4zlCIrS6FWFq/rDB5SY/IXGqgrvpVS4mvdCFsiwkMYwaFAjKFjf2KAvC+2EKM4W836VC6op0mAqmh18d3d3+5NTeGc8LkJEQEIDWL1xeXHpi7v31jbWOpfpGNOVPWFb3FhUKnVgvMkijoO9/ZnpaSJ2EJAfeJnBcHKK7aVbJ4cHRNRw5JD3MU/OaZ3gBN2YqAHkGPFCioCskSktuipyyjEixnyBSNcWfPr9PsXsFWAXo0EPrhE6xDCJgZJEoQZ7h4wOARZQDBAxTMwG1y6IKO4XHTaIYUhYYzB2YwSVzIw4YYMEkd3zCfrxtEFwBNsAuHokkvWZqRkQBgU62YxIh4mIQ27RLGi4XHvo4fhRObjC55olUn7jxBMfg0RJ5Ndc5LMumGEh/qP/jG5FYDgcPVxVErnHXEpdwhJQMYiigslo5VUVFRKwhgGRqmqhcai0qhcQuAgcGVsQMDF15XGph7TqyL1PxF6ROcgoiNSap1WRcDGgCksslP8xXS7VWWGQiGZQp9srxZAFX2W2muJFqCB1pHJyIuLUSzh9tjg3+1//l/85w6msN3v48MlPfvrTJ4+fvf3WzRJxJJqIYCJABH39xvXnL54RcSF2q+dlz1GvGXVaXJgHHVYrsQJt0B4HMw68SYUAA75jTYIoXvWkmUdBkJ8KjJINh5P9cQb3ecORfUV19M3mwtxcb3wecnk3c3t3H4tyiMhaIRGN990spwWK26N/CMlwlAJYyeEhPQz5i3QM4BAXOpRojDTEn9Adncea5QaFEQm10psxH0dYSXeFgqwTbHQczWBazE0etUWGe5usWyQ8YRiKeAeba/kOk5qcrs45/QF6QbBSb0QtKrHI8kPFWGUqgSBttaDBU674Bz6K2XTylwwi5LNgVm6SvyhkEnzMoVLwA+a5zcmsecrZ3wJopLql3Ovc5uVZzqQGXClhHp7Fy1bVJSnAR+Cs6w2QliwJOedJsChoIsyomnCqoyD+usZRsrYsJWoVrozyaD4y1g6wKm5kK7V49omMR7RSUGoMXYBLDtEhN7edTuvjD97BGzKo8d7bbzHj9eIlm/rYMZ3oTqBBOC4UKTE94mBHjNmV5ZcMtdPxozQQdA9hCI0KvWqakS+/vP/pRx+zywqNCRCIk8AnY1CiRv+Y7DQ1mBCyFmdDrDozu7O9yb3e5Ltvv82W7zPTUzeuX52emjo+PNja2nr49OXdR49X19eIR9AiDYGDwvZl3bCSG3ecpL8LTjCD3oyaZABZCYXcun7uLKckFYNz3RSFifAAC+JFbCFgE2mq7RDv7e1xhlwAosq+NeqkhlMUbl7E+89nLKVydo9/ZAlWNIJnjAd0x8eY/QO6PAIXJUaTYnuAKVI9dan2IskNZQuKEZMZAFrJNVyODlWlyrXlR8ebKZTL1p9V5pS2FsmW/mBDweryDRBwxnQf+TR3FhFS2Bm0TS4PYWUwT+434FSXyUjZKrO5CthcjQgclfuP/EaKQUD0wxPughU4xS7gadEnMQY2kOQuV2Q3Wo18kqyRWHuhLdkTTTgA2kYEc/Ozv/d7v/uv/79/srGxwdJp8hGzj7lfenlLQSQZmp/odenC8kGMCL3YoPKiRlZpsvCMhassUmKVGiGAIb/7IGW0HXxQBXrDLCY9PWPLX3BFlSmLItOF+NH3vvfph+988P77vAl8dHRANqatHOG8cf3dd969/fD+P////Juzw8zTQbzdgSG74KvXYMZMG2/707vlH6vM3UFDCQGfpwZVTNxhKpwM/7EKMbERoCUgnWQuyUoLJdd8t5ZoCwRra5uMEjCOS4UOh2H5tj669wEVstOx3XibnRwU8TWgRFDsxjc7z/wH1QVLAeOdyg2aCgpRJymQgSBVhCOrrcKfHN6+PrgWwyQqUS5kf5XBR7k13Vy/dSR/BcEs/o2O18kplNKBIRu9K/C+CTblq2c8Kf8sH+ijIiZ4lMRcgqVVY/A6l9HT/P7dE4o/SuQC9bcJ8Aj2pdUtGSocC1XkMVvYW1hUUUJe7wvQDDTHsvRTaMH1Kzfevn1nY20DLSe4ILzgQt/qYd2oE9sNsdkErQZBATkgBtFzhSqCLK+88V2auw8e6pSxRf6Xpowfuyhq2nh7nKdRGfFABVEJdPHdd25/+N77RvgNFrmNO1Tjq38oaKvT7b37zju3blyjRlECqhGK/UxmvFTKMEqieSB7VC3XX3iNOhv6yOsqJs9jnYp6bYgGLD2KgU0qqLr5lKi9ePVi7/ZbmDVca3UdpT9hlCsTEIy0snt2f1K3w0FDQd38C8cwwubU1BTMcsRC66lwA2ErMWjEB5AdTMVSfBQDt9Fk80tIKNJhiM03DyHm4Cnw+V/AQJS3FJEVSSz5quvixwM+FYiCj6qU3FQn0RqBqfIko9nfQAk+C6PEYxXWakxBv4J1wQHSi2j8VYoU5pRsVZlRkb/7qziTGQLpCsExFV0QoRgdEJj3QCxQg4gZrCNMVjm9L/8BKfYEuseMiaMUiPmtWzd/+cufM0DEW4qM9eFcWfpWVEXSeZ2Zzu7Tp7t7u2yEza5cW6+2V5ZX2TCYGSqCiK2dnX5/4tGTJ9/7zqeu8BvvOC0dFymdYIJ+8MZlYa/ajBk4HYHDZkCFWYL22DgVucTBVZ52pjV+5/jGbt+6/cXX91nZxfAS/UJel0CBWwQhmC2Q7HFq/YmKwggA6TwcSCmeGHV3RZ1JuiHURccCaBoEDjAreskoKg0ZhgSYrd2DlY1tXms93traOz4hVmO6jfBxY2OTVm5p6coCkZArDdVvZ+CjH2gJdTNXDUlQi4HhRWLDrshg/z9N1EM9iDj9KQe2Xj1UcuFb8uaulIuSK/nQXHKTJ8L3Rz0DtPYjSxR5kjjlYamsYDCqmLw6i0DhzEMhFthxcwWwOUqESgYQsKawkbOggoPdR3E0pObCPLaIHOoh8s6d+kdzSiLzgD4sVWrVpoWTgBNjC5JdvQk0U41+fRI8ZaM1FsgQolFSK//ijn0iTAcmWO9IQWMDtchSwVr4EGRONJ5dIvGliLvX7xHTI1yCGELiTosNv4Tc7To19uDRw4Ovv372cvnly1f4b5wk7xafuBBBlVzZWF/d2CDW7zYmiA7Gum3Ul8jEsWMUD50gZDo/74zxOod8ABWUBC1iTIhLdJKKQIkfkHSNBZp0dr40t8AjhpUQhMKgKjvX9pG5cGLC0V5qyEvJMg8IAcWPJJZ+iTAz7GCLJS+ZLOAkQ8LXYhSJVayA17l/fffer+/fX15dY39wctErAALgMSDX8bK8z3ExFp2Duq6+CIEkukqEXnYzsr8dGGt5CsGojF9ow3CxQ8DyLxIpopEO6+BvdJRrc0FC+Rtd8wulxoNhHOol+dCeI7vK+l6E8EJmMoqJHJAh5OTMv3JwAe2g515wJMkc/0YHZcLrwJOHpZkuGTBP9vcPF8wfOkBGMwtCZB/Bef0b4kp5HovkxbOCW3VLYSOR6jAjwuS/CHpgfISjNu/ippaUy9J0CCrKANlmVs+KPVEQ/jCyjwc0QmbT9S5DpezUe/nqZRqfQo4qg14mGiGYmZ9b+Of/47/Z3N9j0oAv+hnetGtMHjcYaTlj3o1VomcPnjy7ffNWaNbf8zoCm66CNbWzYBNboCEqy7ZZ3wmXGI4CDja2v7fHBJw24OpSZcmADTApSn5mLfZPjhLCSCj7k7lIEJVKTUxy+QJA1ShQAqU05ilSCJ/ggK9zVYwe8VNO8r/iKzgSvdQGp251ZoS3tfMIDNBXRpbAiRXiLAWhSujdPzikaPoJzjmwmj1FWARijxVjsPXWo2Lrkm8tIGxQZEulNBDGSIpikOsqG9Qru5xHhVOkSlSldKCCtSGpgKUKyHbwiac8Byort0Y6XSlHHlWlzSUcG2BKkopVR1ksLcc4J0cwsqj3ZDWVw9/Y1ajGVFo9MIONu0qXguVscg4QV0zUoUQK6FSX61xRHb/FRkgdHeSGkzjs4OeJfzBCOOb3sSeAq/MWsxZ+kIFnCbUYBhabd34sBWimbt64+jd/+zOmms/GkT6ejsX8NhcYtdxoDJhBu3r18ta9+67dJBWVdfhxrGstWJav0bCNJDp58a5mxTYrtgkm4jraPWYSzUjBrq8KB0XAIa7WYyIGvpeZ1ayukGIF3fEhPXhUMaRIHxWDdOYTDBjlI4cPdD/SJgfCGUhObk0gailTSmbZIcc8qJQ/2HqWAJTiIOKiWHruFsNk7eOKLQ0BkxJn57v7e3QPsrOT3YNIQuNB7oHfYBE5bR8mDiZx1aTTQnqMmGLt3gYRMRftcuIiRJRnEFQeljNPzJjM/JTf5CnXoalkMHTkNmCoIcVUFa5gIslV7eVBlU29tS31qWXNY4aqLnAOciWpqp98gjRj+RuVKQ2UaRa37JtHlS6QQLDGqmTAwx6eCFZEvnG8vpejF+WS10oMgRSG+BiH0yZQRN5Amld5wK90+sJJWXQsWLY8pAfLMoeJbh8lcAQpS5LDMaMSxoi++51v814yFaEG2KOjiMMjwNuiurFgc3VtnX0A+EAOQ0gYFRBY5kOkABrOh8WGWNXADBOt2UgQWJRvfrLnUgkr9vcOWM3KFy+P9o6WV1d+/eU9rIuEIRPUvgphj7iF6YG1Fm8P2RUWvDMfUmusxkD7JBcGSLTkgSJIaME5ijaQQEY0Fa5hiLyTQW5xhVu8ik9xwjuIRNmjHGSV1Y0GmzqxQormAi4AlPRUJpz0SQZkYGiZ3QHZYBAcFIPDfrawVFpwKGdulJwq4K8S4ly8YO7MXx6OzlUOSylbz/6leHnmmUO0qucloWQ0jRySkuRSb7JG9cTVB4E4yuQ95Uohyhe45gso6y8YWJLjNWLeVDXlyW+dUrykBabZQ35gaAxBpipVblQnRIkKeYwggMCookRKBp/qgF47th24YqobxkhsFhAfr40VOOoHG7RM9JcWF1Y31hcWlwCOInCm6WCJMxUgazLdvnV9ZmZ6fXuba1YHoYK81M8GYXSj2fqQgx1X+SzItcuXCfKpyulqViqkU4pPtCFhIyw0Xh9PtVFlMCV8bjXW1taIP1jtc+/+fT7OiU2yLyr/MiDJBgITIbkKTe2GyoCoHl1niKOjzsuTdB+6+TIcr0pu8QWQc1a6MiSAWxcNxEPvxyEv410BcMhLtd9djIo2KkWIBsP4EzKQDUNH70lB8/m2J1t4u6mAu/kxoSF3GFsloqMPQAjIbmqMstlS8j06DIadNGxbiUdZWtgO38spogsObyTq5F4fXo/u31CK0WV+JaVKqBTHO+kYlSwXURXdQJI5Jdub8NEcnlu7MPPcm5Lz7ySWRzlfVPRG2ujSiir0qqQA53r0O8r5d34vyklMdYA9fwoojBpRPnqcXzMjQKIB8pRaEjRYFnRiX5iTvTUUwrABd+n7LuQdXLm89MWXX6D0jqA4wJjeNs90pA5+0J++dvXK2sYmwziECag7fg8njVqiWrAQm7r/9PF3v/NJ/3yC1zALU3lqv4Sza9jarCo1NkNDlJNYoUV88Pvrhz/98v6Dg31WwPmxQ6alMS07CR3oBf5FXw3aBi3sA/1m8J+9rednpr/9ybdnJvs3b107Pjpih7GDfT5Z9epvfvX5i7U1JvlAn1bMgSEjGGxAHeFI1dIe2VecjhHAPO2AzMTZ5mRP8BqrCJlp4a65s3f4cnllcrxD5mbPyR34gI1BDYyALzCCjVBnJRsc8SgyHzJAgFsBAjFocP6PHWCFPVZaayaKUPDvHmasUpWz2agFy7dWcXijiKSW/Ektuh6DiX6ZE/SsdKRAqbPA9xzQVXXS4ZFfri30jSPIBGCQ8KmsTZ7kr3Kb9Pp+hHBVZgRdOMEOIFx4kCC2ufW6emyKluK6r+S0NSZFRQo0ipZKfPkW5SISt2F3YIcx09PFxcVf//rXfF/Prbry9Z1GB/+FomsSqAADrJcvXfnrn/3S/jKgXf0GfG0AGjmRtrrKJiy7LNTv9dr4Rr+OY7XiDAzK2Qmhq5BR1CI2nnc6zLmNv1pZ7Yzx6YLkcuM5xrE6zEJw8A6ytucLxs7XOorKIOVsf+pDvn91eentO+9O9PgajhPgoDs9Pcmrlcvr69u8YH/ELnyooi0gZNDxxTeAb2Efqu61iDCP7Soju+soLuMJDtLi8h3pg93s5Iq6s7SDho9wjZfubi4tsg/SWbusYi/OQEugK4EWHhwe42zYGRZjkP68xglAoME8KkVQMiaigrnhYmRdEhUk2qwgk1phya3dEeRa0oGTPAFVwYywA1lfQ4nq7IWU5jfJYKUWJY8/CqmYRWDYzSqpwRI8qocW5ijoJqs5zVR0rwJYQTMDNakrcp275LSq/PeOazNUYPNjfqjz+qKi0QW/FCrZZaWAZZiwC41cqpkgZJoZfGRe73M4hhl06gQJCIVE14fWeINnkq9xvHq5PDU1g9Lq2uoNJhkwDCRCT5Eg/fLlRRw23pXP0HKaZDvdsTHdfN5ZByxRCXvsXbt0CYdLhrEhXQU6DChVwjOMrjWGZrMxXvAKemmXvvXJx3/1tz/jNTrQpSDbUdJYYUsqMa40X7HhXRoXVjOCT0eE7uB7t9/6+L33+CgiNoD1ZiEeYQir3M6mpmev37j167uPaLrgkBESYY3sYNqijcMOLyvGKW0ZxFiBoubahoNghspxFbqSwWmT/WJhl4vqUOjVtbXtvV2GtU5OsXVWrLB1BX0Hhwu2t/dpNztdVh8Nxugns98wHxY9p5vjSBkYAF+H7QtH3hKsMVWIa7GbSnjHAxtAwjXXnJqkOCM/7srBxYVQjROBab6RLnFFkbRmPmL4q/SIYm4XQJK/lFNRUg+va1lX8qTS1Ot9uXjzJxUC3bqRrn8XuYH9jUOLijKWVOGnStPU+KgyiUEntXvpXf64CsHm4IjSqlLasaMu0Xi5JDxISSyazBk0idNJVCIlYadEJhziG69jhBJM7oIDLbquha+5zsw9ff4UD1sG36hV+uyH81RhXZpfYAiVtwe4R8W3znbQQRSF+lSeEPX0+YtPP/4QDQyqQSxdDqRKJWjRzsEBryJwAZEiHtu9eunStz/5+M//6q/pQDOF5RfJj4/RNJSHqIz5um0mt5jcPWI4dUCXeoytp6+xVdPcPGtBmJSg0wx+4ZNtT63RZv9q4YuYXx9BVtBAfIS+VryUK5Xs1Hc78Y7wSAhlQNYN7EmEBY6Z0ny4cx6mNtba2t97sbIx3u1t7O+t72w9efKUDhNb9LHjAJEcjuGd22/R/DlKDTLUJwoc8F//RA78SqmJThLyiRoVQfLcJ/6ki26x+G4BlEM5khoLiTukRLSlgKxypQWyYcEPoAcCjM75I0yrSx7vUsYnJr8BJtfcV3pmLclcmiVLlSTu/VaRJUdFQLK6DTxK2iREa0OpMJO9PA4BwAYxcppX2FyYEoMYNYY8yGF6zCKqLiKpg5OypnI4CBy4Swb4oCAzEcFTYKOChEs45+z6fj488bVJBI1yLy7N/+bzXx8c7vOlpvG2WxUhSuoEAKXQeD4weePq1V998SVNfKfZuIEuXuZF6DkaCraI/tmvfs3yo2fPntOfZrKZ4Ri6rAzIo37Uik4iOkIM8CW+IF2YHCqbz7776bf++qd/SyckT+QIBkjfc2/9kJVIaCYRilsngTsNA4uc2EuC+CnD/YDCEHDZrpQmBwNfC7Oz7Ly3t48DCT+lQf3GgsOmim9FB2BMLtQCnqKXxP3y02SQdrash/myMLtZZ6s81tj94u5XXz166PcRjk9wJgBnypyhYjjM1hWsvgIIlKiBsIEOtCF7aM0INHISepwMeRQYIos0kUR0I9I2JRpP5pJacNU2Rn/kCaKlQFHHAC8JGfsKIYAoWldR/UYx8SnZOV/UNUqxpt8+kqa2V8gGiSoTSW8WSeGQ53OeSFSyWlN1UzJVALwJCUl9A1i5Dy8uIHgn+hUiXltHMgk8/TfFn2tcG44O+LgsDIlmkLaMawhBPaiW7Hw9BK1dXlnp8/2+TpvN3idaXfwcoz3Slde22K5i+eXTd2/fYSH39avXrvltQtezMfo505/61//23/Ea2ObWFnv/tIcdwvBWh/7qGa6xCAHPTS+YV8OolPcWlD62Rqf67JxvMszNzfF9HSYM0UNIYCwW5bdqd/462dnzIygYlTNraCe7tdiLzdpstCe8wwVrYXz1Cu3tdft8y0O21/NKh5GHk2XhtsF6pGibhCqbCan4zy6R6sgNveH22NLcPJs38SLDsxfP6AaBCigRAsHqYtAYJ6P3FKEszoMLv3eFvRo10s6wMwcvRsFuqrJy/BMH1Yo1jpkZEnsKCp9KdVvJNlIGoEqcMvIohUzMn8/M4I1MFovqKJfe6hHtE5bxFHNycMuRy+rEzTcTvH0TJrdm8Me/ERzjEyqvoPFAMkSp/H9Nzig5difBpeJkrHIDpHpQgaeaCvAFRBmROsJDBUqZ/PkEqPlR+Y2gcECmKF68a17lMJeJgyHv6U/0x3GghB+EwegaqayhmJubfvrs+Vu37xBcKkfKc2gt4ocWsXPei0d3v/XuW+99+BFL2XqTk1ZGB7fT+ew7nz58+uQXv/o109W3bt6gojJYQtxLab9MSuW81pvRHWaOKWjVtgzE/yf8Yj/3Hz8hcgubme8aHu8dYBU8DlcEQBjNfAKrUO1JuAuRy35odYDsIiL+M4RJNvQRcMMnRQHKalLbIEeQEFoGVQzQ4gfsEGPOYw22smOpaXu8w/rWA2b2jg5Q35X19RevlnmRDbCoFC1P3Lo88b9SgNFqtsyya8FXnOkzswF9B2nQWhluggL50w5aCFJGPxc6RNmoSOTkSesQtH9efuNA8oAp5qRU+fPgLHSO6qdAsTowtNpkLJWXjNXZJ6V0gRQIpcQoXx5UquoTcIur9bnIjPL9//0Vt4JfqdQCVdr/NhxZB+46jvyjSkxcqkq5kAkimiXYcfgyuln9Q3wXqCn5hDyYAUun206vRTcYoGm32Sb1r3/+SxZIHx/3UQ7CfZY1iyug1IHhpUvzb924Yed1MJyZm6FbyCv6KATKObcw//3v/c5XX919/vzl+XcBT5yCDoASYzG4Rl0deKBx9C4HuzvlA1YolRxUic7Z6w5jw/oASBItAJh3mFZzmg/aGa9Xkd2jhkEuApPJ/iSI0ZcFQ9UMlwciznHZ0k32JlFa6tSW3aFoyOisnWtiNDv+p3t7uzCyNz7OFpm8bsYnP1i78fzVGn6CbyCygIRi8B2cgI2xoNPotYioA0UPw2OkAIW43YwzoBt8N+7lyipBJjVR3P6WSn7RN6Ksf6YpWhms0FRWrhVWORexkUB9o8Os5DdxlORvubF4YAHBN2UVDU1Csr+Z22zcj/4HQGUppaZgKFAgJlvwlOygBlSe4UJdr0OmMOV1BSmX21L8Arko7ChflSs/5ii5qmIALZiM7stTKqJG6ixqLiusGzrBBdWhTIzT3ld4XlXGY7jBAAzBs0kU1P+byDfBOlO+d5VbCQcgq/GODg43Nrcm3TZ4koAeNcMtEvGCCPJGuDMzs9TntFXQwEJABqDsr8dXRd55+86zF8/5AnmXb676Ir/dlcJFSWMMlL5Ho84ro8xAEWNv7dgV3t8/2N7ZfvLsFS5eq6EA740ZUajhpTOMsUA/ODCzNmT/MKqZnurV610aJJtnTImgKuEgNdFCTE1Oyheaw0bz6tLSnRu3PvrwQ0ZnXT94era1vfXTX/7iwaMns1OTfAHn2auXewf74ERIH6OyT9Ns8RoetSq/LEJnFMtYXzrgF1z05DipA0S876/PMeQH5eXl1ctzs9rcOC9tsC83mREPbLSZLn+AAb6ggAlVSGhkG9ARMZH/QiG8BoqCjHIXDycWpCUjKcmdNFIFaYLomof6kpZ6KsCBR3IeB3Z1LVgoewOBPDWjQPizqBLitkLMFGsyj39WGZTIEbblmShxWMoMVXFzhgcmvXGU26R5iVMh2sh66ZAhV5E+Vdkak6NglzpSp4giNd1QUCqgS7jE17jZ14dofgoPCr4YGdk5Jnnhf2L85fOXbICHOM8H7GJtlGI3MAdzEXOLi5vrq6Tz6jsDmC6poCMRRNHM3//dH/7f/u//z+XVdd/pRep8TCMf5NRxyxsUps5mR3/2V3/78OljGhYSNx13OSZ+4LVijIfo2zBBSmQIcQzOmhSuy8FiDFdlO8711g1CmnTDna1Qa9GriI4Ya2Fxbqw5Bk5vXbvy2Scfs5fGRG+Sh/rn8xojUnxO6v7DR6tbW+z2dXRk8IP90Cty9Ek54eLtXnOty8lvNBe/YAaS0g8WVSwEhyHG4BBzdNn6zhVW5w5PhtlAyU+dw2mMANhYhaGQqMD5iz+g/tYhcGv2iFyrG9mDYHgmah52BuilANZWMS1hZKr8xVUtYEbFaROHbit9EQ6HWI2qSUYzpyA/eCIo9f0McopE/sjApQpEIuqgr7RMMWHxNjko5IZrb17Xw32q8IFlZUh1VAVfPw62BgwZA2RWxoCzZK8ygYzCMUOEVZIrltk9MDdtOiyLTxUX2njC9M1tQg1adElWQIrVDyyw2O7ps6effudTwmSUIrhTqkKRsnNzs6vLr5gWoOuIJcD2bIqrcMn/3nvvXL929fmLV/SqtV6OCCULQCKNGtvDsOHF7vrWDu8xM8rEYC79W0iQ2+nTh2MRQDhASOWzYgysRaXjwPTvq9WVvd09hnVBjhaqXfcCx0Al0t0Y0s+d6nXfv3Xj048/mJ+fY6QVEAhMh+xUV5M9iBh9YjU5y4wwpLSwUFFpve5wRDfdCzjEExJQtKL0eQgkkmELpThhjba/PPIzLex00G0NTxtHhye7e4cfHbsNXsZTgcNRGTcgYxAVi/+eH1Xy4lAUI7xUNnt5ah+aBG7iaf8MnzBSLLleHRbVFaQ+MnBY8ptHNPqiCFRJI1pEDeSOFShULzwq3ISUS1PL/2+gbZrPR8UsqXZWxbm9OFK6oOZlOaLZFAZ1E3hcgfcB/73lnwzQ18iiSMTrjCJbHxwvQhQN+c8n6Jkp9oVbAgAC9YohGonbe359/9H2zg7v7Uz1ptB4pnQZm1TUBlp0rCd4y+fg6GBy2k8o4JFt7lUIInG+vjf1D//wD37853+BdmXFRaaM4GGiAHnPjG177NOPP378/DlBBNESXVXwcqEnRMbmNSm6M1aoGZODRa7MBKD/+GteenDja8ZndvZ25hemCVnw5ShB/E1xTTJlqtdbxGwnp3g3lE8gAEhtZRx0jInBITsjM0bGaierILW8QKRHYSGsr0dXovDHpbN0t7RsIaATYMZEQbgZvsc24KxvBdGikIdiT16t7p+ebm7tbGxu0z7/oz/8Q4pIk3KQuIrvlAGiqd84zJjcPvXGY/Rb7qoUEgVnFnEqWblVO0uWPC45BMFVpUlq9BvHqECVKWB5rBOiVJAMly+QTaVWVC4KCpxNMKngEiTeqCaAUiQFxKh6GkjRkgvMAnn0/A0ghboAKKnWmD4jlfsXBMDNAZ8Ysa1BKtBVRtN0t/Q+WcGAXulBEJ9+RQFNz8yg/byOMz9Hf8CQjLJclK4R+s7IJrtOsz5uuDhgdJ7VROzO0pnAI+NYGU8ffPqtT7766quj/QNmJUDBiCWIga4kisTw9p23COPZWYiqmZAlfHD2GEzSkUA1dUBxWozZYANYCD3diakZ8Gz9H/7wD/n2+cOHj9i4C4yJnzAasEwXO82b2tqguZifm2M82JFNIcqamAPDYPBsjN2SGSCSfvvp/OkJ5Bo4h2HhprYI5CJUbAY8+UeFsj/0JEBBtUdtt1Tyf7iyvvlqZQ0eMqjV811Q1Z90inExUsFvaOJIpN/4Fe9K4IFQ6ZeAOHwWBnNGBkHc5NEFRZLPnMlfXVwkv4lAlVV4Id5zXCDkWpHnqtoKaHSYJwWRZErJYJcSPkrmyobKdVHVXHsKhTKugCr8Hz0NibmJjhdT/21UM0cpd8GPAopTmQo74QRYiQdaZfMWnMyd+phVGLYdWVKFkg/rSBQ14G3MDz54jzUX7OBoK4JXiJoCCa3q9aeWCZBOz/K2JxsFMVDh/Nmgjs9u9Hvjv/uD77PH0exwRpSylFWPHVzEkM2OJifpivzqN1+g5YQtjJMyL0WI7gD84BxTpDpyUlp3jZL5HYwB2zgy5NP63mef0Ga1a+ds+QjqhMsZCz7FrKmMKhP/8LpQ6/r1KxgjzQ51O/HQIBEjoI30K4tMz/X7vbX1dR9TiatljZHSINjQOeClrkeEPHYMFK9DnlipWqdowm646qgzUChH82FLwwAevWiSWIfuuqnKnJRDhtJykVMR65s6abIyfZ0n1XBbVfjGsyoT1asDb5b7LYggqXe/gFBQf11FAHkiSyC9rsSEgpA//gU3YQFlhGnKjjC8gPbb1QS+ZYLKG08raD54M9UqUhsigHOBKwLfOAKPRIMCqMxthBBUza10YscpGvps4d0tjpfC2MPQXsQgEQihP5tFnNHPfPbiBctzuoS54+7nxVgqCmenVGD12bm5ew8esiQU8KgNL0CzGHmcTWLUQ0yrduPaNTZBws2zizDAKUQXoHREC4p4rCW+UNy8Sz8BrNGTY77jgedFVoYr+G4IAhgjSI5mJjm7CLNJZbvTnZmpX708//jJS19wjtSoO28UF6+i7qL5V5YcCwMOd/HZLBZvg7GT56y5bbLCZPbh48dwTfYRYdMDcVvhYoKqsi8Ga5Qe9BCiwQabHmWfbbNzqPClr6Hdir5uSQFqFP5CVTmAxOF1BS7QI+sUEZn8F/EcgVPl8ifp1bMKaHWXTOXxqLDZZVEpCEulxhQr8QGVvlm6yufjoKgKJZf3BX4KlsskycA8SolANWFU3op+m4S/U2XAVTD5AZx4cshZ/1L9CMwI56BkPakh8QaX8bsmhs8KnzESBIUIQr3ML3xAB+iz8n0aPIQhbrPOnOnyq+X1zS32k2aIgx0c2D94ZnIWFOgTs5AMlBiwwSWCEt/exNsxkjnd75HZaarsiIoK0AlHD9jwgvFWjK3bdWESg4xBw7YbEsAT3SLH/iFz03uG/iyMY0VDbQxP7VgRGulnQOz6MppEcAOn8cTwxDYB7Kni8uVbe7tYqQsZmBcWS42Oud7wDX1s1nhtCI3XQPXX8ta67VDw7gWwzmenpml04DGPHYG0lCE+6k/7SO1SpvFGcPDP9Xx0bHytmU+DyDsyYbiovhZQMd/8qr7FHTXj3QauAor0iJmzoqZEMDM1B0Uvnit8YFOQRymYX4We/yk0Si/FzQBp/Fhq9Ay0AlQczCBD1RpYxfBDGQoLOtKAgMwvDP6bsaLKlIsjILlLFYFeHhMamJonARKtKykXhQFbKnijeFVqlEfkC8TgXl2HpeF5eXUxhXjGX+gNPFAIBwqoYhUIFNrisMKEmD+qgPKtbWzT4URJnjx7jrahFbxFSTsA6TQU9ASev1i+c/M2fp2KgMZIqfIADF3KRuPy0tKzZ88W52cbjTaDSGwJR5e37bdwrJnM/X73i8/v5nNWeUkNCRPhiAWEaAqigbISkLjU7Zw9gdV+WKZe+Q6MhBji8cqnWxRzU3bP0jRYb9Gfal+5fmN/ZzshTCW9eAZZGPpx0iooRsLrQdLgfgK8PSRUm4x6nR3edTmFMgM4ESDmw+rZFAqzYFEdxgdjE/7BcMo6RS8E1YbSSl5UR24GJ4Epm5PuBPZ2ehYTI0fJpcxKZmqz523tnPIjhzPApfmRi+p4aF0u2ksWCfF1p8CLRCyd4kJOi0UhcCZ/qcsKrCt8iekWI0cMCJ2JRUctig1WOiRqPIW4VAqVcFJUAlCLr2oWstc6lFRIwVQHSskmzhSkRJTVZ4AVfzSAs+kxDCoSkmhbRqBJjwYX5AIF/4JvzUC20xkWK/mrmoVcisckVLS8ks85mJhf0egQXAaMiH/5+RdZ79maHO/yDQTyMWriduv4u5OTh48f/cGPfkR0Sw+ZlLAF7ylKIHn1ypUvv/qat9tbffSbDsOYoVnleRX0zOwMXNze3JyamQQvNWaQiQJUkiOfWguOfGODpRYyDflCFpi7gA10vHbQkYeFcPZNev+dt2kiWKgDvTVmuY/cZp6gRQzJTroilIOCwhIMzx14Fy5oULVeP+EmQmd5hbcUYZV5v08TwRd5WSXBppkYHBueff3o/v3HT8lD7x44qdaVW2pK5FYECQGg6AsPGQbmYbBiSAzmM+yAhjI65txNWWIu9nCF3A77wihFV2lALqiISiJmFCpKRp4c1CRxoblKkjoRCUo2jILzIMUmJbrKrU0BCLkkvBo/H8zMTNF6ybkUhmkVKsgTbDXmGEcyCFALq3RazM3PUV1ctGCpefQQQoODaBT4/MKjrE3Io4gsj3kOtxWiwb5khC7hc1iObPTDyl6GUGfUEwJDMQXJYS3JTP4YpEy2bVbJeRwTgQXMwA5rs7NzrO2kx4g7oIUkkkE7mWeAdl4co+D6BvO/u52ZaUDqwm0MgpZuZ+jGFq3mc3Z8uf0Ws1uE63R8icBZsiFijNe3xm6//c79B1+32o3aBEsi6JCgHb6hDz54WPbQkihHpajNZ9Aei3B9HUDQHAIbMlCrdkimVp3VcEzjqV3oEIOtzET4Ep3bfDMRaMwTJMmL5/BdO+ByyC4dgxNPehN5x8Gk+vzs5CThHW/8fPjeu+y8x9Qi1dPqgeL+/s7YePvBk+eM2GK8KgHiE0eew41ICzCKPXNM8l8zD7rmVA4exJ8lWEIORa2jQJRE2OYSJU7A4cS1NyVF5x7BVjiXZOgp6kVhag80ipSjUoZgJvsoroKAGhcUyGS803DUZ0lH4K2YaouVFPy5D6SCn0DMgj+BmwL0tthA0Pb+4iCloA23AKOFFACpBaGGObCIpwFK9kDkJ3TbLw5u+ily+FSCTCUASEUqwYhjbzCxqqg8MqN1Qan9VSBxFM54TXWzfOhmdpZAgI1H+WPEBhGepdknbqckO7izLnVuahLmqEqoHTwvWHmuMf7z1b37t2/d4tUsRntgLHCatA1yU0+0sDT/4EF9e2MLgGyitHt4tMHnGDY2V9c3Wdj07PkLTE6WYpzpFSsRTQ5iExQgOOrL1hNp1ljYdv5Xf/tTdyouwkMloZFFG436pFpOUM6rZ8Qtunm1MxEFmkmfWwUFaYwweqx4CMz6vcn52dnFmanPvvXx1OQ0i8xhgq0EER6uuNWf4z0HWY8XpTZA8r/SDH5tbOiLgbOiIgeWSLvKO29UR5KaZZ9HnLDeuGJEIokeoGhjl7LEF3prwUCdf1UmH3tp5RRJajmTRAVJHj3MA4yugLAU10JSYJTOfxWTf1Eu8FLzBBIqKhJTFby1ZPRQUF7wvCiBakWJEjIJvwAHlOwxX4p4Y0aeWg13nPjJlY+kulQaaKTb2wNriyQrRcQ7J20g6yALNuJeSA4BwPNW2AXxAkWulkejzNJaECRzvz+JuI5OjtnJKkpiLsch03pq+CxoePr09o1rvLmJ23bo8HzA+jWeuFphyNLRqR//5V/+3g+/P9OfQKL4ZaJy5I4DRHVwWUztX7l29ec/+9n9p89WN7d5nQ3vTTuDGWB4hvtYl84UrWELGsmW0RmARKNY1Y9zhagiTQZy0EaWSyVEJh/tAtW2WkfHezQf7NsH74jxLV+ehtHsZNqZYB0g7AV0mnzZCjAetyY6EzcuXZqdmmAXR7bGxwbojTBFQs8dTvElHb4TxfAWrw5ZO0mqEHn4J7/p5dt/iAbDP5ps/IquFySUheqmCYUI5gY1XBfqeJCZHPAxZqLGcFjQVInmmmzxATzlzkfV4RNCc5k2sh+vhJszDJWdwqeofxYAm6oCM2reeiyDParyiQRq9kKxupAsl0NhgJhHRDRgs5vVI6VLjakr2DLuoKlripUZkDPan+pSMLXLBVECZqlUcBKYurjkkXFatV4TIOIgNSMEDKU8uBcjnnjkXknDkNyaZdQQmRfmZx2ab587in/Oin6GD3kNN+/lOmEv+3jzZndnp9WcIbZmzF+4blehkAAy0e/x7al7jx5++sH7BFrEIGgOgX2jY8cU0kD+0uVLK5tbv/ryKyayxjvjrD81ZCZ6d8cAw7aIo9bJgmrII6WwVtOzhWCfDRQGQfCH++Uzl74wGSHDQvqj5+evVlaYQWPjmazF9mWdKKzREXEOVRC04emxO0UdftF/gC80IKy35eWj48NdgjksE3RIB6YUGkqdYwbs4THYNLyx1mgVXS0sHnyIt2gNKQRKEb2oKotKGpVCU5B2gRYwmVA77Vtl8pyhvXhY0A71lbkKhOcVMMWb/ApPU9cIVJei5CVfkb2s4t4GULhkA0YqVdW0SyVYFMKc5q2wFx/4GtAAV9TyzMo4l3SKjKq2g1GAB4zpQq4w9xqAcfkCyC0J4CW0ZKvKSTeZxRflBybm43AJVZrTy/Phwe7u5PRkCLaekFGV99YaYjlcYjM+F/PkCPxRhbrQsEWjY+lRZ9xXJO0HEjvAFgIKBcdRTkQ5breyu8dnn1i8zeAlYNEW0MtaY/f0ZbT0F7/6zQdv32HIUQtBla1Z9vJLPSz9/IPf//3Hz1/S2x+fGGfTI+ycPVlQOIZkOBg7wn6IYlRBVN2XW7i0LIugiPMByt4wvEc/qGWFN4uQyEcOsOQZOs18+K0b13mnP6MbDgrxWEplBSZ+yiCAfreEquGO5eN7iPdnZqee721ZBKSjQ/xY2Lc37BAsLSw8efaMATATSQY+UZHSZGCBJYrBgxLGP/wACeXWD1E7lSIdiIEf/nlwhkFJkxIVS8lFOZIBBmjMuS5IC7Y84kK1rm4C1MyCG1WuNkGB9sSD4EnpNKwUi+kEOfKQTEVcFJ2H8bphq7YWSfHS2qzUw0tKCNnGgy0JyU/lAjF7ubABJgPisxNo1hwFbIBUNfJIww63eCrs5E+lXlJhatZue5N97hjHTkVCpQoYaDYxdWBnVJynHty+WXWeJsW6CnGsr+7iB7EEg3jA0VOI0QMNMhTQcMCOQ+w+ND051fTbU7y2frCytv5ieXlvj0XUu2yuzqtvL16+ZKMkl+K3XfqF5uIk4SfSlM/1JjsQv3XzBntFElEgF3SXwSL2iADHZrvZzmgYswj4fv7sibJmI3sigRFdYVSOtyKZgAZV7AFW+X4C2Mnr89rszPz07NyjR49mpntj7SkbJpfBVX4La2PJtySlkeNcRmcrBkXeuPwShKE8OB6MEthRZRdxYLmT3a6qRwNte63tYYD2rIKxCkdsJ6kqt6ofAajdtKSQZ4gEtqKkfqZSxJPmDxqK5nHmkU8dDIiAlaS9EACUPEnwZF1AyJWVoggqPBf8C0DT9CjB1ucSUEqC9qg5EpDFwC9tsbeqtfAqWPbvPazSF391KNwCPDagE6UMXtOi1kBOwJEn1VEkkXSBQGYxkcAU4hSMY63mLxMdpSj3IEdi9JJLbCEFimXwQKRiBMX1pMIko+LkDAB+in1yC5HpgAqIgsCh4iHjM25CxRsCemmfQGJGwAmNypKkVgN9Xd5Y50uAfKZzeWX5+YvnzKb5brHvFBxrhbymM2RG4tmta9eBQ638K6Oi8i3mRApfSMASKFM7HNIM0bDwXiiKjd7ySgBnUqg9K0fcg4u2Aq9rUnBLjzcbRLKNBAtApG3ECIai+pOTd7/6zdu3r9P1obPSais8ZKZK2fT4KoLiz8IkOj3WhzbLKUfTeD8IThIdKiMdjPCLJGEJsnHOQSaZ3e7vGYvztBC4BhMBZVCJpfF9FMBVnXW4nTZSAahc2BAvKAFwpGOKUbWIPKtx8QheB+mhrvu8kj6kmFmSonyUDwmqVcmTXx6ajzOYg7DZLUBdZuM+9eKGDTKFVmwgXw2zm5QCArS2lKryARLmiI1PMH/hIWOYwWVFZrAyT8HJh6k1KZLMhfnBSDoDw8oEA+9EtGoFhQnTcAyy3iqqI+SYUUChqghX1megxiqoNyTzvCRadcZeBI+z4AHQQSDjjQgRr8cdDg6GYCBwD9myfQuvrFCABXZ8Ru3Rk6e8LIkD5O2FSd51dt+7E1b4iAUiHAy/uvvgR9/7ASJmhCmeDjypyH+JF2pzs3PkRaF5Y2x8anxrh5nsIyqEGVLuqgUXXBB0eOv6VBejcgm4E7sciNWX17p9X2suu5ODt0oAm/j88W9OzlmhnWVS+vHR+I8mD8St7T0mmuGOcol05QuHL/TwrZQuIdnB/sHs7DRNI8kKD8jpDHDFGw7ME1MZ2j/d6xEsLS0szs7OMvRMxp3dHV4yWtmgidwgi/ofuVKZoJAHxDlApNiVfWr20qPIEiTjbk24QA1c1QDZ6E9UTrQtb5q9KC6zShgNCH0UqCBQTk+AtkWJuI084C42kIBYzlAv6SSRDaUOVF2nRkw/jfauogK4edco1otkqM0FJdq+TTnZI3NjGPwouVGtyN5kcRJtAJetbkTGlDQvIRqzpI0FJpgEZXXRtv2irSlsK2qtDaSHDYHqCav2wTU5wj7QozsaAgVn9bCKc2By6Z2UhRxfyWo2s4qu5TdSWanPe8zzc35n6pQPB2Ad5+O9CXjLwEx3nEF2sjd2d/ZYmlSGcdAuagGVl8uvCJDoNrScvCYF/hD3y0fqJO7pT/J58j4rkWr1fZZkUz/9BzqQ+FdmkAsHwBOiIIuksyO+OA6aLl8DMTYSu3ntGqNY8/MzrBtqFaciIdIzmJthA4Jx5seZLu01WeEd+clthnKOcRjMnDPn4Nd5M8oDUB4xhIp1UB9vqfK5dhw2iaqGK0b0+REcEgc+7zn0UfKbV69979vfvrTIe6oLjBHt7Gyy3Aru7u8dPnr2/E9/8lfMvukKgnskDVGxRccu+AiQa7YVSgTANSxeX98CNSYmXWfOKN7wnIXkBII4IZg3PTW9trYOVqy2mpjs0xZTI59qhLGOUQ0H+d4Rm2ae8V7qRK+/s7GN/KbnZ6CWGSKQZ0wMYBmq85PSfD0SJjP/f3LsjCP4segFsEwGsUwA3BE+PSt2T6MTScTMMML4xMTe/h7+llHz5CTmQxWYdjwkP8tpAMQ8Og06soEV0MK01OERuwEdkMKYHMPcFEAz0DaYTOzLtg57+e41XzSDdFZrItOJ/gSf12M4rj3hflZwg1eieIOFVS2UwjkiV5BjoxF0Ynd7Bzi8XWAjzYjd+dnk1DRrk8lJjayEg73qvkpPGmdtm60d4Lk3eg6ea0ao9czUFBPJfECe9w1QYfbbevb0KW4dhWAsx/cO0TBCdF00b9kz9ctWvrxcps8DCKTBK8SEFj19/vzGlStGIK7E5EODDQZ9qIWMGATxkiIgBHcjbvaTJyLCY8X1gGw0076ymumaN7QUHWdN0eLi/Mfvv/fpx5/yogEdgRDllw9tcqRRf+coGJsi7ezvbm+to/xYuK/JMfF9hkmzhENWsbk9HGARCJraSvwDLNHD9zSatHUonwzj3v/O0rq8AF6x52SnPdWfmFuY++T9D69fvYzZMM6Ebk9NTbOSlgJsZ4l7Y8b+xcqKpS8OngUELKVeURZnKBYsagpfL11aUCLKhsnO6Yxp1pm2JI/UMpl/7Qq/eG1YTt+uNDh5Khw4MNF1X8rArs/OzwJLpasHmkzASIBGbc4MttuzVIUcuhM6xWjCkO98cZHa6vVJBOYeuoxXkJOQFexQPjAG7PTMpG22TZDeXR46KlK6rSQ3+aR2aGR4pDs7N41EycDqncKSzrjGT/uOu5mcJGd4QU/MZQi84a7gIBnV5JGLQxEB2/tkgxMwBBp6A6ZYyOz8DHlQZBYHyTs7Ki2GJqECq5a9QAwq/ALE60KvxIVwHaoHaom/oCbYyDK2kxqLmn0tscVaA/b85EuTfkubGgb7+y5oAAdaC8pmAQSicaQVUoCKoJ4+fb733ocMxDOthMug3dAAoweoAS6DFByKqANTTfASXxJsbSZlTr8HWIM47GRQw8PSknzw7h22VGLuAmWQpUxTqDkhFEC0py6UHQ42tzf7E82N9Zfocb83jU9fX1/e3NzgczjsSsSqpgXsjM39nPVIu6FTgLOGQ9Mz0wxAwWiu+W/TpLMw8mSduaO/U1Oz/enb12/CHNTXejVWtv6FSvP3sYaJcSFIGmA80H+AJMiQkbh5Eq21CrgTCQDLOinIH0zLnKD36hCsTZdVbGJjYgincl2eRx0IXQrmaqxWUVhM5QgzddpEA0TcEwupo14gotRNAVxQijFoD3zgBFs0DBeWAWh0DR21AERjGGKloMQ8r7nIMokSATmhHSF+dFtmAJxdoYbsRWIWJiD54QAAzJRAnBQL13hmXtCTGCkVPkoh5r4Xpkk7bhLceQaG4KSd5MOqMoomE8ggQEkQiNOROrGiKh8mF79A4cU1vhZoiyBKvr6O53clv8sT0cyjvR0WM+CqCb/VeZTU/7AC/eGdBHEDXDAY8kme7a1t2s8OozN2Q/hkvU0AjhAC+X6f/JSK0KgxUi7MUXXyf8jiTl+bwfDBB9rZd3Rzc3t1fePa9dtkMXbNXxlEk0fAptXG/vhe4vLyM149YrXe7hFcHt/e2yZ85/Pj23uHfHCX0WBaNIpH9Z3ucINGvJqdFVYL2twQQiASVIZWAtaCB3KlShhEBlqeRAW2kGKMyEMnBDoY3GheXrx879FT2zpoUw9ClRpAXr6bQm8s3y9EJSOHyI/SEsvBBfBCoYNUalt0V2jlf7mwLEVUOHRCDKnJ2qoHMIVLbvgH02ON3gs5TPeJapc85BbPFBGQXAVkEU0stsC3MKpmK64paE2U1AxAw5g8r78WJAJf6GJiUpARRf6AHNUHTp6QBCyqVVMY8nZY1gT+FwBUF+cdMs2D8wvFghermKa8wUGEgeFF6rWsfgoZSBFZo0U0SvRtip6BBX6F7x8TyGEBqBOhFxZki+fgDy+yswGMX5oCJcIkQk2/OsmoiYZXkIIQ+abqDoZ7B4db29uY07DG9r3DI5aP8l2ytY3ldb/PxHpv9hHVCecALFGAyoLDDEdksuNCDK5IHJViboMB3z47/slf/+zddz+YGB8HTYZtcNMOesi5UIVmk7S4uPTl3bv7x6c4/988XTEudpSaCmCbvdWdvX0U0Z60PoHijMFXqzbIRT+enGDMni/YPVOD4EO2hBmgxMtHNOUYmOConIaFRLuGjv0OTo7o6wywRqyEYST4wiFBMl/uoy38c82F9KsfitFs3Pq/3PrQO7NEbVI+BRAoSaq/yOcnbOI+tYiPyUW/VW30FD7yXB2pSObeS2uXeT7kqdUnZ1Ae1g4OjgmLSYWB1id2KqDgbeWsMckVAbFGHnqocD60FL+WtKyEcKLpBk/lUj0nrzdK0wKGxQaRFjdhhF5uhENWqArbZKyKTi7gF+dhjYZJAKQa6yxAkGMUpkCNHaMHZHXyAAGeEx0hOxSJ9ydhNA0pMQyQ6T+j9Qx6ko3wGmGjTgyZYzPQZUCvlHmHxtlY8IA2Zh5era0cnR6wuGhtfZMtdAlQD/cPN3Z2zG1UWRQPZGhXhSPLpIuzVxGNHNDxeJiTguwb9PX9B/RSGVsywjTKdb2e7xaH45wbS0uX6IuxzNxBLqeWmZOzPkSZ6YUhnWbUkG5iZxxsGaihffCg2YITvi03xipcutfWgTy0OcvLZvL3ev0Xz18cHhzRcmpO6ghMpE7YSNeVyTv2CDvyG6Mj7oA+2RQvf9DBF6NZbSF9ystHkbdSG9GPPgAuUTKMSaOvsAuLBKPIo35eAsojxhUdjVAqcIV/4AgvefFbRhXd94LS6Jvqon1xGBeRAihpTgeAaq2E4A++KYwsyhCOR5DxgtsAABbPzK39UFbEVVKzhAjDEqopGZWyV8KlgkAhm9Rp8aFE8EAwD0dUXIXnMZzHzUGZGayOsYfUZUXJXHFVFQke4R1FJIoUS0qV1SkINJtHhI5sAYcl2Lli1ze6DKo5D1BJwjFWRoAGn8PIkDmlHUMac+v4XXrq1osSO9H0888/R3y4cUyN7hBvgx2zDUync6wj94OuSBmoEi4mBSNNIjA4gRtEvnY6eaSxs/z7u9/6pDlBiG4Y2dKPkEx7hSiV6GB+dobBUPZrgTYMBUAYcVTKQT6qwrJx5HCYRMI94yL5UGO3YVBGv2kaj9jw1Ak/Jw2gCp7BCOjESNgVb40+x8amsVHbOI82F4yLduEU1tZeLS+vQJ024o5MkKmphNQIhHVUbnuPT9Q/CT1MQB+KvOMWNZ7CEShUifgf52ZBFUxmWUTUfBj4XsES+pK0O6M8lgYG45ykoOM6QbSZmwvIMiBqF1RGKPkeIwDLMUoEE4uWxFGlghd54wudvbCB51mi8pcSluaiYGuVIbk8N68WmcMqoETemqdKLFpOrmII+vuCTAEIaM24FLC0gOGvjEpd1uBVIUYqjPKoSA3PQfeWkIGxnN2dUzq6aCEZ8I/sfuUYmrZqJw7gjLAxJOSShyGfEDjFvYkyvtLBDIrQ6WcpEYrB6jVniFEtOg4ooRMIE130EIcriywEvGBqQxnJZH5Gr2ksl8Da52FcxP/k2dPllVety5fpEeChnMqAMqhBwnKN4Z1ud2Z6+slLdsugc1ZEgn8iApOzWC5tlnjLGybRztgJn/qAAXHwDIwZrdvd3iTiR+1hCozAmTpeYptSZw6B6PDpi+eMG43zcv6Qt5PO2A1gk33L9g93dre/+OKLnf3jA1IZKKSoYrQujnJJbQDHQhBnrEj3qQjBPjLiTHW55kK60iyQkoNcqgsU8JQblYI6yjMTOFQATLCkCgQo8sqRJB7RfMtV1cZ6df4i6SM9sywNf8L7ICYaZABVSSLDhRsjJ5TxNABSucU8LrJRJPWlrA6iPOc3FIiKICq8UxDVKCZuFmqETLPlEJz6Xd2ow2DhHUjwR+DKbehXZQPPukijGjNKYCjJtdCUhOsVehO9paWlbp/PJrxC0KxCwidDGkxRWgTkZFafBjvHe2BIEoED/Ub2x6JvjXvFY1K1fpOgwuEyX06gBHjggsnOHUEBw70gZ9gRxUXEIBYiaJdcyx0N0UoABduFEcsImTW+8ff4+dNFRsnP2II7aGlS6AotgkM3BPT1pUsLg89dKRikVRfqAg8RGg43d3YIkE5O+5Sza+GkAXvDuHAVphEizsxMrq685KVVplVo4ViXyCO8BFjCrevXrrGL092H92dmxoebzeXV1fsPn24yuk+XiplyaohxSoBDIrbdFBd7WxU3LWZhLQ7CeiNsVUDd0iBLNugpPPEBIBBgUfbwXUCaCk8kjGtSuOGWJwVWuCbnyhMyB2alTGSzVGF7+IJgLzJwUcAhcDXQG85gQVbBh4upW33ysQCpyiEHwlW9DwcXljRGF1+uo7tBMmnxU9phNKF6rrVxma6NSPrMw2uBaDKFKMCat+S3IhdIyxawKsZr3T5IYS4s77hwaghMrkKrxplBdIanJ7osNeUzgUhcGclDetWjCWeRtiiPGD5xaFUY6ilu39pUNaIlR5wcInZ+kF3AGgNGZBkt4ns22UKOAs6GORashQAVOzR4SY2MIGNSTJiIKepEx5Xxg4GuEPsAZUgkqLr34PG3P/6YWQH6csQe6q4aAsXZcRI85mfmsUxQVGwqDRnkeLhSZ5qGd7SX5uYYMI6wsHAlx9ImzhgVbQLsZrPV6ZlZQj3HubItK3aGjjCn8r3vfuef/Yv/4d/++V9tbO9iU3EDdkVsB9ncBj5pDsWCi+BtUEBHdgdhuMw1ObThLFUq0iVL5CQwpZ8zV2kDuAMaPJSSPPQJOPvAy4uzpJNqbQWuRpIyo3tuOFKAJ4g1oOCV/CJFVPlRjuJApeSVFisb1ZQ7T/6RHCSSWNUrxQnfU5sYwGoqK3lCAyfBOvOu9lMzIsBrmlmtVxPUlTBGcPyLpZIWnCgndtRjU0b+ICOSHsG5KouuVA2PhoJ6YRpWLa8CN1xi8zk6xzt7e0yYggDaqSlYINAJuYmfUHI1jj9ZpYNLBpTO6bZCoPaI73fRZ0GDMlQD+eCFznjt/EybwIQWQAsSDbTIkIFQiqc8sJVhqcX4OHmOT7EE8QlldYJw4puJ9hmD+y4WyFAmz9jekE9QGX/zwg0DTPt8C9HmqQDXk0iMHmLITPi7t264nsJvOmjSlMJ4TMkyrPF2l5W3DJO5mErxmAEpinytxi56ExP9B0+ewCEnXorHTS7seGR14V3YTK0AkXhZjs3VXBIbfEiHn5mh158pF07UU8kTnKnaG8wGJvE42dAPxgn44yADR9gofdwXTpnG/+o5qSaLlQRZTfEOJFW8jeKZLSIrkNWSCmgQzmPAACsKBMYZbi5VgTqYospF3XVHxt/iEO2z8hEOYgC2IXgUdImkYCVWvawQLVWBJ+yUUGMZK8R28ksFiNUUKLGU1cnYigafq7hgbc4gTx4AeuY3BTmDDCGwr6Dg8lpjdJULCnJAUupYAbTBKM52FiTUyMhx96Cl8+azIGyR1MBpAmNsutNmqJIlenheYyI+Wq7PBKAg0TrGabgCANJlTBaIDkw69cmslBgSZvtCiwE6r0KApI8Bx+oeNhXmEw0YDC+JMuUOzSoZyhGW8SJBhzXivASk/sBt0aJi2gy6CU4ZHjC9z/T26Qlb+KURzFtFEufbM5h4rz+5/OIlQSIjCIntIB7oVASXh73u+KVLi3cfPmSuH0SpOg0ZTQ9rM8L+yCdiwIIVHdwbZiU5aGDcWIKAKKlgI4rgipWYWP4UkWU5k6icHbXxh6PcpopSo2fScTWFx9x6JLP5RzeCMhVEZFoBpKsmg/UmJ6J2cMfCUb2kcmMBWzx0oMABFlpb1ZP8IYtpoKJwNugFB7QGHwlMaje/mXkSAv3hQqmnOS2AtE9UoSBJVu8uqJAGMdY3cFHhBVIchbHmT11WhfRQICpJC1NwE1Nr5leURJUivBbwez/4Ph0EdkT/i7/5GWutQYlHTnVyQv8venfQAnaMTbBRV7EJ9mWZyDS/4zR0iE8OD9lml4jIIFybd2yKyVxcLpaD22XwEa7IfGItshBTheIhvcxzhvJ9pEDZOebS4iW2Z+2j3OwDOTj76S9+/oLB1LW1OzffolXJ7pNyxyk+HbTyJdSb4G3UtY0NFmsgkdiAX1qActSaGjZrvDp9RF3wgHNnnC3N5ApN28nZIQSzcOXxw0es4p7o9+OfZC+gEAz8YLiIb0b95G9+mls+FxXdYotIWS9naVE5F7wiAPSGzggjV1okaEAzZ/hPpbn0Rf8iQn89ZH5klWxWAWR474mz1Ui2N8oGKBEoyQUNslNZJcWgwgnyGcKAIUJOjzFVga0YBq4VWL0VjtRdyKmXc+orlXr2HhyCU1KRAtqm1IcOcItDecqXeAEIevoGsgoKV0oGwSQX1ZqFIjpYilVnAYRyf/lfqi2ACxc5lzzi7pFsVlEKxleaQzClDaQeO68AQybIFYLpFZwT+fzv//gfHbGAn6HB8Yl/+a//J57zJ8QYkh1SPnHTZHsUIhd8KwNsdvtY3MU6HbqgjDJBFGQ6zs5WoyxTarPOigXXLCHFR8AGNI2WhLYEVBwJRkwM+qsDdnXUEZDjhhfrWdRz++aN9955b5aXrKf7CJpNh9hfYro7/i//5N89efzse9/5Lt48K7iFbXRFG+FPo0nYtDi/gM/2AWLR/AaTLPBC05k+5Mu7Jydb27t8Ky5jALXO0N04yBlllkEMIACKLyjyHQSCecpFBqoL/EBnLi0uMn1GACYrVR2qojzPIQO9RNt0lqgCy2q5xuVAQ1TQOIHVIwpFijGbOLaIiduRuF7fc+VN6qgeR9CkUXc0yssc3vFfLD38KXnya3haKs2zYgCUMFFVCj4FEGeokTRg2QIEcorJqeBh9spgxM6K47UlHy5ayuLC5gAbKeFGzgRvYgP9NNUHos+kNMD8/eZRajBNVggqQJLJqkxKcX6/WTIJwQd3KU3UiLNCPGhLARSHXTwUwz7D/iRvIY99/7PP/uanP3v+6pVrRGQTRClFPAmYO300ZHrKmSWKU2mjTZvBgis3O2KQxQWsjh/aHKEzlCTEQBdxoLgktn0v6EI1wYiRPHaigGx5yE3wcvPmtc8++dbbd+4wYjvZ61ILAQsmenZ+8tEHHzx49JTdA/jMAsGO8wn2KholSsEK+XqaKxzZg2nCT4USDdX4JNQH773HNjAL07N7ezss5f7iy7vs1Ur7hUisGcHaRhmsaRK8lDzWYs3t4cEhIRpAaDMdBYN42E9OZpG7ncX5uZ2nz4uywV6lna4SIqHHwx02LdMoLiNoi4p8VAjYwBk+kq1oVzlHUUQnaiUML8Llb6qptfn/9WFOjpKA1slfjbLK4SPV03pypN6CgGJUH8THzodlkieLTUAekihmizgKhMggL8pm4CkYRJPNeqUh0AIJ+NyDQC5gh2rE4J5uy0BB+GJmZszTfMFMtL55BAxJYDP6H4MoGMYYvlng4s5sGVgRFwpjgyVMIOyxmUK7S53kKlmGZ9OTvbfv3H728iW5IQfyOaA8cwOsu+EFN0I+ixNIM956vMuyPDfUh7AiOvQbnlIRRKL95CywDQTAx9VEek2qBoGiMGGCfGapNoguLi3ivln3IcrOjxnkU7jVrn/n2x/cf/RwdX19erJvI8NybpZL4e1YIBu1kaVsE4+dXr00f4k32SZnfvTD7zPNxsI4PlTCqlTWpa6u7qDl/GNVMBiqALQ6jLCJKyMAbRZObWwsL+wfIBfXY5Es86IrmGZ9eO3SIq+iFv7A5YQ3tn3yQWrkt02fLzmrhfJac4dgVUfxJ5hGByiShWIKy4rISxbLm2Lh6pA0H1wkjB6MnvOoQLZ3hYsr0qWYKJkp/hi4VQVBtNQIZYIVgzhy5ox4iSRajQ6kSGrhkgIlnYGvQA1vsoRCK4JJmFwIlO6UkhXaWO4g34UvlqXWwPMGSgM4DKv44E/KjDhRgStAR6DlUeyxehpKKCfhVRI0OK9qiVg1P/pXozV5DHrSTpvGDzLC5vHKLL+/eXP44z8vQ5+OfHPQvDv4MeA7gsQauH1Ej/OFANsGF03wOdpqMwdcfyiT4VgFq3A67XEQ29/fsxOc3lhaJxoQZq4KtmR2IyS2dHz5ctn+tB7DMUb5hUllZQNz6exCxIrgx8/4SO5bNCB8Lxr9A3Nq1LA0sUFtbro/1ZtcmJnl2z79bh+aWCjP1EenN9E8Hbty5fI+02uUJHwhfGI+gfEyVjeUbpOQBjNz0y9ePtrf2+lOdJhv5g1rlChy4RdnT4C0wMsczORSOyuU4DB1RzHih+0PyfcIiSeYgNpdNINwy1uFQJ6i/UXgpZDF4ihSXuFVf5EjJw91xKL55VQOKxUlIISztmFwEnCgDWHRNSm0ZqrHPdvcASkHFVEQVWDj8owHqKcklrbFTPo7DpIhIWpPXWpGypNDuDBWsZoBOnxCMVgNaFErUNTdSutTjMxm1WMkyKSKoJnyKGtwVFlM9dfMnqoMSRJdVd3DhJLPC3GG4aCaWkiQKyUjjwJTjlLC3CDPslPGIVmKz3pOanWyi44W24/yGk+7wyqMBOgsssXfE/C46jPIOH8JkzAZZwZcwOPh9IIMYaXPCQqAwqI20qio4iDFBTQoisKziO104/SUTWWuXr6MilILLzlT3n/Ii/mFFuNLLfYtFg26odAAFfwnA2cqozpeM7i0uISh8ImHxSuXiZIkzoiXFVN11g6hxAxqWQG1unSPIO2c0AybElptwD6qvIGxsb7WZ/X8YNDvs0RCA0hINWC9CSvgLy/Ob27vOWOddjNBp/YACnQQihOS3zImuEFEKPepyJAo7YZcYT5SUAdJVdwRkteyz5KVWHOjlsTUTM2DkotbAQO5NFDcuJyEIIRs0Vc5yT8R4Z8KDNWCCP9yawaDQCgpoFWhchm8IJDianYOcQl6pnvjgXBJs1L+xU/hDrzXDEyGUyGVypyUTQWcxE1nhnYAikrNLkwzyxgfc8UZnUl6eUxEgUMLBslFgfRDRC1GqVjhgNepHwKjmhYXH2GKklUCx77EGS+KMADD1lxIFafucARL8Hmwt3/OYiTGA5kqRQujAGID/Ead1cq+7RRUuQKYnjAElQX5kM4gFW/ls1jD8RUoCscjFkkrLSsMfvjo6WeffooxhRhplyVUw7Z8h7ysdcpXnze2tthaXqcCGhIQRMxap5o2W9rt7Gw1G+wV70yhxZ2EZoaL9+56vO6wtbVbDEm3ngEfoz4B2YprzO32+vrK+ETr2G+jtfmQKHEVbSK4s5s3o2N8hY5GTbys3d2/qFoXmyE3+Clc8ZG/EQBJjqiwZBXH0BlzCknKFJ8C8JL7HP4iOAoquGIzPpZZksq1wsPRk6EQ79BEihc4yoX6PUkUf4FDqmEo7bb1mFyOVM8lhmmaaOAEq4ep0dwFS9e5VQVFaQSfEgJICnZCXnEP/gEQHAKRK/yevsNq5Y7mYknvChUCyr15zMBZkkKWdY44XJANt61dFMimKfpLNpGVEqHZfIEb/joO2vp4EELJoh7Lz2KJZ6eT/e7S0iJvCwICkcFuRlP4MA0v0PAi8nR/khGhrx48oFdtlzewcIU0AET5hCFAxloxgwzVtHhdgarJwEIklgohAl/0ifONEEFTfEhBB7FGZnU3t7c2Njdnp2dYDRu/ROfd9odOLIvf2KFsZ3ePngydhPMugb7b2xMXR3PCNWyQj4Osrq5gvbAi2qk9MHKFoNHx2bnF5ZXNfJOdd83gDnjhpzOsphkwguarg7/54sGXz16urO+w5wChH2jaBzJkK8FPNMPGiv84jRgFxoAtwIOorDKEuf7kgmgZHbAuqbWk4jJIU3WgMmdT9anRDbXr9QEY0OBEdYDCHVVqKRur2kb1KX+uOVKGW6sAAj/qSG69MEMpzZWxsnqm3vmgOqr8oyTSuRSa5wLKq6RwS/HwJf6Ahin+2baB/PplAGedSzYQEUZVH3WKPiBhiS6eR+W/Blzy+ROM9VzlkIiQAxgLUAQACgRM4umTLw9IALBNDmkFI+pEQXUlKAGVwiEe1NhMZYzXhb/+8i4LTecvLd68ef2Dd9+9srTEzrnoOmrCq1/vvP/OP/3v/wcu0A2Exn+VhMVFfB2HESjeT0DzWL80POZ1VoASFKGxmqPqRF+FCIMDgiQc7G1MxF+CGMBc31hnbJfXBJiW4OtkK2sbv/78l3u722xqv7V3SGUPHz1s8WVzLEGrYoD3Ndk2vLRrcWnApBq9LxdMrGGIEM3OTaBNT4h1h6zI9iF+IYwFb1iHSc7OLz5f/guCwag5JJW3qMiER6FzVOShjVLcdtemUxrS5kITGSTNn+DGABo54AA8sl5Xi4Tc1M1l5OKPhyYxui4pnEud3jroXt1bbFQUO8TWU21qrkpSTUGl2BdKFZQtWP3xOPUpgwrrlB2hUGFqWpJG6eV29NTUUi9XjrUlRIpWAVjEYKbGAcvywhj5yVXwVQoUk0bhFDZyqUnCDQVkRuNYjwoPkiyYt+HIaWmq0cUATWdjWaHZ8ApezyRELlMfD6U45eiY6pXKeI6+bTi8de0aWzt+/9OP3nrrxq3bt5k+4LtpVS24o+bkt6Y+fPT02b/9X/49kPG51Ee4TLeTNRBl8RH+Gu3v9ybYD+b4kI4yrQTfRmADdlBiDYV7cbN5DMySRbZLTlxjJCgu7+Q/fPxkbX2NsIrtidfWNnjBZn1rE2MCB6qnH/JyZcUP56R3PvDFIAiGUnykJPrxUPLReYcjcA1SvQyTSOlOjNMBYIaCLQYwOJhL3XBHtsofIsjG4sJlWo/DVElJibTpBHs1zfqozhEJgMJd2+I4HzWBR1p5xEEGiygdW3CiWWYfMcLhsIs2F7kAjiPusAjYstyOQFjOHHKqpPJcp2Ky+UYn8+TOC9HgVjTM4B9YmWye0ZGqU2qU8ubTi7T/rYuL+t8AO8ovBlzzE+0EiQuEYGfY5HB9ODZ6JMYUKCiPzoIJ0ZQ3Q2m7EDX5vM+/MLIiG6hhIiesLZSjCYHMKbLiN8xAMmYonMz2ROx2muhqcO3ypbdv3Hz79u0bt27w+rg6GjVgminOCDEMvvPJJz9miMntzxSz4/t1dzFisg2jQMSUYeMTFJI9tbC1M8ZgfH0Wl48R+KKAxcoBf9yUEfRcGY1S/+yXv0aNsYpEDlZH5xhDURejjQRIoOrryNDpgC3qht/Ao0dBeM1yotejGhLlsszwB55h6nxEka/HZdrPeARLgJ+0WbACMKSAFTtZECPissCxyIWicldGCIeDUSmwITd1AoHGlRkToAlUORTiJNLKQUJ281R7JTGo8UQJWKA6vCTN//7jwoTy8zqPAlavOXw+OuciyCWxpFcAqNJIjqpHz/7+3wLv4ll07OIuF29AeANWlfGNFJngkfyC9RYx4HTiV3KnNym0mK2inN8KUTKTGjjKByJgo7mACu8D3DAqPJSZ1lKREA6WWsPwvKKdLOSwiACjTwiHFPiDR0YTEJJID+sLs7Pvvn2HYSCUGIWmTYh43YwoaKg2c7MziwuLkkBQdHpMSIOCY6uoGYM3LEDi64EMwLDKlQWg2CBdCKYfWDi0Tz62UdKnQZaqbQfVr4Bqb+gNnpbZOZfxOBLjWqdcGYJBqZomM3lTh28RnJ2AnA47Ybr8Ql0HdprpZ9gnJpMKQ11pffy1zzAzM7Pyao0R0s6Az7LXOtkIDENNZogyRuTbWHcfPGCkmMpAgTc0lRO4gHVQV70Nwkg1B0NszIgU6YAhTaS5rLCUoEei7OIPKhBFIMgNzIv0yA+6f+/xjQfGB+lDUMDqv3F4e5HExaik3DBjuS/2XK6tlqug9SaoqiTpb4AhW5XH/Dn4KRWaYlaPi3zwiMjjDbiW0ie40IR8cKUENEFCtyWAQpaOJ7AtQ2LawoCK7vFIpbXzjXJYKZAViCpuNq6JnUoymdU64OAxc1OwFbAKxF/+2XcjfgM0236xuzVLVUBQ5dNG2IwANRM4Ka46qw3ZSvTRk8eMSRZ9pU5mFY6OtskDSigAH65loTeKu7+7R7QEFWpFzR17UWv+yQV5oITy4zuuDjJKTGJ3VTMxXlF/KCnUsrIDDEgMLaSSCTiqKQQAk3bNb6vJpyz+dtl2uK4OuVEKzQblwVTjJp/luU0FgDgfXL96heWHkF54CgvNQz81NbF4w85fvc72rii9JeET7iRY0OQTC0ITBCKxNHDO9kvnUDdgIwdksa9EYLnRYXKRWVIiPZgkX3OWLJp4cBcX0kO7JzEsOfkFhA/LVewQ+VF5OUaV8Wum6lwuc88pcAO1AltlK0IQHf/b4r7OTIrpOUj3mgpR1uAjzKLQisqtrMS35COr6OMPFWiKkZmngYXglKCKhU6a0SCHQ5plbGqN5gQDoSnxEXLmj8WZLsJoiQ7LzwMETBC3gGxNpb6lxWtoB0e7RDGs1bGU7w0b0VGeUSI2xSUSuHrp8s9qv0rnF7n6jPjKdTqJaugnsPIoiGfNAnO1IshAbckr51HCsMEkqrZ6FVVhCc734NIchTLebjG5hBpndSeYQdvWCkebYayKM+bmg+SzGyqbB/No7NUDS+yIwEReeGuNMRjGLDmcyEs/4Qr0x3/r14enlxfmWOC9tbdr9ENNPvMURsDShpuTDXjRW6W2g+VhHtvJ2oC3QCUqEqK14/vnjHF12YZWGavI6h//7ILH7SknUpUwgPzNUV0GemRYgNr/iWqlClYNaP88R4mKFI0p4xeEAkN8GNu100qFo+p5qqJ6lJz58VJ55dcMcRdVUslc2jqFJSrRrkAtlVJbssk6kyNRL7iFegt4wz80qTSkSpZn6T7AEouXfJZJ/kinQsVYxhzxZsk3UhphQ1F+qCOVpxOoycJsHpMIm8lmn1BMLAAypSXBqflOJAmAZO+f1XuvUAT6ygWdsyYvzkg0Ck4KrpSV0yAPwyUJYug9Zz93lMFtrxm0VTaFGhVCBoTS4GnRoOVqVQ5GLrEdlJsAnlXTVsE8hkGbZoY+k58UMC8uuMUQb7s9gSVEkyQNDCSR8MfRUro3fs2B0S4KA8zZYgIgL8nYoi+xs7M9MZho1vIVIHbN5yU1VoHnrR3moJlfu3JpaXNvTx9VMY62gvFc9ztQCJ44SxdBW9gJqmFF7Ib1ICwLuXnjOnDYqwlrgXJmRDAaycEgQDToKAylkV/5723Exa83HIIu+ThLLLeerZCn7LVgagCZWWiaJEeUz5xxPGbLQQ4Sq8pGxmAt5KwyjC5CsDcFXdnsIhfIZydZK0uNZqBSbgIhoHxCMp0ozoFMoSqHV3kdEDMmWkpqNEmegluxKQSGD45kU88FeoVYdUwuKhLrDyHBiMTCMFJtmyVVMzIQMjP/ICEhh0V9aB4e4V1dM8SykXM2dOsQ35+dHI7dZC9dvmTfRtKoByPA9ghOTp6/fPlyZZkoHfpQOZSZVTzBl3oMAPWO0h4HK3dkiPL3nQQG+pkj0EBdpMHOLuytwraCDpGP1ghGq93BUEuTwkCDROxBobeyHUvXezTVGKYih4rZQY+RnzQohnHUYB41AasCknTz0jOjV7u72zOteYY2MRwAttplPyIjS8CwmO/zu/fKOEX4Li+Vs3EJcB0ZCPvlGm0Lk4uwAhUpVtsbH//2xx/R38AewAHa2Pm+1WBfDQBQumClmdtpD3cKctQAmogkAhJdj9xTdy5zx41NqKAoWDwNgCTRbJVyFBSFXIEtzLTG5KvAj6opZa3wt47qQYWBNcCDVBNAr3ObLHRO/ngEJXE2q7z111wBWp6WFGL4uG0yV8nWI8oXFQvA2oVAJdAtHL07R6hV7XjCgZxieGS0fDDwqbD1rClhDZaQGk/IgwxxVq7IZIPNe19/gTrxrZCx8T5byDG1y1eheGOecUD2i0d8bBXMML3gSyVAohr+9Hke6LFKaOTlxq/cZuECSBpQg6bbitkTN/xWhzVRXRlqEzSJGfhigitZyF9Q5Yc1F0QZCf0lwjnw8WbbSsgiBpyt278E+sVno3JhlVkwXix7bX9tYnyi3Z0gmKOt4cuiclnu0Tc/ZfNJ7MlwClxr2mh4x0P5iqMyuUzGMYlC7OVrTTxweTqsZQBrbm6eKXfqEynbZtcS4po1JHW9cBuAXuQfJ+UlKcorVHMSqqRFLareVZAQD6hReGQxl4fZU7QCJUySC0CL5JBbRVG89bn58ijl31TlFI2cq+dySX2LSlbVVY8qEAFvUoEs9NTgT7IExYITSQWbkl1CqV2u2ZCSscIrGIRdpglPBCykZ8Ex2YvgQC6RI/lVcVFIldxwa4ERBv7yHwn4yNbH1064jRpZcHp29umr1bXtbTR0fXuf3U10/GyX1+3QMx5jp9l2kzt0MuM5DihxgY9H3HGMDcaIiF7REFpSwJKB7jC5QN2u0pgj/ugbA1IqP/G8PfNCFiG/hIAHTygMhvHS9m9ZAjXhe8yE/MDKW8ToAXqMdqe0hOMh8PHn512eEKBTNzoKVaRLJIMF2sLY3Xt3eQ1tfn6JZSVaKjErlekV6P4f87od1LLlE26eLdCwN6TDqkMGgZWIZqAuAJa3MersjdTwq8a6fNCvN2b5UJW88MYQjpFgXhnFsEAVHkQUyiCCiRQK8SOpy4tKPFqoWSsBmrkkpIkk24XGVznyVH16fXiNPag5I6h5fpHn4uJ1VQXJi9pKpZYC0Eh7Si3RxwoCPyNMvYzfGNX5+tFrzEJnwamcBR5CKgYUuILQsZVHsN1OhaiIFu6WdNJQIa5ESiAA0I+FatJ8otL7lJ8ySh6USAc2FZjOyJFRt+rELTtm0xl88OBpAPmSZyxOEKyJmJmeYRdJNkvl/WFqp5VAt+miofUiS5+hVutPTR1nBo2CR+yX1Wqxoqnj3NlhWUaNFz04YptUxxVQqUID1VE851ABPYw8oEkedvMxA3K0NjY3Jsbp0DPFhnKBg80qh0tEwpEM5dDaQDY2c9LIYDAmEO7aP2U13qu1Naz0A7bE7U9jSdu7L5kLZB8/GLG5ufn0+TPX2KWbD4lyjhixWk+RZTMyV2MovAdLmwZnJw3EiCMJH3nHOo4B5tosjg2ZdQckmPLLBUUVGYcmEYWR5FFi9QgekKp0qwLcah1owGsdq/IC8c3jzSpKeslQ1fpm1r97nUpJfhOfkgaNxoav0f9G4REOqaTkGSVJ2cV1KaShF9JfA4EudQLNiDbAUajVT/seK9TLjwAqsGRdSSFPeFndibv/R1XKwTiWIE+h8EdYiImT/VIq4+U74xH/6FLeuHnr2fKKE0iCIQZxv8dxPlPb6Wxuba+dbyBuY4ri7/iSeQ5yM4WMGvB3Sv+wxasvzurigknHeMCL2lFRZhZo0+huqgIYgp1Pha1d5pK+pW8FqWDOyoEFCkQbAn6tR8+ezc9M0zXHQZOFcRy0FKLVQfZjOmad0iFjNVgIdkJr4zCw3EorSIW8ybA4Twj2nPnrw9/s7Oxv7OweOggAPiyyiGxw+TGvMJO6wcemKoE+18WL2CaAGMhBFQfIMMLGaqY0ee7eod5LgLvfGRnl0HnJiJQObp7ePCJBTjJ/JEsdEfWMUmMaPFQ3SjaufZh8PvDgN65FIKYUiIUTyVPo49KjgkMuS6amlBiVrSD6A2UOIJdSpZznUTHTuQEhyuYyP6NTECvJBURMO/XmHsgGiLrYaIP48M+1ZGnWrV+6SAxuRWQyNwk+QdzBsnhZoQYXSlWKIMCCLmgqx2gj1uZYy1jp7+B+P3z/3b/4q7/GFkEoWEj8wQFvbLq6wrCYjql7W8h31Joxn4QhhgauOFIF2C7g5GD/0A9JsVCCMaLxjg4TJ82bnwd+ftMQu2zDjP7E8qFUZauxn4BvjKI6WkNJAmGKs6Hy/SePbl+/zpwFqovGsy0lQ70wg8EdJiXsgTOQeXgy2T+vsRG/cGEHeyNx2PhAJOtn+R71L37zBd6e2IvBJpotnuobzBQnJKOgghErO/sRKvjQ8DmkTU7YSDNatMLbNCAwFJbxSVPemU6FtDGuSyGzEPKPPIo2cqhEqUCL6vFbHeR44wAYhZRYZQ+xQOAFTdWEqwg0IhZ+qcViwrFYBRJ+jp6KRDDhXOUsmcxcCvCruhWw5uawXmUPg2SuFRdKyFgqAgqlUlHQKlBVpuQNFPEp6Q7BUYOOt/zpdNKXiiUgEz/gJRpIwiyFcJUmmOlKgySnAtp0eEbOMC6J3BqhWmuRZy4AiJBIIZA9PyE04rlaASjAv3PnNq8KvFxepgJHF61el8dQEn1D8CEo4ksRjH6iplGkNr9UhEnwiQmDY976KlvIZ1gf5dzc2pqbnuY7CH0iJcyi033+/BmJaBHYMvQPVSzepqhkyiG75JLDgUN1galRCtvr7bxYXZ2dni6dRVA/O22yipXFTyfHh/sHh/Txx8fZ05fMgKqiw0hGCHAHM7u0tFD7nBYHBoCqRkaFMtk4z0TaF40m3XmduU7I3IzACbHkBlctg3vMyE0KyMEjvALtDd9BpK5iBgJIRULwggRSEio5mmw3n6PIGYkViSoTs4mQpaxUrxa2aLdOImiZESnnHDytflOAkhYJDHLmxlMuzUgGahndepe0Utjn/nFXoeEtxaVBbqm+8dQGjdGzFIw+BbiVA9FrqbF0ElKLtlLVp8rwCHrt2HnhNakkUiIsjyUkW3lOOkABDfeEb9YCBTJCibw2OXLkbHUmmETmSN3EUntpclBlUszVrPPm+rWrlx8+eYzqo+i4RoDgXtn4uvTUyYxHZ0CSVLx+eQ3NqQR3x3M5HQ0C+6KW6trj7VtXr1y9evnTjz+ZnZq6cvVKJvdaX9+79//6Z/+c/VXxwuy8hINNB1NLYJSZ9UAljihYxbiQQqNFD+D5y1fX+Yo4E2fdHuHQ8ury1/cf8j0RrHP/4IhvV/2DH/RhDrbOCBcYU3hQ7ZyjoGm5rl++asAu7CJn5QTXYAmVO5FMN9l3enR5YQ1cl+GWMdUG0+XfIwgFiue4hOW1dXpKRIcwlIaliIgwkfxwMmekqB5YP/fFyiIzBUZdrjsBp1KDlxqxsveaG3ZbKPzitghOQQvRQA6JR4tMuTiiCWqf4iQVVRM9TllFTLzrnvjogUd0QTgSZbeE7OwW5Y2paTgBQFVoa4HHhfoR8QYH0vlnLQb+gErZ6L7Pc+gDBCAonyN20qUgfaGqCOnmJhu55FtBjAvKF4CjGq3OzLYTdo1BMBiKTOVPeGpFhfWOplhbjf1zmapqMbTfZC1P5l4hiNFwvTVfW3Nkxy8zkR8VInpXJxg1cSJZnhDGoB6MDtEgMHvLDKxYcpyfT/Yn+PbmJ++///47by0uXsKo+GASdlKs5eMP3/vHf/yf/qs/+ROA4KZTwgVOHMES5BS+vLWiIW/LmJMo/PHL5/Ty6eBu7ewRnNm66ZIxJgWGBoMzZcCeDgw3fiNarsA0gyHa4qWlyyyT2tnbJQ+wocdmhxtHoux8cyZogueM/vIwSDAaoPwNiizBpROloGsA67QMhKlGUMKSWt6owBKQhhIVGT+pwtNSob9Ux8lozPGKoumKOOwLycjY8gA0q6t4HMUq4tRUJKsI0scUUS0UiuiJtu2MBg4E00t1XnOnIxSyNVAEcYs5paDdnNZpTiE5+G0hrpLfa8Fxwx/JucmjNBcmmLdKjksOSORiw5lCFgcO+ME6+oSAZGbJIsUhiXyIAa40+QeFSSMrCMkQwJkO05QeHUBJDhBxC3Jg76sz3HAbNMRAEG5tgnWLKqrCy5ldv2YyZDUcKDH0j1wX5ubJzVCPfOSgvA19eFjw8iVPasBUSISpdAfYdJqtpG3q6Qyjb+wh+a0P33v/nXcnp3qMpgCGqNszU2zIfqz1wx9879Xq6k9/9jOYDwTGSX2/0iFX3/ZEy8L/BhVpKu4cN2i5gdfuyS+++MrWCl3HnWqiOiuwhwWUhCN0QuA4jh2CWvy5OACK1A6q503/pflZtlyFbLvVZc2CDOVdTfobERGKRX0EeUy/0ZHQLA2NIKxgRlMjzVlqSxIixUkLcHC+xyzMztbc7DRRJXIRMMw8Za2iVxyaBxlRO5kre6OPYB4bLsrql4tQZgZh1f+UIneAgSKCp9OmCeH5ijT1gHluHoqCHqXIgP1bhf8AEAEKicq9LpBVCUtRI/+EE1DgSV1okG22GMMrO0hAjXhUpAT6qBpl4bPuAlDcCLpUyssZ8gcIMg9eEROOsUEcz/GLIHByvE8ptmEHLN1W6KJlZggSlOiTMgYPZ4g4qJpdmVFrAmwGZwBGRVOTk+zVTE5cDyE7nVb6o5evLEms9IkFtYZJMhvuSJ2xaxQmrQYeDs1C8yA4a31sSpAmSLPTNS8sOiCj9kodjNPeNF0MTxWgWl2U/5SUexlBpnaPf2b2lk0AWNjHCk/Gclix2SSWASz9V7fCOx/Svf7h9773688/Bz68J6DIjrt2bPQLLNWOR+YhTVBRBufzyM1D8RCIrZXyIf4RDWWwtbtLOkAMshSuBMcrgCWX+vu3rl+7//iJ1AGFcAyzc8BBQt1GXmHLQrJDpNbiIlMjKwjDzKqQiREDaVahQQOvH0uwuvX19VvXrwHF6Ei8/Ec6l8DC/gCG3mD4ppy7j4jmpG+T30jTEu4AO3QcF6+Jo1KrMWn8CG2j29m2QKaVzQyZd+x02JMQP0cuwk1aSzBneABkd/e2cEUcyJq4FfNlK1ikBcAEtW0GGagI9aJe+jnQjtoR45KBtZZU7ScMWX05M8PKeL4TOdET3M42G+ecT05NwAHGTbCOycnpg33g15mQgXesMeERG4+ywgXSxzsMszSpl8K9Xt1vBNaYnAK+e5jDEFTkDKOB1X4Pzykz9EJZjBELygFEPDExDn+0imZPM3MLliZfSYQbsBdl01C9hJUI1CtkAysoQv7IgLSiCFHnyJl0XBVkticmQAanhsTRftRpeqp/vo0qwlvkgw5w5BSlJwV54zHTuFivQVl0EamVQIOdAH71+defffsz6FGEWgD6HPRVCQMtdhJg3wm+P0AyPWnIBxum8KiEyTfygA/co5kAJmiphMIw2rEfq+Zm2sFaHRjw4cuVNeYHmvWJxjiblrgeG8xQO5ohCKG7j9uhYlIgT7LgOEyWFBURUfAGBprhkVidGorL5B5doRGnCNeABYXJid4MH2Pji9CTyKPOi6qsSmc7HDwBDEJrg6U5NS0QDAdl0rDG3oMAhMipqcm9nT3Qg8DOxPj29i75mcbEIzIOgO6yEkZP4afiGmx9iZpCLH6Ffc9Y+A4tsimLO8ImeQF8/ril6UJ2aBJN61mDUPiUV4Z8KQQDwxRYWjvRRaWgxtrRV3nSYHW+zI2G+X0tnjUac61Z8qNlPGLcg8s8h81QB7whH2WM8RedYDst+d/vXQYb7AqsZmemoy0s5febL6Rz+A3CaAmTttQim4a8UtIBeaACHIGrhixpbhMLOK7h5KqFSWcWFgEJh/A9lVCVqoAdkAi/cQQ+tn2jmG4bgGnDSwbc0xAj5/Op7ePT/YMVWp4tviSwsflqeRVBwit6xiCmk4sEOY8OgckSNc1rOvjaX2nSccnR0afPnq+urvVu3oShsSYijCaumqdwneYR7i7MLT56+JgNidUQvbMGwDDqORPAaInz19ommg9zXM4gHZGEAaA2hmOiJQJPgCqarZ2d1bWNCV6W8+OQYyypYNgXX0lnCDPHDEiZmuTLrj0GmqgAlwzmPOEsEpo+0PhPdCFxUC8X0F2p0gDIRl6Gwz7+4IOrV69ev3yJYG1qepoOO591Y+uB9bW1hENqGGRZwu544TtnJcIJtUDDuIAKP0ghWL3GJKvHQzBs5cOjVExi9NWVi9Ab1YzrYwPjxRnA6WqClaBxwF3JFxpvynX99CAQWKHIZm8Sa5NiBjlrEGgPBwjQx4XqBZ8jQtEwfpBkDgRmBkRhNOWGBkkuRTDGQmYpJCyVzw4MvMVWpdlehyoqGMcES40+kOv8hM8iIhoKVSR5Gg0wXFH6SSGHD8QAKrwQqneGhVYAFMLxSj3UV6vTHvlxvbfocINtNJq/uf/oGXvjst1cPnrAajEeAQw1UJUKQIFzaW9Ecoxe9BZAJKwwvwtIT2pt11bIMnXSyTrM96t7925evwkY4n88OpNuTmeDzNBvb6IGfMcM5cFf0XyxAwVG5IuOLHsmtIvCx3mG82wvSRmeUoWk8tjGyhq5RaLaDe9Enw++enB/hnewJ9AA+M5T9mZyRWEpBR58RvDSwry7OA3Y/SXrbOWPAO082os38CAAYaUtYQ+MDp1wE9Lc8Ybj+pUrH7337sLivK4bHTF+bQ9Z68EMy6SbJaOGGJ6yxNwM5WS7/2VxQu+qexMV0RFwSEuJMs2MBvDfdHnOlYGcQnD/PhSKS6IJJMBBiqIQtlZndh9oJD72GjjCgwoqAhQCgPWCT54KQ1iu1nL2lAPCRYyzhfODW6PbVXALZNulKMdIPS0hyOBOtBLwnJgBEOFUITzHHrBwMwAoVQdXSCLF0mbSHWQtdwwJeYOH8DlsEsM++UFiiawoooHE96MdJViiajAgv3DDDNWaLsLdh09W1tfd2Gh8fGqyi/Apopu080YXhUY6HJCfvvdcuOlvEEb+IGujzfjp2aDLOBQNLt+iRV/RoNOTp89e7B/s14YTOBOiFWhhuwtJC4+Az/JRQ/pzvlPDe/wnLOXkS1L6hjE2WaST6aJXRmfJT1tKfMzOFAAJe+UCMrZrwqWqmEkuLOjh8+dv37o51ppFq0k9a7rnF3N8jLLSm2e0dX1zB3pI5FZW5gi/1S5kjZbARSL24OnaId1hDAX20TdmhJkIl3AVcgGFO8z3GRqENHwz/Ohk0uUlDLyBo+j5irdIR9NVAvWgSkAqVO0jDzWVgzvOOkXvSeceGcp/UiCbK89F+YsSmZg8lZgAaNkQRzH6IURQ1gLHdVX8ty7A+CMCVmkZLM6LKrMZyAlbtDUdesEWHVA/bFTlHU/t6gQLMwQsF2hSiBBIaXYqlCgDLErgRErtnPNCDgrMM9kNWB+peoBKx9WgIk/9UVVSJYzSkrw1p0QAGgBe2boUYs1L80LLYoozazhzXlc0EuW1R3SMInQY2AAOhTGGYs7K6CT7dsk4kaas0ZLfK6MNcWpZg3HndyD45UI2BXKZ84BPV7kemaxr6+trbFpxiXmF9Akd0ZE8sdR+G2xEhN9ksu3yzNzt27du4miXrtBJ2Nze+fzrLz//+i55YIn40k9wHyWNEDMsXIDLwAqx6J0uwOuNzfWHz55OjI8RWR8eO9XlDhlbW3TX6BPyjXi2FsBQNQQ1DDarXjg5CmOx8BEyxTAC1sDi73ha5ArXeMyn6GkZ8WcgRGMoBDWMmHKM131o6WhPQJUicINxMXWcm8RaomnYQEXiP5KfZmmbg+qo5tLCARrQn9/QHT8SwymSL7kMLLScPA2HgesR+0Wtqc54RkYyJpvBJeuwpgJcfIpkSkGYoKKkoxUm2+qCORQGviyCgeoxKgIRtkVOhOn1Q6DmR81KCcDUQnKqKLZUaCOn/6ybf8iWbbbRLXQJ3eZj16jJ8QHt9jnfv6G4fzHl3c2dbm+cwJo3hhlK8uvug+H27g795t5EV25bq5gEW0/Uw0lbFgYOVR00BZ9nCzBgKoln9TZuGJHV+r3+1uaWDBqcj7c7fJUQzw0U5nB3dreowaGIjEDgFYnpM7/GItQjDMLmtlH302YMwtbYEHKfcZT52XmHwPiXgJTQCv22nRoMFmZnPnn/zqcff/jRRx92x7uMT8S0m0zZffLRez/+67/9D3/GNpVndlr4vA21yWacA9yNuMJfOK2JQhQTC+BAa/Ll/Xs0dnSdd3Z2j/iag60kZNu1gj8WhWwtSr9BYcoqC/kid7gmJ4pKAorMc1od3L+Kq8g0nW2+9ry/z54amcKzaZK1GcXCw5AVuzVuijfSAgIU+Aoi1ZlQEiOigFXQ/AWTFBGTqkSwy3UwlIkZuSJHQYneDt95IZFMUiE+jEPT6BIIqQABRiJDJef0C2Eo71fIhqBSOCNuFZZWHadQMEnVsELmEdom+6CO00L2qCmr1hS+W6LR3g53trdmZvqwl8yMhPT6E7JtdIidlNrylLTwJfaMaZ0z3M6mQadEzQxMQZFr37soTcxpWN/d2UMdOPf6fTwygwdbG9u00L2JPlOsJ81TvocQRloLTCishq2FndVPEJIcU20l0F6wpT3nH5SwcgaN7PZ6ztmi/qyt2Dwi+EAZZ6dnmSjA3x8eHTB9xAAJ7NBpEiOiKWNjh3vHfBk5EfgAZSCk4ttOBvBRLL0GDaSRuJIismLi+fvf/R0WQMzMzUUC7AzjwD2udXZs+o//6A/g0p/+2Y8Z24RrNiuOtYRzBD4VV1VdrRZMCMjQW/jFd2lZMFgRVwbUQcHmnpxYjjSrbVEp0JFTOQKnKCLPyRDEqRzzszsPUdoPB6OEz1+8XJif5yO+vHiEnehv6c2wen3AXvyOxzEhgQnAU9pKBoNxFMAsmmrWWn139wBTIaCq+BP3E4sFB3SI4cWCjOeIMxcmwly+oHxEMN2b7G1ubzOYCHztVNlLGkwmI00BVU/Yb4YK/TMs5F0TBIYr5SswzGjZ2c3oLXm4gEbiARwKrgexUi+WTCL8d0ibzcP7E+Qin23qoD4/v4DyoA00tOjL7NwMasoHJ1EUggwYRXhB/sTYAguK0C9uwtHybU/458nX3ltT0/1XL9dQcRwhmxHC+57f/pJq26nzQW+agdQ69owR4ppxuoAAW7DSd3baykyaQ/fIuXBDOmGWBIejIYRMdeIcqrfDh3Jwqvv9G+x8ZWODQoiOV+H5sgdAGY9mYOZo1Y9zyqLkp/nEdBE0DRqN5sLc7OKVBUZmIJbQ6NHTJ69WVlAQdbhJ8D8eRiAjamZneD5+wKghewDPnR6fwV4GdnD9KhSRebs50Rz7o9///fsPH/ERThbDWmdGxFj8ZNOJYUmowCJ3f43+VVZ01iERpGVTTgKhOjZPjsSHmIJtesyRXwYx9ByqDtDkkRKBzshGKNRDh8UqERwCxOnVamzX+u6dOxMM9XBDOU3fQAqlgrC9/T3GbfTT2QcSYAwlq5uVBKwCS2CmrxQXQjBm1xD6bUeHx/CdxMAWfojU0ydNSGDCnEa7i9R1c+vrW3gK9iBh7Qk9E9owxnbZcR/XUuuyNl4zUD3sVjVnpicNOrGKbb+sNT07ubm1QwBEezY7O7u5uUU18Ac2YqhEILylwrov2AhWijdIlAh+fX0DTLqLzG0RUw9x1azvR/vhG+6WwIGlkWRXZMoCjeVXJhebh+/4KNAy2IqfBktIIFiHlwx9zMxOUwUahvydS2EADVvQLZ5l9yo38sV4KEssAmLO96vtIsnBRfDNTTgA1TjwCiHjQ/uZkbLL4HANcEna8QO0AG1nbmgQ/DhTOEZytEXQjm4TaOEB6w1m9y7fuH7r5s23blx/9/YtBscn+pO4m4cPH/23/+9/ymdkC0ZqrgGRMgMNaocXBrZIJetBqR3BMAxVmEJ2qO2Oj33y0Yfsle2MEurV6zJKXV/f2mYUNkwLcJUYxoqejkrQKEp8I/c26ExSuiA2B0rPrIDxCg1UwUPROPwiDlz6v8IPJMsKC7q9ZSTKEVeva7Xl1ZXdvV2+1aAjYvAO9wgSebEOCQlLTXOmBu9I/kDHGIKbbqkxNT2JG6EUiJkhKOPpMy/Jppw6ch9FfuqxGYBj3hA9xAzQvMjGumnXj3tEg84PqGtMmXU6+OkQqgQEyOP4VcSvs8b58XGkw5M0btoqrp2QmI+60MtjuTHBOpChhA5hf7bPqEawYjLYZhxY7K+D2TOdx6JliMWfGuXQC4sL10+LuThrhuil5cqBBLAW0OI/T8KEaAh+vTvRo/nwqzXM6J0zP9Pb2d6D4ddvXMU8sFU0nk2u9thG6PAIa8H2drd3J3p81SZfwBBiugLKH0jhQViAyokACQgIW200mat++PSJgzOqkTpJCM7Iz/HgeHggv+GmJWyKee+eHqA+ggnNibEmcRNsv3Hj0meffPTZd77LsOX87DS+l1dA8Ze97li38+4/+oM//J//13+HrIf0dlAgbV5w1E6MihHqm+bmMG++jEMrSqNKDwGl1WCsWg5iYFRqcIE+0SpxJoj0cUjLBVrhnwwOJeJduItzQCbo46mr8SRSz4089BlIEfGUiCiqQwbzlAM+UhXcKmIEWdp6sde5KlXMnS87XLtxg+aHchoRgqUdxXeN8QKn/WkwsrOaVVWoBHmYEQd+GIGctIrqECbYDFlQuL+3z2ACxFBLcaLWVzouapJaQwpVoKEEZvhs3BexIbO/WCkDIQ7FHRJnu9eIHjQxodzB/xmPgLyzqng7NA0x+Ape3gpAZQgyYdcGbvj8jGiYbDh7fB4+EhaWQV4AARVmoX/bO1vsMohET09YC8yu0QOmkHe2t/f3apcuLTFCAUBU2NkM5SrmSqewAEHELgrfZQVawnxfjzkhZ8T89mu9RicYJBNxMc86yLZcxggg0Z/qwzTYzt5DcwszxfF5RnuFZT3hk36uMFMUUDEr45KHTTo5pHCATErwgEfeBF+cpsMbtFH4YjZOX1pcghm8GsAgERuVLrM2u16/89ZN5vXJYNPa5RsDdM9c809b8aMf/uCru3fpWzJpDSBw4g+7x0mEDZgan+eZQAoTvmXggkgcYPiEhtCusgrkZHqStUuTm3u7LAHI953AESxQB3OKdtSXBCrIIAvYRytpGIiCHNxz7yMcuR6gkEu4A1PUKWzD5UOiJiP0ESRLv2Chnuo8y1KGgBpngR0eYZGsnSKx0+lDg0NwYqEUkSVDTER7YAp3URrNl9YFwFRLPpqgs8H25hZhzNRkj1KApBa4T3TErpUEvr6JkciBYpFZOKMax6loUDgVqutyz7AGcQ5BAlZPVG1Tw2bl7dbq6jpo4bR07U7ASTWBNWvoOXe6bthGmlM6LEnI0AL6TreGcTBG1hn2O9w/orlwIBwnTFawkHH8Qtn57PwUCFEY/ly5ujCSyuDa9SuQCKH9ye60MT3ctVcgcnEX4bOAKOgBVxx9MgE0iA+LeHW9Y2AOpa4+IOSAAKpmNIIyGLj0sOdNVn9pzJXuwkgHbUVWJYk8w0fv5CYeLZJGHYcEj+NwxoqT26r92BJz3tqJSzDkMG9gdudn53iDmaHVlbVNeEjbRSVMk9MwVGtY0hKCE5LlrFgboN3/T/7wD+y7gqJSMzIHMlqB0nMGNUjgC1V6+bwiJ8cIrVFO+UVWJqzG+fza8+VXKlpIgICCaswWkNRGfZALcE2IXFgF71nbwlFNoQ+iVEPMT2chP/KvdBK8BkWeWgXEAZA01wMCWRWHWZg7g0X0nHjKOBXjYqy3Q8mYIMTCeE8b8KBvd6teY9uA3Z1dWlE0gEiTyZB2jbXZgC2tiuYwPdNHt6zWmq0f4memJokoiNdBG/Wx7iCFefKU4hWO2X6wlJye7oPS1WtL4I1qkDg5Se9Fw758abHUKMkAlOZBGeohH/AXF2fx4lbsc6f8+GWFD5SCD+NAdF5Jt/1UXFwWhFMNK+foceUxaBXGkpd6KYukAZUmKFbLOD6aS3K6CuBBNvVYz8AjYLO6RmNQgvHfukUaDRtyFmGWaD66bstMcy0ryCHjsBIIgLsJhrkHfjEEMlmR6V55yz8yOsuL1OwwsJ4Cz50BYlc3sd8PIxD0o/gczsbGFjmdYD0fMBx0cPiKVtfoMt1FEKBy5H5UG3719b13333PhpT1pCfHjCCp4j5mMm74zp23Hj16Rj+EoSdQZfDF+If55qNjcANh0CLyoZFhFJ5OEX4Q94mdUAWVsSqRRpc1DX/zy5+z1DVSELROmz9AyMBkFTeKIFQJ5Z/6q+JoACTABxBwdqYgTyHSOdD0ALNIMQbxiu0iy5nJqSuLl2/duHF5ceHSpUssfaFVhhG8K3r3/r0v7j0kkmFPVTBSTcWAcIX5bJyW2y5xKIGM2FB7OglBhzpc9+YGMJQUYXsLXtiiaQAgIQkk5CG3qhf4B0iIEG8EaScktFheIuSNCdIMf6DKOuU3VfjAC/gmYKNHeQhoSkGDGsYKIhLNLBokkxU6kq0US1kqEznruTiZQuZMAZkqZHht2VxzV0FK6USbkFkAMKdPzENxXkBkvI0PpRJg8FlUeEQoDxmxZOnZ390HMI0nSG6sbxFaEE3ReWDcn1Cqkqk1SikUkI2DggojzOFRflVB3sthveLERA/N83WX/X0+oEFHH6VXrK6zykYqkkasgvW70AtUaYEVq5+lqX359b1/+EcHjHfx0iVW7agMFbtIyj9WM9K9wYYUCaOCTNLTnjiKUzjGJV2Og8npnvIYDMZ9P9nV3uInHUQ2DV4C6/GND24spO9RPhifox9QBklhJa7DNg4wJjvcFhgg6W2Bya93wY6nFOCOP6YFIAx3TkMvPDcRYySr+e2PPvn0ww+Id+mIsZCJ2um9Qehha3jzygJf9WQqxakDtuB2x3mes0O+M8r2EytH5SwlTiUIkMP6QNGnHhYhiQPkgyVP8X8kmg6mPoWDYayGQnKRZR4WNdJH+kjKhEn4HWQA7m8qUjuphUAHtaSq1CyWaQcopOvNDACcA2D47HixS0aLT6UOGoozFtKe03XeY/txJr8AKPzSPTUfysPbHciH8Iyohuqpg1NVpc4qmLjq00bPRw6xD9fW1pgjwzdjBiC+s71vLXt7xvGxw4iWkaXDQjWjBfTFWAGJDjGtgWfRrR4d0yBTXI4WXkEb9x62iuE51wYOWsqwxluaaPTewQG5GPhHFeIJ3b+6FEEyarRFLIW3JpAE7YzcsnTc70FtH+x/df/+78//kOZDY+HAlZSuAL2sNiPL4xub29njQvL5r4MAEP7OQZ3Wq1ev5uZmaQyoDoHzBlD4o6Aijtqty5f+L//kvwInXIIEkgpOYEk+MuHrMs/AJy8dEiKHVKtGXGlz8gDhKOni4iyCs0mWJIZIyAKsViQFTB61up0JXmbli4iwhtYJcKgKI3AUHJ/oz80vXF7adsL6jG5+FwOw/6IAwMqIHMsqISBvdAhTeasnsABIIA+2DETggJWTj8QbtGmL8DRcgYz2YvOFhhXlNZe2kjCIbwXRYGOiDEMxuM4ZSASsJ0eHjOsDltqknvHy45O1yBjPRCQAjggbFGCqZMswoBoPEdzBZzYGpf8HpvAWnS5DusID6eFwfW1zfmGWPJ3OOR/Qg1i8Jqtr8U0wimumoqqNaMFa2AB3SYLIxGYKK0q9kA4anCIU7moMGOAajSXoKDQYh6VXw45DDlvBKIaGoY6L4/0DcKc1ODpi0oZpkwnyw2l1NMqmwy6ziqqOhXMoDdESM7AxL+P0Y2gel+IEjqCENLnzT3HwdRBGF7x2FRBlyYANMB5AiA9YKmCl3fe/8xkdMTMAV2qBZm+GgRRH1VfXKcLLGBYXI+rjv26R6WO61Hw7hzicle30PFl3DHAQExv6DHzFsNu+c/M6X6GttQk8sCR7hawFwRClD2CqOcDUJhHyvy9tamo2E/zh63ixgsUkoQ3uALeUgWzo55+ejVEItxjTYngKW9mmxlu76BoJWsIzaqVX0Bnvsp70xasNuqcQSZRR5Bomigr7Uh6eYB4udwum0QYFA5oQ32RBP98gQjFB0FKSwtQHLsEojhtGhKSEhljafOyhkMABooHT6LPJUtNZNma3jo83cIeEZ4wD4DixTLSE4tROnxjy8bh7u7sA2N1hgfr5DNMIG5uAnJmZYkxwbW0Tb7e0OEdox/gPk+UgT8eatZOwBiSVrisutXle0wUs7QxDyuwIPTvr2DmqTDc/+sUAA02lH58U5ZgBjAxZGJPMVkzSB0fD7oavRkAajQSQ93Z25+amKdi7ssgAFDKnSCyNbiSDD04RcoEjUniIjzk1MMOAu0oZ3qRma1Qzwr6i/sSw0kKKOdAOPlHpH7MH5kJwkI2W2/fTwGjP8WgoA3NrFNBaWOvpdtR0F8dQcKyBA9QfP31GkzI/O8MKNNzyuAMJajDiZhQTWwMyn4NlICL6wMNYRMRK0MXk5L2HD3hXARZACjji9M2k2xNbKGeGg/kUxKRIKoWIwlc0h/nSZANfdIVLCKOnB9mwGn9jSooDAv2ia0sJlRzdhzjlwY8yU04809a1EN0EOHFt30fwHOJHc8ygM9sWEFySRxaZXqkv2yfv7hBjOPNPgCRwrTgoWxXuk5eZmKJ24pTKoyCyAxcI2k4b2w1QHkpIrDnIqNlwD3/AkBdZad4Y/udLAEQjh0y79hq8IkFvjSZCI7D9pW8jDisr67w0wzBpmb7NlFlnembKQdWjk7n5GYZimUNg3trdQ1Qv6rBa5ATdyk/FYorTbh9BMqPp6IlvuvoWOO8DMWLK2OssdKE94psD/gd5b3IdLnhd/A+lpZHBX6qYmXGaj4r29w4QGp+WwV/SShwespnn7tLSPDOGvMGLanIx1jrn+63Ts1NMzbJhI/3KMvBKRRBequNSBVHvObCQ6kY2wlgcjR+o7/LiJRZA48mstjbFuxx5D4SpRhSeqTVky9uOOGEUutP1bQoMT5NQrOoULeGz58+ZtdRvnqGr7Kmq0WuK+M5Wq9/t4vgT7MlbSgEEzLBx6GfJwq9/85vf/f4PsDyKYIE8QhNUVH2fUnCMj34Jqci+cJGOIw/IoYYjavxnLAlzsbyH67StSeE530nADhc84idgFBdRzRRR52I18ksITCxu40Gp9bzpSkvKGUAbHyBmg4aTgxpb4OzvDVgu4lNRY8gpZ1+QMzvelPyZjCOPxYFORTDHoNz2IkxRbnS6aQ3xbeyelJXkZC4CBIalhEY+D3RL62VSiZrxSSBI5JPlCM51zM9PIzC4QS2pTQ+KUMtLZKwLZBKXd24ZroWNsAHl1vn5KYk2ArZJQXhjLReKsFDpjLGCIlOGckA176Nt7yEO+JPmHnJ8yw9JAIdxM1SJj7qiXeAJ5hUZ8p6EQkF+c6v7k1btHYsFVflyzvQivUw7qWBCRs7IERugAx2505cdW1iap8GD0+yXTqI9DlpvPYa8q7xG5A4i1k2q6IiElxDjIKwvt5wcHpNKJIaPm5qcZpU1X52k/1BCIDjJvDENJu6TkUNkCkq0mfDHWgiCWeD94N4H77/HRfAgkT6f1IMPvhjftMIHAQ0SdJGUspz8kUtsRsp78Lxk76LmbgfnxOfUcDfMlYglIXdiGT7vM3AoEw/W69OxgCn447sPHzNzg3eklUT1o2ZyGX5FdSFXpggHSbWKm4c7jouhinT0ZYoxeLijIHS/FR+bTZaL7L91ozkJBxGHm0wqLZwAe40dHWw8u9862j/e66E6TDkiAdsTQcl4VbBRY1kjbSjaZFkrCS5A8B06PMoRn33AB1sm7QyvoTG37+wYXUAWusQly7CokPQUHyMc49RdJq2mukxtruxuvHixzyQrYSbRDgxBm7EN1qjB62jz2erKCvE9qK2tbIAd86BMijlO4JrK7traNssHOrOTiAr2OqwkMe7lD/p8mTi4E3k1bK/aLWoB6/NTLAFfzLI3pod6OrBabWlxnkq5BAIk4wokcEQ+KRUbeGQNUC7PL1+ah1BMgMFqG2s8xfkZ40LoEbwlG6PD6jrOljV20WoSycjUKURV/dQyMkA7H6dhIGorrdApgmSoK6xOxWTiDdXjEzrNvHrITvH095iVP9o5XVlbJx8Tl7hYWm+kCQ/pjOGMgEUnCj7TfriwCr+C+dp9rS2vrOA6WCzj8iHfqkeJHewRB2YMu132S+JDVLiIwgLQRumCSo05O+LN5y9oVaaZUwEmDbiqhl/MDxykVOuf/J/+C97nunLpEjaGMBi4ePnyFYHEoxcv8/UqAwwKhd8MY4dyGYAqFZOCAf7DTAprkBPGCZOopnhaisNw0iMFO7WPnj396N3bCJo2h2E23ABD6AABSzDcPTjZoAWv7Swdn44b/IGoXOYRrpGAGkd7sHdISIVeWlfaJ3iKEqvbdacUEKBCQr8No10UxLod2QTLEWppvmKcgC45yW4wVRvOzk1On/cRMPpx+co8/hmloS/DWBakUs+oBaVHOHblal51F8PhtRuXQZV/TAui8KgA4s26/Bovi9LWYlHUBSksn5GqwppIDx21eocR1ePuVA+K0vg4qKDIfDlbqeWfYChXJDMiAOT1FmCCAagIMp4TI2wwQSeCerhaTM+vzMhM7EeW6CHV2mdTtj7yKQ9oSjmzLIg00LPa4tLMJQk8iH7oKLFXMeM/3KOffT7c2tpWvvRuIYwkPj/AfnU4JuS5a0ti5OFUKS38GaNVtdomw1bTfmaBNw3p4g9W1tZWllc3NzfYe3c4nMD9NTttYDJ7AC5kI4CcnplBadmFW8zFHR76iH/0GJmtuv/gwfvvvp9Gnm1dztB2GxApAQM6APXWj773HZKMUGNDRJP93vjzlZcPnz2jNRAYhMESKBSu/It7MmoKw+zMKxVoTa+fQCL2orsij+GKYyBlKw6XEtBSbO3sPnjynCVAdB939vdWVjcY6CYexROzRmp1eXln76DXP7n9znu016CgXNMNUn51lv20t7d36A4wDILxwEcpKiiEszTC0QfMWFGBMhKQBkgAuaIejiARF4UI1Se6DHlkQTQZh4AzAGe/D3VBZwhFyRaYnKiXcoXrMXtdW5RMnVAkjtj0+M67FHBQJuqqthip2CWlBjAhLqRuUYoiQleFs+6cwJgnEKkhF0lwD10VfXkcdVf+wIEqLkzx1itQ58ViwDIOcXZ6kHe4z5g9ZPRC4oTgNnBgw5Qz3tdZ+ak+uKHKIEBYCCvICYOL+YVMmCl0VQNOULEU2kRAOZqNdjIEQutHpEQDeOoLEkbL0cDSjBBE4c5UEqKSpYWFm7eu37p+/fLSIjLgBQb68H/+l3/zJ//z//L82YsrS5f82khUkSF0ohHgWHO9xnbzdDZoN2gWQAgPSyXhgkudiQbpaRCW48sYKYIJdCXhPq6/8If8bPyISfnOG3YROpkO7C/ML0oQ/6ROliukFCJfyIYi1nkbsrPfSrhDU43p24wTj1oAWXPwy2L6U8cEAaDgGQgZDn/51V2muOkwbW3vuJ2lTTNe02gUTFpj44cnZ2wfOzfAfEuNANK0wAq7IhvtJq8IigbmkXXjVErtOhiA6JyQbpEQlAiGVhJCwZhzoUrKPBRuHilHVBTdtLUxfHBoRU8ZvqrGkTvESbXxt6JEJCyPpQKkDizSQVVv7NtZZ4RWQcYODI/ITC1Ahh4WBm5tbZC4dGkebtHHxhXZTwAIWhaVEXUGiO3KaRCgyof2UGH4nDz66dCAGpoBHBVzXgwgXbosK/cIN8hDOMEA9j6fd0n/EoZwwbIFVhbCUt4/gRlsXr29u43I8KkYCnH9zAzzDwUe57CXc1Q/RlD0wuplplmzcxFbvceVci/nCt/BO0Gv5AyMzz/96IPf+ezbV5m9n59TiI6WuQoaf/GjH/zg8aMnT58//95n3z47PaaTVDUIVKFfECaYEy3T+6JRQHYRlkjyFIPktfuNrecs5CYmhEMyoZrT08dRHJ3RtaOcIkRHOyBoa+YXlsCZB2SLi0J7QgHl5Fr4r/dCaYlvWOOBWtrRkenMgmEbgctJLmfhKViRh9EDRvthFu0gvYXkEg9GFl2RQnmYSCOQmQFiH0UvOfxgtrxtxNIdsMVfuthGkqi2NO/U5C6zZK8xyMO8dZQSaFogdBjjaDTeqYV6SW45LGJcRONuvFtjCzQaVBwYopiZnWFkk7aLkZbNjW2CpNmZKeaeYBxLx2mpmdZhBRFBLEMu3LIYBhUEYXb7wSugQ/R26K/DIWpkngSlZEWdLUk4yoaHszNz9F6IjRlZ5A0VhvSYOmCKF0GwlBKSUVn0hnF9sKBlt/M2rD179hLnzQCu5ho2waQQpMqFQC48QCbSJGZrMyJHZxRVKzpkvwXnqp3rOxjzBTSv0NC5xPqIImGNFoXXNqSUUcBO8MWV6kG24gfhMOrDTf7krjj4rrDaRSoiJgfiw4Hpb4iXuEH2+VYs36i9fOnS4sIc2t8kJB5m7ymngBjBm/nud77zH/7szxjTVqi8M0Mg0IpTpy0BNFPFvI0w3j08OXRhUtZriarhnFqCkbD89sGTx9evXYMUCkCOHhMCYE1O9g4BpYeNdfGITHTaWCEj9XbvyMhADShpz5GfCmRORvpYC3LkZ3zsOEMZCuIgCA41T1hyyWOP7DNsB1enCB9a+FAH4wmeUWS6EJhUulA4QF5mVbo1XtdMPaCnnCBScWQwAVlar80Ck9OYmKhyAXCGLHd32cRKwwgvSKbv5z5UmBZqBAnlkFUecgLAagyYCR8IDP/sgxidJYpofjUXtFIJmNG+IRJaM6bbKEpPdH5+FqHubO8S0arWJycvX60SBAIBoLzmCp+3Nne2+OAcM2VneBNBcoKjz589W19jL3XmhlWdaA4MYVjWDaDZfpxkVonR6ScmZKU2uIL/5cuXcVYs2w764C6LUFYZRL+IbaKlSbIkMD0QMjCvRBRBcTBkESaPabWoglwgQyJrH1E2Rx2OjmMGDdZHwPkyFRVexR5gW4LM3FAaiYG8rswa+e9giOKFxDi4aCwiiQYgKmSBX6AWPiPLWCJ9YiyfcQKYApMxGQqgFNzihng/gQpZrIGg9WNqUcQtrZBnC0x/7HBvl1Uk5MG8ecw6BcIKNkaBLCKOR48f+3bX8SlCQZUoakUxJE5+EcdpIsc6NWK9JUt32mNEbGubGygtpJKbVPlMtTjX/CjEPOIOt5c7+MFMjd4XiycbfCGPxqGz4s4Er3kMARmVC5+4Vf9QWVdZQb+feRusb26gvDDU9gZyNSHrpwHCThgf6vcMTdyVTzvVUHkt0dfG0ybWGWoMQWDDY16fZVCLzgluSpIiQ0pJodR5by35Q4L0WakLN7yPnsgXvR/IgD/ixAYwAG7ZsnNnZwcdIASanZ/BHxwyUsTHlFhdfHhMN8f3Y1hVMja2fbaHkiGlcIbXKemesgi5c+3alfiKI4pgB7w8yQI1/B8xAkaIMk32u8wxIyBIpSXkGtWkfVf5wNqmPM20HBA2/1VNBWYKGktZXBoRP8rHKCGKghYwYkFmAK6ubjEmg67TT2M8h409mW/e3t5eIFBpNhiqp2PW77PbnJ4lXIL9ytJ2QN0gijP2QgjgTIK3bhuBKcAtVQOaMTnwQX78V89hebRK5jdqd+/f/Qe/97soLF+eAixwWKVLLv7BekY1mRZ4/PjJnbfeQktUF7r+RICUFSKWYIBEa7a8fNrp7rNX3drq2vNXr168XGaAGwdMdwjPBVGIAp7HbxpL6HcU/RAdUq/EkZcipUA8Od5+6+bXjx7ixPVpMpR/qi9HeI0bhsEm5p8ZzKfe49tdkSgL6G0m6oB09Ji8jgfToShWJSsI8DUO1IPAihDIlxBUOfc44P1JRp2H9Q6QeAp00imCzVCb7/Xpr8/c1YhhRweRAC4cutA0ghJl0yKduhbXz/DKAQ1u7FtkPUKzJxUoaFOMd8oASrtGLsCivmKQtoWzpqVBgrwdA5a488GU8zGHaIQzGOzt7mP/aALsBRlsm7YFJQNhxMCbAFQENxAjNsBUF5ybnZumwOnuLvPT4ZvTDsav1KZuD5jbohHlGnzAlQ/W0zvEX8YLSAyZpDS5Iy+FbEU5A4mGnl4rL2phG5NT/RRk7Ij3h/oUR22JtcSKdbU9XqHmbVLBLszPIjIICQdKPamu1BWhpOrCQaBqHhSFM36w0lfGIBSmgokCikQwFyxZ9LwfDtge4sXLV9OsD2ejClfRuS8fHodF7iwvxRSvXbn6+ddfITtIYHIGKQBAI0elkHCd3mPn8PT8z3/yE9atsb6VV/hBmEAXZ4p50v8Bq1crqwvzCxKuukqp9SsHljfnEwzKDM2266DuMoXAomhGs6kpntiTReWy0UXROaWJciN9+s52GOjn+C0StJC+Usi0DdKOMghDUC8UmALcAAGOUWQ0mAcgoyx9gwkLpA+3Q4N49dI8I30EU2oryyayg4avz6NErNQ7PpkKUIvbe7YxoRPSGYzhxgAtzdjJyRlZGebnIxSstQwf4OCFbYOk3CGFC8YkEtRA7JDAnX/HJ0dMMKF8tK17jIK3Gkw22NCD8fn56sparz8Ox8CInpvGzyakzBV0eQ2pgbvFXWFLU9MsuOctZxyZfECjYQ6xPqYBD1yCVavxmiipMKc33oW3eCzaE+2Oz1e6264DLxDIa7eM8oElCgoktamSTmG3NCcxD5IDobLps7PveRnI/EmnAAPtIBBeyRjw15DCOTwJPq/wSQUit5qbbLrjMIpTNJ1fS5tB0BiBzQKBPeaVB9gT1oGnMDRyVwGURBAQStfu3oOHb7/1FosL4lwbp0dHlOJtJuilbbl27dpf/e1P0XEsttap01/im4DyxZEedIbWi4HyxWcvltFKPESb9VQsPp3o8GYebSAeERHweaePP/wAkRGUYwTxyxWLdFoAtSc3OEer9g+Pltc3X7xafviYBoGICsVUaY0nJBECMRVS6MByEcMBXf2OswG2L0YuZMXi1aSRskEPA4tGKT6VqbI4dzpdARLWuNUm0DL2nIb72atXtOZsZNg0OGGq/HRvj71INp+9eLW+ujXV69nPUXP8xwEcTv0p2npHqHRNig8CGiwHQjARllhQIhkshm/QoHNFfpa42G6wtW2PBd58BLpHXuhaXJqjVxMHqaNm8RDULizM6g2koN5mAgFhtxjAqE/Ba/ji3KrGzjg64Ol/USkDToBPIyd3UfFgpSUjIZ7wlF4TbJIu3Kh0iZ04Y2b8mIdGDxx5KMTwGTyUDomQzG+5tmA4DwkRlEBQAmm0PWbUWFYADAFSOEJlYRwdTceSWd0PdfBTnw8l4hDIYEL5MD8IigoX8IKqOaMhZCfSx0WGDCqk44OmSWJ5HdT+HUf4/+jRY1wYhdhFzsXV4GbfV1On1itXLqHrDIbOT0+jOjTJbI5jTEFVeAc3pBveuHqNf09fviJJJBlmHGufsI5ZpbfS9Y11zIB1MQzQMu7w/6PqP547W7IEzw8iNCKAgAr5VL7MfClKtO4R3HAxZlxxR67573FF0ozWwyGtZ4y0ac70dHVVVlVXpX6ZT4WOQAiEFgA/33Pxsoc/RAD3d69f96P9+PHj7mfb6zIW+Dn1yy//cPvuAwcUPH7y2ER0m8kALJTDJenIfBeG096C4ULZaSicWEVqsdTIhFTx+IsD69IrJvrIGN08jZqqru6Fap4sKiU5J/6V7IqAgXD/0cMHj3fWDk/xk4w7Le0FoFleBl6FTw6fT3XFPRtdAbbo4cr5jfYkRonsH+lvAxXiSpzTRtyK7xU2XRC3gmjYm7yFZs3P3MnyreJeoNtRfNgMEXfSgcprNtJr1LuVHO82fH3v1oRi296iOXgvLf1yr3pt+T0ghc7yCmEdEg05CXpwj+gvz5eKAZaULGpQh/19e5mA0Ky+YI8ja9wGYQDbWm5vX3Yyhg119q/seju5SqxXXjx/ReMl8LDZxuLe517PqsZa0ZtVWw6nj8ulZm0kd4M0inflPzPXDLk4Fc+QNbbBXC+qh8lDs+ZPlB0ftgrx4YGkiEcyuJxX29a0vEEMmoo1cWQJmyCBUe9f/vmfJaFoq7+KtV5PqvwyRf3TL774+rtbTIo6Nc0TQBwdEZ8K3+ypUbB4/ywusKH22gaFrgtgp/7P/7d/Y2TNAgEaIwM2U5RBqpPk9ZdMUXw9r2WeLlSgJyxi/n0BI7oSjehoZEfXBgMoREaGiwmc+/BCq0p4E6wkyB1guY60MTUpmVrsb/n+/sGT/+mvf1FMQ7xl+g1ZbpYarZ4rq0LyNBh61391D0GCcj54373+L3WbkgzEEbAprq1eHFLOxfIuAKkWYOhrBJ76Q6aP2yP4ammc0zy38fFJ89NUWE6xWkb+EPfP9tfvZuW+2wlWdChYfCxnBku55nz39CoeJ14Jfw46KU4LRsbUnDBVYcB4ElTTYr8DLgXwr2K+dhEKENfhrF+9du0xu/j+6HCSant8UmFbbZN7zdhzioHY2d5++OjAIJPaMJ+M1GzRXrXRdH5ch0UkHWosIE6Nyhn0Sy8iV67znmcPIvXbMFp5TrRRBKYungEwX719ffvOnetX9ye2FuYJjbZCoPHMDz7//K/+6j9IR4T1EkYvjXrBekoJ+nzxxY//+//x3/Gg3669m5HVadHLicWEqmTE7777bn93l2Eg1YhlQoov7BkrJQYPsOwlLfF1BBgfwg3/iFpC0E+dEkySVIMagduleUyqqemtRxHpolBJmo8DRL56Fe/XiH5crjuIwVPZeNseK1pqGrrzzNp+OCl//VZHKRRTalsu2UBirCgIy4OXthmKNRVkw/xVPbtTr+uUtHcCsT+j5iOBmDVfje287K1oEb6e+re6oua7d+zwLCQ3elL9fabwUGiEnp2wWVnvRh6gyq7pFAKB1Pbi7Jo62/5f6EHfefTo4IlcaOX/BJX3BIuMoe0Fb5z34MHBk8dPWUtTFgVk2/efWWgMCkcvBm7N1d6QMCPiYrnpUt3+RdoTZak85JWXBPXyxXOpPcDDQmgANYWrN808K4oGuOCr1zMEZB13zAJVjU9wVHHgNKYawtCH6LywQCHvqLFh40SPQESREESShdqW/t/YoFlnOy9BMq5Ttw8OnrIy2KWGSvPQJ2hjFIxN/vTjm4oeSN+Y4Tt6AkOFYM1QM3Rr9okSZdpLtAQ8pNDZZ7/ZlwX6ZMCmxUmacaza24DQpxoYszg9qCVPUE8rQhhNKUw3CVRWAHLwditcEzniP5la0Q/RDNKjXc9XHJFQVUoBqsKIU2WAc82lWloN3kUp+DQggpWXWws/qZlK1lhdO7nK/4GxI4kAs2Jiu+itUPTQZWJqprSq9+i14xytO9ndhsaoU5GKmeEy0y566NTdREcESviBJLRCNFMaWkMKE6uO+pLWcV7A+/nzA3htbW5Sj+hw/KH5rBE+HB9Mss0Yev/BY+4vK6DRChqxXLI87R1TY5nPeBHO+DDjtmUJZaKTPEGS8nUt4iQUyxuRmyfkQq3ow56Nu3uaVNZPDVNjRIQBbB9VTTXkkWSnDNpfCK94JYcPZvGYI8ti7T/HqJRaafrl3dGTp53SQmhpiLIwUD8/wjX9NJ+t3Pb2pq9LnVbRENRm33Q+NUAMFjxCaLmjVW1JH6B4bNbps+1FTWBY9PelxzfNt3VJVMbqjm1lvrt1+7u7t++3mUO7gIjwwqUcf1VHyBDed0L99o4jEa5dLdcLmtOyikMfksAzaynVXGKbVLu2tBY8ffJMaHuSp4xxV52IXnrfJLPQEdHp5MvquaSY7CBKmy6GqULInkD4jAcYwcgoLFE9qp5QnwXSvRDeEXepdOUJFv9BM5MXxg/Dqu8VQnzstKN0VaBUCpcWDtNYbwYgSZmaxqDNW9Qq2UfrRQ2CqKcRHhDPX714cHDQ9tzjn5O/FHh29zdBxJI1gszVocvHghLilRqScb24vFXGHFYfZDUO7hhJstA9OjSd915QyEZtnlkDJGqpNB6bckHAbEGmNInuWrLwhFw5pr66TbbYRRGhB48OEGTr8iW9KSqds1EoJp9IaQ2jAf1nwMZkHgvtm8oAVIo69lsTsSTag3d+ey129HGxcGwhjnIJSrj1lkoQ5/69h6h+uP5MwApSxglykF6/NunIKBoSnNcHorNMWnUBQCERLRbEoL8lozAKTql1GhRsLK4Kg4Rm7IgCiBhkfnOZmiVsUMs/WXFwCmjW16ztu7q/s7+/98MffGZGeeviJsWj/L/67e/+2//u3wq+PXl6IOgncZFMrqBx9kKdYYcLUo+++errfzJDBbdRcqIsNeorOIxLbP+4+suMAteOVVIAE8GmEqbUdK0tBTYuXTh95hIe8bgDeEltjWULkcnool5EddYDDBHLYWpMPDIpQw63oj1OMlKhDlxbGh7bOIwHL47LfIkbUkTPnhWEfCnxg2GYCrKRRCRTrWF9KGmUP6PoApHf8ZdQCQsUeUgPuhEpfehr419Ie3r69KPHj/WAJtFSU8RXFlor6zwToq88QMkDwnjl9dMX0p5piGLTYGHKVAs95oCSqlW6jq22NOp1/diZD3IFGoT5yvukSBiMZt5lIQ4ePTt7VqJloIoGynA3cUH9vOIfNlsWoxJWED+8CHrVJ7rA0BgaDv3Pnjvz/NlLq0YnLULIRaMhPqQO3iFMd0bmIDvYLfenuipSoV896vdIQFdAvXHjipvK+I2oLOa82mCU70HGZzUMy6PJ453tzYyyOK89PoI7pgdBPVN+0dDZn6krBak5GqGFSqFbUZp3axPE83Tr0sUvfvSpDQ5/8MlNK3ikBgPJh0ZZnvgXf/bzr7659Yu//cW9ew9vXr85bsgE34bKKE02hZU+/ujG//A//o+IScZQZ0w7Oiz/4jtRkvZCQxZoGXXOf8ANfGa6aPuDg0f7V3exnbbIjlcJbbTryYkQ5k3lWKfKBCI7EuY5O1IUhnMNioNdj+FuykrEAgPndi/vfXrzptGVHSsM4eXTmhCxh9e//5v/+Ps/fk1029qa3WNBqx3Q6iG+mKSu6lMxcGkuI8pudoXlpi8Gmn77F58ThDzJEiveWdshfWDtuDA5eU7q21/1w8HDA2K0KQI7YUHtGC2Bs/GHeMJqhwN5RCxZduD4qzn2Y3TbLnHOm8iL5a6Y6iLNViDYu8WmG/grNLrgDhgGzOCGzMjhtU1Hq3LbbnEj6oGm7t3s7PHG6nmDvBiSm9O0SI9yQYvJnDlziajJdWMyR8KOze96lJT5P1ysxbw8bw8lkrz5P0/dnL+jJIt/G20VGEVStmHrMC60T25iyFmjztMmXnJBp71h6/fdCX86ji+ED5KKYFZAVL/qtbh81ULoeNz9+NjEWmeNn3L6zFtHJjsc45OPbvAz3VNMvk3st8zQbpmXt/75P/unv/7Nr//49Td/+Zd/xlrZcR5NigGOEgbg2uqVK/tGEQJA1xx8XH5KUqJBjA99GKyufPLRR+bksU+7V3d3lfz4I7q3YYP3X/zt30nmY5jSdZBjG70tQiVPAVYLXdKAUekGPCEY1pEyOYH2OEpjco+sb8JOvfbqxXMXPv/0o5/95CfX9vc///wz4x4OgN1EeIaGQ6Tk8bOnf/zm1ugouAVJ+4yUR0CAj8ZFaZD574KsLkRWotJlRmWkgbSQn/8gQCdkRZ5MQptFv9RBEvjxYWSNUq3cuLk/nrVhX6MLMnnWgU6OjjIro/0Uclr0CAmyo/SBRwS1pM/Ceb7BUHb12vX9YB5CbJioZy8Shu4h3eXNs/Zt0h2xInpB6w+1pUNIcxclTvEDPtJrSddhGC0tbzYYDsE/fQJEJ1mHo5WT24P0YpIHD2COgUrzFYmjczEADcHyErtF05abCqR+g8P8Nj6e/Fkc19YYBc3IOyrF3UwGZ8LQn2YyV+I/XpZZaCHWVFKrKDPoiIyFJojcS2Sng9WUkgqAJA8khxnJzb3sImzsW2/rCo6L11SgoALXr+6aNHjw6AEzdEEy4JlzBhbIUd3JYsO5zcub7Oy3t285tqbeSJN6+xMSJMqmF67u7vzTP/uJHbJ/+PmPrl+/2aT+BWuzVm7fuvfK0jVnzD55okoAUPGBPOnS4wd2YkYvUjC2sfFxlAuXRLNvpDAjHuKWYM+QPXHi8P3lz/7s049uXMi3e8+hfOWYEyPicR7kg17d3YMT50z9C4Gi4lC079hFC2qETa95hAsWn+5O48vvrFbqH1lKYmlpny8A6tii5QuVnXab0pnJQLURLG8iYvhUZyjlxhK28Qah1Xh+5s7HxhgpOaeoHX6mB1rG3EVCtHwyEB7QtVEtUM1QV53bXCuwEI6ApZwaT+N9Rg0azlot0dZ3izqFA1e1oZYqTtAbxHtDhZ4PcshSFXwwktRgSBjNg/Q/KiUFis5n7gSQOntQdcZmH2Ta6eVYBmkXjguz2l6qJQKO1lWAC004pDycpMZKm7XqlXpYbvrmrYmIgTCpBAxoFjin1bk1DO2piySl7g6wKEH2pR+ao8gw9WovGTDF/XnBPdMVJjG/+uYbc/mbF7hkGgD+IgYjNSv21r6wv7v3zdff/LO/+PMGKm2kqTuPSlNPKEuh+q/+1T+TCfDZD36IubJsQnBt9cbNa/+b//q/dBzEN7duiVuoihORkUi6s5gJePC6Y0FdeSJWDDa7oG9DCOFKA3mOlJBLMyWzugBBk9uWoRigZzu9KyCtS/IhAjYhQ1nFr+zvd8ZZ/MgZGCr5pf+JVD5kyStLVAtjT8DRkSfN3oMvh5PkT8hNuaWNZQg0ZBS3rnJuHaHEf7WXwOdPwpO9GVXre37hPE+qMgAjReQvafW20hpix2ol3VyqWTisruoY6cyKiHKkVyMUXlyqP3j01Mu1mD4gjPtF974HgSSHuH+Jfeit3L/78LvvbiOC20EykubV/rZ5URrlJqhst7rkogIi/dOxkfrRlsAaMAcQsCxojhqM3iOVgbLUD+NO3sXW9pbKxQDqOpCuFQgvLhowrFua8wz2u7bmPvrgWpDXKE8gOCDUOiwM9FpIphE9HAE7tiacu1eJ4UtfPUMUmUXQRFcf1RQ8X0Kl6EwMDN0t+3/z9vbdu77OICWLNcicTGYZeMlLdZbkUo/6VaWxiBpoiRXp5WtZZgPck6ynCE4t167f2P/X/+qfw45HrQY1G3JQABCRN1astmCROvhdfYuSaSJhmE/Qu+DBz8o7cDb/1z4SZ63ElaxGUuE1FjJuxj9fqRaw4DMSSfq4fdoK7IVeyWA//dFabjxfW4DZ2LNo+qwXVl1iRTimw6LLZXGe25Anbc8J1tqDGBI/XJBkCSomJXwHc+zyu5b0hhXpA+u8S7eHnaPAKFLW1PsPd2/fe/Pq7eOHj9+8egNUal89CuJjSijYRWfI7kQexj9G0OdiH6/tbv26vEvoHEnqLhv86RPLqVKxOYPiUPBcO4tMAVx8Q9d6cPBUi/fvP77/8MAEsHl0IMolM2C6fdvc6DMV8ljME5thF+o4fPZKgiJsWBP0hNXgDjFVQjEr48JnRNYvCmlAL5uNg9dhuKQqxYvy9VRu8o4Z8d6cZB71MohqGNSRsMLVPzWOLdN8zKvV5TZXZUIhmMu2ejnT5tfAeffe/ZLF0KIpi6yJHpVEpirzujqZkW++vQ1rS581Fi4QUxc4wHVq7dqN6wcSHs26zL4KhHIYviASdEy5FSMKe9IImqIvZp6SnD312acfcdKc26lRVZvi0oZKTpHclGFcvcAJrXDTS0ShbA+/aFQzWKePHmJwyYiHQRFGDuGjeF4iWZ3Ypa9QIFs2QE/cSm6JYm4OUfuVyoCoat2HLEkHS/hzmIfwAXVCilEGvZOOSFclLxot5DwfCvMH6JSrLrVaDvSmhLO2ijScSBtIp/EbXda7ATtcQ6TKQ9lVYqHhHomQPT14goNAtCrAqrrL2y3nt8e6rT6trLdpNSNmv0NteRGb2AaRxyt7+88IqWw/BzXgtJ2FNjZKbWg96nlZgzNIeCtbySNth7GJjWGVWUJ2xQoGLwo4m2izlzDFZG2sttS8Hvnc+fMS5uiJVtNZcfHcj6Gh6iJh8r3c8T3w+qKlDuhWLVHnoFdD+a3SYz88fPjo+pU9+5bOLmMfdPNskR2caMWZ8xeezTqhy461rZaI1meuqrrPeICxtdsaDCN4ajd6hmG3jo7v3r3/8P6jvb3LehtD6dDsFJ8XrIQWv/nmFlYKmVnHy6LYydTAN8SWAbGmk92V3Z3LerYHDx4YClc/IT1qLZ6OSwFCLybBI2KWFw2H+IloZE7Xty5v/fhHP5TZ+Rd/Jv5gTJyWaUOANKUfOUqJFR34wxouMOhrKRWJp+uIHbnTJ9/FpF3xgoYL+VmiBA1c681D3sX+zq4XdC/DmFn1EnmGOVNn6PiuqKvAElM3uy576rTQDTHWiUeQNC0DKPvICkOF2RukzKj0JpRYr6pRR93iOMoqZjRUq4hpOJ2CLMUTnpHF8eOLmirQm2ogX7YiPivpe+Xd2sU5WFGM0boZHo+9B5GaCEriJysL5NNXJQIE4N69Rzh/9drewcPHYJXYo4vQAQx07cKgX+PvEQx0TTy1KPb6pgW+KCJnlg+qm7VfmJU0ZtZE0nJVnSRe4rSY7OsXLw51L425z8pOjWTIu0Diuu+qChrXPe9ZBRojSvfwYHf3sviJLS2MPl+9ahkd+tjDVG8s2lZIcd0GeK/bf2CCB2h35uwSqElE1IodrpDR5RioGXoWVW/aQYMaVsZ/OoAB9QorNr95pcdjhqzhePz0he0DDSCt0bHwwNS7ZdbAEIhvIcGz5/ZzrxJ0EtaZoRQFtuLRTIilZ9/duf1nP/8ZZulwdEIdBxUbRkrK0D7z8uVYZXtIllbUJ4k113Tq1F/89Kf/5v/1b5lRI3q3zVuDufzj6FSZ8OMc9JLruQunAvUnJO0m8sZw902afPjw8OBAgFZI0gylwO2b1+kMPcj/IzhjDOxToN+QOVc7M5HBJHzfJ0bHpUPWrHCBXlsqIh+M3wNzavDo8VO0pFTpLlmpE08XUQ2lwaBz4NKE6fgEbkVBjB88Rw08s+8IFDUWgIMTwuXq0JmEcDQ9jy9dCvKNzY3HVsx0lI7k3vZBMZNg3Zle1AhBXggfuq1zW8lQF0y1lbl6/erdO3cQiTyZe9GWzU0SgxSgRRhIPLIyojP9Mi/r6eunV6/u6nMqvL4us2T7Mr9vQzdADQjlhqxYzVhcQY06EKSZvg6dzOgzhEHvwm+U8jv2jfjPE5giTnt9exD7VlevXt3LZZwhzf7+LtJ6ZMu9ajkmPWvwmgpNBjv6EoVQeN5eLNgIne8R3TtZzDiSPvPai9eBN33wGWcd0h9sHfTL33/52z/+sZNM9LNv8zzRu6WNnWLDLNch+2aG+5ObN2KbGOvaOB1tvlQCiDn8Tz7+5K//9heWHJwy/m8mABQtYmLVp8E8mjHEuetMCTDi+vhLuGBpFJmUqcNRVCcigPSU6XQb0eiSuLFVk4T5BBBlAr6bpDZkQ1WL8ztJnIDA4aEZ8g1QdkSF2Kod8c9yoRVGR8WJwCX7wl+4+KoVcDO4SeJP7+/tUW7Lt3NMV1dv37t/++6dC2ZuNTrnC3WaJ1Fy7NxgQdHU6VEiZUFWyDdOImN8X3c1rTUX6eqESowTbN2gTApptaeTQXR5JT7YQzwShKpa4Jj1oic0LqsGHs21Bm1nmw6bUxasETlBRM0JIKDg4dsXppxUkI8jhuRqbeXqlR3DdlOnda1rq/IIkMHOUyoulLV8SH9t149rlbm/ceMqKYkZJSTb/QX8x7IbBCV0D7A+Z/u3WA1Mcw7OFDaRuiZanUYFMgjgUnhMKRSZ20EU+fsXI8BQzcMUlGKLgrh1ERminlbGr5NPHBYORpl5dTEynlVDYl7czN8hN/SzkR75KAEkykNsqCUQY0GRcB34+p279/OhY5zW/Tu2JIDgMhxZCnXO3fv3H0SfxO9kTIz9xm+aZnH1CX/1139j6z570aqW6J5eO8NmJwGDbBpVUNHiwTarBRLGkz4N4uz5s6d/+pMf2UaN3y4yo91i8s2EK3mUh6NQIbNJHoa5YXVgrR6JjbLN4+torBjrYuDg8e7o7R+/+ebKzrZzKVDUlBZPNHkyzFCtqhuzn9rd3n709HEhsJ3dL374w/2d7R//8HPwGfGygkZR//Cb39y+d4/NMOgkqYLa+IYWk+SedYmthttJCWjTiJO/hlYTdSFf4FpMk5LOWUH3kfREEEd4AoxqZqeVAzJBFl7jn+JjEmN9TNLhCq1ohelFUhbadq1IxqhcubqPPV63rn9szHxL02ipVBxb+9qpswRJngdXhHhKnNWAO2EAZ709xDKftJdFbC0iwFVf6/V+cPQThnm2gJcS39vd6bpl3l2EXRyqTo+GKIlid+dOzfV1tKJ7tditMQ3zdFGSLnF6Cve2ChWHlNGaXeN5vHt7O5pyr6dT2FUXU657XoGJ96hERWoLvcmDHzu4LU3nmCulFrgXBmVbRinq7N1Op/3jazDnfuwypQ/MxNJ1ouy37tohWec3ZHHv7ezRHYhrG05tQIqz4zbriMgVF0vSK8lsZNIInt9cpsgPPvnk91/+Uc2nL4y5p6UaG44WpHEAliCqatWysKpASiFFrSQhrRvwOAMWAZRhW+RO/fQHn51e33G2AVaWLoIEEBxiIor4ku1rbt+9/fMff/HTH33+yScfnTt/QeRYk9V53szO8Sc3rovv2fCIIDS3k8kI7Mav/5nkTVEnJ9mgPiAHCRjR4oTQI15ejLpkLdJlekf22swGPOoAXCI/UhFT8CYHKUPSl3kzfjWdnJIIjdmzUyUT9FAqc+UDTBoyAGmvpRrztRoMprOaCSg4vaEatJuPNujsSK4GSY5WPZiGFWpUUYF5IVuUjFZVkBTIei8kSXPgwnuo3qmhqmJUamkWytP69iqp4T9BMDcq2Z0apfIxtDu9nAnFWYJp7Ml3h6YEOmGrjeanYm5kHGhrWAUNYU6ABS2MlcB/ziRjUDQ+2lRCK2m7397UEVlGL77Hxk4oibyesNqWM4+fMogtVjUUFBtgKMYnX/DTJkH95vatH//4x8RzMUkDV5OS2nKH1IkL82JX3mflKdK6hcGerh2fPj4jE0w6iVPs7Psyjt8cTgMb/DMrjqrQJvtvX7anbMIkQgSpqRoCIH7fUCK1A6MQPP0SGHGu6OXNzSR7+rLAF6Ml1PGAZK/ubTtV78KN/X1Tg2IdZj24u4qBT/3GA9K/rLV/fPisaqMmYvr1fa+Ncnm0IzxBEysW2oNWSERUfgz9yXQpbrqlHq5Xvhc8hgHainfzYV6rAUv88bRrkt1RFBbPWV3YjElnl5w2zJ0zLui5unp/oIuthJlJ8m7yQyftFvzokcr295uWViJtSXK8llM0UpqN1/M5xwApJXG0Cc9CqX5X1ltdaD4gDeZKeYJwtxZvLvRja8CPiAylgTOlTv4MqAqkCL07TpA3Il/daoV93HEZFst3X6ieu0SE4yGNJ5FoWNnQ08tg09y86gsoI0ivV8lSRzUa35tswgHo1EDE8qukYNA05uGiNcMj8nGK5fZ8yKgGM9z2Yrx99uaNc+dYTI5G28JOG0yAXWdE6z/cvnW74abjdtZOk0lao3HE1gpwGHMVek4AyHSm4GzHcbjvUlDAqZaPHj2ueIb0uNtsqiTqsVEhFuMoUIgBHZkXCDTztonrs+euXbnCUbD5xdEsb7NZH034+EZdh6w7uNa0oUVyo65g4xRtOhzvggRAUabkm+tlqWn6MPtjeihF9Jt792p88aGzSVG4rgEcxnHoODYJqoAjl0P9hjHIISaA6BQ1BZZ69Pa9jfQunj9H9Xs7Ir3X2S2iVg015KORxoPTbKzidoDQgZOcpFHLFYdmrrxBhDe2VdUuuvH3lsm3bE/Bu36Sy95Ys++qBl/Zzsym5xnEUxNlst/xZgPCEV9Z3zxJPjqree/uQxjwqQRq0ZKS3LxxpRwhbWELCaahg+zAmRQq360sPncBvkOpwYiMTV+U3hKASswnEvTNf/+8rVgWTZ3uAlxzsarCCJZm6/AQNeqiSe/xQEYYqEPfI8bw+PvX07Ax9uqaAoSMBKPV1DwNES323fvaKIJQzzb6AAAILPZ3hdNut9krl+0Uf0HqplGvWgyRrcpV3xu76b15c//+Q1Fp9t5SFdILYj1MY/Usm/m1BlRiG0Z6vCCjC2tGZr47ctFDK2nbqZIEIh4mKQr9gtCD2UICcKtQadPMCeOkhn/20Ueff/bRzuXtjz76SGrxhYsXnx08NRH2j7/7za1bd5pXwzcZsB36UjatSkZio+mljY2r+/sCoxq1hYAVwpg0e04rtiju2uWLm0xCPQ2CIh0SoSZFZS2mQwDH8Dy6+9/DDKQZLqbrPdSxjxpUhpsu/Pqh8WUkCreKi87ZWML0XQEfQ5EZAVdNEqAynNGrABsqtoC3U7+A5vn7dx6o8dzGOcnEDLkCJNhwHGzIdePaHnGJ9TRwFArRUfX5U4fdt6XA4XP7tTSDM4d/bgSxcuS0HrEAl6kyXJEzcqFDIsOL8DlybuSTfCCg9vss8uprJoFXkD9hnBz8SuTd0ZwZsJn4C6KRb09JhvIVC9nk7/s+OcrMZymj2jpIBfxTg/7QieviGPJV3Sh4l6TFgFg8ZZL/3kpQiDn8IKgOalTXZul3i7/jAYPFAroWoW5h94gWrvZ+4ptupHWQXlk5eGrzojeivGvvpAPrJd45GffO7dsiK9/cumNIbQrWyifbDwOK6Nnwl+IhK+igrp8Rhh89PGLs6QOuAim1JFzGzSLlp86Zv7WXP7QLMI0kNJ7QnZ0/K63avzZVNXtlrvf5q7dmYf7siy/+8qc/3dy8sGFj8dU1W7ESAq4wifvhpx8/e/KUi9JC7EmdmExD6LBIOJQ+kBVhO+krWuNM12OMD5ARhvWMLuSxLpwbzpYvBLaF7NiSefTJSPYZbsQU/+d2eJCQ+FGr9YyFbmXLtO4k0VFSrJrFNZ2EXiAdpZvySczo7jBBXUymXTBMY8ukBo/tMHav7r16U0IE7MCRKFBoWZZFeJa1tKkxEieVHz5IxbNZt3ZXDq3RabUh8sLXW3lrbqUKSZauzKp5e3dmfJNvpw28M+DWAjs0ApcmQG/57RUXaAhZ7fmquulqxqeplMLL70U8UUtDKuhFDXaVENe6DyBdJ0ORM6BqrF9ZQ7Evl6l51VbD1LZwwE22DD5q8K7XUqQqK+3A9tVvhncFDadnqAF0OLN2ltD7BDqRaElOJJnqdQvdtLb+q1u31u7elXhvScHjp2KcLx3jaxrOS8UYj47v3L3zg88+CVowxWNNL1BkarTVKRR2/PaUw8eFqZcsyOspg2WW7d79ewKJZv2l62fPgMHxYbm3L12yBTfm2Pae6DmqBA2ALiOKVBiluW5MPE2jDtbL4rpx/crz5xYE1uPxHhJ0jtoslx4Ig9NxD6n8IM9TxEGL7Ye2xLfpmMWn5ABCwGdqQ8CYdPLBBzXBdFAffiVPzJseCWjcwp7MUwa4LLdhciSJPd5mPJSmMufy8WsH5zJ+qlao+nulH3JsQUu2xhCKw8NPWxdPc+rRe4mZzz+8Ju4GhDrA8S+8uSJxpoPHdYDX9oz57JAgxsFePHvygj+4s3NpmgOg9tIHNgVPNi9eYJlcmUs8/8EkcpMqsbUODmXE7VLjgX+5iB7uZALDoEcpV58hQKVCtnIacpcoE/2wPHF7PZ8Ke4gCZCQiKNWNKkKFSOJuYExMpvqWEgp1Wwv+jD73yjytoaF6DrAuIP2fKmGaaJjHIz8moOo9EL8VXd4EjAtmhFlx0/cH9x/8z0+e2TpabWz5pUuXT+mmGd83yUagrq2alQOKCeqZvcmI8Pmooq4FJngt6cZUNfjlRxuOtkLMC9hrdLcmEeuiU9jELnkrGWlwqpnuPH3+YjYwNIeKxClOrFjTUdh7ixLNhHQIg80bMYOGERTnBH/5+28KH09TSKB4ZgSpkqvA9o+pY/YEa+sBeb8xm4RObFsWf+l+Z+wzs9wkGeSkZQqRKeY09EH5iIDzZABSqbfv5JVYLSZxhjhrxiSPnVntVJ5Qr3k1cFr18tNBF3tZBBJXPAuZvpcVrUW+UNsp1+zquY3Qhxuhv7y12QHS62v7e9tw6XnwndDC7IdJhv29XY3a5BOhXAgicsY03r+kqxiot6YLJXDW0F1Kjbl5R+kYeIdZC9L0dQYW4DuRuCiKNKiH2p4StSH1Akpo+ixCqYoR7XQGGyo5/nkAoGCUUcSXhVm9p2btEFmUTiDROh1p79QIflJ9EOJbBIu4J3eXv+PpdB+ESJ0lSzrjp4CPucDp3PNp+Qbq9mD6//oKNfjRTqvgNSDOfn5jtg09rSR3SEuL0Ff70aotWcjq9MIs/jFTHVyRgydXV2Nn4cvbopqWx7wnqODxeu8CWu9kDd3GeYtXHZ6UVa6HFdkoYe4tyiGAjgNtgnBmqi2P1Ev6Rmj0I2BVVbhGyHol69RMkzU64d+W/iDuJgL5TucawZRIDuwcnGc0g/oIi0QpjCMl31rbZwPnszbOl3mCxZDx1vqZDvQ9u3ZKENZ2vCj41XffzZx8Bm04MF38pEglx9NPu08AaNWNq3saHZ0d07W6emGO0jA/EL1QIixA4WoqIxA+vS4hx4RTF+ghSrAIjcJc/40VG0DEX5NiSicM2h3hkmIkC2PqzErbDBAWSur/g7jR5NIFuUe+h+9KpwP6qUFqEPNWJqIgBggjVPRYLMsADqqlZZ5VMA81/MIjoKkIT6E4sgwAFicXXzFZRpx+gxzJUWqg2DgbjEYO/DhR7HfCWTsst3QjVsNIydYvesKG+23BVGvjziT9MEj6l8v5kxhSJ/ap4AD+NmWWHs7G5sY/jEvF593FuBLaCIFcbf84Gqfnave1krqbyVmXE2769LV51tjJMyTJkXPlQBbAkycik25mIZbQ5QoDStDcOPrd7//wox/9SD26mrG/zcPgM04Haqd3X7p77/bSR6FpVjic0vuhbDaObSAqmT366SVSnBD7yZ3oA59hVbbFSmq5IqaVMENbp8qLttyuAQrbhei44kIPKITqPfYVXZKLmEwR1pDh8tbFW/fukX6rzs19SGLdswnXu7fXHBdXYuYhCv/9r35DabOQSJqR0gmKGSySNDReaM0VG1SHXWOLT5iW7ro50lMlQ1IvjjlZOAv3PlOmPmiUGQnNc2SgvTLkmtYWKZwGXKZbPa7UQpyeTw0ZXqv+J6LAPI0ODz+mhIZP3qrlRBOZjZTUqF9MNbxvgNg45+zpK7s7i1x6sgxMlBxwBgGXVdCNSJs61QOYc7WgV9frHDOL2qUSzivBqvG2lxOgXF23h7HxlaERo0OADLcE/m0TtLd7+XvEF0H6/u3qh/GQZSQJBr7qMkhw8ql5UcVSX0vbHD6ELLkHVWpD9IrNGFvLfhX6Zk7BgrvVycWCBFl6byeWWUS+oIogRt7WRTre24wwXSIX484kqzBFN4FN5/pw+1Wnx2YfSQtHJxEa6yzn/PW7oz/86leN46Ka/1O9Pyd/lYtCMcwA3JaxRBr0eFQXWywxZGBVj/ShhcuPj54VzVwpXYL4KwSe3oIOWhZ5fAXAlTIdshJ+18+kcrXJx9vb3trZuvTnjtT67JOrV65ysXlOturQNaEZb+3q3v7q6m+NRXSI2gZ2v0hYe1a7mpaGLVrk0rN33vJEA7BEWkKWWZoVGidMCYAeB8ZEbjGH2D99/ASHjBbMD2lD3+YDjJiXa0cNy8nyXjdQHUam3gyBsgt5VjQfeF7o7SRjRc6ZiXanjLWXRAd5zSowp3gZsZV2sv78KSl8bej1SrbJm3fW/lpPoxLvq58g29bB1Cl9evXMUvx318QhSEy2CCTAGU8h+cGE0PqeRIEgAY6p5HjofpHBZBnpF6iAdDp8/OHCuQ0FhApURwH073qDVq7Zvat9YWqgOgeppf5+o3ut+xSaqM040/ZKhR/ZdSNGD7WQphnWeo4V8w8p2xMo34GsQ4XzjNWGX3whzrSsdu1K5MY2L+ILKkV1Asib+PDOFkmfXL9BCJkpwSG+HLtL8Mg9aZTt9tvff/n5p5/YHQC52F+AFZlcRGKSGjcubf3V/+P/maCDfMwGYODCkgZryIEy384g5PjOg/vZ3UqQK6xFjWRw5C8yOPyA9LMlzZAIyo8PrVos6R1uvNkTw/ic6ySwmrREJSa1q/Dl+iqrc21v++Pr1/d2drEBXWDfPl+VjMTbdpAdQcx8YP+wBCB1LzUTWJE8TXMi94FefoD0vn+Uyv4koi6lWqQbVVvpuQ5Kn3D6cPTy+UsSjB8vDh2M52yY149sTvGmlQZ37j4iK95z/sODhw81Lav5wYNHdsa2pujg4RNGQJWPHhx8+9VtRy4EMH3HAVycKfwc1vcfvvnqVhl+sjIfPrH+5uGjJ4cvXjndS3NO/tR5mG+xtw9Tk0Ufq0lZBFKo/dTjfFjHtr6O3CfIx5+F3PGmf5Fo+vk1HhE47D7/9KmJ/A+W8zv8Snmus7lYNZiQwRwcSlzamoRSzAE84vcNSU0EnZBraQ6tFmqjYC5/SZDYNU3WuB3Xy7BwRafBrD9E/KCZTzkYHXrQ4JBf5C9FkG6Nc1Yw8HnsQGEljDdyXeoimqHzRwFALq0jrbN6X714KQaDEYCgNjACupZpA7fod7//0rSDe+h/stQRHPMPcOr84Q8+tfTZuD6hsEeTJhMff7InCYjcfvPSyOe9uw8eSoUAtZOJR4AcqBOLwUQaFQboh5X3TmGRQsnPIbeFlsM8N6kK1+wID6AGC6Ik9Y1RKVBGJJFobfvSluAua1Sj3R27W/tBLhhQXEVstCl6JM8Seh0fhFf6au4MD/wlG86Znq1WEpO0MbF4+eKFr4zo9ilhnNwhMkr4U1ewJDUD8ygT3uclv3hJXu3SY1NUaOqFLeCTvLVbP2vF0/u359rBUsRHkG/nwjYZxRWGEBSffv4JEDNjTZNFe7CeOnXu9avgl9RUncerLw9fSyklDgqwoSaU0dmkqc3iJWB7LzppQ/qd+ZFz56yCeEZXKN7RkTkmir1+tn5hEEnUEHYINi+lGr1OoNDtw4eyJ4BtrGkhteAY+bEsQdDch/dFLg0PXq+/daa1LEDS+fRJ8wkyAAjZwjM1TCt1JSimJ8aG6Sy7jZyIzWDP0/atYfuAhyTxrF8hJKxMuzkqBI6IstPkiVjrkJHdJLARqY/ADvmON9OAevQJFG9E9cOZcwRYksErp6yYR7EdeXM8zH+z+C8tQiCfTw7bZzqxbJaw1TgWT9SRJj8Bawfn/+Jf/YvxdBgA5qUBFmtV/G7BBbycURRUN7rIxNrd3IIFNwYawDfCzwadBP7rPR48Odjb3ju1fpbsVzUCka3GCcMKg2Y7JPfNKFnCcZsYI0yS2NjUClTssFi2ccXgHlkVFgdockIS6+nTVMVKLiria+xFv2yVx8l8NA5EbesgqGjMi2rV43jgi6LDEaFureJQw7ve6tv8io0ViN/DeuwSW/DPIIx62G5ap20BYUSb4zcBQ3ZT8pEBWeIFi9bWRHIRaln+u9TPMKJwIrLevERNca5ks799a2GAofmL549hdvHSeTILKU0DJXbN6FP/fvjwOXMgB0Gqrp10cJdYhCY5Q0dIcJdhxVLkQUSTUcIVs6T7u9vu2NBIpVpXMxYg4ezE0Whb1AsNtCs6fP78zrx7vC0TNtO2MNHzet1QmE9ES3KiZ817nIT5vSrOgRX+SZ3N8VjoqyxO5AGJCdl/LIOKbDSQ7JIH6+090xwsmBUv9UJYHOtVvMXq5QGZ6S8es2olqu3Mz2+cXX1r1cNry0Ls/vrlV1/J4bNWOwqsr9r37rPPPlVHsl1VXHdUzZqmmu/f//yLnxQ7Ys7NTGcjiyD1GVqGgwnuumZ5qe/tM3zw2Uc3T1kywqEhJdNbYQJpGnEso1jaRYfM2WSuWFkDspZbq2jxqVdKPa8bxd3yEBtDexpdx7HhjQhDNXWSMAJ0BCFRBkZE5UpasHbr/n01MxU4ygbwygjlMCByg7+aibetSN+8sdWi1oNgReCrFeXKMKTOJ6/K2JAqDvewk2VNnMnrExM6K4cbnRY1p2666VD0Q27MXasF6q+dsWlLd+ZtJkbcaYmmQ+8EziZiyIm6sCFOJTU1PQeFhG0Sfq6lF9lE3SPAHObnpu+s3fVrpMfY5nil3TpWOkAWwxAjkh3vOKDWdwAeH9+4vucPsIddZaEhIciZV8QJn9TNS9ifqqvFUIQFRlvNYfpcIKztKLkxiYlivYtASQgaNtgjl32vqsSohgqH9InvnqUFFZlWvVExLHNg1I1r10wJK8YgKqBRPjBLRMS9pgZbwyuMfYWlAC77vY2BxfTBI1bk/Ap3B+hiZxnQycttFyYOlTPhjYm/uXP7D99+Zx3Lc76sAzeOVhylM/Y3NEjv7dt3AquhXXN80NK+Gx75DTBGvDD269maUothNCwkB2PhQglEoOHdUz6SpKPkkNVbzJIGb8FnKOhQGTi8Nzl/8cKG/YQwAAFqaZReJcwSpR8blp1ODcCZJPqVLuQQrptfl/9XtWSdksYiyNVGw9/dy9sa9RMHeksLx1ZdYEX/FpZkgtq7CqaAUyiZcDQ8HXUKfHGihrZGag0YxrxNlZqhmcDtgIKr164yHnY3UGu+X1MlbQVH0E2wmC+TK6U5YOpLQSuRTsmPPr4OCBA7LWF1TuhAoTQxUWlPpLjdp9y+Fjn5UAtyOWMXR8WDF6+84K3UoBcDMiJkQzzpfb8hWZ+2jCMLWnZ3+ZxcVtZ/RRXLBKCxmlzoQ9F1RqcazHwgKIIrigfMGE8K+0gIr504zfaMmedamXaSsUCZCHkw+kzjAVExHePPfvbT7+7coQZaq21Grfx+EY/2OJJ0yXaowSOrdngyMyUsl6n0ggKZVTnsR3xzEefOXt/bc0P/eWCJ2KvXDf2Pjv7uH36pboZECtLW9o6juOFiWOuTJjgn+9EjXi5vIgpMKiQZXmgDFvxHRhkyeB+UwAeRfBUKKs7U0skzZy6cPWdvQJqsY6Jthj78l8IjZbgUtRpanLDHMht6wi27srdjQp3EC8GlRzEyUmP5S2tWxVLfaiHbhgPD76pJYDs910Fg9sgw3cgxLbshNuYepZbMycXNDfAgNHFhJBiZ8+eIT3sfBQ/ujBoMFzHAvYopj6oitSrxKK4sZooAFIo4kS9Ps55pQ7/yYieDI3PUHVt6WUl2gQANRoE0UlFAI1M93mDl6scyAQGDvIsoRHvvJYTorYCwTMy3c2XBsZRhqU95TwMGOOqYNubbFBhSKTCxd2+ImSgSgspE8EjW5fKeJhc1wP7s1KaI3Mrt2/fUYOPEmfWLcn6eP88pt8MF516EyiBBwmVnGlDVNWKQ/Rrk+jVNLOhrNbuILQABAABJREFUbpoeHrmPtn7TTScz/VuzyG1Zh3VQkgrKlFB8Ts57S39fvXhF63J99RidyOEv3Jkd3lhDLA1r10haei/vUz9wzwLZg0dw061yEEipOrVYx4ILVqC3GcoHt85fvGAgTfTMk9y+c3tvZxuS4rqaf38s8UlfHkyxRI4qOjfnEg+K+V7b25E4/elHLW/TNpfWCkGqce/hg9/94RuhIRAYAp12rlLrt04YtQiOjl4ix917j968vSFhAI/LEZy87thDTj44SYV31Gom62I1r2eZfhwhs9nqMy/xUHjk7ZuNFdkZdkpo3id6JzyJxcWO+CaIq9a7XbEgd0ubm1vtTaSInzFaWSDlYxsZrgJgUKfoTWTbf04vPWKjCZrRXHhmJblTvv6ql+LLsf1c/Zl/82tEbNoKYLeMOMfO2oy6HUXnk+ovVg3808bIqOpHaPzRBIHAj4QqY+HVoWiIkN1BJpHrZs/mod/gi+CUfmiW89Ss6OQ1QHcx1cvGEFOQiSXZnmTj3n2wxoStubx5WSWsEuJEXqvDn7Wace3CeQKqPdFVwTchH3M7EnbYwbYr1eSo3EAbovncXl7ATwcick/9WjnabmOZDVuqLPfGI1CZpV9tOTcZRFG2fYHylEoQsi0FGUA+o147iaobs8wS3Lp9D9LGFrInTOMKowGcCDMsL14bj5mC65Ru1bmXKh6bvVGHEYWu9OgPX3/1xec/LGdsvB5ljDKA6v+Q5Z3Of0xifdGpqzu7/9v/+r/8+MZV6xhQ3DLFDJjWrI5bF3hxxCdNQHnCVKCJ2vmaO5/vR3fXZap+9c1tVqQkpQa4Z1i6CB0v6X4It1vye6P8aliXQIiyngI9X8mglkHSjmBCr3k0rtG4DohiEzshDx7F2TN/8fMf72/v2p9LPzvHpowbiLGNMBgkh0bqcN/pQ6JmEgQKLeUXzlWilvDr8fO7IDUCpzSIVfLug9yhzcsX0UEF6gUwHBgOLUbx3L/4rkIz9pwlBd6+aBuy1hnbZPfZS36U7RbDm9wCYhSohrUYKxJVbBuAmuvQuEdJUuAmUieXA/p8UfrENveo0WpqrEdU4feoebKYABABsX6PkW24X4Q0X9ne9CSMNcFfPSsiGzudP9VqJO1jZdCK/nEZvCuf3f2Rbq/7aGiABkH1L3e0+v2j9ABJxaZI7cODxxng6XzVgzVFhbgvY25IEXrqJ7CeIu3t7T88eCA+Zo+fTuPp5ELeuivjY7zLO9CNatXcH5lSEQEygIQlJZm5vLpTQjQC10CUDAlnmyg0aJRol0sjg+F9m57AtvAbO9LpXRDIIzhl1vra3t5Gs0LSqxu/xyO0WW8jMRG8lyZz2rdsWKvbaaV1VJiIGbFYcxbG+w9vHx081ANKl7Vv0bk1I78kQTEFRI6GAiYdxtjzPlA1AfUTAvV1k/Oc8DRXwjbHgcwz1lgJJRlr4wJd2IKWZqw15a31EBaKZZ2RCVzwFFhOkxhlMquZo9XnBeOjpr1M1DcvFOBK8vIiFmiEAVoJbvguK85682fPHuHE7v6O2R4mRPX7e1t6c6TTNG7PpOymENCTh8+wTUadg5wta3rw7NGN6/s6sQEvSQcEVIIwtGuUtQm87g4lUodFpPz2L6MP/SjUN1/UpipoVXKQluBHfMk6me4dDXqKgEP4eZ87Klo5wscj39zaMujSL+mkHzy8f+3avm68fH2U2eB/rtsPz6iKSefCAPT8xnlDPPCmKgN6bNd81sRf8PsHQh8oDZCV7WeKGQS/o6/e5kU7tE5aCrpZBH/n7l0p9JiiEoeYPLBbveXdpyzeko1bdTRq/J9MrQuCwQlH8HJDEE+SPcje87IsJxLR9mFfDBB1gynP4ntxqA6eHtjgz8tjfLheaUJT9eM1TN4R+3HCCX8nBBGJS7sBSnjQkrNnOMhPnz+EDxFBZWGFpqen3Vg19Gg+cnXt8ZPDy5e2dAsYBqXhPaLnFLHTzt/d/nBxkVpw5sM6hC/OVheH2chbv0ngROXZNDWDtQKAOSVCdc457m0NJAh3xmlZVN+qrvpKcCYsqgnkjp3zdBEgFJt+p81aXh29oe3KLSaa3NDKmh/rrnzdWxK+Tqv5a0DBs1YwHx8/evSEkSNPVEIPrTC8KF10G4XHkw0Dl/VZ/utRT2sh7BY5b3CUNRmtG1aD+UT6gRTsUzSEYiooez9pHoPgd8ruWxZCiZzsBn4SZQ3UlK/J3N9qUE7nmmiurDU5LXb37oI8v0ePn+G0PY+ZtmrXj5233LQNW40s6QPjihG0muARU/+ADTp1LiD5jdIQn4tuzo3gDPJUtPDguTPnQMfl2Nrc+NEPpA7sfvHFF9tbkp433715/Zsv//h/+b//Gx4zTXZeBDDYayc6LkiTJcN3ll5tbCJheMPRsgPaC2fNLEIv/mAXV8kKzcboO8gYLIhPgI6d0jkdNYrUwz+xIn3t+PzpdYlkRdI6YvBo3cqHO/fuWwrk8HSx5DoX9we3RcCTKliZGwYD+0fsIK0lkj1EIQWZ9KBs9UOEIJ1U3cKry5tWa559+fbN8zdt4ivoZD/KJ7axedYkzvV9wUReMjsN4PgQt2uuEfDFjYuyaxSoXxLvG9IqltHomL9TBgd2QdO31jN6HckjlFMUGnLlPscIVWYtIi68qx+oxsBrK2/lhxbUZ0+qMiO3yE29PiiqAONFrd/X+Qrzw8AZyQaXhm66COZKb1GVyaPWOmbB9SzpOyeOvHXu0tqR05SlKpzBBGndpUzqimCRjp20qAaw+ZBUMESKiADa4KH9gJseIfJMa9VQofk/V/NaRiRQWc3JDcG7DPby1klx6YMXztv2mMIi1kc3r3rMjyZJO7uXEUFhBaQEF61v68iL7uA0rz2azOTpVNiv6lyoxWZHdhi5uTQ6KAxZpJf/+PPP3r8+/Ms///knN2589oNPDQI4jHwlMvfu7dk/P/eTf/zVb37x9/8JJNljCGMgCU73xkNTbM7BYBlRUrsKeXThwiBCwI2Ji4/brrzBFc5aGJn1nN1i3Cer1EmESx/y3M6lHyxAXDU5OXu5Hziw+c7de/ZxI/TCWtwmDobdyKwSemWFgsnlhXwjTzDMMjEPUBQ+clAJ0ac+dc8zDkAVnZulDGTXwo6vb99x6vzDF1q2yEf2CMMYnuF2vLLsqUZwGc6oyfHOA8p84YaGzK/ZH4ofxiJhGjSG+ydlfMUkCWS6bwMGA994OHqyCIiqVMYwEC9U8JmBMBJrPHus/mxGe2CRoLGv3o+XPtxqzUGYIhxbkKRPk2EqcKoeKNiATbhDQ6nxsD/qHB1LaYS7O1eu7OAOWsF28/gi4PDTWIorcgIe45wv4T0I1+SfRGq5njHo4nh0w3/FUo+0pa9eS/JTwJM7vimhHnOyOtUSOSf6VAnvIm0lFFleidTTl3kEEe5154Ii4p/gma8R0G3KgHW9f1JD9bj5pzvfwx/v3ByqasJLmln9/JOba+8Pf/LDj/avXNV/2bc6w0XkjU5yoS/+q3/xT//uP/0DyR8TEaogUX3aQh4mgsQkqbwwEdu/cvzi0BJwbrZR6/KSUmRP/A1eR0b8gRdjyxjIyneY4gsnylp00LGar15bvWg6X1tPnx8SUAaXW5H2IBXnhYw6osZxEpAwzM82rXb2KKZqVgyUMFlQd7RlEP1h3YxBqx8jbsifhCmSFc07KVCYiJSDHq0rAoMouyoMnG6MFRznZ5ySLHMyYFDCsqoN8p7Gq2nAY+ghB/25vLkFt4cHHJVO607FkvM4pKw+ZLL+7LNy9uLG1dRhGsYadZkx9e5IxniTbsXU75lIA+Cb62JqY21rp2k1MIk8jiKFhTVLxDrDeeIoJ1jSzAifythHY7yRUp1AAOEJ4U/pXA46mb56dZ/59f1FfD1RGPAAAUVCq9/+NNU1tEg+EG3Rlmr0FUtUw22zCITXPTXPa72qQBzwV1Rx6mo6Je7aksf9+dEfCxBBzbiah2GXQSFjkB4eclqO7EUCm6Caqlz0HsIygomavz3Co4mGBehS3MFnjx9tnznr+IgiQgGeIEQOv0D+ox/+6LNPP/v177+caF7P2BT2TtP6Uj/ANoBRI3mrSXbVy+2/XV9KFLszt6ozqJqNwQ4NcWRy06SNrp+TJqZkEVL9xsWLQhmGQIaCeh39fEkyqK9uvHlzZJviex9fu8YDf7cuE6sd12rMf3XxwmY9JHJTdy16K/mYp7U7hkBMky034x0o45YYmy9w2kgfdUo0L+I7ZoXnoCpBmEbzMZhWl4Ejb+TNaw43uWac0X/YnTxw4i+ev2gDJRHi7c2LljTwdAjF0slEi6zm/KXK1Ve183fI1TeQjl4FYKP/EbYskE9vRmFNFh7C/lJOEua4EKHVhtY5ZX0KifiMrHvg7b4NGIGyfO0tP3rOYqZuE4UaT+57ACZgzutqn9fnewxN5jI0YAbqUugEh255fyqoKFlZYfBIT/590maYXBEN6dPkjrWn5fEHvRwuMJbGdVyVRbJ4sEmGTLj1069eSkeV4fs2SrYr+AfViqKqRMcO68BSIlCD1geYOFq3Pzc0On+FEwQ4Lgly4i0fW288w0LforfCYjY/+cmPf/vllzGpOmMNPc0b+tB4IKcI+joUolAv7zmU/ZpQR3SdiuaC/khkKVLFaJbKFYNmxK3xZmxAaEYVwIZMwlO8fUGX5eA8Up1jqk948/7tHyyFqXPRKADIPPNaQwqgrgS5t/wyCTbB5CGy9oGCNrJ01oCfPcuZjhCDmKcAj9ZwGSJJN27/RjY/B2Tkqt/D6yEeJIyVzb8CIpFhCcCQbKog8TEUvn792rPDF/I3X74St3xtfU9dyMKR+Y37Uc1QbKHiyc3AmTqJsYs8S6TCEF5a8EJhIgXKcEwPHj61RYUiIn8eaRoA9eMhkzQsd8SXOy7vuzso61HqMiKqgCKQh73fVMqDIWiY8IztBb7gBTpKobQHle5yuQBwDanQb0zUYpDn6KnbL4D0Ei4ur6nQ/IY2PU4X1Oxi/to95PrNqwKWxCtDvrrC3PRkyjmEjtupz53UVHPkQn8OB3xj2CxIoI2qGtPmIpaegNb9AQIwweDRFJ42ixRZz32xcdcEjgVPwQ4FVZFNv5jCmzeuI6WxVnGS/IW60635EGJSaOgle7LwOzJ6s5cVEd7MOCXpU5nwl49xCFltQGI0d/68gauruX/GGaf4SCVEbzSFelgKUEpRinwjfLeSgrWDp7YiP7zaqqUcLEZci+Be0GNAYCuwc/b4TB2FsETuWFIxFigg5eJe2du9c/chmiCdh5rXKaMPa6QlgxjHjO9aglM8fmoe++BxgOSbFELGTpi7UMLs1mjZtEQgZK3aif7o+Nbd+xafSAJ1Csvu5ctiqwE1jYKENRGV27l8MSEbXaRVGklMEyYO0CTDJStj0KLLIo9JmXhkGx90GNkaWZc8h7jMjHwkKUc7u1t8KFJLJPmge/u7qMmI2u1TDrKe99LWZXsf4TVO3PvuDhpdsSeA1IU3/MxTm5e3njw+BMW5c2t7u1tDRrQCfP8Cso/r5WJugWkE0SxSz9IYBdNSJFIuhZm10WyHLQJMHTAOkZQ2tvQ8t8cya8nYRMF8glkzc8wsklfVLHjPdX7z9lV2sAis8ZssgazkomTT4rA7dfWvHsDTtLHWlQTSgDF66zVte0qRSO0SKsiLI3yTXaf0YlVtKCiOUpgERs0SJlz8M7bYV9JBsr2XikwgeGlkjHsjh0aS9RG0S2u1vQDkN0w90EOSKUU1jYnjB7FtYsr905T3GAbjVYNWYouaZLPlPLTwe+GsmIZD0i7Tajtlg5O3F483CFX92IkeLayKb7RzZ+tyojZ0cEGGkAtl3VEdq/D46dN3N64K7OiIAYLmI8G9EH3tnXH+3L0HD8gWuFsxUTSLkVMBhYXemskEXqyFLw+ePPEuJJ+/fH11G0albmnOf5Riv4dACwrqP03TRYT1tJMCBCtYtxFhHEu0BujoyVitWnXLgrIVMpOluGhaEEA3+er10emzr8xsp1OIRgJ5PW/LbLOt9/bOlr17IWKPmFYdWv9lU5Dz53BatddvXqc57F+jm1PZhcQnoY5ic+k3gkxktpFDxA+8ynxfNm5UOvnTfk8zIZANIwvYZVWRgpFjN5Fd/XRYJ4kWJkk2ty7pWkn/65dvbt2+/9kPbs6BrU+9RVUMGB7ev29KBLktzGBkL1++pAaADBjaDVLsWqCoeoLCXIEDJKM7wTrza8Coc0Zb3qEtG3XXSaFYSIMr+xjZ9oBDZ+aLpKa5EzwlvpwOCQnFdI4aHC9CroRq6k3qIH3qGYzhvVYRLzOlHjWk5Cfqhw1djHuPX7bayGkseu52n8iiZjV7Qc2sG2fRAYEb55uBbNM/w+r3H27MMJekJ6bjn6U7SiumC0OSHqVvjVAhH5UWObKeZutySpy34nn886yUpzG6EBGRpB76MKNpyZuzjftMBoXuCOOaI16e82WPjlh0SI4QgDhWsF6nCZaww/1HT9GjzOJSdsWuQAK7kc9xIqfpEwmDMAjM/r549ZJYExNtBdkwc5ydQiJsRQ4SeUJy62JzsayLOH95Z5N8Wo6TSbauqF2qVUBM7Thy5t3rJsXR307r9rNQrbWsgaQfbMtAPXjQk4WH9x8SC3sPowAXeavdfzWHcQAJloEI2UlsfFWV38vF/+o6xg/4wT+FF0TcrQbWlMmXxDW1qafBNLVEBAIhwO0VowVlCZUsb41hmfXzvIiypc+2PMAQgoG8enUnmjZJN5KzmCS4LKSer9iMTkjqT1xIIoIOWr7yOww2E5lSbmXsvrVZ14S4leGitJm+pJn7jw7MdE6HkJsEQnNwV6QtbF62muK7e3eNVAfZEEx40XZGz4tKGJHz+DEZv612zNlxIPTzQ4DmyB8ZD7TykZKYypAT/Vb/PMPtkCNT/6f/w/9xa/MC1jvDxlrVew+f4jw4DDq8rc1YREB0FGU4yc44c/j8kK4OZxmkmY3PnkWa2LO6NqttTj1/a9mXG01EuAmySKPc0dGBzfNfvrQnnmqz4MlTUgI3r7jyipUoNrHb2Wp0rlhVZZCqgZCg0bVrV3//1S2kRhMF0ASWKleTQnNR/+PsjjNnTCdXrYYQWoxCMiEpTECHVYHtjekfwKAJd5gjbtf66TUW/dmr5/fvPJSMLYzdwQjr9nlycmEsZ3+YEcd/WO004d2WOcL37PmzhO+83VTZm3pnxS4IHM5ZZuW02lgb8iLuSdTJZ6RfJ0P4v+8Kkv6TpwMmQKNSlEB0Hz0V8MMahhVBTAAYcYpU6GApfAWAYLuNpVr9OQCWV+xcs2e+PEK0qYKGlVcZwzhczTnpe0Y0nVyYOBSqtaFW3PEWKcGlYWnDgB5NkIAHYmzo98z9dfzpmZUSNNHYa15FzI9u3vj1b3/Nx9/YOHtlV/rbzs9/8lMdl7kOTsBXX3/3f/03/+2LVkWTSUj08aL/DOt8U5NN4qwZWOW95/PYcsq2bU1UJ1LWedafvyb7ApSJRz64YMiEi8q2+Iuf/kjfYZbBwp+Ee2XNciiRWnYCrHlNDbdiBspq3ViWgqtOZBVHqJq9+pLmhZ9j3NgSM+mib7AEugWpSeFwK7yPy5h9+uzFlZ3dxsND5cEuHsNquqnzdgESyHt7pXlTOlm/6s3hE+gp5I39K/q+cfPUWu3AJ5jYjyupi9jfpfP6sVi7sOXYevbTK+fswpkR8xq487cqkJvUNe7i+qSgfvTpddaRl+Fwg/CbWq5/dBXISU5zrvhtIwwJxnuJi8mp08xwRUUONi+IHIw49EiAXBoLaeMIIHl8qN2eaDNxmxb6jgj+RLKTR/72ifuNaJYv87X31aqOLqqjEgkoxTbO4X+fsEalSSxXMOcbwRPWD6ni8Zlcc4R3p1LqQp+oPRBOcwMSdIeRwJv2/Kp8LzSaH2xm5YOX55l2EIotkxt37dp1Arr0saMGNaIiEBtD/MXPfvLVb3/1s5/98Ob1G05OaKC1eVkH4rFSUn1++uVP/uf/+Nect2kZcoU6wNog0uaO0+Oz1DZQAwarxNfiEfnNGqainiG6pP9Z2ySETCGdAmZk4ge5eVEBBGm5fHooQ1uJiiSVkZ2ppIJxWlxwRmymwmuSp5hUDAiz3h/6ZzbiKNm5fPHiraO7FHgIq4KGAujAnfNF+0AczVWHyquJSzm8LaIvCHDt6v7X39766No1w3S+bfMspjODRJ19djkWDs/rmBxR4EwRobZVK4ygPQCtyqDJRCYi/YAULbzb5BlgPOlDCBJobxn35H01JvcXTZpvCafEIyTB4HvQhvNiCrupI8XRms66ji7FwiZrpwnwlw6g7UsXW8bgJkB78+S/P10pXouGLpPk0yVTl5iqYYYB2khGRyQHDgU8xSZ/Fma47R75MDS0NInK9T2P/P2DR0/lXNoy5+nBU/QwDRq0Ua6MZNOgTCIjSGSfPXtmD13hdsdRw2z7sk2ZhsiBmcJpFw4BMh+V+LjsV46gOqO5G/Y0e9Zy8NLD7NKlPaMEYCFClanr6Fj68z/5s59+/sNPr1y55vAvO3GpRLizGiz2uHThn/zFn/+Hv/nFED4WZ7W1k2wX3ies+GarhJevHeT1AthVroo6t8YbjKlpR1rhYh4NtLEsGNwanTNJUUztqGXV5y1fEnVp089hPTAI7+R1DQEa560KMHN1SsYkMQsdwydJSApx3Tn12vCGDxXgTthbcs9ODadPWYxraXw+XkmADK6pgPc68ZGTKLNUcuP61f/0q998c+u2g6yliCzCzHhkSCK/9N1TOztbjyTiyoQbYxN3QD+MiQlR2JxxVwNKb3Y1NAS4L/MBeWC77iozHyIEXa6GTlb/Q8KWRuOETpLcQKoyNXeCZ99WRV11zu5aDczYjQFPPPRv5A//1J2kRpoRgpVV0Tq+opEP1QaGDxx1lYdPX2xddgpEG6O8ffWaNCya17sBX/r+MDuNjmuOw4oNgRFetWO3NUGkjXXGolnRIhBs4dvX7x4/eU4nw3NwRxYDG4xzoJdZBabXSMZZFiRra+OCFfFEaPzJsW1Dn8FcY0lbrY2zBnhfq3Ro7sIj8YOHjw645urnJAu7CLo4mSLKDUeYJQdd37xxg1dc+lNHywk5RN1wBf3a6kc3r+9u7zx8fJDTkFHL+Tf4dASYLTnRlkrs7OxATu9EssYfU0AEpVD1wtoF3HAIQveKvnCqjQdmdhDVUZ9ct+aTubSGzZ4uTSCHEv3ToaQbMrktuejOW5sOrAgmEAOieTKfMvSPDXzira2LdIYMCXdKcP/ko5sXzpy7fk3Mji/3/rtbt2xzqTbTDzTKLbuxYD99jKSsiGGNNeRnzjx6/FAoWTqAp9kgIjQIAEYr+zs7v/7yaxLhAeUcnoKoqZ+oaG/Tl69Nj/GI0EK9BmSwPFHy6EmgUDnd9krU6ZNVdslIPnt8aGSVjzTbM+ahCXqw1il8mW2MPuKAdl6MXIdtDHyR9WVfTZajqVKqZmVFVHJheawCshtiyx15hlxWWtk6WaybSgiB23mFjEo+Z57IOovnWDl8X1ndgLXyJ3Jel6TZYD6BfxFKCIz/NOgkiOjcRgEr60t6gg6f1WdEhIbFUp19SBYQjDE5PyfQ2NBHck5u8GGY8k69WR+FMov4fw8Ek6wAAzOAudRawPgspASiWxxFID1/fmh9L7+UzCEiNmAFEQ+f2TlXZLl+JLzotTDImKesWYbOu1evXbll3DwBMc0s82fEwDCMUB2+LlP61asXYAgexeL1wALAXBIOMMMYf+kkrtEfbZmsAEOiR7U4GEba4NOsHWb4LSoFTCTFSmF38OlkX79BCpUIMamXnenXzDsmqfNRKXTIqHiUE03+/Cc/+fjmdSc3snk9ECx4/+7ZUzNitFc7HzrdgXieBobAnxTRwK3NU6dt+tJh2kSvfxZbW8mJH2jTiFBlEkM4lPlc1iK9bpPGxmARwEd/1WZPckTkrGoiNhF8swQnWm2j9jpA1OIM1c33kr86tZxRTZIh/sNz8+Vs/MWLT58/47DyHN0ZSbJAR//55toN+w2WFKABr/CJRZCA/OpYqnBNyl8y+LbAikQ5fFIG4QhADfrgu/nOMr6MKxIOod7Djev5u6DF483NTf1+DNZGIua/LzmaoYQg8xlPnVkoGhOuCW5sAVKBR5apg5XswWH5i4O0JRxcsBSGir558VLI30yUa7XzDEieMUbC4pw4m2i8f+/FSFrrJx+t+IxNWNoayOogu9B+TJwa/GIv7IXTjgHoHC/4kwwouVS4auFi4kX0llUDPax1C3BBjkY8vKk155aLsxUchxVDbfypIXKijOW76gA2gJkPttXyyyBJ5NIloIpQmezSK6qB1CtJvLmDkYYkjJEG88hP7+QpOcu4nVSSBn43MucFeVMVwKZPOh0CPbxJZ4cxNQYyvwnW1kUnR1r3fmZrY0mI8FJJaf6xMbvWml3erGkfLadtSJMGZ8oTk6Tacrsm+hw12YygVXkz8B/UMuSW54mWNSJcJFxNGRNEBWe1ONLd8VADdvtqsSHjgRIhamM3IQuJcs4ArWyA9+YgkT4MjqadGk3yO9v7rKSaNsdmw9GBjWewL1jrCIne7pcY/M7uDkZwA8CgDCy10o75jUzkeG7YWdFkaAIw6gd3Ry5INScAzyygkW9r439Ko6OTe0zJ377l+04nHbDK1xqWRKUwheLAHx7ozG+eTsA3QiOiysj5KwT8SjowWqr/1nd3nEksnAWde/cfEVzLdEknQptP8I/+SCi20YtQij5KSEcTKWPtolJMwjafuQx5/xIV3+OeedzcEPvgUFoGS+bzwnCSqmQ5pDAcozZi0942HnHn/Db3op5Eq/BrlELDm9ev59lJkVjikBR++EYubGXt044FTczZESJR0gqZs6Lx2tWrN+2VsLObtCQsFhTwfky2ndZo888GE3rqwcF7CfYYeIevae/NxaPzCIjMbg6iLvtLWmgITtte3jva9hkOJdDxKridt7cpyo4teDXUK0iK9bCzSmb39Wub4CO9f14hBISvl9WUOPuzKnnr7fs333333cWNzc1VKVMrFkF7LBKvAzE99+DRY3oLLIUXLzlZVllxJLWl/BpwPejHxKarT62eE+R0nuw8wFIwkbOsgIj1EBcjmR752BZSPbOJ02yNWDJC2yu8ZVyQisx1DoAo9shCBkHq/MuXITATq2bQUBqFBuAjjjiBoo8Y7GYQhjg2a735x93dHZvQqOTsacfWNVEztEzutrc2c5BMS/Vxexrrsg7B31CNEwv4PVC/aoHiRbv/05ndvT04mn7BkU8+vZmw2B7LRqg72wvxl5GDsAHQpOIE3sqqNQxaASe+67GWa2+OWiwY9C1QPYx5Qw82QFgn+ch5unxx4+9/+S0DBM4cAb+t4J3c+BORKR3QRCTfrROmJQ1c/HCp/m7p3zLuyYMwK4GhCurVJiG2g6i0jI+u2699nwn47e//8O//+j8mRGnjinEPFQIG5WEe9XsZilL36KkQaG4QJgK9na0Iz9GrNpORNnfw+NEdp0cfPP3oxQtz4Fx4vrvXGlKvTObp+GeqBnIM4dzroyl5bF3AjixM8LU9wZ/blB6BqJ+bHvgtfsOm2oztu9v32iLgwnljE4KoGFaCf8SjyriGIlpf3rqzfq4pZY+ePJUjIB3m7YvXL5/ZKE5nMa+olhEV+19phUYOT++vOWCYKWUQy3f3ANGbGl9bvbBxkdSYQQ6gikpDT4wWTDNBxy1Kdh4cP8caOlCTYHLMxtglG6+pQfLc6yYckw+dOirs2XyhkRU51CM5GbLq/ac8A5PGzxHN2q348uiMGQm8VlVJHEor2pmFZrWJblEjHigOVjpol79pkbpHozCotBR36qBCBSWLNSlgi5y3HyxgP332vLEHsciDIiBgRnZa0bKESrIdA1ExATQYkxwo7gd7OgurIJ8BIii0V1MLin0bYLqnct+X4AGY2VyJQ0V1HNshFHZ2CY7Fcc3mztozqqkVBxm/FjmkQ4xtsaMxlMPRY8c4SbjUT169sn/t+hVm/ppU7z3j0EsW53MSpFF9/PHNB48Pfv+HP9bbB2E8NZAwZEVGLdXTWtZrEVa9SKNfvQOCnfr//u0vrCIgYfocp15mndBjfXVmMaoFPsxlwWL4Mq4fjiBD+eTPRAbk0WmI+ywRzkqljmbDxN3+8Md8NQya2xFyystiOH32wzmet7DWUrn7nBZetX5+VAYOq8aU8sDuPfr2F7/8pUexZ4ZBifVIg94R6+ALSuMeU5ljANhI4lS7BCuJ8+JwTVkU23Y0xvAz9Qsn4lEHMnwFqUKNq/i2ug9PNzfPIhm3J2PC2J/hj1VsNEHp/kUBSQYkofXbGjOSaUgHq74pXbUJhwsEAk+ikvz55NuA19N2KyKbKu+FKTXtKBDO80GrYcu8q+4ktEZCWsyDrNvjTXWzX4u1YDgDvJJP6/HyBuNjkATY4D5VercBkocxVACW7qnV6jwAzRoGDfUJ/FHjnBedOfRdwIaNHc3UQ0V0n9mON9yssTz6YGXmzt62HToxHTsppLYiDk07bg3WrINtahJPACAHIyopkB4e2wv0B59+bHnJf/mv/oX+2d6yohYyQThaxmnwObd27vrZc//Vv/7X33zzHfd5Js5wsBl3ck+OiQT4qQRPhSvFZX3zWlhMP/Tu1P/013+XDPYYo0/HBiGW42NDNEEOX+gGUKR5+0zXZg+FdcFQaDRAgVJkbwMVxYIaTn2a00ZZPmp303vd/fA9thHIdZh8++1t0BFPv/Ua2hLWSggSJwly67znX/72D5kY/w35T/rTZChBbBKgJ6o09OE+CApwnGqhu/HMx/CrgWhFMaqbaXhvES83U9X6rQpXXT9JjJLkpLs6ZX33wnVl4J4RWxDGxgxbELvRPy5lzSYlbsbG/iQZwTRwzZ3eGoHs4Um59J1CdUMZ33zUNoN4L49x9GfGmkiKYjW1iJKirvyabGTpOoVVxpZL4kTh+/ce6CD1VPtXd51PA06JIflcAyJb8/TgCeujM7TdquGBYzukThnKo4FRHvmopYELYcCWJ3oSjSHz3Ac3cSSrGT6w0x8Nn/iZbjiM+Ueff9ZyQOFzzpvNTeSAQW+ohuTcMz0HP9WofQQvkmEBUAmQjuXTjz86d2ZNNF4AxsZg9cxTQgW4OAbm+Gc/+tHO9vbB08dvPliw5pCDNLwFTJjZPg3yUN5a/1knyF+iQ9a4NaJgBrIOxbCRK1K3l0H56BwPGQVJcHQf21ZCS3Eb3Y1VBqi7THjFMDK0BN2TBC9ZBuicMuc7GeCzFEgU0UY+hmMt/79Et+irIGpcnxFD4jI9Jnkw4HPgLgQW4dFIi/cRpuEyq5m8KO67QRKQdICIuvTli8yDiF1SAKrMljdcBO3wPsdXw32ZfwubUxjwF/d8/vyZe5bm2HEta2G7lJaM2nBKeLRXADCiUZ0BvGoSQLTwUIobp5a2K6Q1UIKhMkZr7sSE2ox5WiuC2bskTT/UCzOKGIubu7iokt89GVDhjKC+64q7E1KqKRHQtyYj0G4yo8JxKtSFczVpsYiZAjIArDdAj8VIoZAVi0yPOXVzaniyv79nrzeRSQs+1SCzUAIQSagHSpv/BApkwlBD7oZggHWrK1CZ024hP71Yu3XnjnihqKw78iANGFJUMokKiciKsKZ0B4K1dr4YKPrUFYZNK0R4oU7re/ToLgEgv0b37oODEadO+oexFNza8x/duH7v0QM72BY9HjAEXF5blZ6nVF7VKbJ59nQTWsViBCc+NP0WpVWYfYzb5BjU/BadFERKrGgtaXEPldKugJpgqHfdgEBcGInEC+quNmiLyzjANE2IdpnM5RPsSlBHJ5EVlKRx50QxSUNduqo8j8EJ887OrkosRRiFjgc+SyfGei0DrETnaEWmVlH/92/ZEGUgI6n7yZPnsq4MBy5uXazVYVXoVk9RyKqDOUEIuQDoaT2FvwDK1OkPlDExBG278ehORRgN+qEv0mcATeWHCF6pYzR4051iog13EfPy5csirQ4sQPXNzS17EaD7pQ0LUA3V3l7ausgaPRC9WT+2tnjmg0/UExBs8VA9vzwSAxAQwY5Q4x2F0YjLiZ4wXYsHFGKVHDmIs4S4Y1TbBJsn2R5NOS8fTN6pGi4eMSYQ0ZMYGya6rLSDMIw3sKhPouF31Fo4URmuVOApnAUEWYzTcvcxVy6YFWHm5lR7cGCb6cPz/JnpkonWwDfSoU6W1zTKeeEsFBplmtEjVqhOA/CX8P/dd19RJM4ekyhNys15FBNpXSbi+PjKlStQe3NM9D0vsUDvQSCZfj6S8FRbFhmtMRdFNEOHDYEbm9S0FOdWrbpBBLQAuQ7VAzg5DceuJ05bmtGhjoptaKrSivULZ6guE6355CmXMfFyTYNtZ0DnkpLIM8akFkhqrOGoOdvHYvmcIuTGg2Hw0r1Wie7ywgXR9ycmkqOtmoGZESKpLAcV1e3gIqJrWp2Zo+p2ve78bgvoIGhmimUFBoripr0FchvO2BlXWvWiAPF2FCzY3AM/IknWMHyanl1nCGHpmec0QDekyqrq8pkzRvA2Px3d4v42NBfZsMzIW/KcxQbaz3g2Jrm8v3t4aBInPXOMpDzFvd2d5y9tEP/2408+Onj2BMGNGsEB/vjJ388o9j3i9BsOvkVhZFTiT19ddO3WQqVQVbCibmZH1s0zvtX6waMnW9sXDcDck1ljAcadew+v7m+LT4hFvvrwamtrk3ckX018kTvaum1LujdshVT/gzI83jPrvJ2E1VckG0jojBszogT6yrrg3l/94m8fP31yX16nrRxevgG/3VZ2d7aQLmjT6HSirjNY20FLF8TUED2ySyWkfcV38uNzdLS3u82kIH5RIBsIcSTe8ZrOWASJ8rof7eorxMdVhzxDqvS8guDMetSo33W/okBEXEBIY4BD4uhEO4IHtqXR2icJ9K3k43bUhZN+vkF5BABC5uc8zVdvtjYv9Q0Sgd67itW7ZTdWOvL26VOmZ6HVCb2GYImDdZgmd0zSTQFKbBQj2jAZIDUBf5pqOPG7P37TlLvaVcpQAcdowGC7YQqtiCc6fU/9JC6JwbGOXsWEctMGqfPpQYLR8ii+WcwA52hRdYwSeRs1uJAe6kzggiYkw29q52mpdVsXLJdTWXKQ69grqrZNkg8mIb1h2Lps17FnnCWuCCl/eert0cv3nGARM3oV86WF2mjo2TPhCmqv0UU8EowZFCBaHHNX2x6msck40fDFf+yg+IGBp3DJeY8jI6KKx3klmUUzO48fP7t6fY/DbfKO6/zxJzcVhJc87IvnZNS+ZCBsbcQNt4G72DEmGRPiBL+c2NUea7jEjbnRMTm30V2IT7PBxFbi7/vj1X/37/+jYQa/3NMmrT+8N3fxw88/g4g7MWsk/gRg3YvDls6etQ8Eq28AjYZIx9JPQ5lPSfV8oft3H5zXe25tRXmnnDT5kBkKOnmHL1+8f/sqwzZ9WfeCM07wuOg/UiQFPVhpM/uR1VNcStAAxQia4uBqZF1dF328dede+6JKJaYrSN0SKBMfUlaePjh4cv/xk4ub20KKvFvaCg5WHjWwRL+oXfUY5jchxWTnB4MNmaKaZwBSwIyVgk2ynEEEYORBGsGw8kY5Q/ijq/tX0kT6VJ+qgqK3+jkkgEgDFTsHNthI/QChAYWhBRub2JnDikNwivJJxoREqupPn0wFtkavYOsq9WIeimBigLwtSR/8sRHs6pYO4S2HvMv1J/eQnkYkyZ6+f+/RxqXzdlN8fHDABbq0uelpduTIDsEXIoWdrcSVQL5qG10nb9uX6dAN8I+01SOBeXiVSAVT/5PvsFuEaIHV12g6bAV/xs5PH0xDdM9KEpm6aKMBjxqEEHb3tnnMIKfqZgw60/J4las2CS918tLvaqENPmw3xG0Q8Mg6IO3CSS0gRDSv1HT1oICeiioBtY2LG5d02qdOvTDxhVxeuP/wUaEWgsISzwljS1pXqlx4pt0gWYclfPS+3UdjpBOdGxWV3HnKxOXXX//u8qWiomdtO27TxJn18j4xgJH5Zt0+AAA2LM9gDVlwtutaSqDHwiQqgD46xTr2wlA44mVhkyfq64CqtiaWPfby2EJhsf8HDx/YANjRL3BRYGf3UMvLUGHIsdDEby+pY80OchIuSHBCzpakDwFIjFvpwi8sJnP69dv3TVVl4AvSkxrDktQJhXkgRkB2HHrxOv8gGo8wpBiMQL0NJOPnnOJD4GpsGhFMAknq+6HhzTE+VmV7h6WH8ltjGIxRpZFmz1wm05SGrvWWAxtcSesoDYpZs1bpnINOVrZOG3gQl03F/qSjINnevmRKUVUIbD0AmrsI4trGBjNWXimQryGgyiNUAG9kAqh+wPDyyFbYho4/3u1bjWVrMr9Lhd2biIK/ah9OI5oyEIN/eqRsHuVJJb7qBlBlhdGeKKrMv2mxupLprEJRk6FMALAyi18wYHhfjQaE7Vi1gBe22poHKglYnYkdXTbOc6HPnzfmblgi68N6Wl41vpokpQnLCAR4PjXdUZFnsZJX0rda5vDgRuLkK8J88vFHf/c3f3Xv7h3bMjJ2futdrUmyU7wE53v3H/76N7/93Zd/JOkxE6BkjdIUf4+SgTrQarMSjbRNoJT0H7l67Bd6zUh3wDoSh/qH3/329TubdknybsJeRdaqjEDqYk6XNzTAaQOkEEjPkt5KBomw2qRwq18/U1PECmIDilb0dLpd+wFKSOMkZPVPRm/laDUnRlvOnOIgUb/ofyIW6vNZSD4sFpKbOilSJIOJ5T5nrea5kiBgywDdtbj1GTmYiQYwpvDA5kuh8eWDPtHA/2hZiI2nVBxQqYjXZ+H7gnoO0lJeLZzPqRYxhQHqiWq18tOGW/WZiiUxlV9d2TJ7PU8H8mrHPabKO0yGsqOfYVHxZL+eoSrnXy+ESwWnpbqUsWvdn+rii47z6aMDAx773hoGHb5+Ke+DQFfH1GwlpyCmXX3lIAiCaV64wvZBJsVswW8dD/IOvIjiw3WEynIaVe2FZdDVpnICGNKZbt+9qzayaJzqHQsGza9d3tSuNSf8JTWgP/wkjbua893W7cBplvkVSosWnjrfMW110IYob98aXBkYf/n17XMbm2vrh3cfPpagSnPu3Htw587dx0+eqEd9OouFU9MbR/RkgH5ExTiiTtSpZVwQO0JAF8nUgkS5vmLA3Xn55tWX333rcR2cffbEgMOWp8VxbMM9Axd9ghezcHN2iMGGIQjLxBI3ZNDuEEWzoc35OyV+zJDkToDDb07zAytlz13c4Q6lyA63s4t6QS1vsQmG/Df29767fT+5mepAL2dIwghK2WtzirVXJhTFgwaTROHkE5f/dKnB2iVp8CrlsiuPF/lxNZTAxjBtOGWVGV6xkr6q/6Rab4cXzZm3e/2kvYEw+SYRMmF5yTxAcYWRENXXOiS9ODZ1PKLp3BMF8/GRLcHIeAXkcGXqHuDiYTAG4Mm0HX2oJxxG9Mx7akggGY5Mgi8ZBk12+LnVQpgle9woz3zuW7wdmJM5hyxeu3nN+lLRDrNOuuKnTx4D7OrVK/fv3z97Zrdqp+IwiUJEN5eJqUlFXEWZ+Uxvs7uz++ZXv3I/B7jenPK85yDduHpF6aAiDEZipxsvQQR1QClJ7tnhY4esueCNlytEXUfq0M9BwDu7+7/89S/vPDagEG5o9zuDe3kxplDQGtIRaRYwIqUm4OjFBfK6gDETuXYueL/mRswHJJFRNxwUOcE0iUABtdQtIaexizuETsY26feWwlySbAJM+NNHjTRiSc0IL8ySmY6Tgntx23NrJnGK4lEhLFFbrDm1LCx+IxvMoAIoAkr021DBtCBiDltP7e/uFoWhLhsb3EpLF3jEulEnRDx+/tzgXpAS5ME/MjDGhSSUR0nrGDP9wyL9yoRXXBk+emVM6yCeqT2hl4erNr165WCysxfOSBkks0OfCqgf8CfyP28yH4ycS1RUn0ecNa1L9xdD5AOKvGpWQKlBU3aweI5UUMDgtwwlFxc2JS1/cBNsVi2qp1yVWAHWEUDkwyoqOGpJBRYhHiTQtBFZEjBC6VcXXqiCrnWWPM02Ii8K+ZZPaAdp0RgqjgoMHOONBXzCdFUnXtiRxhZVx1T8RcepyTcVA0m/r+Lkp6a8Mz63C625YzMedcl7e7va1j7BsrLipMZ3P/mxuI+DNbWIcHIORJTbI5KMdULxmfqN7a2+1u80RkA1/1CYE/n5Dz//D7/425cTldQi+xl2smgv2EXFILvkotx+zhM/P4tG6bxr+tVwpdAOarPu7kBBzo5ssRrHVa1UIXcpedJt+Yv83ipygiGjKn5lfqDLnnkkuFRumcU95JvWNos+QoKBs0LQzTbwemcjDEvgjUlM+MEOYXlRURL0JNusAuoYfDsawtiUrcDqSgIGeCYXz54RcyRGpUK1kMh23AcGYc8O28oPxem0Wo0aQi3WN9bprKfWhZy2e/ve/mX3Y9pYekEh9h5FErGxRL2ggHeHo+PTrMqnFTXa291F3wcHz5Q36LSsRisiasZqTzqp1g55xWRALZ6xL0SYd0SKbZHSnCsAXgggFsQD47rXoYPuDhqEZXTEG1S1LQ0T7SCPi2p7jI4Ize1XVbXNh0wsUA6oivQ4vRgFUH88G2UOz+gwwjnvqgNBxCeHEUnJ+XMX2jLh+MiZTNTVphs2CTKbJqYkjfzN63ePHj6+dEmgec0yBjvBcg20pcohYyB0XeNdZBdO9CGqztOyrWY/UBm1jXwXcO7eu2dlkp4SdyRJC7MpXucYmuopYouhvKn3Z4iDRNP2AaET8VV64pkzn33ysR7g9SyCy/QMriZ8kNJ8WbYgW6OzMd5YDvwsukLw9HIpff6rxLv3Du3s9vop+yKdWtZxJt4Gg8nRgpPSkdlPeOIoTrZRh2GW3rtIiHGCLsFaJBuYrJ51LHq8pMEQ8kaZTuFA1d/YTMGIlvZEqDgV//qvJI/vVJPNX379LR6YBaNCser4UGdtV20D9GcvnjlLS3aINf6Okxtl00Kqoi1OV1RqIiYO1fWrmE4Xn5ELfYkZECTBL7dRzJtWF4TvagdARcSR/f6Mwxov4ioz6jNwJkN5EZru3TEpaKKflFJPP219HDWlvjAcMRRmRQQtxmF4LFdQNz23lyvDIXAsuwb5Hrw90LV7Sx4XVWZufdUiurHKsSvgIlkC971kd5FAhCroYri4xzgnIxHzKy72SkxPUHvDHaL84jnne9XhcTpYk6cXLopc6QpK8MQusV3bX5w519aqgFc/7NSIwWXcjlCQsS7GtdF0F9hdvzFQDX899oWWGIub0JLJaC2BLMApb3r7+eGz546AIeHBlynI1nKJI7xd8dhW+994w5YPI81n1zkUE06E79Hx1f0951L//uuvGXfOjqnJWmN7OB1vbXtc8q+qG52QDkluZ8odxi8pdjNcsSbMTwdJuvnaePe9fqnMlAXHodmYRpI0bjp6z75QDd2iZra8jpKgW7YmNfq9U7SuSCtYE3g2crIv9JHRpfsIQjqJjtwmQSfcYACqAnfDOh4Z05sKAaq8VEb31v0Hhy9aACSNw7jKHDhH1ut5X0mnt5uBgcHISKYgUBL6KnYR+U/EIbbQqLqFjrVsPJqFnT9GcjRTxBAD4u/U0JtaMchBjZlMcAFShgUPkMFfkSOdCbqhAqpzMAXSsMYEwrvnLxmSsxvnCVa9+SwufW1vhDdvBRMNsR7cN3H2fscBR4FdtfZl4zTmiRhY6wgnsi60b2+lOFpHnfYmdMhXlCxx9h2Ai98/jwS+SX34hr7LwSR61NKiQu5110dKoiEjlM6cP322vV4mom8O1GYzkU4mEgWYt1bZZsGZnBO+JYwQZ0it/Qqk8mpdjEb3YtLyCPenkiOWwrX9doMPTLaAsGLPUi3bo+T2FJgnUYjJVM81DMs3O39hI9YXM3HI7OszdR3LAZOdNCnO9tMvfvS7r/5IJEitRwJdVAQA6E/wCT8d0CZv87ETOAk6PWP/TjVbwnUnb7YZFmRX/5g2o5CBejDK9kARDpCHIsJl3Cid4tmeSOUHvQiBZtDaYPfRk2e26fVqMtrOebbHCyovGSDgolbJN4k2btFpKAb48oPow/RFTnhlvb8uP+xOQmDQSJub+cfxRFxbQVhwc3bp6isw+524LCLia4a/noLc6Hj0fQctYM8yXNpsiXddnIOvnRKbQ/nWMq1BZ6me45GjqEyo1+dUr3dxKPl+9cbcp/lXm+cPURsRhdmHo83ti8Xm3zvIY3LUwDszPjYpKU3yvJ2ojz9YuDvu6dAxQ+qwH25VlKpRkx41qGV6JdQOltqfD3gWzig8Bpm1Des4P+bJ0wr7ltd+8mb1ff8Jo9GoJLeyi1dD71tTKhziJlLoYhmsaFjM0TJAW6zWOzXVNNO9SuFbE/kzKTZvdc/LAT/NDDC+JzE2aDPNf+vOXcFyadasniETE3rv3v0vfvi5gAVDhZgEhQAQGKxe/pl4sStwFoD8zBpDhCYVvi5y+NMf/+i/+7f/A4lO2bE8Hwfxo4EOQdenHMlP+Bn7Ji446k4faY4vvg5lcj7bDNuKqHe93Mezqhu7wN6T4LqsqFPdMeKEhlMUD4y7/W5hyqPHBzubl7wMT4MFXqYBMtvNSVcFXPTCDKq1P6cudiqHulQe+SI9UTtFvBiPJ4cyq/Q65CXfSzGBSzQawzDIAqOeJDgjNNJXv//YMkMU34KT/nBVS4o2HERBcuwBpfMOIO3mzTaoYfALjJS6JPXEIrgig/bdnCFmm5YdX3aW5ognqQnM0obf710xjV7fIq9CAxACDvhiF6fF8L/ps+hrs4YgrlZFCiDWcIs3QOJ5GAWIhrYv9WS8jh71MA1N0lTbjcRBZI0MddMnFo2IV3op1guxMOGovhDy5ocVx9iISgsM8fS40QamBcaqhLn94KbShgfSqyzt76SIC+eYTxbadtnQJBdVuEjKgpGKR0SmhZOmlgpF+K7t73Gtbl7dv3ltj1bcvf/gP/7tPzx6/IS1plF8Vz4bI22nlFHsE9ZK0Dp49FjPiYBOZEQy7eL70rZvV/b2r125cuf+ff11y2zVFQbJSYlmhMhyHFGXt/ZCMP1l2ByUBD+CDHAweHfU/mKWlHz80TXukoGs1G1NxJagiYshmw+A5PPiaAVLFQ3cGIBm8mlt1Vaq+i8jnjOnbCtgH0Krctu84tmhg0OePnh8ePacOFIJiTrBYQomDlQhFv9MdV2/uv/t7bv47esiEYY7A3GCZV6iVuvWjUrLu0YXwgoNKRDqmj48UN3RxPyi7eJxYh0q1K6nEAr8/mi3oQQ0F6l31deFx2xiBnSMwwCcAELadYwqrhoiul8CLeZbpEXLRUtmGqjGtLbM3OXbwNOy7fYlgLl68aOWFqvtKrF310dQ8snBU32LUeM0puG4YNwphZOByOyXwTpqPQCrfNzGXtaWDgldsg9whN2wapFRFvDlGEsPRajYrDPnL3Lat7e3G3c5euOl0bxh/9rzp/bgeb9/9YotXt48Lkd1e3f72aMnNmtKHMdtw6uaiCJ+19lCKfp3ox8Vkqn//f/uvzGcacX5uWYJrly5am7tt7//UijFsKQl9D6xbuyjhD9grQsfnWPCWGS9CE9eTaEXzVo9nCnhVG9v//7rryK+p0Msf1XF5eZZoMAw1JO8egwJxSF711FJ1l2zCzdvXPsXf/kXjQJ1jtADz9INUIyRMzdGkwbV3qsiOBf0l+F06UKJ7Mb3xnlPX7xg9eVYFYN4++7w5bMXr9440lRNhP+6FbrRrnWPNX96OSXFbvoop05z6WvX9/cWGLrVveJX/YmaA1pa1JQvLGGeQICPtjDY6kbJOOFdLQzJhkEDsK5+oo0VMeOv0NjXIU01+RkCdZkGECbP8kfFT1zg7qw+i+ko89bR67LqVw3Nmxip5bqaaW9FaMjKrJd0TzqkgAg7SzY0Kwtze8s4dbadzdSNTOswX9tfiOOUDRJA4JBo5vmLVzp0gU6WUNDQYF2d1n7LZpQoTkY3L4qCmOeiBCNDMyOROo0Gu4lH6Rf8k47MyLDxmKzLJHv+8oU8GjbEyBz0PB94oVKUoagCDG1p0VyvMBcPJD+eep1qhwQtmGqoJTWP2ES/0Y2FVd2Ei4ez2tP+/u/fvZJ4gTHg3d098+knn339zXfipBabYfEMwTL5y6zsyOiaQZSQTJrp/JocntcaNTRl3d6/atSLNkjUuI69zmfE+kRC6zjh/zhLjYhm7IcRSBGbfTQasbsXvV6+eLlzeYcQCviAg8mWeju0zCIqM4qTSPQROpAwa5H+3t7OrGo8Z9DHUN17+OzJ4fNf/+EP5AbnDAGjPGmLrPlppLNK8yYGYmAARCfRvCHWjwQfH3MyrJlwamjsI18IowtIajP8MNPhwdfAgxyoAFweFRnwWM2NrFKIMec4UTOYYU95Yr1xsaSabg0BvJlVCK10bkiXwLgfpDyc3u+nvOl37+TbuU+r3aWKZlypPX8XANoXVHOiLlvufEOqwc552+aiGrh3554oAhtr7yNZt9rSzdniEygN6k6f02daqdiq6NFNrYirWMqnN2dS2BV9GhCRktwnro3nzZ46BfCFHmbg9LyPh3mNKJBmT+8AgZEM308Mii0OHFHMV33/1h4Cwo6CGWqG6r27D+zHozlHINk+3hYeKjFzCiTun0zygwePHC6K1JFwqu03cCDjx98hXoSLlJxV+0EthmANFS9Rg6LMZzDzxo1r21tb9sb95OZHGe7kuHwZyXC47qtWhLN29vfv37kleIvHL53+NKvGaSP9fK2HbeLVZih8zvrnPobL2NF0LSswKgGkRgsN3kALLL9HbZAkOi0fw5hHT56cWrbHIBJ64ZGMEEXTeuIG2yMdx8fYs3t52z9htZevX9y990CmtJgAsqrueYPRxKJszST8REzdrKMSQrVFUiu1s8YwyfRwdIaK7DTwbGRi/uX5q4M6d8YEH/AfIoKvdVG0Kb57llp8D5XoQmzwSQHdztdHWtqhGq9wcIsGJhNqCPGMSfPfQoqWU5db6tr/PO4kp7LTaahtRXyJwZD2pFroGv5u27eiNMQmpxR11qjQ+Ob6hhaTDLXxMZzpvX7Osgtwq9r+LtQDPPoBwySp2hahP3n8TFF5DQ63HO4M56jhkRQvxyG3CyDITTBwY2xJb7AHBlILWO7DyuvIEYZDFWLX15kOQnNxOzRMUBMzxeBUT4dChukZPlublL5mK5r35zdkvJlbsLqaUWg/NW4YUKtv3VZlGSNLyQSEKW+L/VuYFs0j1RjNQBnqeV0bnvqQBb+VUhsJiINuWg764cPO5Usf3bhx7/7dFkUue4GdbrcUNiP9KSDLQL93zvbtW1+/eM5YXGBglXz14sXW9i5c6fK9+w/IHwwNLP2GL66FYdddBSF7SyADFRbDZ9e5xowyeOrtlTSY+M3vfttQsqfKyUjL7TltIzFxfTU3D2C/jZc21C+GeOfBw+/u3NMvAZqJ19wsBVW2umsNFUi16vJb+klGO6ZBtOZV2WWUpfn21n+G80SuvIITdMS42YED4NCcGtLdcKCW6gixqJ2kU6MJyNZUKMNcDIQu0V4LtRd43Ned21oicOryFVZDhvP5od3bV3Y7tSCH2281IMzURPn8VbTbY0t7j/FkaY50AO0Fb7ntBcYb9T1aYAVXBiDvqYbGQped7ovjVxhzyyGNoGQKvH718u6rVxPQGg83wkGpsWCybie8y1ucgfAfld7opAhusXQpL6GTiYczl9cugTLh8rJy6Taix15ECM/j1qpnMiIQCsYjBd3Uqm7Il1Z05a0JfxzrInzAia3cV9VCiMpF3+lQOIS9PmpV/aNhUUnLSysBsoDT70rODb3oufO2A0xW3dMEx+6jjz/++rtvmQw+DznRcxrcBh/7qJJm1lcubZzneD+4//Dq3nWW59KrVzIKXv1GiPG+UzRFlp48PzQ9j4MBmSgsPnBALZ9wdz8WAwVGCfKUzuNkILAJzQjkr3//21P7HYtG3F9QKTM+cvr0hs5kswjR/hETPqtigf1qJIbNVPB/w0r1099ozEqod3lBHFY8CevA683jVUeT2LPRDDjO0jTj88q/fefoLcApxOMxASc0AdJG01G/2pNzhKmWseh9X7A+EdohdwW9wcfwYkAmkrGKaUyeqqMyiXbdDMD7mVv0o8ILjys296dQZK2OxuXJtB+4G0u5UIy46AEfPnhEQFOzgVN575JXCBJIHlH2tWz41dnLsaCGuI3myCtkQYsASUngpIICr4Z85YZYCGEjsKbq4PJh5/z2FLZvwHTaiXt0mbQfdfAyY7Q7C63mKedzmXUfckUbKoEghuAhGvGHIqBHPbi2LcN4816I9kctcOPdaUlsH4oiOUOrmkGdCuG3uqqu/z4eRX8D1y59sS2VebEP5jmVjjRrq9dvXOVsM+qXLl1u3infdqjtAsxdciDPnj638Tf/+L+cOXNLkqkyugKZFKAVTWLo6E/D5eBMAtwBgAYXwoJmIPN1zJO2TZ2V6RYEzTONd0D+DMPsdnnqv/mv//U3d+783S9/7T2Oo8DZrbt3T2jqZeRbmkjapSlPiwQ127PMadcyxdJwkUuOWlgUHQudNlUH49rde/dtHH1hjjLXT8uwcEqV6RJvQkLvSccMQliLJXsifQoPLuNJnLdOilGZTiByFwJSc4hBXw08kIUQUZ8SmX38YG74jaBWk6TdVZ8UjDdGY2TapA3HVCvd79+0txTLwNYGGnXY3FHbeZjfIP3EGpBowV0EH6fBaBw9kBull3qmQLXxfPiXI5orp8xdZFNFnvTD1T7K0NgDjev/ggKEffqb3U1VvO4JAQnEhKt3w98l/mT++zsqz/iNBZhX0Gqq6qZXcp4nSUwkg6fK4bm0tUmTTTvODEYypF3KIfdUlsJmi07fWq5FSWySxjBCxbZlidwJpAHkHUK/eBUegdnvwRReWgRgTpFwLR3Gp/Hsj22EfvPmtcPDZ0ZZRspkVaWC78jF5GBq9Zw6dfPmR08cJf/mWT7I0MJvs5PGOfxMbpLCKM/h8Toxw5euiB16FapE3oQ4261LrxPg0HglrwSbyodbhhk6wL/86Rf2qvv1l38wKprV90QePMAufEuyAyBPo6gCFviFoB5Jn/I1kXEzU55FikMLTB4FQ8/NsN2+fXt/e/tocwN31t8JbqpmBumF6mlULLYciZbjH7qqQz0B4KOCRo2LLwHdLgwlyIgWKjXluA6AnCFAz73PNF+5sjvUyZ4p5vey4Veg+VLcOJdrYD7xn2oQNFODmLR6aLq+1D6CcbU+ppK9rW3tK6DyeTRQ98JQST2yJxYPIyqpcxGR5SLUlrZI+RB5qbaqSNCxDX05xi9xwBG3kFbDvB5ycDZ8YlMlYgUACAKsRnp3CIApMWRwARgpiApHdmG6cPT8pW/Pnj7d2t58+uSZYryUAWfFUmNOgZl/OkBhdna3D5+2ByGHkGTJFGyt3zQUiasXMItuAx9o3Z1P/thcuDOP/BpHhU+CV59/9snf/8M/6GDXj2Z4YMmd6/Xm1xhZLwL2yv6+cxX+8NXXiABpzCD6Zjzqh9PBsr+sT84htFNgHwPpxm8eCW+eWz+Hg+7IOaSKxB4oCRBNcxcJ+GozteVm0292ZrSHKaWHBYGDHeQoQXJGJdicaB2XwykT1I5Ow5UkIAjLGSBRdYh1BGQn4UhEPKRJB88O7t2/d/qUzMQVsy3jdtv/ue33vMRGccYshaOg9DzEasn/SBiUSXv67jPwpPPMnOesIeUiO7znhQvKTNQiPiRgDQT8mamXKYEAJ5toLSOnqReoXvDuMG9BeQZXo9Keyh4BSVQefgfJYsbqtBbRgDm6Hz0+fGmqiK21HM0gW4RrrEINzEuVn4ZA3RP16Ru5iJynxn2RrGiYVedmHGXNUVXDDAXse9UhMWzrhw9S/O2B9t2tu/bOb0sBVXvgh1pAHLdrzM0FKWSjnlGs7EMpRpa2PH8pJtKmBGUK51uqIcloF4lTh2+eR8fo3pI9ZNCTc2OXYsOgE/7EpEg9VkEDmpyuezqrBCIY9PyWwsvJpzvGMCsrV69ccd8w4KObNw0SdLn0jUKy2Ua51cZBOn36Z198YdnN+FpNfkvD1x3o1fXJAsGQev7i+dvJJqITEukunjbKb9IT5W1c8Hb289MuNMuGPj6WeZBKwFEvwS+YzpV8nJL/ZfGNmCCwYJ1oI19IsEpRJuKGq6BYL02BKOWivhh+TGBdQuNjL1TBnyRqkSuac/T+/sF9U8k5CxdWHj1h0Vogb/rZxntPnh4+PnxqQbO60L1amv5KSKbCfmNeEPZxWxvLxXRgDKTVw05xTmsCesw8QHSyNriRjqrVBLf3/Fdent9J/SmqBqYAwk7nHglq1ASJMdkEs03ZpwYg1L9PNZkC0olUOt+K58ysiPwwVM0o2z7o6SGTwenzCgkzr3Rx85LkVq0JDQFDIhpjv723Izu67n99dbec2cAHgncPDg7s479+cQO+FINS8wp0+wXXW+a67mCeZ0+eeoMGQC1ODdGoyjBivs8aywUnTQiSyqXIyq4cs/dedWyrZQB2nbBTvCjRsmi7hNnTZ/QYUOYcPn3y1KD53HnJ7dG3plI0f0ZW8uUoo/vxfljgMsvYnb6zjpYOlvqmAJExCvj8889+9Y//SCV4IYgKNRNG70QLlvcLSK4o03gabWe6QLts5fSWz+sNSi89Z15LFA6Fufdmc5lJbeotxDlt6QIAlBR3pmOiAo5G2Dh90YZfhuMgFvwkxU4uYITWdZe21qAuSRjx97ufbKmvUSyfu0xjOkTmmpA2IxBJUAHmLjM2CJHw+sCkP4UpWJ2RtRUL376x89NBdsXMkZoEs7HvhIEjqLAFgcmSCMd1VM1U6JdHI7v9oRXaCFjvd3CdLgmUGg+DysahQHCUE8p3GHC4OHkIkEuxmqjoiSXrxVRiwPfH6xhne2IggNMQQQqTCu3588hK3A9lqpktkre8u7dlK8mRw7wU5Pb6y+fOMuv0YmmYpgUIPebtX9kBmfUdIkiorSMTHm29+8vXqCT3e3Y/AEFyAzSui3Ua9Ec2K/NvsDgoFx0K0TG8dEkrMWUJMkQwvNBlZsK6npKDrLciqVAJ0Qm2jQvyf0Wrzp29yIgurgXv0UJZTovNL1Dw1fGH07IKz5j3DTBFVbW0BZiAmGa6dn8keKFwpeexX+4ACO5x9agB3+jNykfXr339hy8dbWNuRbW5/os9nXdpBbt+3c6Puzt//M4xYicfvhOZym2PCiY9XggkaYPbQnsDda3UWvYL4xpMGN6Ow+8VlncZBZAKHazk842rV/hEKOxgyXaMu9h+5QWGwE02vEMvkvU5lvjoHR7Dc8EsDc/GRochbRTxLOkb4mCiNcN58v0sRY2h37+3+X1WdwaLJdiN8OJNjg/Rm0fTxmJd3IdsMt5nyKxMPNbNR5g6BCYifjdJn2GuyiLZ+UIgNj5iyLgFY2WJvmwomdWHbANXVV8YyAoO7BOGq5vDMlpseKNOPaxuV63CHjoxHZlBl12jxtu0v6qtfMNeu2M7EKTVXuiPDzN95lzX0mYIH95xTjHonLMkZskLkQ2Rtsx5b1N1OPZvwaIlby8/vH+uw7HHhLUYtN0IXuQ24KTVEOzzZ9hvTvPgqh+JNSG0hPPjGLiXWl0jfHS8tOlQnyGP9UDWYc+yqmTg0vmJSaxYwu/meA4SkEx3AL/MWZBiX8jO61Udv3s8/Kk7HVvwTkeanxBhmKXMzUTeW3FfLYbI7zJtzMT1q9cbwqqDV9a5HK9pdC6lEUWtFbO+dv3aN7fv1Ki2eAci5W/JAGPxRmUcn8SgT7ssv3jf3n5JQn1Ia4yI7odVo3CXOH5+d3/vxo0blpF8fOPald19mcJ2hfndl3/ocEVv7lzeOnFHioVrJi8tWQY0Y6BvmgF+tgfUdT+RG2wRY0gSB4Y0GDZQntzO3XAjx5Wyei2n360h4RiJMafdGfuFbolyxOVZ1pS5AjSARrYkuFJL3cLimVA5j9rtbJlhqeICEfgFI6/ojjV4oqLV0xfzZXv7O8M/7YAPLhHancGiP6oBkYkksYHDDzpe+4QGhug462V+nVzKrLBX+Zlz20Ef0Tr6l0dhpsX+N8a7BwePiAVuAYnpJsHW+kS6dUd1dHqD3fxRhO03EAQC8GA30K7wVaIXjI5X9686hKXNOdPp+MzaiN+Ze75EMwUf0uagXvo63PEtJOZTDSOtvYosPQQEDIegLDHK0uqFTHi8TFVURODEs3xOUsFQLnzuiWugRi5sqqHIqCQnKrd+0bvMTK+YE27SVZBQ9gRYy3XNAl65ekW3FvHV5dCGN7pH6UkldHBpdE1y6zYvWDbUVGBNBmJtluXV7MSx47injWFfEy9FL7MU7YzdUmZCYAgqAPbzL374F3/25/aOt1uKruPShhAImM2EPv/k46sN26njjn2gZoI22bGvNY43j32ye0q970JI7/mEdriDKKcvasK7v8CJ6nNzYQNp9IQEIt4S2EFM745tqQauTcqFmI1feZbvjMeV97oa/VFD/BdOLrm16erlQyh94jHWTecbZCqqvelntAKHIl2zWVJc5DMSbrLQdK81Klrp7sC6cDc0oOeu107bcuLcyyP7t9lO/MOF8xeJBnopzrqomwNtrloVfmrVKQTOFnaGdD7l8Zk2uViAgcdQ7XjVuVvJovoByq73BBGsMG7x5NQTFYfRUQqDdNLLfYxDhyDEkaEzxPVdQ7eoOq1kDEJ9WnSPMMTAFjOFqBdHB/pGMlHEEEjYet7oLQXMzbecaH2dAVA/lLTm7AUpHlKw1HVCogh10k5M9s/P/HLdxWLmMo7CPtKD4wdAte0KtM4fshcOB0mwB6cMV05t2CFvYak/9jR8HY9P1E2NIs5gTh69Dn24ZO3WO9qUisvZ+eijjy5vXb539zsnWfzhq68MqPjPyPix01pNG+/uqs1EIrkyOhklP7+3t08TCi2Jc3ABZ6NCjRXGNgVtiE3nwhX1TsAfAR3TDjvsHmQBuqhqVB9quz/SNGKQMCsxT0Zboss8T0zxsT6mDmER/EWhsqBmsRasPUBmNahebYgIKJB7ShnVYtUSDR44q0f5YXOj8g8Gr1aMR3w1WCYr34EQp2pLbrnbCzC9OHD4itK8DpYDR7fsyby6urVdWgTEzm0bmg/Hndi3t6UekC53NFAZ5iGqRYOqnpuLyYQiwcLOnsRog5z2jEGg/JDEI66rBfczFiMEyooDSkez2Z5sezVToSUOHgWnpfk1khgoEaa2l2dWKr55Y0025d/f2xGi1Fm1LHN1zRgGro4CQ20jo8xd6W4tnTOJnhUowckWOxKbA1UES6X2IQHowBYvhutcmcBHQNQYdodGZIoApoUsT38rPjO+JRQCjYCmV8ZjT+ydJT2xp2L8IKcNrvUsS08ozaRZUlZAcwQ435AXaqb4zJPDp4RIso495B2G8tDyxk5peHHvwaMvv7llWAwwtsC4lJuag8B3SIwo/gpHghytnzl11mAST4Av8VzUjyYQyPk0RNY9uZ4wPcAaJ4+oYpVumRIsdPd1kexFS9m7zL+28kQWxUgus3GInXLZqHXkWrGUkj61qji/C+7kY2KxSU5yWS1+IXhmQC3xOOIjcI3US7iVMAF9qN6fYODf37h51Us+SgZ8uXERYsSk+r6XGJd1AtGi/i3m8QWmygTKDUUjHuSzqnPTVRLkGgA6tO7OZ4RjacRK5fGA62Kru/G0z1IumrBqNDWVS4voN1PV00xmcq6wUKDkAuw8fm6qsYkXzcGYZCuh/r6Bq7dUE/Sacn9Yo1pTyKYd1w1RdDvCFYoZnZqipRKiKUuOcMQo0bAMXPnYTsFiDY2nCZx1zJ5t7l007leJ1ZXDgAg7lPE7OOfbxBWXq1AYDx7Zz557/uyp5EQCwIBraIGZLDus5duv/kg+jXaboqqDNz5Alq40xHLxZAg9EZCKwsUyMmYXaI2u4M378xLLEer+/Ud33t2T7G2BYJQc6KLE/Cc9t+4+/Jf/4gxNs8PfKLLqC6ciLE4Ti4TGAE523a3b96Z5ablrF8+f//xjvcyly5sbaPfrP/zx8bPDITWGkk0tRXK18ASGEORofkbgIKT3iU9s10T0hkNNkBkDoRy9ou8tCVIT6686oCxMTALDI+VQT7+0VIIhFUyIgl7pImVblzbtkHl170qb0jVV2XsLPFU2Qg/hERBaVit5adxMFaXM84lnI4iqHi6md6luQw42qK/jssekdusXxvGBX8CQqueHT2cMsCHkV1WUZgxHoNfDOC6pPtpHlEa6AOgpKrmiAwYS9cYfxJQu8ovdRNWWyHROeM1oEdPOXzxviKU8dsgUsN5SHs6ZdfsIvd7a2jD9DZYK8wZT+fQabD5RpMAri27qX5bBG1LI5Nc3DkGeHb66dOlPM/Sdlm3MymIJKSKXrkCFLgQeMZs3O3WmZojI91U/OAdTv2KVAgvF/EmBDU70CboVhgBpzoBQmSSQ22f766//8AcLJ2TaCVO+O6eDLYUq5ickNqKkra2q07bj6BAKX0jOqxdvjJDEm1oC/qZNV8J41eq3E+nBK9+bHSVFK+vffHvHDuEbG5tEECTCIDogHBlhPi6yRn6J1M0r+7//8o+Osrqxf/WzTz+RJ+PQT+EqtYiRP3ry9JEjwHov6sJ3MayQZH3cAQPmIkskGHkSydcTyTaBDtHmayFCm9OMz1UVSQwiDvx+6aiIjZmyLJv/7vja/0BEOf1N4K7ubW/vbW9SUZ3m9Ws3aMeZdWsk5XnHHh8gYEmel039KbyeT0sJZS1+X5+m0+a4NzBMk274mzGT9fX82SH5Pr9hYXmDMK48Ztrrdmdb3LRdg0JiQullsJ05Q7zsjC3fWCye5X7y5BkTW6rf8YpduwFmDvN5cwgMkBOOtxkA+7ZlmiQ1njpllZb9cakZRIGhUUjAWdzm3OuzMgzokKoIB2KzMR1+5nxOwu3oVUlc0IsP8z+MfJi5uMO5wjH9vKEn6yBgYh2FULoBAKNsn3uv2duQjaBghOHRowNvSVbVBTx6ZNAvM+bcwcHTMsw3N8BVzYlZ+Pt0o09f0L2rLsk6NciwCXvqDWZs1tplcuRdjyjDRal2G5cEQ6m+rsPMGUP3euUtcefUPXj46NtbdzQjtVv5vAa0sw1cjeV1nT11Mh0cWRDHf+VoeGOwrKjOBX1BBcGvv7t188ZNBOfS0CFuVrI1MtA0NYh8u7a3++nVa//FP/uXn3/y8TmbP8NitiI0gm8+j30itQvK4xgldtmdZCvOZSECgtVHcbXz/63eVTmJxMDaqR+JxyERJYCcwA7ZIguoFJhiwdc4JJVLuH1ghoL4BMIff/rRpFUXeem1qckr3s0QuFjpnKJnT19KOdm7sl2dSylZKs6J65QN9XnV58TnckX4vJqx8mV6AxNAsnF1C0+f2tzl2G4IXnJQrKkx2ydPi9k/xy3bVMkoU1Ra3FaeBFgph6i8pTuUxAmqzzs1vnAkCZb6j824DkHcpWZ0yc4L+gSpTt4lUCNnUYCeeJGgSNNHJd+CTmzh7Vv9br3l0HEhK/B8HUJAQiXRmTVN0J0CeuG8YYATElCSTLORErFkE0Vd7lZb0UimsnTztRUVDLKe6d0HOVNNqMkdVFutqTGm5bTrON2LvMQP1esQEoMgVG4pWvwCF1skbb8JcgmeKZCJZCwvbm3+4XfWYeqAzpw6eKZ1/d6T508fPHzIuJhlZz1zPWzBaN+N/OmRoJQu+vA7MhmthBmnwZ2cxgzMqOWwU/DzaOXLP371L//5Pz9+7WDc0sVAPO6qiltgGMR+b13c2Nm8YEUOE9irA7tHRNAYhigs5CUpAjHz1nQL7kYIGGt7GUxQjihFUWBPD1xHnRrKafB7oVTffcJq/jAeqd/3vbo2MCfr2DRK8h1Muq/TO9tiXVtssZ66HrBHtPCkkrGCjZ7NnsNMDQNBVIMWynIwKMl2W5oOTL0YSKg630/sseY4Ibgivo6qjuV76dhxd16+tkVXC2U6BCn1oglGWbLxtPHk8SFhCekFbQgjy4qTyZ+R4NOnz1MSN2CCUYKGgDFJcWaNpTQXJry4LrfHK84mTcJgN5pJNxQzrBQvtrVo3rtllqe3EFS6K48t/KPjCfZeXHCZjqXmHPaFvPRLvrFpb4VJi7Ey8nsH7wzZzp6VYBclLFpALDyFhAkNV8rjwjCn+zUUaxXO+Vl+fMWUqFrbvoyDkIH0tbVW+gQ5wzyThTiViqnrTkv77//f/+75b79kdvlg3uMAmHXpsY1oze3lDzC1CZXha5ZXFcl7zZlIBgFgjbnaTWWWA2hVujAsNMaQ5G+srn5767a0VqdUkWJcs7bH3QROlpr/aOEFc00Wo2Fw4pt7MPeDpQi3B4tQRrihgPtGAJGgJubf0htO3SLByYLR//ccijI+KV11dA3NFDwNR2Of+RVgvTWKUeE+vaZsvyoVDILeY+9qx1b6HhCmqTwPzoUPe8OiyxH4HgyMOC+5vU1NGnhM1YlaOPrmvcCqO1pjiOwIwhJBl3ch3m9Cm3bZW4obTSVKUZl3iUisGY20xQj90TmYWMAcCRHmMc3QPTvsJPbTpy/xmjjimrxw9rwFmfkJKXhoTjxH4ubpN0dvG4sN1uBRxJkDCgDS792dTTcJrwBKwLkXN8fV8zg7lGMyRMyQJSNhmqCk7lMaDXuFwqBDrbf/7NCwb30fP6N3w7GNvksZYHQWyxLVx055PJRbGmJi5Cv00OMp4Y+fmhMRNuVbZCk5HkD9ilPGqM6A/MO3twoBBl6CQdElJ0OeFQYGqupDDZg4iW0CZ9HPKVHZIH3tvv5xRlMaonLqDOms8wgclSldyIT0y+9u32nRpXEBsJADCCNG2shbIFZG7rs7O2wNGmadIAj7kr3qaaSwIn0jgXl/fqejsJp6mgUzztF876g+liy/h+KKhnOPokmo+qeTtJY2CUZHgh7Rpj7v+D4FTyoarNRtw7Qjy+XslMrtGXObBMKTlPCUxgkaO93ZrxI5nd6epARKHFlh400wUw8yvbDck9SgNxcRiIlApcyof/qMtZcMp/Pf33FjGWMz+hRyFDgqKmyde68PUQw9V6UuT4vqQ4+z9LCcV1MQwq9lw2uQv0R/8MwdZVLD9Jn1NbRdN3lHhTwAMbFRzxC/FgAJ1aHMdL2BTXhAkbAjcCIWsvMr1CM9UrrURAakrVxM075h3dyTpM1dDoXgCCHIGcEbWTspD1NkT7E8mzbqevPeAmibUyVpoY7O/tKlvk6TpWO4s8AZ3AMVoDTqAyGeHlWHQhOevdWHFf7LP//5b37/JYEA/fw46VAv+E4LzZI1yw/Ii0abwryCCujKsuQfYgU6Ohl11IZSiG4ZOKFpwGEM8dALBZYBw7tvvvn6B5/c1D0b/CO7AVeRo/GO0ElPUVKXOAxAESQEOIARJlKSSdpJNAc3FY6oRfwWi8WBEYRBLB71vZu9HcGGFfCuslEEUCXmzSKLEDPkhSApUtLfQCMaaV03l1T2XrbNGKHKOrXp4PDFVQOtE+tS6SkUHO0AXus8QKfFvXgle0etKAJorOaIMijjHgZh1AqRWunXvKkRrZfXtaUbFZ5w7MgFjPT6eDiVDJBpzjvDOQVpMWtXjaCppqltbPax441HmcWdbGt1MfviQSZ5+rdga2vIfEHY85zy2Bs/xClydFoM9A0ZAoayDKDBq1aAgVzaM/7rxWlz6BEy38toJAwitutD6+9sWMa04zVa24Dy+I3CFnB2/LbmCRMPjZ4YzIhdCnEQGmEAQiJMYR323s6WfZCGZulXzY0hAI1GR/i4N0CLQKAAo6s0Vu/6Tkaqndd0aEJp9mcohQwNvvjR5zxMeVBKLx+6onWqJb8a4i/kcr19c89GxVZ+W+xxdOS49NU5m7j5/zevbQ2qEZhw51I2cBsnFHKwnekIUvQ+/u7OLQr0/s1ZW3DjJuoRPeRhk07sCQN9ceMiK2iEL+YE7jERgCct1jE34yjqE0kXbsXhUB1ON5tkLAsCZfRjCYOiUBxSYTBKiGR5ufv1Jckr3rlWZCgIYP6c0Xb+D0qSflAhM4uonRQ9YFYFsg6ePLHMpgBf1G8pwmIY8BIr3EHNi5sXNq1yzCEuApOMdhKzcCHvB9YRYIQVtqMn863q5qMWy05pDhXkYTT8osDwDGQMDvdq6K2+nFw0mQqIYzJLJRX2URIKteKIFuFCm0SWOxBxOLa9fLTy4MEjwx+GjcAl00eNy/U/enIXgmWGm6RHUVX5j9xeFNtxR9RbHcQLqFWaCObfDlDBiHyBHSxZZV2lofzzF4cXL5zbvOyIwecDfAz1jjoNrP07sPfm0RuRAP324UGbD8jWMtxJJ02AZGQjNPIuhKz2yIA+4Bk2aBaa0b/YEXiAzlecLq4jdpTGZEZre+vSj37w2V89/Ts4AlQ1xPTtO2kxLxYJOSNn5dRZeYoZ+A8feERCmroN74oxjOwZjdftwEFwokbhqXaClHdHeIjAsfRedYoAOYREYJdegVkJ3XHvKg0bfb9+BxdVFkkaLVSRj10spay2hlrJhioZdS3zNHZtimD5xgVn7/Ao3t158NiqN12LGmqDkfc/3DJZC6k0MGK0TExmHqeRPDxkIpheE+ullvgClGjRvZDy9fDVyzsPHvH4L5zrkBWv8wYJh4Bzs3S0G5fmA/yggONYVtcBlE64jJFTIViSG58gHMENHppA4BhER591k73sfcXo6VD8BChN9drUPeud6ppNPzFdqABlz73O0MPPaYU+7WhkF165ku/fixoxj3oqcPSJNlJ04owCzV+3EYHZ0rcGu1qnCGw2L4s9K9Rryf/OJdfTwS24DTaxMYj7G/T9BTsR53E/enhw4eK5geeNxwwEyQMnJlF8o07vor9kJNc2RnITGCYkGES1U9ds7YA61Q7dNI4KmcZgXu5DPu4CbiweVo61/vCuTORS3Efe8pZ/8Omn/9P/8lcUXmnOFKdlnCJXjVLcNyPuXcTJRCqEa4o4hPPow4vyZ9M0UCUrjG7OD6dWshYitxeJM1yk2ZqjlHlqg5mxrlEbsyh2fiqoU4rV9MOTBnZrDTF7MGKkDO9YRoZYIVu2J51PRP/ytu3NRCEceqllqvm6sMqrM2dvOdfEUWbxcwgyf9WWrzb+w5CobgvcHECUjRqKzbRPjPE1wRr5V9q7Xp373oqUj54+2X+5Q9/QWbdogcXPv/hCLTohdjdSqhRrG4HALSagHACqpLoSEY9Ovuq459H8npspSS4HCTRvZdo/btKe8lsLDZtBQ30KgvSyrJEzZRH2bt+UzuwhJ3wzaeHytzmugDDS0NfXZ9nHFocYsKNVafJk1DpPkHgnIAfKgXdFdhpZoSRMuPkSHEUwTduMSDlKheJYjiA43SAa81WUOvQTWQfZkAn87Ljwzt7eNntv0InXVsfTWPXoVE3TCpWqn9UnMeTBcN9WNLwPToE3TTYTGlWRY2t8FoFcTEe61gdh8/e0jrpaHGzYqYIuhNBkYTN0pd9a9AOWiexN3qH8a4M3aUJqUcM7iWYGyFny6o04S0vFkZtZoQBsYM/CzX+qM3zMvB2dWW/ZGnthB9Xr+/uOoGZx/vpv/tP/59/9+/v3H3z+6ccMUwaTzGjOIG1aWWrjDYp8mHt/U47aCI/m/CMx5vSMNeF2+eKlf/UX/+T6lX1rpjr+sI8ZddAeX/hw4aKu8/3xX6//PedzjC7Xt84AujFjJO8EdFAwkyaLhlzzfKQAQvOJi4WCEsE+dVDJlx7QkyeHh7/76hsz1PbskRb6Zz/6/GR98IhSUiDFtzV71o7NhthLM8YixeBWhfENzuCPthmQKa95b0EEjVGVLzljA10tSXi9u7djj3jTQPYhf/nyhQu7eLMfgo9AEnjxssaF38CDR6L15JLMckohXhKTvAZr/Y4cMLXFgSRt2XuvjfAbFdatdahGYgQwEqWS6YoPEZ9/b5xi+D72MGBZQcKiZ2TOdfe6lxAPjmpIeKpeddU335tponHAMOIg6DoaOMpQsGWGZQgUFaW5mu0G6UzRjqWxL0GLGWgfMN3nAMN6HG9ZuHMQ8vetasJHSwPC+H2+1QGDBffWbYv/4dwZSBNQdsE9r/KRCJ7+h/jTkFeHr3NHY3m+xyBTBTlFi+8QwVgP1eY/9yxLx5ixrEdSfX/82Q8+uiosd2n/yrU3L17+6Ec/enH4zEYVCPHqh69+9Y+/uXPnDjo0dcMWtB2lo2kt0V8YEfcpxzHc8CNkImA8qsGmyeSriwme3rQbwaV26eKZ1ZPk7pP1k6KkSoBFYMRqw5GrrO9ioXwlH2oMxShTvX6nHzmvWfdpsuZiV4+SkUXZmjWfd9g9j/HGkQsqwEiD7ss72zr6XHmIULDpN0eWpjm19FOD4vpAYrDNkdXOYOchKGss3hhoNoYRNkVwfSjvmExY3gUAJc0qKAiXRny5KFN3z3KXIeFEJh4FGdWb5yB5x6ZN5VQvurdqi0U4MFEmd20AylfhlOpAQE6vOE5ah4drNHDBBeUdyfkxs4RMDQULUp8W0DMhMD7yYmrMP8S7OvzwBQ9ch74phJFEghVd7YMt1aLlyw5JkUQU2RB2sozKRCCJlvzjiWtmbFxQarYmkqZ2AhqVWrJn1SVvtlRZNVRvzQ8IfiPTULg70OkIBCxi3lbOrrZKk/lQlfEDm6UrEAiy1ICKKt+rwVlV1ZHMm3fzx/C37eOhpWdg12lYLoOHczYsSfzJj37wxeefCZVytYt585kFwWaRydWre5999qlZBdNCjdUskWsE3+E1choH4GkS+Zhc9aMkXAkZWkBREW9tFUw0yXfefca5+yi7LD+aae3emuCMOWkj2rFLo1CD1egExFLf4VWR3mVGAp2GevGs1saCaIsgJMhRYXkrrejG9x+FFSNfNJMgJj4f9Lki9I3Y+rUAEVV76K9QhCMZ7OQH45pi3saj8Ig/mjJGimCI3LLwWPQ5MuzJo8f713ann8kMk3UFk91sKCoUap+flUcPHmGLwy2pqS4Ivc+sGZaVe+M3DGyWzPhxOH1gx/3xpgMww39YrxgIWBv3oTihyfYq9pAJoD/xsNGzOe+LdfE85PJBElPCO1QJGBzJ6pyQsVoXgmhlaWnuMDpJgTtSRqhMAyg3wkcfkq/iY9Dp95AnVwdcZEC7b49SBsYVItEtClZV7/g9oYIUZFRS37r+/IllA0xqRkMe0QfJsB3w3HzA21f2Xzr/vqMSeI/u625lFrExwd1P6EeT9iMk/UkGDfJHSy4gYg1wKYYlbm0mjXMwswgUlQOwDJePb37069/93mpE8zkA5HCqvGH3Au4JZTLxa3bpOj66iBoTrysSZ4URxdJPd3JMn+QL+cG67kBNwGU784dAAw39hoqQKXLEiJGsNDcaZ6gUnfuxYKi2yHqhpT4ndBy5/76rPOHEKGlE91FXjrWLtHdqanlR0lMD+ve575XkT21Aln3J8tm47vTZrToCHW5VJXBj6BZdTIGFcSiDMashIuNzbs5GAK3cIVYG92lWZjuFHUkCthULF85e2Li2aJ0kFVXXrSebixilomc3Gyb6xyh6qbZPMA6UBdpIpUSMiVXV0xagAlIrTQvmb7qrs0khwQ+7CHHc1GkE7KfbblVwPmE19PK7gUox/ko5rey01JGus27gVf+rty/1eGSc6X3+ygHmZeNZIoeqLaY/IxYkryzfPa89ADIIwEWLPlodE1PrMaTbgjZlvglZmrYS3DA7/r4d+e3/pEs0YmkOgQ60qnG0mvgiyGAXgkv0YOoe+tWMBmvV1fwjjXZ3/Muf/8SATUglSLB+6bUS6fUru3sQv3v3/rW9vUHYG7ozcrwQLmIlBCMuCbtr8aFuJrg6sjPbNsK/dZe3SozE8tGAQGBE2lbP4G+eq3dpXl6v1QXRGU3iigYyecQmbw8G8PuTRCeooaSkAkVbUaCXkXBw7s3qCqA+dRLTvahmCaWf1Bz5k07/tRit4TLXUWvlmDvB1Hg2+pw5VIM2ToQ5ukcKRcmBv0JAfCkbImC/aqAsxn3S24RD2A2K9Ve92PdqIKaLKCz1j0VTMkumaT/jLNG+5FvRXole+D4jTt/DcYCeB66qJMiZN7WekIyiVFQZd3SHH8rF92ZQzJ/lrQWqiKKN45XHB8/kEzieme16/OQZslh0FK0LPlp1zVsRLbDi2S5Y1pFZnfdaD+Ym55efdvYMYxci3uAhfHBwBh3FEXCNE3hSFdzaOCwCJ9yr63auayX+mfJh3ST6TlU1Uv/u22+/ufWd+mmfLgQ5WBA1Na8G9HDwdhRePDB99lQbCP65uXx4rN98+23R1bFxMG3ahbM9E9WiKMK1Rj7f3bn9T/78ZwYJOQK6U2pprABz5FXc1PLCfmKtE4g7mqEyJaue/vj6tX/85W8eHx7evnfvkom2lQ9nV87aSzpIdFpIaKctGm09xOy1hNkLMwI02ZzpMzXSoWFRfAvIYiajAsP5EEo4/GGgqJuyCKmCyDkE0RTo42gcJz7HzS+OckWoKIQMa9i8lHdzEVGVCZiAJ4FJQ6Yzb0xSialfNfO6itOtVA56ow9uYXVvjYCGXu8kvjFVFx8u+uCGTonclHQNHTeSb8VqKcw9Dh9UmqbVWVisuwEdxaaVBfca7hNi71cdymS3ulaZuL+AftJcNVuftRjj4em8NRVOtcFcgKvDsgL0w3GbDbfeYB4X3bARmwXBL8XGuRmCgRrimJlpNsSaaNIFZ9wRWQowpFowApqeQRzrhF9QJWTxJpxV61kL6r++dfuh9P71NhW3roD3ePD48cwZC4k225tNrMokonebLKobiWS1l4OkF0oAoKnaDEIEi8VuHh8/ff7i9r37EiZQg9uD2UMrFfL239rKdn9v7/6Dh3apPiUdVX4x9ZPEdcIJjdRaEXn80gOubxgJllYUP9R/tPLxzZuffHLzq2+/own7UjLXtoBlJ1KsVwgNBC2tc3v12j4db+ECDbRGYWZuwB7uEu3GmNhv2gkOSkCiQawvEcEnW0rWu4g/2F3ktHPphqq+Kgpzxp1oYKfde5yOE5gRfgQ79asCxGK0mhFYyNuAm3dY0QAjeB5kod1FercF9lCQXdBxd5jaxGEBVn3BInbZcp+AicdeMeSVdO3SptzOC6zmqgdbWhS0Jzeiilfm05tqpbKVq/TAXp3oMBXMvQXVaGhrjpnHkAii9u5XMyiCZXmhmt0eXRzuhdBS8dIBzwsrTwVn1069fvUcu/nuwr66+nPijtSguHM6RtDMW0KfcUM0YFEeBTxRJpU8IUhfB6NIr/VscM/GSgBrXAAaaC2S6Yi//k//MFE+RSxWFoDZqt7cD6MGwY8MiuawQxgTIkmLaW+JXu/eFBGpy2yrokkkyLam9qCL1X5HXR7XV998++PPPnt/oZXfS2/AkdMXiRep9ua1q7/9w5fmYc5eluQn2E4c4NbLA3SI9I3e528M/RBVC9SRFkqF/9mPv/jDH78WFbbXgNSVK3u7Yk3A1ZmilgUMDlIwh/f42VPUgwDIQBcQi7UbBYj/C7ubIRb7mpZmlN4QfOjpFqhGgsJ81AJK+QDgQXqfmDPFRBQk3MeMLPGJvqEny6fsBPun6IJeuMKSVCmbBR4wId77/Z8K8M/C/N3dbemnSzwHuaCBEwcHz+zWd7JDxLwADzuqI5Go0eGLl873hqLJRj0kOyry2IBh+DQthFEXtUmYs3xQBQ9exvsZxEeUisScynknxerWAiUBzd8gnHhU2UWhshoMM1vrHTUOGf2Kj0tDikokgZc7oDJjkFQnzavWvujT5aeIizx/9gqnRErct0eo1qUVOlf38cETBMnnyab0GRr4FZcKi9cxFpMMwQWwIE7Ed/f28ZkwLKkiZo1F8EiHXTwcVkFMqSUcOUiLaSTlxiWgUzPjLyGIMpAqDas4K1OuRFK7iMtCB4/v3r1nU5IXr14vm/WDMTpaFNpGAUc3rl8Hj77ITEBgz4BWwO77EdlCuLZTP/Ximczh81ZWcQpjExWU97tyZG8M65hkut+6e+/x4bNbDx/rfQyinr/U77GVAt689PRY8OTM6mmtxME+caQnOE8rRp5ZYvzmM3oX9IOGNxKLJVIR/eb2DMePj94ogiToGmoqOmEDe7PW9oDLo+o5Xj189qJGxBqll13IF1R4cRv8JqnNKgbbvDQtjWqoNw3RIZgHoNmmgTYunX/55FAf/e7924sipG/erTmWb0CbRiMyQYEZU0loTOhgqinhtGzt9MsXTUtFgJGN/vj0NW/YfWigW1jrJlF52BqDE/r+EguXPZ4PMmoO5LrsursRuOyCGoN+OMBcGvjWkoJTpIaXCo42LmDs6WfPpL61wo5ReZvVyigwYYCRkPf0TQMDjpMB4KsXwsHLThwSMd9fmqVLXuydmOGi67gfORsyYHXPvv8MU45VgrVsPxlQmFY8efYEAdg1tMVP81neaMj57v3rDtOoToThb48lKf6Wqk/utWKa9RYtaV+joVzkXDu20sgGZ2zR0QUbLr4u0wwF27UtD0aYbmf7siPAf/DJxwQDoABYpEGNSSecSKeIGBDzIrxUW/0DvCQNG5c6ANTJ6M/fvJLy8K1TrlpgndGPDWlAFPHBqXyNEz4MK+cmfGCNWrFM/UWF4Z3w+eLuDL7FgjidiACmhZ1BEapViPK1kjCEN3+U8hKOkQ73VeM8v4vlQjM237MEMDY8e2eWAClNt4XuwsTaOPmvxqXFhblLz2PgSG5sE8WKCP8JPbWNwvRPhFiraTevfUyKbf3y4RHxzFkZDR6YClBPBTQ5n0Es8z/fBpBoHF4L49WX31d5AAUm6+3Z8vryRGHQ6tkLXynR+6g4/2Z4yg7ol70ymrY03W+iAxKcsqfqgAT+OW3WPCv0zuBO9st6BjXW85oh2SzR2n2vRrq56enA4IkRznDEVR/So6pEVnOVCe4epU4dB2P/oTGRa010ynASUN5Yu1AanU6hM6K5vERDd8RlWiZ/Q5qS+oPM8EViFucdT6guaOX0alN1tBRofFfTkByUvf19LiKPSmzY4LhoH+1xNu6lC1f3d+/csxTun4jSWt5A3kS4mR2YpAj9z3lPqlo+cvYcKfXohEuDudHG7776eubZ6k/ptxcqMBZBz54HhHvdWxQ6AZmv3YJkT6MrTZmzcJymiUzp9BjASiUlKUrdO+hUEJhDT6U84kdOq0HcTltE0+ORn1pXmvEQs2sm9RwzM++b8UWk9eYy7ZI5WA0cIy4qalQ6sGuIIeDF2pvx4YMDvfCrF5LBRyRnakUMbnfvMoO64MFo6fxV632DS2f1rR9J/XPUcYl+5y61ty7YYJYMDTRDHtADbGzAYF3zCzAhC5R+5km4L2/6Hg1Dtp4hb0HKCg87HBXRRp2J95gA9Sc7/nvS/z6+Lq0vbbkz73lNHR/4cr67w9NRSXZlkuG0MjY4/Zv7A466qjIJ876rRc00YoKgSLMVSNF+BhLHK/ZYkTZSAHeCpGDE9ufPXphYG11qhMcfK/UhU9yueKoeZBiHVCuDr7HGEo1n+KtIzA0WaOJTffrxzf3t3V/95jdmAvilkFeJUFRkjzAd00FnufTXr1//67/5hZ6ba2DxUwYlRLSV+tYNaaZB+urqbK7mJK8OM0FuFQEIoHvbl7mnEA2+bqqfgkdpN+gNQo11j3P+Rb55E9z1jF6aCDQaGmB7W0+CkXrrPP9Z39Mr4OhfCFSLGmoPX6ZNgCZX2vGx0sqmQ3lHw8GT8rYnEZFYJ4Xjoc17a3iAdlZ/I3GJOovSpJnL26mX1txXP01Abt1Ne+iaEjKjUh54p4FIJtX/sWd6W+0hN5WTqsnd3tq+tHXZ24ng/u72gP6/wmJEK6iTm5GpRCu00FHhQcG4eGFHxZLKoluJ9RQAHsRRp/McAAsM76YYQw6FFdC63xm4zOSMKaOcf5roYSD2AsU4CdCN1kXSobu/GUTwLi8U35wVgo2XUGHxIRbe4LIqpydxMUgQcfXbfTb/bcSwIlwT0VmM4aRAWSpKXee5c5fOb5I0CaRm5ZlgOENNYURGFG/mrB5LcFZD99FrwHpvXzq53Dd+9Pn+7t7nn31qFX6zlkdHv/3y97PhBcl92/r91MaerCQ9zE8dn7LJpCNxLJ86f0YWJx/E6e5De9BHFvSnvTk868ZGFkjSFRKAlABXEmwWalinePBUFhogjeujVdTvORmunhF+t1p6QtAxrWdGTJMvpUHQwKeOL6uQXL4vcV1IJPmIRUPOOKfwCGwNEQi3sgw+KoghaqMG5FXRJGyEQEnZDhSM+2n6at6tSvG0jY3Thtcp7EwiqWJaq3aIkGkypzwKXLpkY1o28qKSUki6vQi9OWFKwvXwQAfoM6qTNiWhwCBd3W3GccR2KVSTyVYNJYzeUj6qQkubGfuBYyqEyBh/5b+XWpf+eTV2qGBEGsUxwky3TqDY7EIoF2jrF0KpJokejZp2FFrp/PP3bdOLDU8ePzSD1owhFw6vhpLsiBVechb0t69fvOJV2hMWeKbhNK7rCNRh7UBVW6Oq9Cq/f5AzXugrGOAAbleS1dnxeLfGtSMUbyjG+wdtkdQ89Rjs+jq5j5SPJDvAJQM1vzSclVwzISD789OPb3z20cc7O5ft28VT0o7Xn68em1Z7bMvlZ895RCRL3Jygl3wtP7qWGzTaEIIVs3rxys5O8BsU4D26IC4RQwOwIKhuza7D/C49EqwyKk1kVNCarb2dPSe0wcv3cIZ05MNFtAnxxZxozx6ikWf81WqeLFGwuLlk5rjo9eFT2KLsSIOezlyeO0IxWqnK/lcH6MrDMchOkEBkCkzxSYBLMSoIna1Z7hhECUpWFIyT08K5SmdqOnvTjrVEiqlBhYqrEtMI/ayRDf6ow3dYpD5BGTmOKLQplDPZA8roQjVkzKNPFXpdLVVgeUppM3+6DR3/FFGoevp6AoLyQ/Bu4xEKJT095IFW/k8lI70OIjuSVx1bRyQrXaeBJq1Z6Z346y9IbEB09uUHiUyty7EfhyfSZs1eq4QkGFBZ1nflyv7BowNbhptKs3mmrTfg6ew5zrzxqBzE0DqBJD6quTuDbhQ2VXV8qiNj5OnR0nL7+DJN1dEFxd3RY5A2nSxBEjoiuQQjYvg3PdrYlpR+4CLGBWl/9uPPv/jBJ0JAFy9emszGNmhLBo7bTOmTjz6+euUP39z+zklRsqe00zT/EG2GM2qiyXZwPnP77m0ZSvWKPB9KBqwcHBxZEEm2miEWwJIla8hR3H7seoivHAue/up3v+0FRBvCDwcpvTj90WrC73JYNbK68Kw+boQn0XQr2cE05BtFEyQ+vWZpze7lLT2XHYuF7O/cf/CLX/1m5CDoR1CSG6MqYuECYQarDZ2mr3F6EeMaCNhuYOy0U4c6LnLPirtk/gM1i1kcfSqkUYPl9DasSDzr/YTZf41gxoi1un3NTVHhu1c29T+tf5eDbbicFKo1fL1uOJRxe/32VbnNOUYDEPWc0c4of2/0UtoYZaq6T+2GC0lAvxxp/3wAe8KtLulC4HslffFncEjlfNiOzFlwRiLujQsszgE5JQxmE741Jl+eCFoorJDC7Iu/4qFmh5hP9RiP8dDVyaIVpR2aROOgXrjj+uTTrUxFAyTVZhdK3zqzvb1z7+BhTQy3dAvYqTnDEp5alDkhAt9Mm5CNIv3UivZTClBdufbRxUuXxfBLyoIOG1MnYz+osxcvtufDL3/3qycvnl853q/1Xk8Y1IUfQXJq3bmPDx4eoAraMJHjQtGEpKEXRpZqCWkPXx6aW9WDSfaO0owTKtoCcfuyVTIvX1vzN9gMcTWU2op2RaqFOjUeOeCm4rIgcp6CKrxybS092dm8tL25ZdrO/kXX969saLKdRVqnYx3t777+9vAl0+U1JMWPFGCRAzgtxMa8Iv26LrLiIVHoUxtuTrF4P9wCwQldBoSIjAtEQWFvpvDLu159f/T40WMhVOv6ezS46F11lRrMhTUFrhUrQd4d2TdO7CKZcyS7LfxbcnCJ/LOsmMno5rDmFQAgEvks7OkCiIE8/+fLgFvCS75VgCNprwB1sQDuuL/gOBoR6xh+RcnEoOMFkqTStIdY++L1qSFKqME+LodPn57Z2mLg0U5PC4e3bb7dMFIikHI+okAG5ky1MAsQlXFzzGDUG0gW2DjSiz1KhJUBIGqnglWuLAbKVTmVFrWAO8xSK5/Es4HLMLR+f6DWmr68VpSA+NAGj94/PHiMKzw6T1WaUR8nkHwqDAzyyfQ8ffoEj0DgZY5WLZmoQJjmbU7v71/7m1/8Has6iz07/VN+9jgGMi/GvIGn8cz6Ok/r8ubldC1XM3EhBC6UF1GWLhIaJwY+pBL/kaShju/azFWBMoAbtS3bSA5aNGRzY/Of/vzHn968ZmsDpoI7hGEn9JE3v7q2t7176eKlw84fiCgJxhiKk4u+apHDZuwrewKHtCTKlirgnGUulilFx6XcEr8bfgA3zoyn7W/6r41BYQRortfXNuxCeL55xs4Df/eWM8rec6AZoA0ns9sFaGHT6uqzp4c2TlX+0cMnaCTibKhFCg0KKYO5BdbXjJt24z54opZPl4PdfOv7IkLzdaBIWJZhDZgHFUUWu64QKg3wUzGxK7TB3dPZLxUmPiNOutzT4hyJ5YjnCzNrkUuS0pHEyoS/zaXP3T94JCRweWtT+ppT2Fgl4wTwc40ub2+xnQ8fPMHUvV2EDVwAR7lgy54OXr4RICD1PRHmRSNI4V6w6ca92vO0gHBZSnpp01MbPGqo0UGDeO9BQ7WK1s0VfE+zevvugwfPDp8JUdAg/hTxGvcviChbM3c0f2XFOoT3P/+5+sz+piRzlnN1SSpbX9vduSybxEnKEtQB0tYPKh/Zwpy8BhpMKfWeErNmJwix2gYZo7JZSqTd29m560ANLSNnr/cnqZgf8GisF8ZZzj+g803D9ydAXK2uCEP94ObHu9uOtmqGmMMHoLoQn5LwTtFss4Df3b37pwqbGo6e0ak/04CTghFoyK/64YcZIgttXjuWPDaAo9fsdvHKGpq4xdKzHJACNmWuLwvgqTCVHVswPocCJgS4N3t7u6p6dP8AM7FKeoLoE5OTMQvDdS0itzW25k1ddfDC6nqnHWeXWqao9iIK4Kgp7flMj9nXEVk3uq0d9/s78DMvA6dfkW4p2S0kmNpOOl5ilmxWL4kZ8iy1NMQYiRml4hzxJc+coRfW0J1X3KCThtRhzd7xUYp9OVd6atK45ryi02evhL6qZZt7DgXfNO8zUI/NczuiueteRVQ4shsFyDKLG/sy+I3uSK0fndgmdjhPYyz6hfPSdliSEcxQ93MiFMMfGMraeHPn7j0GVD1knO/WHHmGI8UzxyB0juCPymiyarz9SNCEtA/YqaOhgyXHwLv/8JFlZ+7zjoqdgw6oYTe006SzLl68fi11gKkwkqG5lDLsuZLtZCiocMYqXN31sA0DhizDCjCNaKlMowjsLwrM1JJS+D40ogFSElCEPRgBzfsiU80iFSaWXnJKnxBB52cYXxevXp3dQuhc8GJkdESnAaNw8J8msxnajfBoOW9xAB49coqMc5N0gFM0GBXo1YF6RLMZqx6LYIzPtyLmzPrm/hEmBve0tTutdKmtnEM72522FPjx46e67IePDnQjIi1vXr1xPggCnDlrE8hnlAeMglH5/OlCzlhahCQ1r7bgcMO3IE8OCkgE4lKEGnCuJgQHZe9MNvrolTIjmrxOA1U8HS2acY4q0J/mC4Cmxh0MQzgMAlEGC52oUmtRqdUzXL/g6JzF7Ii7Hk6BRZAo1gD6JwIuwPZOBJnW1DZsSKcymPxass32kMsBJg3D0Dh7vCLV79SpctU8rUfQdUX/GK1MlQ4JvMHSuH775sM333338fWrFy9uWnFC6EX5zpx24larUyzvE2jxtu2ynzx7dvHSxQyU0a/UJyCStibmjy7xDi9s2CdF3TqiQg1Gc7AHMsBSh7wuR1Scb6Lu2TO79Mi51XdIn0I+iSmvxLfKxF4XG6InAyRw/dRdjBUOxQE/LRiioEdSTrjdx3vFDfZZfXvdpCTjyYGzihpa+4mmWxsXMbGBeGKIu+NsIwnS1mNGMggtkjKNVnNW3adBTaOTIOwuuXknisdPZTbg6FPZQRzcA2rVRuwSNq35eNGW4mfPSra5+/K+LehsmCydRV+chk/J6VBMMtj4wb4eOXgzFLUa0u7Qz53/ZX4NtPZHqdLkStMj6xnIkangzr7CWBkVusw9Hir1BQX76hNRUiHkGSgbfs3tqZYbPB1dMiRiKLJcNeKkasjk50Nm+5uJXQZISgxMsInkHdxYbrZPD04+SBoE087cSm08DQbcGZH1VYHlvV4MvCGkAumzMOm0aNX7iEhsqof0kAuyxrO/YAGnxFhQmPS1P+CCa23g0FQ4vn5dItDu3Ht478FDcmFagN8q04f63L3/4M6du19/Ky3u3sxVy4V7fO2a5SJBB8FejpSmqz8Yjzr4mKnShJF4YwODYeMsEOBLH/rQIpIyUu4+eOg8Q5i9PzZMeaL/l13Hu5Ki65qBGQJg6PQMBgajBzEnoxcLwZAtH/C7k9wlnyAzxNRoRskDjdJAxS110EeljxHBooipxgsaWYR1hoasdXVX2Iin9wf2uZkwyZ8jspLJhOnmWaN4CDvIY1l+iTHhOvRWU+xMLif85bYEhLNnrlzbL0a/uuKINEYVtL5YMQz+4WOAZ6Vbt8ZTks/TyQx8bjKnp+pMgPMd3gwqMGTeGjudTDIEvgd9Ukt/vida8ZlRkqFjUAJT6YioWMgu5AIZpRotAZgiaIZGi24zcfmKJXurbVZ8oGpcVl31swisxfQVtvJ+xaMgo4BJUpOWFRvScLiEOLXZCqcmH2yk+dbG4DarFDYI9kz+ogzho14CBdT5uDOwjk7gMxVk+1LPkZtwsjkAu/Kc8/E6xYnYieT4rt5IOkYs0S3UfNykWncf3P/l737/ze0WzBi5PRH8evnKLmav3sgGfWVfatkeVo3x4X9WmLCuFkbxAB/bDkcfvrG1tfnNrVu8X8arGBEH6RS5yr9oWhEQLYSz78iFc//pl7/7+v5tfQe+chgW2Q3cgYkmeK0m5jN/plvwFIcgnKh0u/+90gV7npFcWzGN7QhEcTDICYctw8AENmvTJBapNIcllPHi1QuDjHb/jI0nAYqqU0zPWyA561QjNafPWZNj5QjrRmmRt2J+NSCx5qt8m9HFuR1c826dIWzmv4pdAFSRCf72+pTMEvbRzuz5DFWsqQ4cdlGDI52FHRf72nsBgdUQc1HtVRHfe5SARqkseOX0dQAsVgGw5WUT8wYnr4Q3pjcEZMwKmOqqmmoYyKrDxdRZWx/WPiAZXmd8o69Tx9KZh/cPuHk7e5eFy1+/emnYIHc/zvauUQRfwRLjzgm38EU7pFVC5njeG7YB39m9XO1TvF9KxPaBKEaEyPJ7ylQgY9dgabFyri3fxT4BJUfAtvZLJwxzdgYAUPRiMxBLF+dN1GWYeBazk89vf/8HbZJMFSaFHlhpLeiSe9hbbukT5B3Vh59Eq3JlF4qj4P7+3m++/NKgWWCgnaSGj/GVkA7dqVDNXby4dfjqBdMKpokbZpXtopb0j/gH8olgjACEd8gnJaCfvoWUwweg/dSH5N7Saf79gT1Dnh+eNZK0GJ/X9DZ/iQuTTUtK9DARjVP/Mud52AzYheJydCm+/apXS4IAfRzUUp9goOU2BTKolfuSaiTHI2bJnZIVH3DBmub5Bd5+UbkTRzw9//7FeatiheTUr2QSH8urGQDTpTpQjBnRX76X/4grC7xekwXA5izrOaHmzkK60bzqAbffyfXqmpwZdTgVsq+YH0lrUn7KmRECBbm+9cnB7dWI3KspVUbdFSxZF8/bssxnrLVHegnCzRDOub3HALOb95Wr+/fvPOAHWsYZzJxDKxbMJr0/enEoSLhiQs3Um3Ccmhzn8ap1nG/tjVn7dVARE1RkspZEG4cy4UMigx2EvHxpcBr3FUezh160P4fIrOZCBymjr0VwAUEf3XE3hzOr1mcwnhqViD7mrQWHoMln7zOJ/iQeEij5VASY5hW9LHC/9ITkT/Onti9dAp6hwv7ebvMJmmq9X/DGn6jfNgKr25ubHI98dN8DMNPLFJFtb426UNtMVBRIvoDh7fyfNKPGAM+pSPQIdd65q2GdUNfLN6/vPXwkXu99/YRRrkasfIqRyIappW0cbZw/2zHyq8fnOnPDrrHnBWd2t7exAUjM5P72Nnqi29QcjRAIPNbd97eaapViVQvmLEVinP9TGqwN6DNCQ4XGyrYf1HPB8MJFmaf6pDB83UGDGTB2Q8kpHD+qNL2x4OuDo4vxTYegQZQh0+IjzBUHwxANYLaeovM8ckNYOFKdi5ttMahxQIqbSHU6e/acLhPhnzw+ULU9ZtDcRt9nz9oM74PdMc7auOH8WXHbYKj5xGvMB7xCzY2kb2AoJpJJQgw2FixHTl8+LcOSDBZGb0TBGxwTQKri3ZAmEdSRYKS66YlhnoN21I5T8XpajWYRfQgfLTxOZhKkoS5gFAaBALcIobawy9I7va1iSOwNVGVtqaXNaIcLq+eM3e11kHwFCzsSF2Nlbw1ivuYhANuUDigSwsmIqVzW79hyHAf4AhQH20imGQiimOOo/Jl2tVkzgfvTH/9YTtGHVuVb45Z/Uhv1DiFp+ct5uc1yM1STILVUalH6+iGrmNMHtqninlCS/J4KR3YsPjIuGVLIAYzN4O9/BEyqHIPCS7u2u72+0oYchghnzhYCc+qVIgwa9PHBEtunz59/NEec3Lx+ldly8gQAmV4L8PiydGMUYWEPvS9cawSldxfhGTqmJOMx5/WPvkKhJ4EXD9OQYBsVmlsntLu8fQnusrsThfOWUryVJSZVxpCAKVO/nscyHa8MFVZI5+bRFmKSm/v3HlXhh2MeiOhTASv7N74sVYGJaf+odVvivW5HpuQnICmkYQzaOal0ZrMEc2zgnqnhJYJzLJ8AFPtw/unh4cbov9dG1MD/pw/UkoUsQX/KWgWAx+gjiEj6LbSwIo3SKYqJfk6tn2+VyevXQnaKmXUCFp5iKmjFLq1O8d0BK6oULhvzt5DRb/BDwK+EATPg4qLvWUIgEFtuME3Lr5sPYVCKT3Ca0RZZEOdhGBT29ESsQK4y4ogKqpphTLWl3HhUP4Hf2easM32Jkp7UrtWXbz/YT/rq7s7btzbRkHZExRsG10nUiuuVu/fuc7Eizbxv08NQWgw/+KgNF93pzQ8PDgoghkeMUtjLqpqBeNLfx5TZBOlSC/3LTL4ieBalzh12UXq4lh60SVNfjo17Og2AoSjPvEVYtNuyQaWHqg7LkU4qfHX+i89+8Mm1a5l5R2KtnbZmgAvJsphepi1RbpgAFs1TRotkS3XhOAF3HhEsy9j4izpiAwbYLPLvVZfx6kQZuuFdAXXLbZRnTE0hS/3dONI5mKE67hy7oYKAkQ0GZ8Vm7kDEnXoQ4b2+03Kns+cOX0sF60QwxENAKT0MPLBt3VeotwDGBa5s/GOrIU/UpGTalf6Mo0ku2raECPKLdnd2tUl4VYKeK+eHKYnaQB9fExRPQ8BnYAnJ7sfkDpvFWM2sndrd2wWVfRE1gfwP7z+w7Bs81kkzohcuHDlGQydmZ1i7HaLqU0elmMKkz2dOSSphnsTICNA0FgBRvpaG2H4HFnzjywhnF0AgEc2ClyLlbx1OmklIeBfZURbQS4kZOkyFXjNKiTlTeejAMUWDYNJI6UTt9BjBkEkYIzpN5zLZVPizG9fZPdVLowPWqKjDZ18aRaiXQSFOZeBBgfRKcFXzJPuhonBbkm+uUYHIFzGjbbqmUpycdX3a1b8qc7Tyls7WO6elgaG8Rw6PjSvNW4cwjlAii5o4fewi0kgb3HG+WKc/YHCToJm9xZZEytXLTlI7c2CPmYxiFTc8Utnp1ZPNx0Hifq/MW2iKWNRHTQMFRPr4zX47tQUcvgw2bi/2o4qjYTUgL5qic+8BGJnyYsvFasDHe7ZZa71oawyRVe8cfSocHSxrzOOUvoMx7thM0t5h2VrHo50zpbAuJttKaIvgZImvWRUYx1WQ8RtOcspt0VuyQDt+6iI+XNy4JELCuT88dlzVzoB9bCQSxM05BCpi4l9StUCOetk8CHqY+bRlnr2X4hEzBGYx9U29mZ3FTl29vj9WLnE0DwMPMVihYSuzm7pxAGnbhtcEOKnBolnZ6QF9wFhoABaCEEEGjHFHvZnkaNdhNmftcU0IRpZ7ZfjmDd6SRTOENQUbdo1HxHzgV8pULVOt39lyqohTyd6MiYdvakv9/MRfb652sOccnq11K/jrcuzneOvOnV/8/d//5ne/a+cO2bjPnmR97bSZhzOaa5FpvYyDhproe2cJrkqz/3VBIz7ThElxcg6aWkXoJBb+Q5BGKmEI2jg0CLjwnp7R7vMSja5e2dNPEG5KKat0ohTtt2HBV8JjwGpz4zpsimSfQ2bzoqEcGE9JP17Gqfk21IGeN30bbbTwfVtxYUi8gKdown3KMS0Xnh++pN4DYEyN4r02mPjmKsVBX7z2Vh8AIin9cVcz7kCaGtiW7vmL5zOT3wZv+AH/oV6DJwZBXPLl4Ytzq+cAOyscVm29RpHaaqjz4jsZ24vDZI2eyK++KBU6PpJ2pbmbN6wUZa0w+viTT64NZYXUSrEknRr1mRpyIKaOkwrh7umUh4ia3B+8CaVnKIfjw7TBWyOJDzJy/DpKPbscUI3Ao1K08XSpcIwv5jQGrZDS6fFSIFxA4y6YQQUXtwAzo8rJDAXy7PVZncHbSknigRp4buWv2YCSqL2f5UwxgJaNrY30QIUiprgSSOiYlrmaumAdS4MVls9fvXxwcGAxkK7VEeWPHj+x88VX334r3spp96PAvQf3yxj7sG5moM4BZqpoetU+qO+4kW+bhTt//lCSAngWhNO5E7kJY5D1wMWQDfYRIegYvZBfX72yu3t9f/f61auSwq9fuWI3VbR+1aFj776+deu7u/eLHXx4b9Uz/A0DiJOADyrrHMTyzJt/dO0qGiWf7NNQFu1sIAhihKjFKKtthDgRCwvWwCQ7yNMeZvKPRJ4tIHx+eHjm3A4+e+VPVg0qS23D8kiu0jlCqqNAWsFXPNcx8y0tMsVCNcT98MiQoEjfvDadwPG5C4kyaC9tnt/evsTE2Ahqs+T+tIiB393fTq80Tybjdn8iW3/qZ7qLdMNeNWfZQiEK+/RiRvekpw7WuRUIy4snd0J93nBRZHYBgHDUBAaJPrf+NzlbKsE4PDOZmADOR03mItF9ap7WAbzEyU4AVvmJhqH/0lwsGfpqZ2nX/WSihJ9G53wQLfaiBjQmcWg5UZfQTKK2gD+BG2cD4oVmFUc8taCm64xgEHaTHIT61F9IwMicDA9HtM4D/w9/97ccXeMfvY2QraiXNnlfQZXRf3//0eNTev4UywDF/wYedTdsn9GSARWhtEV2iwQCfEDHYu1nAHwHF73rGV2CpIOzszVzkg+wUVBS0L/8iz//4Sc3thwefc7+uecpVawVov5w+ub+FZqtRRyZLT+1OA1AhsiYwbB97Nq61DeNIrQ7mGsFjGIKwKHbQTFUGWl2lQUXektwh3ZJPBiPLB0kXkdHpsbK11c8oYqInkZK8rfQ0xO6d7qsoUbtl3e2kk6VDbLh3QZ4HDRvT9MsQq0kHe70L2pNF1EbQRgjmzlMf2i+SqJ7VqPP8nvp1aEXcUeF1c5ZWAAMvPnMG6qfF+eOYuofCR/btDS3iNpSbniGqDjljZoYIE/wrWQSnVADygr2aKPW+TpSNzRas4e1dEMFtyx0TnfTw/jh1pQfMAKfgJ4I21C4ikZqkrB8coTSGIySyAFGTcZhs9UxOjYtMGOhEJ2AFwR1K9w8/CMK1Ck3fqQ+OUDLMIC6elMVu93PjL+oD0jxgGvKneHvRYTiBOQ4CdFXnDp8zjavbF4y8SZt1frGt/oFcikjwbhQpaVxPz5gULQcfgAXW0uxQ8TqdTDr2hgYcz68Z/gz5WhT7O2U00k2HLAg2iNrQXBwWAqe9bMCkVZzH21cu7L/OMpmL1knSKcqE+6iuPBEA1D5sb/XEC4rUjG8SvPhFxm6NYKSaK2umPfpZjQfTg3d2Ztoyr8/kSFu1Vz1Z7mAVV8oXJbzPz/UUm+NhI7Uzyuq9oKW/UeZ/uJxjrp3F8hyLOc59uTyjth4pnwmw9SVm3oVuovLvTgff9FbfaqtqnDue4/dWvCdksq4NRUOUwKBeE2fMwgshf1eKhxliGt1C0ftUtVgM+qFNiD6As+aTdQ1rNHRjShi/M6cAebJk8OdnS08OIEqMzTQAqB28xAXeNOXKNQ3Nsp13VHf3WS/RWswjYnPmRHYyFqtlN3DLQBWMh3dMM7gK5EgFMBTaQ5s7fYrCtWAVRBsIDuG2209Bk2QgAFdZrqwzAZNJ88+acjRgbj2c+GBV+/tm+uO2vUEIGBpHSlW8ZUVq3Y5cNk6SBD6YVrjDgpTp6FIczFmi21Mg5vxlSz01zRZ07R0k5pEWm2GNraVGYYgZ4/PSsgWKVFbIivOYOddSj+zJJD3bh0VFCDR7r/poYIMZWzRuGaQFVbwC4Wo7n7MGC2I2CNLyqonAvpRLO7EntD2dzA5eThSOOTuodqyNUP0/OoRF69o011chEmQ9LtaDp++UJsYdJww7OnNRs/xm8JP0s+IF9U/tvU8VohWtyL0+D1nWQ3oI9CwTCWpauCbBmK4RqbzAWRNBrga/oTFfA3a/oe7vwsAVZNxKWER+lGgEKlYyZwCSDIS6+l1QiXC9AqYa4NB6jOk5DJJsprwRiTorhdUWZNYFCFy6qrCq55/j0WennALaUGcGvCSZOlZwyikaxyV+Vxb3LMcchUBL6wDSBJhRrbbPshXoyGSaCbUrmLIybXHNIMNF8oLh0I4yjtt4/jVi+bPk+KoePj82Snzbw8PHrUrplOrItn46EYtcqSljL92JHrWXYu5KOYUTB21kwDg0DoysD7aCwZ6mP0LHgQc4AMbZND2P4oQ3d5a5CtftRXdDt7WF+kKjopZjew3G6IXUxeZp0mCS7qaiDtDTCyOqyXG+iB9VhB5kuHYMFz5Xg5qbSGfq0DuxvIJ1BlmoWsPUCDwVx0B/OjhQ5egvry7CwB10m7SAlWoQWQAUBEYqkXb04qnuXaoZzs07i9SGWzJihlreqYZ8UxGH3JvJyT9nUH/Yam/1iQdb21fNs1kfzEMvH5tL5AGVmD5i5JBGSX9gELTEXWBX4GgXzqEcK0VZRKNAozcFRGw5KoikalY/vG7zorsyzBoKgw/zVQoxKN2eOvV2mP9bcvjg6KPu7V6Akov9m25SyqmYGI7hhKtxGoCQWfTH4X7qCpGkhOWDvkKlpyABBD1lfCzOA0DF3maxIdFrrw9KYZIQhsHmGqeKBrV0gYiY08ctBrVQMGucCSbBYkUa8YIp5xz/92LZ/cfPdizO58TX6LT0bMXL+7JhHjzyn52hy+eN1yWg/XqhYcBPTgvvHTf11pduhuPUT0K1Z8S29CYj2I+yzWy+njNWyyDHgloRP3UqmUxtmxY/BBa11ABQMYgtDqfjlqiaEyKAWSEYlVP3n++VaXZ3Q+dfiDfYaaZY6byQ1ANhoJi3ZuPWoNGJcOOvqmoXaJOXbmyp1r906F17HO4mIDPk4PHcHMYIY/zlbNl37+7emNPlq63a+Qo+U6vWZrDwzFOJgE/PH186KQmW6oZYMt4n0ZO6FY/Z5r/XfOAWnEyihgw8qKIYvUjQ3NAuQRnJm8MzQLzEBI6JyI1yELsPyPoUd8HZejgEJSkii/cOFFKNM2ecUvS56XB5H+xIJHGgygje9gkg9MkBANo18Dwp99VEjuyIDhStzDUj8Jg0EjzP+2h9j6/ukrTyD+psSvgmbToCWUYa64eby/wLw6H+rk/fiOFXz0efEmOf3wEH0qV9KgjMSrTO+PJ6dVR6wt6BVZB5QP1Uzdv3rB/0Vd37hF9MuL8CyeNyrgKiiDgZYxJCOrm3qeK4IRVYkcHfRnvAfr0a4S9Zmo/b8+RLWaTCpKCKcFPDbMz1juw94lO5xS2FntgdoBcibGJ+JAquS9ngUdW9qtqIZ/xKroSIPQjlRvj1DuaPZY243TKOf1Fa1Wh+IrMhQuXLtq4zNoUpABK0EQU/8iA2oYuGji1bm7uq+fPHcTEUbz73f2rN/YdUS7xhgx5g1cDlRRAg44Gc0pa5EoIhj3D5uPVze1LpbI7Bqq8mlZNBAvkazEp8ZIpHlEmd7imGMkeWUd//txF2OkGmy0ZqOa13hqRVo1BP+Dd6PkIE8lbpm8DJCFRaWj6rWS64Tqi1Xygdo/O9pYbCFfnTppBtbw7lbsccGtIze/NwdElIj0Vusm8j1cAsZEY9zNI/38WJ6eFFaYG5oU0oSLF4orq68oFSXROPO53VgkBiK+/d2XffOK3d+58+90tpPv/lfUnTXZl2YLf5x0c7nB4A0cbTUZk5svkK1apRIkyTTnXQANN9RU1oUaiyYxmlESpGiuWRFb78mWfkRGB3jvA0bk7f/91LuKVjAeOe8/dZ++1V7/Xbs/wDe/0S1U9yIQwiohLJFEvPJqDHTwkquO9gUmaR/cSa2OSMKnSaA4D+ejVnOGzuWU9N8zJhSN0CQFlWfl2sBXL2JvpSJCuSZREJ+ldgVKqpDL0CI5zCctEGPba1/vx4X2vAVNIi6ZQeObsefEKQ8OuWcSYbhoL5gvTS/Jg2YbYSNXrmDRNktq1bWFIooVWUkVYd4YRhrTqvlmntYYOgPcgwkYyevbOsXNCThSNKsSN6hpHO8h4NHy80lLdf3QMmHj44GiP+DFYXd7/1cj39raj5C3P4iPpOv8VEnJ4zYXdwB8+GAwDb3lRmhUNXkgOFJsXYTckEAZ5BYmpple02Bre28s/7Ji7u3NHJO3whWFR3gcHhoZq4D+UUWREtEgjKcfQ+gCrdnhyIq2eKEzkx6slET+Udj8w0n3CCdBQPtnji4S4UVZ/ScRzmQbnurzztEzpVo1tfKSkA5mUk9BcbmYk1GDQolajbeMHGlHAT+ss1YPnuPnLb7/+27/5BW91fHTfIN9//P3v/y//1/8aV0fa6gxUgfhK7+OeWtTMiah81KbNmN6apfnKo2drYzPaQ0ziuVAHufR5xcUGdMx2ZUHoy1cFSROmKJ8ebQCl7PX6SbLHMSyWdpc2V89wQ3mmkcEVIM9rpeUwoPuLr782wLphJzftrK+MHqAzL6iQKwZri/TNPam3LFkVfYGpYn9LKYjHZ88WLo9KjSp50PjAMiaQRRkID7eR19SXm1zQB8GF6r7mSoUnUZFE7GhoJ7beJm/HN+deUkrUbWhtbHW/2j+09uHq8uyNlTT7On+ZW7REFYttpM9sxp63qELIcIQtbPyLdm8UP7mApmamYfW4MrPHsE2G0mlDhwuFWOOwkCc+P7FkkG0RQeLKV0RZyX1XIu7AoibO5Wb52XOPErFsiEqlJUKjDbvDXuEEjvRAGZk9zUqCWAoJEF6DJQWoK1IVxBqAQPMvDEag7gnN/YI/eGE38QU4FRmhYqr+6z/9x//Z3/7q14akHj26p3HXDrS7qclKb1X8+I9+9Tc//9k3f/f73zVkOTQCRKEhqPbW7d/2Mjv/qHXHOUu/cl57wzAxSHMAmenp9UKq1DaP0Q20VWdl1/sPHPHmlhOhIaeKz6xcaYgSOKEyrREmBAWDsykd2ZU2I8e9nFXwyfsk6i2CQ2O4f75Z/ucvXuovOgRgjGqCHMXxN3ayVEFXdvT85SurZJVNzLc2DftiFlLgVS3W5Gi9iz6b/qtCxWdxgdpr0V0lFfeSqAWhFg3v7t2eBmHmWz55y84HaodJMlZ/wu6aGxC7z4Pofnmb1r3DWpKYuGm3Q48t4vAG43nLE9S0Ld6/i1kLJvDEQaD0j6Fc5LdmIuJIqiyYcdv+wbIC2ceCri/6FiVo+qw9IMkZS7sWHcuLzwVH9YAfue7L4ZpPWE2RSEhV51plmIyssbMWG6/MqxbAJgGWMGcD1wkBIfjYAG3rO9Rn9TskXr08aYvhtnnGq5cvXh6LG3kuD6La38q2QmmxjTQ+GwMBzBALTQJSQq6QFgJJ8nIPKw+sv2IVPQ3ULGqiG7e29re2/vf/5X/5uz/+MQjB6AIWdyiOFN1f32aB9QxZhLUV4nERqSr0wKJ0xjIn3DA0AHjFqRbLNlIkGrcyPSOza57eWvEzKFouHZoqYNMoEWV58Sa2jk3kn52gjHIBQK1x7UK22eNk6gNvPOAM6hvwN96TaQfGJ8dINnyBEjFYglwkDCcV4bDD6M3lHe7tkzLkBRngD+nNp7gqWlsfV9WCztx032EbhulTcpDy8FEDPpWZsuMA1o4fHqHN8o0gexSqniTCEeSwLsVEeyycuoJvZegoFg3rWAT38tP1VrTLHS0zUjF45FVb6Jb4We/IrNZNMR0mG4VFSeM7MvL+yTv6FyFUMyIKIwap4ETusADyU28Z/ffk87VCCXvlXNqKKS9PVwVgOHbOkfll6TdxOCqONnvDp9jD9ms7mx2zHkIY3dtHPzglG4Ib+1uzRXjr7FSX5q7NOvv7h07EsIMiNxATY6Z/y49qrcpV1fPD/YLA2t6du9NvLtlfSpR77b1NZoLtmqBaFMozKAPj7te//IVtn09fPee448UCGEun968lk0+AaogiUx9maj8ImZhTQqIy4oI7c5GITrkJW32BNHbt5vjwfiPxXhBowb3T36duPjvVKF6aMJzqUymxE620ar8BNyc1DY5pvzytq8sNLJMLC5KiWolieFk+vPMagXPBcwfAedtnXGuGD0FYkCLCwZGDlqhdvj28u8/aFB5f2yeNDX418LKZbko8ovUBPfwHY1QZTKQ1kXHLNFysnMLypYqN5w532gwUj2lqsFuhW476MPicjtO4jBpPi4lyH2WoJfNk5DNiGMSCgwvKVro6NdOpr5/WLPlqmYaVfJZyGX+EBHg9lSUfPIpSLZmgRDPrjoO7fCdAUiMlSSkCXdWrgmPtSIWOEh6Vo9J8DcEt0MMF01KFzzl+gkP1BB4oVIRmzDG4HXTQyCN+oHF9wy4Ir2a0qiUNu7p+8PCBISP75Ynk7uFdy3W4XqukprLE0+hJRjv4jsjyE3E95Mav5aRVE9GT2Nf1jfW80FA0t23/pPn7W7mnIap0J8H9/Ntvf3RkmFSaNiNgngLjYNO7d61i7O3Uwn+sd45kPqYjhbQZMTBT6xTAuKBNS5+1eCrmymQyaSWt4NXrcQ72X54aFZEzzUYR9owSdVS3NQ+JLj73t3z4hfa8h44yTSCV7umVZOk3uxZ1a+/qKW5rs5jsTVtBRL3ZqAsrmt3MhbYdx7oMp/p+OjLVvWVsTXinslz31OuLiWKO5iKm+V8/ndXE+MA1gQ9yGI0Jh7/7KY8zMR5mlV323and5MnIaqkkXKaInEZI+Sf5NdmCQyUDyk22Gk+XdndJibV5o5uzV6eGiSYyLhYGCTMvzt7WaFKBT59svTl7fXbPCzltdSKthGOTwC0VYY6OgTEirXyu0Wrwj5/sFMOrw+ODcWmRG13VFvOq9/P94Jyp5ln6Hio/Zy7XYttT0s+lILmfn73Vf1e/AmY7eEOGmrNIA/Om7ai05zMv3CIlhsVUPr5dnUwMng5n/E5ZqnpMNcUdZCcu6qGMsVYuuVm73nFNLvuAbTrrfVDnBClqJdziAEcvdEpFV8AifePn33z93//Lf444BbOf1cMN8zXOHP7w8T3lLkLxJI+C67lYksVqyfTEaiAK7yENhMOcr9U81ZioYyutY/t0fe/wcP27H1SYEnsW4p9Vf0VGGJfU0fZojgGREal+yL9mk9GO/t/BoU0ktsM9cIjxk0ceOLHMClBbJZzHEZ3L4gM4xiEcccT6tQ14FridXFw8/vhu99auTipesR3TjbkIXFZrdJnRCY/h72g9GKOm0T8+O00xm9g6aowNQz/pHm5GnlziHj2/lNHcShPyHMNQjo8hFUVX614SYQBK0HnnbsMyhjhhaLWsCMdokojZoLhJUZjc3vHubq38zfvLt5ZWgVCVjl3gMlOmQlVdZ70U67G9v+z1i9PFlx/eu3d2eiF03d22N6PYqVknJXllVjoba9J7mI9KDWXRjvKIam3z1Nb4gSKL0LCqFm/kl1NM3+IcvtUEoWVspurs6aeUFmkal7QBw6pLXtHIlzMmdPdZr7C2bfy3tknBmyaR77hLTYGlR9hun1nVd2WcffexoJkyNrrdFS7jNpvIs92Hvdnbii20iiY6JsK84+3GE6w4NrDmdKYZPq41RijyP90/OOTLAZF/6ip8VRs48Am+6qZVqc2IQcOhRoK2HHiEsbUGM2+PfdRORR/f2jLQnhCZWYJKP3lNBv9EykPOKNpoeWLIhqIup1hz7JsokMcy/etDtscPH/0Xf/vrLx8+8JbPQs+7e3guErC83gLfP79TSU3HiKSJhcya4q55VU8epB6qd3v+8KNTw52PklB5CSiadpiCJMFN095GsUMCTi3bAGIghNDCa7zSoL988dorDjZ3e0dL2PYXq9yIwvT7xIjspJGNwakMGJ4QR4Kz0kuiHWp4YDCOSK6uL3TCBRU4CRM7Oc2P65vpetJDR2ls765W5MUipynf2XUktTvv7LCegoYd2QVvieUnR2zs7x3sedOCiFnH4+3FBS2g+pnnB5s5D+ilXQoowoqQHktwg29c3OhVyjckYUaXPFXrl6YfigoxqdbzRNUIceiTzAFsbDx6dF/l+nCN3B/f0w+2r580qZpgyTwglT09sWb+4/7hAcfJjA0GmBY0VnN2cqonRkLDMJWOfyxilBI+Y3iwqd1esMIlmf2gl4wAIYhNvW5MXHop2QnLY3LU0fg7HAzGR1E2T0IWYlrlcMtEfI3JQASN+tm2oVVoRe3NmvhoHHwdS/pMDzW2tzfbbD2sS19UmAlhN6AeQEkoIezm6ozV2BfiPBUnJQ2/Vj6+wCGSGruNv0PfqB7PUoIMeLr8eHz84Nc//5uHxx3aequN9JMsRL59pR+yvf2yGRPyyUGlsxMicc/JFR5ya5d++/s/GmXqrJSCjzLWFEDfzJqlsVrqxdQLqFLgKQqVCIqmynANzYrYBgC4GnEansqZLGyHsVFnG5GbTa8IHc7qVlXFr9GtaKWLQjo65ThHuitUeHt6xhKaLNu85TTCmEjS1h0iSENqjOVWu4qD0rP49ujxfWbp0GYHwFJ1svcM45z+gqww1HB7K8WD486ZdQ4A0e1MGL2+8eLZS31ZDhk0kogN/WlVl0u1KQV4K7wh/Q8MG5k3FJ6LjZ6qjZeyYFGJKrZVv9OiQoNjcCoZS+QitGyysjhHs5WvStYfPNQ/LtQj/XsWOOJgyHgCK/f1ozLV7FMMUwQzxFan27KV/VpbbcG/ASzW6FElb64dXvT4+P7OjmimUfzmZ+pcFWLFtCaV2wB7VpOQkVfQszs7jx89dJjil1880jv4b/7b/05M2zwb1qsxcXp3upY2LyMmEw6ozdV4TNWqfI5LdNRAo63W293acraeTf7ISDzTHruR0QVA9zBAERK73CWbMVueoEV2pkVEk0Qtz5Ce9KSwC0NDNQqqFpBgZnmSH7BY41Mbqd8u7HDkhtWvEjyllMMpWIja33sDnpWxYEzlQ6g8ox7hFkTIZvH+iwhBGJ2McKzT7Fh+YUeyjYvkXdGwDIll+t1YYn2+oUsR3DQGaseT6fsEs3bDC7qxC/nCW3m4NenO3JxT7B3yZS+RSNeJ08HkZ7zF+ZMo4jV6nSuDJxyUt7/lae3RSUmuTXkalbLoxdwF8m2pa2Bnva15Dic1L40oJA27l9Yf6K7ETNNicITjkkozE3ftgCGQ/NyU9Ww8xmSZeoOQr6nf2es8Rq9i9QLYl35wgk5X8trYFWjGPrE9SDXnSMiJDNzYVvYwGtvo6Qrz+OHqAbbOMcODfGUg4QmROVnrlz/7mZizSQOTpI3bhJH/Vpby3pa9GeT03jvnSetAP3nEexx/+/Nvn5iDOGyq9PTiHU/6H/7uNykPW1nkSHvB0whsbFn+/On9h/aO3xhptTE9oxjuRGQLy/wkYKtlOCSamnamZhGAndrRaPA9zF2Qi++TqHj2lwbNmH3OJolMuxdGWmcNFMhnb2z3maGsqp8GaXEgsmRQxgf2KOuL16+84YvrBUGczTFrOk/Ovb/9/ODu4ZMnDwEfV7goQUIPV2RnXTEu0RXUtprN+Q8ROPE0b9Jr1zoh/dxQIEZXM2gYleNpPdaow5gxVD9+Onl1cnjvrqGFVx9PL9+/PzDCt7ujm8C1OPpKtKanwGHi8z1zMqCAh5KxbwD3SGyvkXheCg57B7t315pUGWvBdsa2fnx/P7XIPXy659jduegH27jtbABchqH/cBvkgCeCaqCG/qTKRFmTQSaBfh84kkRGG7ifSWjueYGlwhxtvsCbeWZ0bDEJSDhmwlT/Rp2cuJooc1zBBJ3fZwxXVojUtSD5EbTagBoMU51hYw/yK3w4bDQ/8RuHRkjxrakh+tDWUG7q1PDixcU+N6E3mSfNC+NzEhoIop1f/Oxnv/7Ft3/7618eWPW1t5dWGdHvVYj6dVcmo/53/8X/9u9/93sCH3pTC2zV6FJv86Mook/kUihV+wh04bGFRbix9cPzV6/5vfM3ry/O2CwWlCEnOrwc+iMOxIiJJSlQUndlKWW/sqzgzNIaryTUyAq3li56utbkyKZRapsQ6BAnOLbOKCpaJS4t6caGCWbbER1a1vjC2npdTOvDtSSZVa28oEYPz31akAJDdZCEbNecxKS+FvB09Ce/4oFsDav2/HqfWsMZBgiJTRzqIrrwDJjk+GOo79YX33yBSNxQ9YNH90aE8qw9enxchWaFt+xN60RR5GsiDACqCQRsVNmowcIAfKtXJhG0MAopzmAxObRoJ4cEX6NzuQaBl0S/gURn5SZPKKagyw9pEAZ6ZOZmGjVZRw+Hxz0fLq+4Fg5BxC7BXyZhJYixvaff/8D87h3vJ09ch8vGmgjx0pt1vKxz57Ye85vT84PjA6Vfv3ilt7B/ZP3y4ijBW/CqrolNVGEoBD7RovXxu6w3tq3e4XRRVngw7QRaLbfhvFiIzWRmxcQYPJd4kjGkp40fbH756JH4ogOl97wB8OP2zS2DXbbIFuhr366v/9GvfqGhePbiudpGyJ/qZF955+dW3fRNc88Uyjky9h00xUYsRDxB08bWv/w3/7/RtsW1JIcVi+N2VEFICiqxWzGNfhRLlp6v1bJpcLYcK+Nsmbu7lmTap29ARmvTJbNCNomLfGBg0xoLT91GZcY0MwNMskjzycNHf/fHP3u/baKaJdtZ3PyDSjur6zQ7tBDwoAyLCJRxjAJPKXgzxydfPMwfLJUNJvC0Hyqq1no3VC1fyl9Px2jD3CW1dET+xb3CQ34lfEihHZih5zckyDfgU3Sh0vTwhmuKpLWB8VGRbror3IP6J0HjjPGb4coau/BDNX2nHLmkEWcOTmKq7iq9zg8gEqdYcbZLFo5XjlD3KQubHHQZHMcn3NCkDQEyV9q/l89f67GwhF6eSzTra149Zq9EADc6xcwLhp284qWufLUDj/fu3j15faYtdM6/N9mZXuCd4+jgF57dKzx8CHdwivXDuG4C7IihcSqaILB0kIZjrOyLdNiZrtfVp0ek5kS+nY09HtxAE1YM/dHqWFpeg1+jBQ5ZmJPLivLXtLgU9Xrt8O7ez7/++senP9663fI2LMRnDoe4T+0W/vRJ91pGjOGyACzmAdHKeWE8xwv3FWPAGw5hBIOJsBAAsOZYNlZBoVElNQPwf7ogkH798eTHZ08fHO7rj47sxwekUCTVmjL7oYUTA3h1mjMQqgE9vofcxtHRvaoT+9L+/EGVKh5e65vaHKofs8EekYe20lGDF2WOgNCr5a1cugAy/eoR/GGODsWxgUYoO/nT3MzSwyD0oH+KhH46RYyVddN3eTwoYxWtOY++0QtnDrRjqrW0PEZSBHWaOCji4tICWXfthZPA2tzsMJVIrOL+0wPIA2hoO8Yztp4FSmHpqoAXOS54rMpVusILQkstcoZmhXApXvIZEvxV4Zib3rnbfvCU3odiFPFuK/OXRL1PQ4vm/EUhPDYDODy698nxWVrAW1ssxyDd0Cg75leI3OIJtCCTdMY5Qz12IsjXtZjx7u6dRw+Pv3n82AnKD+7rKN/5Z//yX5ycvJ5lo5Z/itDs4ezlJsNJ+xmAX9fFunz3pljGqwav2pV+a0ff7NLJuPQw+KYdvv3mn/2rf0lLh52GSRymtXGw4/Wn158s9e3sFrf+sGsQGgZh1CxpGl7H5S7YZ02iiESioaR9ig7Lp0EgWgbXKgzAgVuEraPz7PmLdz/7mdZKGSGFKT597eF8J59xKk4TuL4+0vK2z7MVKYkPh8DAMnbV0T+3dy7entfeYdsonoltT6HEvMfJ69W0yiIFU5BO0A26Omocx7s+O+2qj/1LRfFLSkJZssWG0ZhJk3GBiQV2Ub37ZNTcMWSkNQajKB11ZhANZWkF30vF3Nzlx0+XF5dpSJunhyRfLebpHQ4dQD3dzZC+WecW3r37mG+4s2uqbk6205naNsXuzecq1Xtm9pyucxeBETgY0rA6y8jmIqAIp2QLYQj0VxAlQfZYssy6wC++xOAWGk2OeEnTiRQdTa22AL+5izmiiVwInJd0KP8wA3dSgBbPVos2hTz0IjrS9j1XNkriM752yTPsHdOLy6VVUsbF6d047f3//H/6PxpY9v5zzYJQDM7/m3/6T/7Fv/zXRjKvOqH0ihEiSVXJOBuPMDy4NHjiPDJRh41QcxoV72hGR4dFs6wqhyOqkfsna5xnIkqzFpG5hqgWwiKH1Ej7BMy4eDUJaxa/FZVQbXxYvZhgakssYt6hrbXkx/kv7Kt5tYy8TBlMDBr3grOvTk907e9+3DW/bwAkXW9JayMDwhIG7URk5gMZvTJPPWNjnFVOMO/ZTtGD/Ttnb07TaoFfUw4FI/Gxed8PDtrXV8r2zUNrUfAnJq2QHhjQ8c8I/XmrO732JnJkSCo4UNEkAjBiR5tHVENQLB/RgtRwGOfL85GzDqLYwOyvmbLvv3+GoU445dkCnApeUWsTZ4IHqBprJwnq8+DxIysS3l5c3rt/KLSNZP8Gm5iTHiUJUEUGG4cbqujVATo8HR7hkBinNVqK7D2o746PnyyEoJYpphfYN/9JhJrjhdSFU7FlYYk7ecq4XKllDzWJLKQd51Z2hCq5kIFZsw/v3l592v7xu+9Z3d3DZrhPjChueNHggUmGV7Y3HlsRd+vF8xc6zAdHhwAuHAM6LRo/A5H8VLFmpoLqZEzcZbgxPPTkwT1JTryESSdMXt18+eTJV19+IfzN/dMLx1nz3zN+Ey0kZrm/3QUteMATyzG89G3p62oSJlomMrNS+44X3bG9DJW9lTxGKT+d5o5dc6rFkhgqDEBZ49TchG82IpDK77OTFeemmRsjLqLQUssC5oqncROUlVDH8CnWje7/28s3XlaydMcHfURhSSPrllMo3sIbSyBvpYKGIhdTgkAuRHfi1q0vHj747kez3dP6F/XUvqTamfjWyfnZYwsWCrJrFnLSP10RPNd0hS9ODWveS+ilhaP1G87bu7N39/JNb52a4j1Cd7ZBVKkqQkoaTqx/7HTuPep4+vrUUkdqQa3ZEo6fn5037xErPtcLm1mMbUE6E/TCsraEf/gIc82FmbW69LIXdhqYbXnz2tVWx3u1LLqwTe0zz2n2cN0wl5gEj2yBMCFTby9lhVxhDSxDOzVMFsongOgEnNvyLWuVlaO/2PQ5Sxm7X3dc+VsOz6cxsTcvTrhkQzLWNzNC8sD+3bt7ZnJEfJya980ZVqp9W1szt6AyfBuYzdgAl6H7nXcMq/muqkhLAtJDE3frAMQuBuyxVQZXFqH+zS9+zsDIwNDVALC+xjCJ+CGqhk5dF56Uv5/ot9YrMMyGXyk8sVH2jr1Y+6cXZyNSI1fat/Xtrat7B/uaC83wb//4eydUwHzC++WddDFzS6tRHYOrCjjz0XpVMAGCXl0r5i0IpbiR7WLC/P6dnVsHXhYwQZuuGTvTp+ml0rpe4+3ldLovy2P0zldWMQbNo5FZQpJibcWm434BVnnCWusFRBoMzymQbtLzly+/+fKJOXnmn0LkHV0hCV5q3z8s3hJ41KzfzIo96TAfqRmz5wGoYrwe/4MNTbAlER8xRc5+JaACM5rBBu7dPwb55LUlaGYyvRG+SIlo5Rw2palO1HG8I7/mPUQmxbDC8iEnxi3il1NVEFRNtkaVTetostsi0hYTFu41Q2xYzABh/sqIpQqkLxSgcKVmhJT+QxWerUFYFE9qRMk0rmuVubz+k4fsrrGaCF7vOL2iPYdNbHzx5UODGpfahI+dXrrt2FPVbdjztDfBVGWNIMXlmU4JYtaY7Y2WE6XRs37Mz/JRqKk89P3E+LzN0jh7NBkAkaSie/cOnZ08ovcWUCMovPAn58vySvWLorVB24Kc5Y1pXEtvQnCmshlJPQcjYWsGS44PD394+r35h7t7lPKuw1N+8Y2Xlj8+PDzC2H/+r/7Vf/3f/N+KFUeH80GtyODcYJfH7dA7TaQL1gthah69Si3iW1yOIpnrKVtKvbOr2f/qwQPvzPReBjO4cjRVl6ANGCN+/NaAm57kppnmiKLEsw+zEZeqGy2OL2um/XUV7BomYVA0gLMsBI5pkKOCz7zSoqHauE+Fh3ETZaXM0Ms14GOErDV4Gqk2P9fOdgKSZcaOXSID8BIAp0skCE1XQuSzJNtYLBflZsPWoTx7+gIJJjqreK3TKDAFbgv+i5vPG69de3uVVhROdMiyJcQaAcQ67Bys28/uSDL+QmNggSdPbAlDI4bIwoFHR3DYvdte5zhPtxolsx6RQlCJ5BDCY90RUgCQng23hwy9bVdSo23ALFLA3k4h0aINn5Ior99AZ0P7hE84vE0KYGMdRRmtDnK4D3eqO4uqrQ56EOLb8KQSMn7OqeqeAhJqg0+48OIWvMyKLELRrYKHJhIUUaLLCCGR1a7e6pz2UPfMf2v154gJfRv7GOAroDEguu38temYAS0fHv+vf/2rwzu3vvzy63tH97549NgyeMNf6XmYrP+Tf/KP/z//6l+9OHXaL2nFJfjDxB6FOgPhOjyMqFxcqKMjwt1AY+TBipxcdP/43pOHD+8fHv7syy/2d43v3pGBXWKzuQk34LNd28+qwNEJUGz6yWjDrilkj8ZX51Gc7kiVU3JK6S2/nIqDBba3zi/zlzBQO0HFfTpgiObDe1Xcu7tX54gn6xBZV08XkeRcDP+9/+SVZ5tbx4YNwY3/QhHHU7+xJbJFdYIBSAIRebRvaAeotO67gZW+jSp4IO/UgSbdtVLg4YNDb3GyfScNgHhyioH35l3ohH10v6gMGiT6xRcPPA/m0o0e5fJbjLEkA7U3RzuCYDgfTyZ3Ml10CH8+FyrUTjfkgHrYx4QSSW8QjxXKDUOTO4rKisDKLP44dZxCLMsNGTGzem8tBCKpkXsRJlYqlNuqpml+CU6GuDQVrjAYdFRQfRQ9XRmRpXhT8cLNOFVWEhJr120N7eQqtEnOa1vWv528frlQVaHMJv4Ck6jq29QmgAtngzQyqEz0EsnVH/d++e3Pdm9tfP3NN1pLu6mgk+MEFGc21o8PDn7182+f/qunEkbeM+tBylxnhA03FwqrM7DT9A8TlY+f3mCwdes/+/m3v/jmZyzB2K0h4fjH90PUwLBlbZo/EPErAlt56pS4+OF/C35u31ydwd5bXgzB587lktXThs1xpu6gAaQXFghF/hgj8IQ7UCRZ0lfbNV7PEWnZHJclQ3KGCLuKnnbit3AFNWmD1VjYpP0lB/3CCByag1w9g6HUpO5X1dkt/eCRPo9y194oFfCYrnPs/Jt8mHvFF24pFfdomCZ21o/wYZ+bDHldvCPXS1bjodM38lsVkmOB7xt7wmDgSoyZfo25Ku42fOsXKKJB26wTNz9KCIVxowgoFTlld/mWNsl1/eC7WM3QPEFkTKZ5E5cm8lr2tFbZpQ0KYgR7pN6Fs7gApmoUiNtTm4TwDPs8AB8XBtUU/sqjfaTflxTKKidF0k1/8fIpKINp0W/lKxg8rZn9469OXxd7N2ASRUxC+amxgVQlhCpHB4cw0qeRAapZ32gyZmrX/+bbn/+Lf/2vRTU/CY0o861xME5lN0ORSkuMWf5HfU89NrP9lT7+40eMwBrXHi0tjIh+a9syPt12BeI03FJOAUZVpOoNSxfRGuvVwGEaxc/fpOcGpjJuFVHfgznjxH0Ci8hm+50sb2WUdy1a3aSUskSULi2OK27JNdKvsXWoxAGyk0V1J7xuEmpuaL6nTHYYR7F5BFkmuALkGyGjS3lTyHIckbFYnRzyZjghMhWPHGKmmu3ZA6dKVZaE1BozF/VQdfcyjMrFYcBkFv8EVO1TNoRjvKday7LP/ahAeWp2JrOMaonzDc2F0RBQcv9TJXC6ixDDh2FZjSEgTNBmaiH0njGdVB3kGslh1PMQk2febQeKwRazpDqJBhY7RycOLAJZqqt6ZQYnSPopQdLc18SVzYABxYYw7V7kBsEmXq+cRvHRbh6mgljzHMTJezgWDSnG6E+/a9uQNZ4Z6nheMSXfaES2auwvVHgcH1ZkoiRbepXGy43rn/3sa8s03nzwwmzaVfzmmvV5C8pglBHXo2wYCPWcQMAMYWy0n1V83OI2sAlHeMOJp2ecc4e1iIVseDCRLQcu4/NowqJdaTktYgn2MiSM2tBaRlnT2njnPNotrwe1UNkwZa/bsIL61jYL+PqLr+zfYxNnF2/Lmgw5LRMoFYenn/4Ro0/PsLjEEXht5zCiIu0OSrbj7VKxWtyIliujHGxC+Kd/Co86xOil1Gd4Sw19Vqr/U39qETN9DgaDEayKLQIFvWytPFNd5dMeX1U04pHijgYv7hLenoc3TQ21looFPx3tvXhNFPImNhuYKkVUtQjHe0eoMR+9Ix0eKBnvMn0RWvoqd+9qYGXTWJPw2/ML+Bjt1WO0Y87+qjZqvr3Uf1GdqWjDxA02VGd7G7gbVhv/ZnwQbQ2eJ3HP043hVahGqgcTX7mBt8xGySyTVFeLbfGtSvQ8edgd4evtQ+sAGhDi8hE42gHTDgcxx6ebsXvLudZsxFiqN+rWDdMT0IBzbKIm1oV1ZiWcDuR1yTDGB0CwRbBtvblT+M/eviEirMAAGG7tFrDG8sF4kV96gCkoyTBG0Lww1r+3CN874T4dpzXm1RpCAWXCwhGLQkbeDX6tbdciAKfgeO1Y4SmAbZKq5Z2BLwFqb6+ohYVNUlnfMAyl0/yLL798/ODY8l3Hqu5sWWh1Fwj9BMEDRiBNWIm2ZvcUjMg0bzW0mxIFLbFkyAksNfLl/8oyKFlyTR/ljU9xJXL6DOrCByT0Y1Y5eATzVSkIJeVF+0HIE6YM6l3anarspysPN7nzjV0e4TlRLD8BqeLBt9vJEfPh5X4cm23Hr/AQ2wWQp6cXeo18j9k3m+MSlyNn7hi5+kQ3uS5/C7RCar2a2SwPBUt3wK/Ho+t519AwlKmRkZZW0artjq3t945yUU4w2L8TvaMFMx0+/r9T/XqlC+InToVmWUgccbFhfkfg0iCsGJWa0gKlpJs7M5ugm85UybA+ED3a2rJs8YcfT0wrmc2ysAs5nHzsGL5ZOatFo2NmDRpdx1jDR9Ss5QvFB+OzW81qxM/6xzYEfvDeoPYm0j75mSim7d/Zgy0FlaJXO8yD7wgfC0ZRG1GClH9aHFfCGQ+qPt9OFb58+JBHFygAIwNGNrxfq5cO8UlNWyJSYJTRQVfBpkmaxNj0kgR7Xwp8tEhK3WoObrSZF4eVRam7dw5abbj/4N4DzZwV3UqBpntgJ7wD5madCLxoCdhsh8wWhVGeSox+r+SxUjU6mTJFZFopn5z9dOejb1zRD0uKpSE1HgAbCUjTs1nQU15Z8pjCDXDlMjJB77ozdFwVMWJlWyD5oZL5ygCq1TU88JD0wkG98WpBqfKlqmTQyUTg0+ruKYtGsSg4WfH1zeM9y3UKmXBSXzxSxj4NDHgqCMYhDrQ0x0k4kKJOWI5QKx69+YFCkRBHG6lVYWTO5yAVDf0LU6viMCF+TIFw6t6jUGoyuxnMCJ1/C2Q8KmUyuvFeAoJojA2Pow5Lg2Os849//qPWTFViGEGU+fnYFKVNM9N1b8ExYJN/wmWCGYFSReGrGpg4HbaerzHWttF7kdIyiWkwfFOPO/fhxSgxuwunb7FBdUO0K0o6SMdtvaDkLYB0Ff+kdp+cWvveu3r0E2zRvL3VBugrq/o0rbalcef43Wpei8CtKAwICNBUfXFBKLZH05bZZTJcyqJGI/M60KDo5jug0npDZTWFjky1LSYEposvXhIEvl+/BNYyvEE5AjxeSb+QAx1xLZzy0WxABmQNPmpVoCvSpaUGPZZVRt8Vn3ltlUht3i2NTBM87msxu6xkAc4PljM9mB47qHoJBTzIXqpSjkYCMFWnqbmoFCNhjDLUdqcngxeaPGmgL3QC60YoTG8IJrQZXr7JbQsC2NWCOZjTTg5VA3v6HQtQoqWqcaKKI4OGKUeX0mxd0pLHtQ/+ci/1l1O2mOBuotpgux+KstupAfKhXb4caxwa+n1Ua3XNoxyJ6e0rGshnc9lDBxtbm/C79Zr8X34W+cQQC5r40GgI0a3VExAa1gulzeWkQN0GsyJqbLyBngBrDbZwi9NVa+gURlr84j0sm4Y9//yXR/YbGWk93D+wTa1dwrBEewWqLZwbUptdfG2usZ0/iUWWefKTi9NnL581TLTRFtJao+vOezQa+/zFi9//+S8vT84cfw3UTIa3Gs8ugfhAlc0079x+fSK0u9pOUuCqV98/wWCmTpGKTRcc3LWRihpsyu9mQov8LslzY+Qlyrx102zUSJ2EuuACe2DnPs+U5LE8IXHekhddbNwjjZp0VU9xBRdTSZaDWVqrzsDR7KyNFQzeS3swxYbJqwd51jJTJ0AWHxfYICieCRXlG2wLcN6wcYIYoVB5lq+pv+qEgKkIn8jQs9iaCBROxWVfYBft0YnqGOWONrbxE8yyAValtXDlG+yCVTSOLhfpJOguUNAwsMgm9chuaUV1DofHKkij+MJTZYfOmpEpH9dWfJ3qBtz4C+ktrwC8AOb2HQOMn5yACWHS89ACGS89slJIfC8KKLw2seOJOgZ3g+x2xterdojoahr3gxEhECzgWAigJHggiuZY4eMsJOugG+MZj0bJ/+abr9+dX/zj/9U/clyNiYE2tcFIe9P5ilqrKAPQt0ZhYGKD73G43drh+v79D8+e7ty6fX7HphPvNvxw8fbyxPJce78dP2911sbG+Zs3fFQLgxbx+CyEs/ajhsmkicv0Fh9ZJ6EpEo3GeDoS6Dyl7f29/So1aLBcuOCmRkYabG931khzlg2ljYdbONCnlmxViryT3JD1U1LWlHkARWqRmXCLrxLzXBJdcd61rIyazDRX2ZjRFV8qAIL0sfWV9vNK4yNjnPTap0RJD+maG6XiyGhK5hgC5Rs2LZo3WYq5B8NVdX1JyVuor8phMo4sdxYWiMkMwlt1g45cAQ8OQ/VdXR4FLNyruD9AB8tJ9yvkPZ78NXeKTwXdVtCPJR4eVavCMF/BrairhKyIwc1svafSJqXKdWDkawazFxEvut5iTTvaT09eXt/doyF48vFqzvDaNEFV3GsRyolTab020is4end9Oxk4/DIPH1Rq74QK7Ju9uS0K61hsA0/1oIZ1TPr+sWF2r/VwlKcKqZkhTgqm2+Kvs1Dj2LCiO6xeCExZODLPGv+4/uHlq7M3HW1NoQ0UTQAdt3UDhFJE+8b+dyRoD9pgkXUucDFPvYI5rbkCWgZDT8CYOxxOZGlq1Ort7eycv72c6hMIIwbPWEVnGDRi23pPaGsdFABfw7kogdzdjgRWtAxBcZ/mJ+BEVIaChmZ0wvKTc9tVsoSF0mT7h2s03U/JcvRoMqwY5SfpqhcN9AkaUJq0qWwUNqWVPPpRhUxad7b8JYFAVDwIxNwQavWkPx7GEPVJWuENm5hQMpgyKRKIRTYVqzhSlS0jIFMiMMPm5pFF4bwIR7jVWneVzGCocafLbS8E1r1WlvybHWmplV6nV3Q6pMrUpCGTew+PoXXy8tRc793ZnyA74BxM3mUYhU3yIByGixkg0A8ZINXAV5YQtyjoUDBKMuZ9sG/BskVHDXxB3yLS5UU7hfsNMm0YCDs5Pbl/sE9009DkHwBPotFrlHLLkCP9pFBCJjcGXTREEz6Rw6ZlGCaHocMOIKbDsuGEHVgtGAfupwvEUv3Rs4wxr97StzX73F+enZ50csslhNGMWhdCK+OIAW9dGKc70mopudKLRFXs4HU4QXEqsHKp9qflaBPPxUGDs1smwrpi3SjBokkq8FvDArFMN5mHsZyp1KCR9hQb5KRyEz0iJ1mDMfSNU+fTWvlYTga8AOmxEvUxIIwwxYwZ5dULYlLhtDPsq5CqjQxk7Gf1+ANDBeqtbjnlmqf4UEJ+GZvwpEFsNYRpAXrEyNCmaocSLPwMhVaY2WXlNkArRAciXFFI0RZCPj8FMDx7Q9L182cv1RhroyBC3GlRXzx7QfAM5/z88uT1BcrEKg2e1m/ocNmFVxbnGeGwT+Dk5EQplYmprXh5c/7m8N4BRbMzu+paqfFusI8BEpCCnoXd2ZZhmASQbDygSDERR9KEvhRBSNRZknz3rg0t4u1lVbZ4f7yuhboqpK2tuO4495bR+omkOaqUKQq0RltkMHYscsYgzLZTXDtQ77SnoSeaMhTGR1AZ7MP5RSdSbhgkivoVXQwFusYZ2FaL48d/DDfVN7LsI9EptZSJ+6nxtVVDCBw1aIQ76U5WtXLnDomAEzLSjOwhTcn66+oWlGBf1dW/0XoyekLVM03NB8lQY1FGVNXVsxAvrOr55Cmb/2lGD8eaAisFvEUcPZRALhFNgxdLDKHS+wOVlLR5uKmqmvLII7eUtWx+RFoQmbQDE0SWqXhQSvdGEsLCWxxHWdyudOeKntgvdvryBI25mZDSyt08//ElkLwk7qAMUfCwlPjHH19gRLgFNuB8of7fZPQAJ1c2Of4rLoyrk4srjz6Ul00De2vTSOVe80Jecdlm5UaTbuyfdFlM/G6MVyXxkBE6bcPqIM2vTZVeo6eRZ300hCh9hv9yrZiWCox9Zs+rNGR3Rc+Ed0x/XmxZRjOGHbvv6bilOGmvxt7eXWt5HfhOLRgZONj+9t3bl+deRHGhlygYN9EnUXSNWjsIJkAarJPMhrG1iVdyJVZyRz/O58pIoRbRmnAv1cyNTC24FI6zLyfJU7LFTZVe18y/ZJrO1XzFHR89ldr/8nnqB9YjVV7vvQQfmSInV3kjxUc8w8E3bw0YX21vN9kheMbZMQSVm0PpngPhR6ohYw2B1GuqTDnMzO3cdg7s8EiO/LUK5EbvKByOKzw9uQjwXF823KEH08npswpAh37OQq6wxSvdnOzDLXyG2JHi5M6uZifMEF2SItzWyxevwLrb+zYPCFUp9Tk13tDx/tFdyKtBbq6h6tY2rNm2V8tA24e3H9VFyQw+89DX1y+Pjg+EmS+fnwgmHSlgZRrFg4mQihy0orF09CwLhg5iu8t2AB8a62HaUPHeifZq9SBWYovH7fHi6+xvd07HbPa+MZnlzzoFCK+t2yzvFQcCkUIAvnd7rR6tFdnpAMU1nH2zyZeNXNQr8gS6gYDYoaJ4jqZ+ljKiGRxGDyvWMLQy3IRBTwtyO0w/A0uO2gyzfn/8y5+ETR+v72ipNk7enl68fX7y+vunP3qrCxtxFsbf/vJvrD2gZ84CMYa5bnoadmB3OWnX+WLNOW5vt+ByeB7TGIGf8G0M6tROVKfCaFKaP5z/hQc5s6FisMdcJSLDxziYuQviYiFoRapKe16mLG6GpfHUdbC3S+p8xvhq7VoyYJaMT/Wua2tC7Wy7hQUGvJM0YFSvRQ25nOZTFBkzLlaBagjCa40stVPNLFQEEou9hkw0pzElDfOjIBSVVEVpGUJZOZRwG+XPxya94ofJFVDlBv6UHtZouzihrHI6iDKoUNfeEW52EXC0IsPXJxdeISW8Tp+u1xxb5NVEXv1dXAynm+Zr5eSLrL68uLg8O32DGlg5kVtN8SkHlvOhlxa28OLGT9N3e09o7lzgwG0ogvYKQ9ggz3PIgsMdiSIWMrVXNo1akTanfuRsaIklhuA59rRSV43fc0rqMfbx6sXLL756wpZOXxmyPONEHWTmsLP3p+9Nq1lYY88GVTPvA8+cQ1dhJauo+tjnXxebjHkZqoCCLrY4AnpuWlC9k23nKFKQvnm2QyurXzw//eMfJGoazBpKxVtmqQIhylv20YqPvdrqtU7Oo1vUZipKb+bkC1tAxV3JkaoQh0ph13IUpzRvb9t2Z2b9tuPhDPAUBi1Yh3zCT7pKVDyKIoXqQbFnK1uRE9qTZJJhVlyMtUzm9Yt3l89f8/rOlFo3BSHOaRgpMzCwxfE1AGWg6fDuQX4tN4aMZjbUQP6qDKciFnXUFsEDmqlGCOC6KdKmhIi5GoMRngvGYbvCrdSEkdJMJrzP4lVUxYvPilM56YEs86whVUuiItURcWRnWTSU/fuSuoILEv9mluP585dUiggv3ryr3Tt/6+WICh4/OCYG7kcxVAChuWtiC61tgv2oBRCsCNylW2NyeHR3c3vz5Ysz+910h9sd4fjUfIeR63iVsgxBQygk8XbVvhEb+uJQBNbB0PQ7OtcYiSJubu4ae9kJmfW1g6N9qi8jB00b9q/37SRu/+xtYzKmpHUl8WvT4V/WjfvEmeawbWnzNsqbtX1HrI8rLBZKKvhZWEhXJjkRQmMYpY3vEZc35rCJKPGMUzBH4EwWs0M75MG6cfjVXc7Ru7pTUL3GW16uYP1nvdu0UMfg6hMtojjVUKW9wKW3xBuGmSlU/tQok3YvjepVBB/EEclURDDS5IaCcHJ2fHP3Zqexo5gX7KLVdCZeBnz5l7l73jV+d1JJUxd4wpaZggqftCQlhg2xfff06aPje528bCnIbLZg9+eX53/+6w+/++Offnz+/J9u7z5+8ChN8Qe9cZfmTUBCq0pnILjlQ8Qx1RNt68BGH5HWHlyNjwa0Rh9CCxnBGnoiKxPyI5X/TFB+qR9qnbueg9ylZNSNXwN/0rORAFZmQKwKVcskiBWg1Skvjx4/IrVee85ltSinl71r2RYbpi5eSK60guTR+CF9tXb91i1ngujx+gVfMdKrl6/v7O+lAP5vNvwgmL04u7TIxNpYcWzoUqsBtWjbEBOaw6ghGt4boG08evwg9vBWmxtUgRrog3WCXZFwvhlV8xJEuyl27u53vIA8StibqqfoqV6Eef5gi6IVnr0W6tKNjK/a7OEE0lIfGMfH4VU+x8VKw63bteav5KeCWhdvKVLC8AlDMf4+Zjlm7MTInVsOx/53f/8bLk9Z+kCIVh7ozDAnDZTNzM5Hull/oio9Y7SI1lhMljBoo5fXf/P2olhue1sUuu5Vy4LnBqBitUbDxJkDSDc3Hjvvdjwx/yeamGYRZv0bLfExNh1Zn3mNpFyQK5I8AHQIHotJTXBRwRd2vJ68EpJp68jk9Ozixxcv/vr8h9enZ94TZcW4jQrFcHP8E/0WmBf8VFN1UwE9hSqQku6rtAfgIzXeetf6FotvAGFstXXecorgB4mFisq6iuZIqAZoZATSPPBzrikxVa8QoDvJM8uIM7m+QYt7mWwZp2dSAU/PrkWudnHrV7abx4luPzx1JF4cX7txnBRz/eLL+2MS03NSol28GmVvsnCyqrfRvd+/u6M+A2tsxmj09h1w8k41IOtrXz65ryKcGJ4MajEEWiuihj9+RrIGBwf98KFDMFEZJ0rXKXeDNtE/HOi+bEAHayjqkZGe/f0DSA77+vI8OIarGyhXW3/MLdkMH0Kgyhval7RYQyBliU+h27Ic6E2MZE7g4fE9hi3e2zSJ9vG9ThFbytR5w7Ut79Hh1KXEt3n1BKpy8Dl+G1w3MW3pZHOyls+xEH8CwjWTsXGer3TqOA35pBnUOHI6Nn9qriUikqnYWPDf/j/+3Z9+/A5KjH5ajERaYf/hPHT45NJjXOzIk9WK4U45hpML7+oj40HCjRVyeW/cq7PX/+53v/39X3WO7VO3J/C9JZAcp85fwejVGpcA6c2dBputKLT5CAeTxHANONJpFKygP0zCrXDCpZry8buoPHtzLvMgCAFCXEDIVf4Q8m/BbB55DMjQmLwixS+Mq80cMEUgNW44MpXN83KVZfRryRe4gaOGDQpd3S1c31adT55pVN8iNruCas0KbIIYNgJG2zvVh8fHdvbUpjWyTvsPDsW+ScVpvCv4URMGcRmqGV+3KczoWWD73ReA+YQoU6agPy44YWGWGE2N4Q9VSlJAQ/AjP4n4zXb0HZE+UqVShnR676kWGLx3BluuvTRaM7FtLYN07UzLVGjKSiykNgMVYRzSg1IfEMLY4eHN/v6e6N/QkJCHAmCd48djuEwRl6id4eVUkRcnJ6IMIqlnqBEq4Ok8OKBfO2zu/Xucdjb21h0vrWwVqoIy8yHYYcGaBgf8mINQrLtuboFcRFxeef3w0eOzy8u//OYZglvPhJnyhMPwG9YwhtecAhB3B8cI80Nb4Jsw52eEpWd+DO9rEBDkpZE3V989e6rgSEHntANS8VhOeVXpCFHDbMqaS9faRbyKammLJmGtxQAyO8kJ8QRTi8JTl/pgS6dfnZxMUVzsX411kDyOriErD6EUpJecC7bLs+HRIDTPhsQg93S80dSm4HQuKom+ouJ4FtjQcavIvmWbo1NCXcvoMRHIXLJRhGY2Guyby/AAafcjEkDpqq/UZ8Djv+qTAtRcEx8OlqunWQNeCj3TaeFkgAdv8aS0TMCH/7ng7Hey5EhqzRuevLJt30mV6zrlugH3H9zj8c+MdLWf+ECHMnlC5Wbj7PW54Uicvf/gwasXJ9qp3T11rDsbPLhXdv13onOg4QCJ4Z075IRWqMBhbn3MthNxDpes0+s1f7yd1KqItTSAnOReN/7w67/59bN/+S+8ZsD7a64unT8gmggsRccoZ/KZc/i4s9vkbVraZwKJgY05C6Jy3qVDa8M4jhRFWis0fD0+Onz84MHJxVmRXv48AD4RxcgNdjf8OjoZbaAAPzqNnNi+kCUVdJYgkUMwtsE6zV2L1cSXI+P0MAgJtCOh5a02rsw0oWMGrVqNfmf0hTldaZy+DKmh5iw6G0dLP0YtlocdRk+VVKE9NfhXDWGtkYzmkI6ewWyYAmQ/asddkE2dJ89kD6piPcMx6cO7BUrWBDkPAExpwyV5jcINptLGow/zgVpITL/DouaFYx6gpWVBkK0V958fQ3gTRL7wXqzH38kRwZJA89u74EO+yFBiFjaA4aC6cXUJO9ziwKoyWUahonUIioOxGAKONWhocn3dChlmaQ+65QvOY7TKC4+85msxYzntalDqwf1jn4qou5VtHz6evj5RvPPD7XBYKMVAyEQ0TFW6cNt9uku1FomU2avobu8c7O1TTZiFdFTFBw+xuhyD/M+++JJ+Nv6TkvfOX/1msJtFWbsy3316dhpwCsZf9C5jA7tFJUGbtaRsBv/kcTmdDXfi9U3n46tCgPqLn38DRSGf8LEQJBWYBiUeR0yodDNNp9/jgcYHjsLkpqxltQRIvOasekt+aedwINMajo8cE7wSVH+wScKLhjoP7207GSKD+0+bKEQdONZIFwJhcnHRi9HSCQlS1kEL5ZubTo4xRBCWxDLoZgaDRvwdjqbftQaxp6ejqRERKAlZ6Zh3VC9/SUHZ6ZPEjt54MLL0uCyu8JSOv34uwDrnc1bgheAQz6qM0z179uLF85cICcOR6JQNI2VXYmuKjAe6/vD2w5uLi5CPBTeW12OLbdmGDDkODQbYqVbaErKJOK+lxiib+wRXFUPMfExCmZTlCuyCuhvH1jc6TMAhu4Y0Ghq+2Xau7e5Ormfokp2E4Ql/VWrUHz669+SLR8PLVouhfHhbdQspYRVbs0+YwWLkUrVh3NP+U5ajw8P3ZmBnXwEHAMREa5YPmVXIH4mlH9w71q/FC8qgy3txcXF6dkIUMXzWEQmQmCVGibQMqy/ROyXzXBGUmj6jUyBwgIaP1KLbQL8SpzV/m5u/+ptf0ST+p7EaHClrfDSEA93sGMYoUaFb/+bDl2dpPFwLDHtcVoruBuFqCklfIxftR+mdY6VUxgY/oh0L/Gjt6qODA514/TNkkyVYKtXOsI0yQhBmDN5H1cTKeN/S+KL2elTN73isplHfyBlADSwmCt0PQgBksNIENY8Y0hQmckgKtvOrRDiA81mPaso1CN51JfPahhNZK7XwJIAA/CdUe1gQFekppnOnvMD8dHfPSjIO6YOVXm0oc27FbuumrI6kiJQSSJrx1hs9HLp46XzSDgOl+s5t5m68LNQ2PaLR3/r6y4f1s1Gm5jQqTEZgq1/JbozFZ4KAUANxEyqFXQzk9IiPissAWSaqgz1kdZ4N54Ntgun3F5fWI+hlQuD01QmNZDy2sC2vVvCzGaFCcOQuQ8tzaygDtPBQab2jYZeKlupDLtTXb7xF7rvv/0It6+/1Bp1tmHC4FLK+iqjSPiHTYzs75mqs3izAGbhYW+wyzv3s7ISjoNVNU+4aATJZudYgkvOaGl28JQLMs7CGa0c4G7el4IXcCHfB5Msvvrh3dPT81cvZvYFj8SQuUSlcYdHqNZtTDCdwA3U0r5tui0zKH0k0J477nEG3zFcR9MiAT+VcNv1MoyZxQrRGsswXfnn/eP3giBlkYyDM1CPeOeeMYdbtR8PUxNvFTTqCbony996ULdtXqzy+h1JIDYVh5b/P7MEnqn2VMbxrmTybzMpgPqQTUzWUrVoHWsWamJTdo/pFy6OwGdGAHcjoRSw+uwlCVl0bjfs13dtbJ69OZZogaNuEWq9cudVmqxPHPx7s6/w5tQoPvX5PlOLkLy8IEGwWG3385M0Pl1dGHi0Bai9i1GSyYbjIQn1hHgJqXln+cBTCKVFYG4yfPKPxVthcHezvn56e6Yve3bcyedOUM3KdXoVJp6fnGHfkOEoANm4s49HNNB9+dvZs/+jA9MLlxRvQrBtNZxSQy/+44XIzX/jVfHyIhsyMUvqJXV6GIJu1dDu3reO4NLrPNWS4c0yBCSNkW/ZvLeaLYh8+ft7vRvLeRSIUdx6MA4wF0L3vxYnw3pZ7ME1pkX1kUiYbB7ZvnXx0YCRLyAbSnDH+TJSefvro2MVf/Oybv/74QyOVrVEP1XTmjhXRd/e8rMH8DjP4u9//QUCPChTViUJKVMXXMY+F81EKwqzMIY/oTG/iB2MYN5yeJzPMyiXLcdPbtQyt3t7qoEgQOCrncVGezvtrqevVJd70svtGFUHjKuJTfFafKpDTQRiAhXqJ6R/Qg2n5UozwQUAYTDYgytm/yEli/Q4pIGrf3CyVwL9SwV65vZ5MRuklZwv9BgaQzwa2pAbr8N4RVydCvbxcBlVM4NT4EtL+gdfhGkbzUpKtt+e9YQQkRCW2mNRyhtFyEm3B6X5rIJqJ10stSaWqbP0ErGN2pTHZk7HcQWhBbtpv2VNGj+vHeY0adnK95tfoDd9JU8wcT1/e7Rp8GPDwNirqnV97H/ve4fHdyL5yrNPOUE5wwzxokOwMHvaVDAAbV7gyxJhZcw51c5Gd1Wl1/bs2UgKODt6u9W85bY0TGNp85wf/6fvvk9fy1p+9HYcgfvnFE4X/w29+Y65QmI0noiwsSgImtVQ74YwfTSniQUoTcC8mNCXSQYxOdM+vxrYvHz9O9e424Le9bBP7yvtJ7h8/PH5oOQCKXp+fe6n401cvp2HC+IrFTr+jOT7407pJBt2nn7UJiWg+EJB2sbYhBV8KAeXKJ1P4H1++vO9kMiEef0GovcXZtIv31tr28P7k7O39449HK4QDVP2pHtqrvGHZbV2otCv+JpFMdNQ/cchEHn7C4DNSP8FARrD8W13dKOIaIPCsRZSahZF999Hfr8KxIFVj1Q6QHlR6AGW3XlH1rnW/+mMOJmmVQW8WNOdwcZmBigoojDkEPVfu34IIFkOWHTe2e8dM8K3tD7bVi+O1jpu1IWKGIkMcyN5VVFXjAMYyhsrleaSE6oIvy1tpSa0aJabXqV67YTXSliGkGI10TKulFuvuDA0PnQXZzFpB2OZNs2VDpQhsi8LyujIPoBI+sU/lw/k8hH+ZgEudTBHymZpjWOd4ASGwIWdqAyC/QBUauXJ30/m6v/z6K7NpVgwe3b2jifjqyycapJ1dq84c9vDm73//B8oCedmFRoh1r+soYNLEkbrR3gGLXBWuOdZ4Z2+vuQCvcRssGNBdLyy2sfv/8F/9V46MtIHNwPD+7BSDNqY1antt9nHv5sWL5pGwItp8deHh6MDcow/a6MU2IIfpS0yTqPqrtIvwC7d6MYIOdtw1v/bq7NRqgnfm3tfs+/lol88Lp3Zd2P/T0u6vW4cYZBzP3qca4Lgc1INil7PHeboAS5/qsLvacucTuY8exP1Fa2krQS5rVEZ1VTGutRz+V07hfi1STLrpwSjfQmgkpevJfDKGYY+oVJwK1TbOW2nXKI2Da3H08p03/Ui2iYrHVTaPbhTccqAK6hU8OKiOAFgseT/t8bKzlq0MX/nz6lNh+LhNc+s3VHnpRDANsme55PnKNoc5dILgchtLmOSpmzEkYDgnAGjSqLhTg5hFEOg1oCqI1PF0MsSgRZ9zcXVhk4BaMtQwm754h6t25EWyC4NBqXrqu72/dqbL82fPzVbc3uAFvLPdWzQ5jjvLkL/VSGz0iwf3r99/axHK8b1DEr9/fB9MM3Qk/+XDh3/6y/eXlw79RZaF6/aBebc5r5/vM3uLVE5Wt1ivmmHjgvFjQwKyN6Y0nRwtNg4Q09avfvalmTbH1bMk0w1xLXbqVJn97izYNAXyeYTmb/sZ9xMITlkKAj9lskv/3fUvqaxYJ3tsUnxxUHHfn4W+dgzJ++fnz56envKOjrGw7JaHqDKcryYAaXnrFsOhOic1+GoIlEoTlj8ucERFGFXvmgA9TLOSSg4G3SV9Apw2NLyqaUwmUIPsUFCFspY96a4qrd4e9Mj9AprOTP1+9khWitIGK63WdEiN2Tm84LYFBmZLbu60ozVFa6oEOJYTVLdoV3bwcR/Xq6lqYsHQIMNwNaYiIXyHISHgURgNgvGhprZryqjCBF/iWuE6jFw3PEr4xGLM7o01f3u9rFERSAxSRsC85KaD296/ff/y9SsHg+/d2fPOI10dIYXGKhml7mKzerouvdXhKyj+8G9sFhpojBa51ygeRST6623LTz6u79yy8Ns5M2IjgZHqMUiXiR4yEu2DmSVgWvHhJdG3bj28//D+8bEVTNoTnQihtB6yxhMautQ6zFWFqq0N463b1jHOGUrLCu0ZaNI2tBhWaa1uSzpnwiv8KXNfuDRajioLy8ANa55utCEqhxoUgmTMv4ZnbCCZJYUlQ1/ySJreFDfUwgEs1iAIGHhsLyim9/WJx9sHttlKLONXajHkhtFY2kg3maaC1da59s0gKO5HOjQPYTuVVjFQoRbXacqgUsrcLdKJ0NgW5oHN6qAgS0+SZMVLXQhTB7kuCHQXY+I1nDPV9DfA00YO8Xlcl/I1oi0ndRRICEyFPaO8yjfI4FoeyOkfRMePug2x7CUk0F7OOF3rD3KXgmG7OAU3dRoByQzCGYlihhnTkdWGh0Yk38zxlV4CfnV64p2itw+O7l6cvzk7f2PND1da+65wkxrWPn3Y22q3LZ/tpGTKaxrn7Zv3hisw7O6cM6uWlRASRTwbVqtu2FsoRSJDWVvb0jLjQtXQdMGMpHNdM+IZiVEvzNYz9jpjTSvkHWTYqJrRWwrMVVvP+/jB/e++/6GRxi3LWgsf9C9TJ+aQWVI271nd++OPf2RKR0dHGG4dNEltfjRWpCnrmEYu3GaGXAFp+1ldqVgMhQYNxT9WG3kJwQPElmOYC8kepFcorS0Yzi/sGDoTT7zsEeDT5BRKksrVO8OC+doRb5zzv985N2qdfGVwXrn1Z3CNcSKr9mRUazMxUEFtdFvL1nOFYbdUGIZdVZC7ZIbTxrB+qYGoQPgB2+dK7XrotLWS/U8SbtJ3xrKUyk7DXLkBHuIEWD/Pn2uqWKBOgvQipYpD7zNelW8AAGPVHQfLbMj44vKNOqdN3/KKYl5DMO3nea8pWTs8cPqQvMlYqUx9bCN64lzkq8f/0SK2lxWhBetkjropj+3LT77GqwYyksidc3nTthFzApXcynBbr4x9OcMQnHdnZ7yr9vx4946BXS+c9lbFmBPzQgKDQmCIjU6pKF1GHMJFTiSGvD6e8RJhsAMc2ACcYdE4QQehNzEPAysmYAtIkGdRY3S2C0UXYPthlvCjSMxL+nSdm53gGeuppq9CGE3Ig4ePfvPbv3OOvN0X+OmpHJ823olw7AV8+er0L3/9nkNu3RF1UqR9BOGZG8YTeCmgf5+WEyW4YcYUoybbhXp0NrjpcSri6qGPYUBOMMcsYTrKI4YRVW60WFXeGW9Ot9IwMkiXelGpHIHsxfYfP4w/SzyGKUYTDLOahsqFNGCt5vSyD//r0kFt/vcIH3NLGe1KtsmnuisTz/wKeOo1szYe9SARBprppmM2RdCSbGkld8UGbsXJoOzdVkufi1rAqqJVOTX6KJM80lh8SjN2Bk/v1/FnCQCHfWu7wTSDlRy2VTpGC00TjcmI8qtpgILDxPNTqfgQY4xPDUH2Bb+ptumahKK2aLLbDAPTCZuEW7e89kaQfWvL1icIvN3QfS8wrqW7WbcTwFko5GhH2+G9Q1PR3NOmdZ3Xa15A+mzeZiliUWeEM71QQ020JV8gZm+F+mMDSU8LqXrS1CwYSC1Mbd1GL1syHmpjEjdPHMrSXQuyDfuu7Xq/Iy8YDZyIzBqTY7vyvXLq8tIQok73dDCShbGFJDVribyg3kuxvvvrd/a8WN297biJQokGhP767Icfnr7wajkps/4pndPFyOPy3A2GQrPJ5yuHcAmftDeowhrKl2QNeqE1VhN55CM5XZmbhdk+63DNVLRvdxVLfmlEekGNwGzcIQvx0+WpggOu5lHY+kzv2dDBTJRMNiFB4aNHLsxoH1cXBMCrDppb8wJYCgzh/HniGfAoc5c6+KrTzCtLqd7gTy4M7CYVA9zDenjmV0KzX5MJeD5jCMnxeoAZqotR5VqyTgY4DOnlWe7SkbAatRnsEa0tbwrRGLn1rOJSk0ZMQkY6SmPiVR39TH+KqGoBMwayAP5c7/JkZp9HdoLbsK4WjxYWz7czIe/wNu8vDWptmvc9uTltVHR93WthkHhoW0KUFs9I1plUtdFcjcnzF68bsbjjFIn6NrEb4L5RFjb+8jBkpEFaSM9iZ9xonkDD8NTr81M92q1dJxR9sGrAdKNlmoRofwLuodfUgdda8xe4XLBgXowtWYFweekFVY+ODm2GSROEPLO6mXFrwbQton9+ASt/9s3X/89//i9+/8NTWHDxeia8v+lni8MZlN5z4aBU9cnvnWBxafyilAneTLLUX2n0Aw+Zdoh0JgUdQ9N0JLwD1OBUry2sxdVbF8eNERTiDDuwKSYNq+Z2uUsu6Qa3lhszr4yYWOeD5gLl0fn56XNHIN47bgARrc3GClZsQdLVudYsIgMxElOPSixqOBXDIGAuPB9FnXEVv2GPxdkxt5d+dMmrNAhkVTelbCjoqa9IVkFCD8nlce68K/I87XPKdFedJVakRjPDWvIGYp4Nxp54MGhiaYtG52VtN20vvjftA/2TxZoLOuZfFCoU6gtuwIUDaP6LQ4cNnoZbBSZbOOBp/G0WlurYwmbFkSktcuOMnVlvqaNAJWm01NfLLjjHNeNayW/jxnwvPbZZx7GTAB8/OKKUZsTLvpCvoipEeQj5iNV5b2LzS9WJA6rAErtfy/GVmn0dFe2RN6rwvytuxPMAGmJ6+byVBDwfXbHs6fYdzaOY5JP29P7x4YvXpy2H2bpmRY4N1bBtX/m0hMdcTcHek0dPvJb8D9//NaHXXInvtg50IPb27N3207Vl/6oTrp2gQvWT3cfaHahMy/CpSb7dOxctw5IyCieK9Qb5vV39dutmvbXkLz/8+Ps//pH3x2LuZAwgXUF/Eq/vXgwGZgxeLpzIJlaMcc7v0ozjVjweZEPhxrr/dz/8+GzXQdyazK2kO2aTJfRmm1QpC0xJcW10O1nEcCkJo1vBf6pXck1ED4M+ze8Ko1hk9qghg9RlNBeI6aiOEXEmCQMdaXbeAHHg/ESQJ0Ak5r4jfZDqxuXBSjMGT1jUXnXOUkWCUrPZ7vjWsd7cXJpSvG5iwezbjBzYevbu0/u9Wztt1oO8MDbPFJU4Njc1sKQYA6aSIXqpNl6oZxjGu29tPHhwFBdmGYBtzdYb+UFTzXXw/QKCLdMXWy13M91BgagLHNHMxYLUDYMwSR632pU/ZPiKj3OfQ0E3IxLvklKFhkPlHa64EYaJPqy6knckop9NdaiSFr8GFrTbVm63EDFffuuOsUpgeao5LOv6070j24RvZ21ZSj66gIH6tpCrGnFDy/PrX/3SsXQ3ne+eZgFnEt3Rd48ePUS499xtaSDYQwXG3ao6VEZNoetEPm/Nefn6pTftMa97+wcPjg6+/uKJPrt3+PD+Krtze/uv339vqZgqFiKH4JH/jEGhDKjCFLmDHWvkdY9vEZuaVijlUGSENyjHcTtdXu8fEPaOecFpFrBxUVXWNmdLemtdddctq1hyScpUN7hEMDUliSmI2Bq/qWEcp/TUh2+0riApVbpcIQVPpIWVn1lAYhqT6KG0RckqNmXGPKrY/9wlQpt1KmU+phkKXaWrfSoJI220/vFMZllIsrV+dLhfw71toduVV1SReCz76M1rClZLr8ga8MwijFO3pca0gqebZsiDYUvYDaPd0F2gl1EyaHAloVa2LGxkoG3PvOrMkdnID4CaWSnydmYGhsUKnIT+VPOZYyFQDTkPlmJLXtsbSHhh6iTHDvGV2VQ9D6opMilManPzR2OaiOUduK/GRr1/ebbyjGhnpE2HW//h48eDw+MnTx7/8LRzGRsQxaK6bazBQYnCJL2L1on+o7/51X/33/8zHerREHy/dmrp+ds3Z28uBKJQ2zp/e2Ex1oJ00ZVoGxE+MbZe8sYDnaSLe//413/7wPr0oyMnKgu/7BFFEnWA4v2jI9mcchllNxrY+Nk/4ppRixknXRxkugguXsaWxZPhstQ+x4fEagUTjbEzmPl5cn5hAbDs/nDI6kMLMezGtqdx55ZN6HBmaAFdbCuAfg3Xp4kjTO52UoYTIVydKWLVz9cYxbj+aNPApVWLGoDHTSofn9OYSKzQoA1wv4Zoqth3mE7SUEUd+iV1CipWxQvGk64IN8XxamxVCSr31IhOjMVRsUpKsQx+M8ZpeZVPTz0liPRGgr96JTBUsApKWS5OB1OTgwyD7fI9JGQbpebi/YMn3a8lHSdAmYaofFkV1SPf+DBvdIFmh2/DbhTGthO9CLUPtKml6CJWa8x5hIwh/5jDlQp/3xdvzSOxgW3zxmIQA52CYTUhmS5wEPYqMJJPdp45J85arCtn8raLNdLXNh49fOS4XhujsYxtgG8DhrDN4opP2x+Zo+W23379jffe/+67P8kDPV5AZ8FKdMEh/aQPW+Z093buioLysth9Y61Lksz8Pd7coP1U79uvvvLqwtuGZ29zBfUfy0BgN1t3Lc5qEaUlUEUnmujR8M+yjrsNEIWyJYWLR8XNkSF+jFziG05OtE8D7XYwZiBSZaEkeuOlD89PTzbObgyuqMW2BT0E7tmjQzyyjKTx73hLIl0JcvRtKBmGS/WsxPR8tH6yNvKSokJgpbA8QRn5/yVhvEyAwEmVy0kx3GTqPXClcJPUo6oqq4QhMPAKziOuHJ3sPRUuVk7RB2IwQE5jqzgG8vGj9FWSegM5OJSzzCGO0uG1NH9uJ3Mc8K9rqvaoFpMlABHg8F3wC0bCTDXHnGTIeSsa2oNu+d0KnO1kMN57fHxkuR4NsVOSri4sUaHZq6gEGSzdnrwJXohbAEyxF+wGYaOUAlzO9Np5hzou1jw12mv21/FHUTismGkB54aceZ3mqG+ble2h835hx9W0/rJXAHt14svXJ86T5q8ixZKFqw5Kqo3o/MT33Pd//utf//4vf4yRLtvQGrDVu/ZK5SqyTrizqdiHuWnjWlCkf/iBDKqGEifZv393WCwRfRrgJbSFaDbty04+fWTDqtMfoIvZyaxLjf56TDFi4c/wIZ6OGiWJwPYrs9LX692JyDNWLB0OcGNahoovbK1Q4chsBlVhqvBQRX6jPrjnGqRi9fxaPpL0Z8UYfZC8SKZc0JhSn78ogar9D74nVTtwICsxVlQs1AeBARZA6Z8/KglqKPc1St0w12QLpv8xUAFVxYdpjeTUVVGFJI4q/xEKqitFZ2w17WOOZasl+FUaATLpcwzQagg+QURWt/IsLj9AgfOV3ucVwiTyagUljB/0GC3Bnq5Y3Q8p9L4JXAFqY1x1Gv2w2qdVavhfLal9X1Or2VzTxhGvxjavqqflQGOLso2O2VuzdnPx5sJay+sbb8UL2VCLcWE1tu2c09vX59L0803daBsX6dcHpaYYJdy3MXrs6qMRB2oDi+ZttXX2TxaNb3z95VcqLQxrSgrjM80UJTd9bXjOckg59cpnl0I8jSOFmMMXvWx9uDRjCIQaMoeVc3dtEcG21SBWlc4DH8zc6SUj52lJK5gTStiLW4ht0ypgXG4vcCHUlIU5f+S+aZhUInBJIKzc+GdgpPZoDPJmq1FOcYvGIbnKTkK+lXA7eC7AK14N1cTjJtcIWVSmalZcl6yUKyUbNcUKTxcMFxhLPRGjVB49n1dXYkAqS3G4GtC5iNmOH95QxpjJk916qkA1jbKj5/TsjaONdMYM2/um83gOJJJlmli76ZQpkg9zEwnh5E7UgarkAq2RbjhVh4QwHdVPd7uVAqf5TgzgLwiVtPwAYxJl1tpf2jn88ZMFzGwWgynix9ufDg4PsMXqf8bg/WjA1PQvLI1cEUWv+UB7rPeJMex8cGp8Zd4zdmGBzTunVl84xk23eeYTjOd2Pg17o0lDpSNnJhrnyHPyYNAjHauUCi3s4fDg6PjwyJrfSNUkWMEB//JP5Fwza1vIbXPJ+gayLOLvLRCEEtVXXi6y24CkSbcNltQuHp+IWlQVvyZE0pURg7wXGI2qCXeGZcHoTDtrzSE46k5yw2KIJqtFCCOJkVp4j7ebDmvPY9rAWRQj8Se+RZuj10OfoMLJ7WSm5Th5Yzbrk+Z4oSt6wqrMwSpj+ZfUMg0yACyqsbCqLGEqdYwp/zHAZwa3PAuMwAJPQwI/gEceqWO/PI0Drg3h6fnFe0uu311c7t8V9+dqZm7LwwJuOovMuokfP9m0/ubyPe2Xoohza2wm3t05NsPlQBDRs2k154pbkciATckaQW/MjGYlBNTlqwcHuEE3VOLgjBIPatE7GcuwQiBcRwMymilSq53nTvTT1Yid1WPGwMuYVFeTI4Kwf9ORdSDbQQYLTT77rCFj0rPfuiCglTIqnTBvhjEMM+HxT1wSFVov9D/93d/97i9/8XZJYYypbjNgxpIYDx9vKm1jy6Bt+BGMrgLjoYIO/Sh+8QJfAVKHNY3xzetRvHzG4Zaw1jJ8oKa1rfUr0sjmi2l1S07ApNPDKjmidhBb2zL/ZjjWJNan2R5ubl/WMKYQyMUe7cOGM7bac3zjOJkRN57GvyTbwfP37x2KqZokiydTHI6qGRaVDyQCmRDFeHkWFcrlXEkrgdaa+5nDq+pFSN3QTe1ZVE+thOdumZOvARnWD9fCSQGgQ6WCExWk6LXF87Qe21yyDQ04FGMUmn+Vr3LMXFWXXyqwURwm0MvFDeJj9lNhaBJaOHtW5XSnVZBXFFonT0xsB5YFAjhn80Ue3ILNlmG/F3mzh8vLdJ3IcUZPj/EQGOkymM01R3cZMLCn7FLVSA9D51A0BUZBWTLSpMeY0PQ/T5Z1jiLFiHAOw3KGXgZfAcWzCpAKUGMDOBgiNwS0r8LViBvXbvhfgPDB2Y1OA3j/0STgzu1bdGZ8S+39yNR3VSeuqUx1dJ2nTwXVMKwzWvRvf/s77xuQCCMnwTF7A5788rZJzEZCQavb4Msn3jGP3W39YAeb29zTAZJq0nVFDSBiavNaGmGxOl9B9WkI7WDe6rTtS0Er+biSKKxVXDdqBPm7d3dtk9rS2/j07Pl7J1VZy2rkKPGbq57WETc1LrjlBd1OitHoeBlUYeK018m6gR3sOj5s08n5W/NrpABz/2tWLJk2dWNO3nH3zkRkCIkRWFTGpQTXf9pR65l8k8SoUrJb1EvGUufX1Agrea1bU5lTmjAo2ly+AjEfow7/8DMBS6pShRLVqA44rMC/YKYvqlHd4DWZB+gCJgGOLUfaILD6HNSCOAYD094af/32rdkiiFoPfO/ekbfPa1ZV2urd3uzi7IY7FlkaBjHGJ/Bog0czQXW6WmvgCNvWBti89g5K1iCEV9sOqwe6PmkzhV2koIXA3UgLd4hl+oiLG5XJDKDtNtnEjbBGWAu3JJeAuBGNTKOdlStFb6QIkDoNSwzP905exmCcHpSUJG6n5eAEtsjbD8VdksNZAv0pdKsRUyhFahqY65535+XR0r90AAe8mDsDS6drAjHElAry+D5LgN6/v7xzbbWSCZDmzjjkO7t7FghqoOz0UIU2jppiwLgvGtbOh/tGpvf3vbcTl+1BYEUW0jqU4OnLl7MWdXPDyg1HIiuks60dKhgbk/YJcT9tYL15wEjmVPsObcfWYvQIXL853DfafVcr7yevhjx7Hr55/NXXT77oFcjrN//Tb3736vWraYDr58XgmBXXMDmlHE4lsHhaqhYCGelpMq1o0hr15QAaVSpqxkRvmqgX1XMObwr3kVQUTRiypeVSBoQfEqQPdfm/qYYIyi1n4lsgjBZVLEj/6dfAglPUj5ol60FYVq351oYlMdZKcEgzm6u7n793JqljTThytkfEqDElzC2dOKoWFes7Z+KqXpJ5ZX+zgVQ6w+namOK0KPl3tmvM8agonjrpHgxa80HYfSMrc+DpETEWsUI97sVzReff8EP5Amk0oLEOOOAjg2HA0oAsNhV3Fg6M4JaKI7ZqYv0sgpgcUgIzfGMk0sKL7gdUbr2FtV4bKT1hh1IHe0KDLJSlIZJoXQhPMOCJaMrgTtMEILWgMHwLexTpsu+Hae5cdEKHM7U6DI/aaIvMEGoZklRXlq0p0HRwoDVE19dnrotzw6T2Te948T1JiPgbxjJ9Tiif7YE6AmfBoCEnfGnfZrAAAGErSURBVBzpt5LWHOToTHrlxFhnP4rwvn708BfffmPfz5PHD3fMC99uft6wwKuTM7Gd5onSDT4JI7wgxtRi5Yr1aX9Y5/zowTD0ZlqhxMdr4FurMsLFGzjXbEkSPmIKWQxHBmqqHbLMJY3BvRHGRAExvgomfxndLWXTm3m4ABoNoEwgVqDPEevwIJ4m43QABUu50SIPrBZzvHHv9hM9OpPZKkkboewU29h6h75xhGYM2MOUJPXbxscLrclDtyDnHlcKF/f3C9LFJKSglZACQvozOHUPyIw1dzd4DGbTfJUEQcTHYogO3MwJdwNRqDhUTxlC9yRujB4jR/4hO3In4zQajVS6UYZCZpVLxcvXiGzFkPBZmcQiALjI1Zhk0Yrz3nqzQfZc0MGY/NHR5hZ6JUIc1mJQ6ZsbU6hnF2/4dIo3a+xEnh/s4WQWTrJnPNIfP3rw97/5rRXM1hTZzmlNwoc1yzeL1Lj4l6dnzkkwsqpqCNMQMf9oNYUyQXGzeeC9vG/FrnMwJTPFiV7vFxYFdteOaLcDXatE/68Y7JyROVoQJ7QMpnjXf/7FY0e9/eNf/erbr79tg+rebvxkss0Kbd29c2e1GiaJxDGcTYi1536kxIu4agzEWxg2F5cfHwynFrYpm0Tm4hoVLtydcTGCWQUtA0eLNcIbxUH12Ica5Uqdh8NhHo/jSe55OoieRNqiHXBEQ/rSp2r7QFSPV/qfZngW1goOcdbP37Iwxvlfjii8uTk82MNGekhl7u7tiI9UCjAuDHvA6qWNsVqXTk0kN6bQUJ+CIdM7lFr2Nt0wKXKFaLo9t0NU+QCLtrHb5WHMAjDfrF738doXsBqPuitYFSsCBJUylZ9hDqiEFapT35JtKT1PlWoQ5R8glq8BJnmwo/8T4Exq8CHRE6SSaE59zjTZ6PXMjIFTM7TAKYt2LLHju0GuzzDvdH3+8tWjB/fENiYCrArRVZhDXIQ94CHZO6OOf7O+7lh554lcvbdScEcXHwon5+d/+uH73/75z3ZCxu6I7AsiTPqWRb66DCzSpKAFeE4U47by87PeEHvkB52BElLvwS2MqwOeikMtbscT3Rfx7fH+8dnJua1MdGL0bdQ9mv2va0Izaa2Kx13EmWHUdKNXjKz9jG4fEJ3LTbf+lBijaSRWgpRsK55q5iZHaalO+uG2pyOIktE98FKUWgO/Fo7UBndVKBEVKkxChRbbWKk+xuVGQy3xJ28/F0ADTPr8TskGFqCwrtEZU6ysovULkRA9sRGSVahka9GH7RIrmKAi2bN8b1m6KgdPX0kiV+txIXF307ks9GM0Q3IF/DV2Uiy11FRGiWquufCdGZQ0pAGCpXTZEhspPJGHilKDfrYOcBk2kLGCVAg6skTNwOvbf+zqge+xlsgYf4hUozttF3N9bPrpZtP7c6w/P9p1upeppGX93yzMZjlOpFTrzbU9vWajnXYBV3mM0SF90CaU6PX+kfWt27//7vtXF289MvZqcREkX3hr0LvL4Qp8RayGbPpXy5a8Y2MRfxO6G1tPT1861cLCq00LW4azKhs5xPJY0AF1Lq7ranNt1r4kUS24qY0tHZF6H02rITyGL0zHbL9s7PB2gdeXb3PjHozwQyIBjEeJZyuxj4IlmoGQHJMgOqLCXT9VA8lIsaFn2DSiyLdNBY13ybmgUamlXpniGdB0wL8VfYGXPl6z+ymnXg1rMD4nfbYRCA3/4RS1SVe1RRaVDL+psA8pQaY80x0a5VDBymVOu6tMYqxZGoVTbFAYKPA00yNFarUMb6ojXBLgvILbboJWCbUCklfyqJdkq9j9gn11JMT62a4wyrEBSZqO3nA6bzP6FimIHFqivLXlWDZj/Oiz4EU6PADXRTbMIoapDfSesXTx5t7xsX5+SGXH1J9h1T57FM61maGfZGaKYyRkSFSwbNMFETbXpmJnnTw4sphn15IdsY7mXo0Rme6FvYMsHKfLKqwYNADNBA0kILwq6rVqHAxO3Pt//w//+g/ff6/BIR564u2VLRCy0lsGcfZci2y4Xo6+zoeNEOrBGt3lVyfn3v55vH/3/fs1L42g7qiFO64gwFb0FnPH5iIV65oScHQmRTe6KUJhW/pgIDqatNJpgvECXT/GxhtfbcajRJEVLVaBSf1LWn0CuWhCd7JRATnL7q6Yp9/abjE4XughiNmSAgGoavFMflK+6q+sCySMmKKgVgM8p8KeqcZHhhlSJVdpeH0uHwK1NgqS9+p7DIIQhhwVKTzPKwScrktA5qqp4VIzCU/9YX7PxvcHbkXooCbLmPS43mHWZ/ZghiPD9Byn5TRq4ExN/Fw6o71HkF/z6nYu94Nen6GLW60h6JzFD4cHXu36Dl56L63w6Vzahjf4YAxE/IaBUTTUarfaxQsjkUzhtSTj9UcShrzu3pFJTjjt54zaFxdnh1njPNnDcHpSEYOohS/zHVPweUa/Gyjil8uzdm0xHK9vZbQTKT600Mq2tAw2U9Ew9PKNy4u3ZqOPhBis0bylkGpzy2okVtpkM6v92ddfCp/OL98W90SPN6d93Lpiw239Gyk0B8IIdYkRoZa7dzlxBCcuVd5+8/6d03YPZoH4zY75oPhAXfgKc92chC5LHGcNNl/3LgkExA9kYZfeNou0u7XeTA+kd8Ui3m7rlt4I26apGBtfUkzMXP51Vvg0J9pBLFrcIx4pn+GMPlVSscZTIDycYl8f65BbvJ4ix/5Rd/BpVxyvflV1D9MkQYjIgMgMTSxKKAc8ZC9nuHf5psxTuaJ+TyY5fAdzARx26Jc/hpSvOxWnzf3yfNSAqKfGOsYehU9Y0aJVjQsOlZg6wnksJC1ZuFRGSdyYvKXVtUiWCmAfGeHNcGZt28tI6oTLYjV7rZZH9eNjSlELka4U+mZtZ/tgwcGxqCFcQ7FePBvzFxIkRy9Nmgwk2Bi/enVYPdAqkz4bGj4OuuHfFaru4tdQHJiSFsfqvnU6bNPagk9aoU+O4+bovDolWnqDsprWDKidUq3ra4PR7x48FCDR5K1bXpT2wVoPjDcLUDXXa8cHR0Ys/+1v/x5AGKhJyNCOv5mo8Xa29s607NcZNk7f2TSWrb/hyIKsRIOBLxbhvXr9+snxvTls3l7txUgiFhPEP0I6aloTlxPIntK2xVfP8X28i60S0+zqcKulceLIn1Xvx0dH0421DKSkFFxnugPWbzuJ7d6BdnHXCpE//vWvDgofcQ0nE4CrrwpUa4xstJdJYqOlLw3AUQmoybLkyo6TW7pUEa0rVBPFTc5jJFrzsfwDFfjwmnfgLlWW+BkaQLP0RobyyAyCh4j1jxJQwlGbBWSoDLpL/dBeFWMENQbTbahZCLvPdEWaqOazMkVwgqzKLnaOIuw2EbGX651G587u/sAuHwKhpKYtEtP1M4B77aUB+R2kxjvBQrYUAvTYTQKSlPesMin+wIgbHoR+vhXkHIgc0xqgeuAAIhkVEwvJUI8oM4tFA9ZHRFaj28k6P5A5Jzt1fortMnSAOlJroRdLsAT5veGjrU0n5/ppm+Xv//KX5yen/NLZ27eNMlmG0eDfHNJZKFarAvM07fbtf/JP/vG//8NvCTnkW0Q8R8temfXvNFjHScDQqNH5m3ONydMZ7RA95UVgL8TXSfjxxx8sMNy5d5t16kYnImsHOomNw+kU1YYvgUdaglkkFZGyeYWGt8S97tBfRk5NPt1sOBcj746Ndpd8+eSxxQImLJ2uxOpub/UC6oO9HafWSHXWL6lYk+hAjpcOggdfybg20q3SWIm/vlIHytby/GzS3sPiyObOE8TIcUorkKRCFBKDcGY5ssGmUUOpSYgSlD7uc0VglFZr9XY3BoDUKZeqZAS1sC7tUUqB6dW1+qeuijW0NJpRmaXOftOVlXLMDMGACfdMKJxdy+eCQH3UyZ/GxxiKYAElwtPSUqjCmBHYdUKrFdU+02Bf6ftgC2yJKy33BE+Gp8DkLTJyWjEcqbkzzCPwMMg4Z7WrKkIWLIMNsooaAqqaYkJLLVqaAQ7H/NlahpryZng+KN8vv/3W8fGasjeXbzl7jfuJHWRbr26/faMWI0mCQKOaF0Lz9++L0rY2qVcHS5ucWb9lTjCem6b07qB1J6dqJZxBv/bLn//i4O7+K2fB4wxEk4xtelcX1+f6GOkkMoVDdYFgas/01an5hOjSGnl1z+HBX/7ynREkzlvcOOxKbmwLnerQKLvYl47MRE12EiEV11IXl07z6evX7GX61ptbloUAkxmJ8651QkRqh3f3/uk/+pUzkK3lZglwFFbVedPoX33c3bllRuJ3f/zzx8S9KER+KdanVo3Y+FtvBl1K0WFrLpJA/iwikxA5Gqzwm/pkPTTFV79lSYcW9R2ppHFh74dSo935y8k/sh3aKpkEh1kBS2cpVNbKGwGxamZS3zAvAF6uyeaWjufS6WsUVN2iwaOWS0NQ6gI86kMYpLlWT8CuNFqrcyDLlkongqU9obuVSrtjYnj7FTqhuVwe1KcqW8SXRytdndM/WajJuJfRJupRbdpgX+GADKUUHw6F9fiFZIJJ6cQEnz0ojlKpvNire0c3/GRbFPHhHOPlAHuqVeO+fnN+eXlukKdREH6mnoA1V/RJiK9GLTHlYjB2MnKmPLrDva3Pt11Gc4IQusc/isO/fPLk6b9/YSVGVk1d4ohpY0gUqqjKhieHpiyH1qcgnDUGUg2XhV4KXbxzuNM7y0rqoQvvWwQMSnMCQpBeaHDHgovknt4M4XgTczqaRl9ly5DwaIVS4+A8dRlhuHv3njPz7+weHx44KMDs224HOcbLhAHFutPr+5Zt1P7U9lVuCifl7gPoflEhrVnq7uxEs5XVNkIfu5Fcim5xoxzsB6pZy3JFbf3pRWel0biRU/mLd/SeEpssOcTJsMCWMmo3PAkVHFaXQj7hlZqkMYUNKlkEEN4hlyuq4RrElnsgTHbO8wgAECzxflD6OUkVWEYtpZKZqkQjaVhXrBnk8nLZSQihrY88tTKVnzp4hOxwQQueUTgmU0VepPuJsLWKZS6/jo1ldm8B00PVUW6N8WCkay7g1p9zaKkpPx667NXHFEJvcoVDG1jCpEdsAFf9QyPgOqU/PHsqiKdvec/hzyxNHHQ1ACbqvQTaoLNLcQNfxOOQ2dlLzL+ylju95ufS2gnjUFvbOzdt6Islj+4/wAfsWWSAVW6qtc5yLm+R61JTGVlmuoi9Bn+sjNvcZJQGqg4OdMs46k94IJ8lfpqCNyKnfSc0HlCvwgCqkkhwIIpxHL+M4KoezbWOKh4vgQt8twWxdrcpai2NYCwD7wwPA2YN7UHDI+0wDbqzs/3+zTvmmUwhnfq7TSWpBLhJWjumlB/zXgyNFbMIl7SxbpyCKcEguYi/9gKYyiyyCp4LqAFZNUmMEseU/i2Xpi9YMq1QrcDkpZU1L2lkg6klp3sUwl1tRU6y3ynwQAjFSmANwdSylTIK2neCwz1iLtdPmaeJoyx85SJCapwj6O3zggjTqMlBXWb1iTG5N3+3poU3ZGLYDsdqGOOnCzcHOnhVX0H9vxevzndvW43TYAn0MNjOlTdvDDdd2xc5Q6uVFRaYqMUljf7p2fnRxgFFxIBV81EWl4oAJkxG4sKKvgvJSsp0nJT+3fOnudqlRNnKw4m4fLVLhZ9Ya3GeXkQ41cR38A9yGprVFX5nUVZLKmqnxuWpiKYc7JnXohGZvRTUj4XKlCOtniqtOoFkwtC5WpKkGwQF69QRUw0wWfhqtXMvUEGy7ov2y/ycubon9x9GjMhxNC9gqV/ao0NuAS/NzuihlT/uoKVy9NKdzeOj+0+ffe8phGLJdNZ5dLcN6QKSyhhHojXgpbKpWjIMgqpGi3lDbUjObZ5cv3n/1ubtaT6rWcb+KSx31Yw9KDz3mX9jOMRPv5dqBjB2pHCp/0QKVfbTxZaWX9E6FSxl4jtE4J5k1FQhtadhczsJNTV+Z04DxVMAawXjsIfOlWoZRZBAF12E9BAMVJB0+9aevXhN8HwKGe/sbNnZrPipIFpiDq/Nu5rbB/cPUpRrZ7B6W9QlM9idXd6xYtwE1QjjlKFi/qHNG9F1LHfnNLuldhJ/9vzlzOnesovg5auzJw8P1ej8Zurh0A2K/vzlawuljr2NKokP1TkgVtQVBVVTDRJLViG/gss364KiKOxBo7RljkFxL1patW63AWUg5AbEwjRUP706P2OiBvXZPN3BLQ1CMs596K5U3IVRLA74KouvEFjgg6cp7l/6tWLEzKwxUsw1WOTQcL1VB/TeO7wHPcC9qUGs+PSVqbqL184JvH2mfdDXgRmKqBP8EKG4ANH4iVXH52deyzWG1PkINVtqHuVcf/Lw4V/+/EdHR93Z2fu00bbd29cGhrG3F+rY/oH4186uYSEgmm3RmA1VYYu1KJroNHDIGl1DCTOwzUO3RHCOMk4GOtUY4D7iwwKHYdUnKUVpngkOSWsu6TmMFK8s0tUSGA33WNOChjoGASBnZKwKAl9oMqDIQkcsu8pa5c3BepQFLyFlgJK2UP3E62Wvrr585AR2mSfX1BsG8XexwF7Ip8nUqG7vcKNknGnpshnafnT/MHatbXjr2Om5Y8KI8fb5m3dPn1+00AzQAKdz0axcXyEkIYwLs2zH8briHU30pFvZtQZC01G2R46X1PjY6GsNlSM8jw7v0jsORREHWZuQbj5WbAFySlcridLIR3pml570ED+7KdxHH28bLbVIo+VDK1LEeToGBwdHRiuFKLV6hgeHP8pbxagtMptkOSxB29wjWhO9c9fspGPyHAJk6lo72di82d6kQ5PUsvCAUKWI/1GBKbkkyEAvLLOSTauDOMynJ68//P53YjTFnJP5oTM4YqM852/e6gZUVaCv7ChFhLFc7NMoqNd6jYv1CzYvM+XeuZOXTTGx5+bKed+QtRDKOOCox82HzweNIcN6rJcvX55fnCe1go14lMIMQ/ERlxl6opJc+ejhCazjMijmiNeVdCW2E33aoiJsryRZNQIorQjkygNi3wiT2Gc1JDYfPesrsUrxG5y+5kqdKijkMbLnR8+wxF0OQh4smfnp8UfcvyQZRvNgX2UZl9PXTs7tULM2+2oZEAdJRngmorG5iFXS7yoqOPHSAEv7TPfmPWYYtHH3G0e/1wsHWTlK/PihtQZn4RtlU7/yQ0ZuRlooB3tW3Deh69hHGuJAHU/NK99xqhdNbq4Xb9cNaJo3Umn2OXJR3QIjzMKb3D1o9eT06VtyS3c/s0cvIFrUTNoO0ptheXmLEgWEzfgtWgulj5+eP39BrmBSRHlyfRW+Ie1nL17enncCzRFJzmt6L6SDE/Sgof/AaJsxzArpkf1cY6a0KmTiZKNbdCO0k7GvLAhm9ai9k+TunlOJLz58PPvxKYtSjmtLJFPaN9z1buRXgxk0a0QgKsPYEo2zFn87OrkvIX+r8HF+Ivuc+9q+M13v3P3rs2eH+3tH3ozo/MN35h/qEqFQUPv7P//Z7CCUYIbbgYUiKOWIF1CfOG+0GQnpOSm0XFHjPuq5WMjoMox1gmORuwwn1YZfYKfcMjMV9BAIVU/nUSmxKKHXbvQ7DqILHn3OBcokjvZXJI5xPpK5AABl4Ol4o4K3qVVFC0OVJC0LXIyZV/+CUhgy76kwZEIHze0f2doUoFIRPqvzRJcx6S070VNOGHFSHhEvXmv7d2+vn4otPaANgc8ggE+g1YU0x+47Y8FLKd96fHLGhdkvBumOxZYtAaDFAUKkYZFoxtolWeOKLcvRoKMOYwOqabxVlDt8agSt6iPA0mZ186E5/vEXVH/OPAVQn5tVmN4CWP5RN5mjXwuPIdot/1wsxadj8+zogI8ACTVDCC3UAm6IlP/w3fd/+Ot3yaBubM4fC2GV8ojDRpqZzViCBybUobcVYIGQBzdr3hlkpd0bk3wj7EViiTadiHcWomiC9RHQJ96WVLs25Do7LK3vWnfyhNXi0J75/xpEANCoC2SJ3m9+94f7B4fbmztFcldeDWSfzbWo8T/8/vffvXwp1LEnaCKYlignv1GSVHmuxTRx1820azGOLvjR+ENCCDtIKRvasUFiPFkglGH0O5Vt50dCjcdjeBkXZaWN2V0lVBBHpYKwksln1Q9m1Uh3jZhyK6rP8nq6LC2ueLkWFOQbUCZ9RTiaclVM5oBprYGaprzuVCY8U5APeplNEQV0rKL3Jo29/V29hfNzOz/f8QWiiAf3981VAVUQ6CSRWm7Uea9MXCL+wfInfGs3zVRpWe4d3V28oT0VDj61nUiI61wvj2q+UstmYLvp+AkEkKc3c7LhOrJ+jNXHiij1v+cLa9KmJYyQCk/+2DCoOYRLQ59xQj6Ex0Llh5dE0Z/7ZrBLTYVoPU0mXa3Tydkb7d72diw3+mQgVpfp9cWbZy9f6s16A3jBfZyk2YyaMPP1C/tT0uF0nWHK1tSbkVISHyS4HK+3qNW4eT9ZRz1aQw99fGRjMKu3DhzsxwTwIXL9wmb1aN8MH+nLsxbepS6//q8zDuispuvGyZv7lP67p09BN+5rXAMaz0+fv37z5o/ffR/NowewTjlWiqyWAMSQYXRiHgSGWXVWLeeKtAhNxVzgx81gdBOI8FwWomZpwtiYNYxeKBqVawIlKCqapiMuDL1gLum009PR9YQ3YszYqpkBTCsVEsNVSeoFYrGqwSE4MOLJPAGLDwal1HEZaVZsWCDmmGvJBcWtcqMbLuPqV++vPohe9ncNqXtRkncBemmnMwG8ayuwELr+WK9x5pVjTHpZwOllGvTfiiOabxJaD8Rg1ZWDeqiZUpTMYgLDgDa+NEi/ZrOEXsQlamzdJETo2uTlBFVGIggx1kTL8Kr5ier1L8Zzlhb/o9v5vihVb/xYrKrtqeIGLZKBenRuCIxnGZJCsSEgMTBvopQkuXRNJ3DZpLaKv7Dy+f1l7svKWYfGb+klRuO7D0aTBD91DxZ8BtzoxLQwEj0ANzNrKCjFVhHmqo1aN/vQu5Q7+AjSWfnQ86kgpgG7lMorHsxR11Iy7RaKfARu6ARtiSJ6X87l23PYWh9rDmQ5TBOvonBt7dHD+yYpfnz98vzyjcBUoGvU+K01Zd6wuyCOslCKkPiggimaN0F1rrqEelrZXmRpUM3Al3GxzkRe70K6VqXSUoajnZWQRnQev5ti+qXTJIt2G4CMpXgPa+pPU8EZOZ3GJ5bFbOuB7SFWr38ypAdJfpjmO3mr0+BcwWlxdiNjxm/i/1DlcZQ0JlG3EgP9ZXFLR6J21rh+8ZTyMPcTZhRr22KhxMx9KA5ZMI1SMN51e0Pprhkd8kiTmurqIr7h6IK79mft+x9ewujRAyFqW+bVq/4zp9LrdPaO0A5TU6/TfV6ffDh5bYvVLXg6kiym3azZnHjx9s33Pz7HCOcHb283WRbFORoePJENsxVyYRC+ypvzXbKplL6aKGiXWo8mIkpMZIi7ZQYHGJYMPaFh3d/CHKBSuY/XnxxpfHN5UYH022DPOmRYV/UQXIx3VaHAuRjPVVMmDT9TYVUXFIR4YFqVPVUnfWNCdtw6njplG5ISAbeRAgWdW7ZvyEvQvFk6IowObds0bUcFjzK4e1Orndc81rt3t/ZmC7ZFMpFGsZRYv3/vgXdmvTw/u/xkBXlNto7lrHHQ8OUypKFabcDLgIZu4NhHrlcGN9IR6xrl8i4ju+HyJ/5GDErKB4iCtIZfy5n5aa1YliZ2rq3PgYdW2eXmhaqnUhSXz6BiND5FfU/NApSSCf+cQnnJevb3vafVIXzhROf4V9vc9xqSB1Cr6LtKDfmpyfGBUoORoeVCqrepj2VN9Tyk8hubl5efnN7jJNj79w+iUTfx09WLlyfHh/ajm7Gxpb1FZGMo7Tyws95IiOMigVVvNIsWzi/F30b9Ntfvziqy+Oe/rQcL7XG22Zvds43LH5++bhFbr2PavHcgUsrGbUB/8fzVu3eWHSDU6rzcgBEmB6YIoRDRYYjYmO0VQgOeuqCa8jQ01MHaCASWrAQ6VDLboEXn55YY1aUoK46GCeRGmn1VwqdvykAAPK8Aa1LIvZqGljjJJUTUR8eCmKqy69VIE1aK7uwRx+4BO40RgeHO0qkibiXzM2a0TE2bT5hLAkp0He7t7zNZobNkAQ0jAojzXrgAHZuVjdwd7Oxip3Z02+GsBZSRUtTZlsVenCp43dvd53s8hT+GeKQ9vnNn7/7xEUtATLC1JLMkznhabJTTl2qazpxL9YtVLo9gyRcymVGpOjeNUd2Y/K4QMVDcWNpNReNE3x4h3C8535uJNNOxuWGI0B3AFeByDHRMf7Kmo2kv6mArfReolp2P2XUsmr0ioPDNlorMy0EFJHPYrZKtiLb50Fx7M7K6tZpZvk37mbRHhjPiEl5v3hFfu3O9WO5wbxciY1Tm8j9enL9b2+il3AQGeVol8nz24pWllzzf/XsH3t8RD4axohe05J617Umss9IcIqSVsChLW1ITiv7i7CYi9AVIhBpRM2tXju/duXdkFzvHENGGKBp+8NLBW5uPHhxJlkgZVwy9ubIoxl+lQRl2uwEcNq5yE91oVIkjlKmu5AUNlqud7CGtCN8CisUq9LInU7xqsInHS3CL++oJbuBJ1ORpcma5xIQh1uaZb1l/YfBAVjYjDzh6Yry5QKZaWjhB7b1cx4vgqYV9myhzyusQ48Nvo8n3Dvct9kgeEJNdz4BS0j1otzx2nS80A+/YJ5iCr6qmokfC+ZhGczBo/ezNm3vtxBMgcYcCGCR4zNg2vnryxW//8l18iFkNdOQOZga1GvPfHi0X+cVexJME4lWR6oZNXaCp1qeuvC5jkOIq1isTg/ohD55VybTFVnWBGBCnVqWGRiSdIuGEhQ0jM3hueMvpQyneMj1y/tYtlAI+wlY9F4vlaoE1LpvXpbIiX9NYtzdbwe6nejmyD2sMRmlSWfQAfUimXNq9Ju8haezcOjPvmDX2IZNaeJO9uzuNuhspn+6B6h1GoqswwvU2GptG0EGRaqtNqK3kBUk1mAHY3vnmy0cTHGreFkmCXYfEhAOvWk2ByGXsNFBUdFBC6hmzJAlMhMtyoiUGZjwpb+ZTWiAqNXfuUYkpg1KGBxwXvLCa/Ja6StTlNcsUmhnP6LhiyvnLFYWEBOBy3H6gMd2t9vK5KWSIwzVH68RgtNKmN2Nx2kxmr0vjqGxuRidIBjAbNCqiFk3YnPBetVLb7BX4Nqt0X2cn8I1rWn2ky2uPnCYnXxmGaK26sG4098Pp2dnVo0eQyNLoX6xjyfDMBhQwfGHJBkfFToyTtgkwMo3tsJz1Lx4/kUdjEaXB1oBqBoZ2jwuwY5c6sR77pvaFHMqfMKK/PdqWHsQu3DIOKOrJ/CEaiyKIxHy78nx+FzVUi6rrrtVMl7UtfzaMd0SN/sYnK64ApXYMXveSGVilqzMKxKJSMWStWU+D4sonzkFDlVyTplYiB4Q5KuP6TPIY6BRDFksY9ROFiXY/2Ifu4Ns7+/u10QgBfLFVSmOE9IBlvrmIbwhO2/SYN/VrIckHqCGFmurxHDKyFT/Ue4hX9G/R+ziaao8OyXG1dvL69P7xAbvzK9DKDNPmBrAEiWdRMcPZ7qtrBIxSkMNzwMo5aqto8k3XOULaNY9hEeKVLeNk6Cfe8KdTNOoS4ZLDLyUoTT4smFMJEEGZvyLdoWSei2ymPkB4E67eJgRdYCvn+BD11QJyGUp0ikw79fG2vofgki2JoHh5dDaw2bqj7tkMfsmjkbVITusZ6qjrWZL3jSKtrCOMCFVJ3FEHlVKKKvc5fl5mk9DXV2fFaQ77fucd1HUqwAjg+ob5Nec1vHt9Fn+GolF99SzxVVYef3oYYxSsqnqeE36F7RRMyLIBYdtHoWEZITtyLX3KoVnBRYQS4Uk7Bfe8BR/MnSsAOlw91TCKK1QnxSWwMVhpfopDqa5oqALPsX2msy3T3RQBpuOzV5sXNOfqqUHqIBRYAtxOMUh4ZZRErIM7aHVVhs3pTOwcNVw3h/XBIgoH83ubsBxDflAwvXIt5ySQcIxqQQTVCQ68Yo7PeNVwQFmqqU9ktmvk0GH0YvvpPgHTs7JR/ciebLWZVeDBPHcnPQcPln+Ny42XkUoX5fVswq1KDMzAhpuMGKv46HiBegrFS3oqbVrBIXzIT4UAg2moVHtVdxf5Km4AsTapy62PWhuvtOVseil4uxpsKLAHgQTMUL29aHpK5iLSIZPGssXAz/4+blqgeXx00KkA1RgZWG4BzIbukU4z+tQ3DzMj73d6fP/Bk/sPeGAGpYNCdTCcqW3v2oeguY32EG5R6o5RMaOlliHVt9VVQFJOKx0zp398sP/01esJfQjQE+UUriyR8nWJ3M8QCKz0vquiGgBJJNOu6oiLd6zKEqUQs5+1ZhWlIApOJRIq1wIBYc8dQya9s9qLnA2tFDjBS6uqid3dcKya19zp96w5bWVa1Bo062Nj0lQ/CtdruJwxReEaCrSrabROTrEWBqlg+9ZuLB0H6k2BdCuP1A7jpJnjILnmodKR8ZsLcVEq+trY3AU4RVqaokUp4sTCheFHv2JcelF7kMNGy7iPONC/CB9H3reyN3d2zYfmyNLPsWpfi3aVfSInT8NmJBrdsa8f4y/CGP8LR+mHCS0ERGkyKVe6O/kDlwj8CMPgILwJgaYpMGIKVueKt4Gp6AJqCkGSDiiiMsa2AlW9qqsif8SESToJQFkVoi+uBws9DwsDM/u0JHrsuVcQ9yF1c/PVkwe//PqbLx88oPM2pgUMKqFgz97mpq6CSQQb/WyFdiLmwZ2de0f7D+8dP7p/n6k8f/Xi7E2DEvGyNz17nw+F4GwUD0+16x7o3rF7zQJ86yp43F5Qh8ClpJbx/eZPfxmXEXYoTf3d1S2pASw1lqZ8U0KaH9L9j38jYw+7JwCd1AQDtlLRPoT2I71wuha+gzUC9kJsc/JZyLSCs4BenvY93l7p83BkaaN1Q9WBCsSqPjhuZrIifBO+C/HJa0K5AhH5y6yKjDZiCENStjD9PEDKXeAx5KOrEpErM0HtNITAlqWUtSvZL11qdQ57+qoVdIEDEkuQb5w3e1tqpBBonOZhpZGhGgK0KQbx2lVQv4uOdqZvo+Zp0ngclbBYY/ZkaISg/qiAb6NjGDWYCLTnxNBSkgnHYbIy8zOeVBckQ34lwuw7T+fh4J5GVwKdfstuTU7K3/1I2sPyxIcl71Djp8exnmF9Wo5CrKXjTF1AVKFSeUZ2ImqTLDqtNs5dGW3HwyNHC9sg0KtDrJDLTgZ1h7dtPvSeBO/TvrX5zRePnhw/9CaRo3tesGCbjW3gXtbrdQ/WIs3sWSe/4CiHdMWPhaghF2sBdhxK7DSyDrhVWe3GtniJ746/+vUaI2HY23cf0pnEgkJFoyztkJTMSowzfU1UMCTF7jLwbXcO795tOaB3VO7uKZhAh931W35i/Cg9DWRlo8WYBWoeMcwJqcgi3o2edIMbPRrhkBkElKAecstb3YvdZhMNtwIy6o6GApWIKMMShcsSif1LLsp+1mzEz9ag4v4lFlezfC7Rh+ams/TmR3g22ApNFEIpmaoNKc2jhZJ0I06sSzq/8+H9W05tOtadXwp5HR4158CcM7Zt9nN8zvUnB+zR7byEM/Z27lhDIOQW1MmAPmYrrmsjTchPVSrAM23iOiVpVCrzg1q+plx+h8/yP32O/Bgqrf8t+Kc+eVIAx0MtZQNCgccnRKf/yb9aAxDblA94T5NlKI1mBHoZsYoz4xHg5Zb+u5lCstda+kknp5v38c35G/1o94oY7BNUADotj2rX7JXZPdq/Q311wg+sjvCazx1voTNnYInXR4vnrNrW/uj+4uXWlfc+FGFn5Qla7bi0ib8vXr2wUHHr6GBGFW81tNKxHBquTztb24+PH/7x++9TL5o2LJrKC3vSpVgXwRE/zjj60b3SuOLLrx8++ubLJ4YLSKtQJUeTP0vlKpdGDNdGEhN71s8Ak2eO6VmcemRfuF9XPUNK8bFGZsjQOmYTWqHUymd6RnKyhl/gInvEWp1VjoRwDfseTSU9yAmPJaQcrZXyhqPUthGdQqeabUPj+BqIHPz5+Ryl2oKaDSMhoJEixM30U1bxcCZSGNDZREbCMFns6hwHa0uNfaHUdll9d+8mEgXGHC7hs5jSIhUu+GqqqtxXvUk3KU7xT9tOumHxVujUHXZItVfWuyiZiVTsgNewI2qRCXu/63P7Iha1pLK5PbA3HPElmo1HuAybeA6nGByYYVS/k/tn8ZQ+VSwS7adyubdhcjDwkbUbh4Bt1ul/UovhjN9DTJxgWD8LXUbGHRtjG4zMutb26Ts0L2hqUCbPgNeH3rP77Fmk87gNhxfaQhs/uRNN5MzJA2gIpvfYNm44h30PtmHpqPG3H947tMP4t0l9GfJH5MBudGs2Nx8c3/vL0x+JE8Ype04wut2hP4xWSq+Xh+CIgmGfwz+T6UK3gzt3Ym5PXDkJ5kmkZN7o0ihwa1qHQL9lLBSoqjx8gvA6zwSW2i2mnCDTzg40CJn1Vo+TEjLja7W0AnXBUtXFSkuUsWgARCSNl8OHqVo9MoVhTrznOTJpXEmiktYEaqd8cscT59R/cCORnZj4Mc9L7cLNv1nPHC153GpNh4PZanbiU9af5LQskWSoJFsQ52dIC+6NFGKx0fURwYBKk0pO30ke1FTYG+7uOAZiNPvm5qBB2JLZbu7WHZLq2qV/YVdM1daL0PW7Mbpw9j9+Go/rzWC9G0kajmQzmSdaBlcZfccSSSgo2RXHQJFShlJjeylL5NfSErrqfACuljFI90l1m2fYtPq1noM5hJlJQnVVS3x1evLVw4etjKCgw9DQhihSgDOj/vTHp/nZ5D5tcXFVDTEf3DCrAXDvu/340VCSislPRhgl1GSsWd8yp/Pq7JW18taf2mInUAMAjlZGOFGGFbUjyXDNLcO4hL1M74roF06Q4lC4RPnDD7gtbIjB0ltM74JgDKmXYJRIHtXMrzL1lxcfKciYwKAqw8JARySURaZOIMTrNCiD9RJSJoQhmMAhNp8Gz1SL2IoPKjXoSAczDZjgdySsICni6IArnpE9XRy5epC3hTb8FklnKGFWvwExyk+cabk1eZOx54ZWPTFFoByNpXb8MchDI+XbONg0xxxaYGnX3WU7DnS5wxmlVdC3irU8KWvGUqUU2q9BRR48zUASpm/ULjo5eKIfylldFu12DNXvhFDe0iomI9OIPDrV5yxloLgF05pVA+jDikEkpmZBqTUQYRfA1bfSw6HcWbT9wwVyWDcPBmEa72LHvoXxjuCfI8yQ2RRyXmad4tLQMBAIdTot8956bhL963eO4tIezDwjRa+ZaJE2kh7eu/+bjT+oJsdhDF8UFT7YU1RlRMhyP30Ab0W9/UEM1bYE2qBpjYhhOXyQ8Kfvf9Aaf/3FV05Uu31n5/WJMfq3P7549sJbP9968fWg9W42YUS6OtJ2SC9kf+ZtLg0y3DwkUoFyxhe88yi+t4pdkgM8EsJKiG4TRQ2FD2XKMhnAT3rpJ6oV8iRk0ojGdngpaeWishjwYQQjBWdlGXVEZ0D6H6LV7JoumbRamJLUmny595S93FXRhYgii/xrtQnHYeOPPCMxLbZtkpevxjyu7l4zCZE8PACjwVxwJA5AQDlgTIyQaUKqSApUUthRMqYcJ9LmrC4cBzGAIRNegA3AhaZSSHUUo5yjgSGqXBrcXw4I/DxpP4I6qdJjZnKoBRuAvSDHQOcbb/2oupinkIyJNeBFiYCz82VlkmcKlgfQySxnrTjmVXA8uLGE2ZmgwcFVXLOIHEUiENB0cXFtTo+EWOedIccgC29z9sYWkdPNtX25s+z29/WvFgq7veCNcmtPuPYYX5i42AJe2RxGavrBba55d8urF9qQgVUcVgzwb9qp/aP7/+Nvfv/67fs/PXtZGHZ9xX5AgzGvMJTFMdWOS8CJRJ7I8Ca2yRgjXfMd4LClNaOyVvZq7jIAv0sLVqXA8zOvD6mA0Q7z9hJHHhP+DgOHs8GUUd00bbn3cKBN7eNNYZLIasZzfg0CrmQfxiOpfGCYFv/Iknh6BNU1a5uT94RUBJj4OKCI5a9mIDUayw84zZ6Sbv3udvhQPyjM48Jo9ihrhQDE1cE1nyUujA8CuBhaJdBw5Uswuu9JCQGl+ynTSteo8kghdMEYaSqSfkpRy6QoBouYVgVVUfGBvMifhXiS0kn0HBFhEjGAWvJs7ZlTjGY6JWMYplK8ejimwO1tPD68Z8n17/783b/7ze8q6w8NEFqBWXFBNVM+GGrkQ2isfm3TC8VDGh9VO2u4crkYh3JPV3VwkWYv2uXTl68t4zIEizw0xmh0+g91/SFnEVkqAw7FbOyvkSGEpGtskU1bkWuKzpqcd73rpQ3UpCp7Yc28g9HB8XZ8nL39cPrmBXzrXo1DJV19RZz1s3YfzGTfv9EV3EpqskshmJSycCIJL5eSWCPKEk/Af5ie13RInwCXm0x3FgnJSgMztXgiUlQiu/V7stCdVGJEya5i7GdhJ+YQxv0wCc2K9WOsNfUIQwmxrjt2CGzaOjl7XlUxVxYQ4DH9DVap7QW8f8VWgIwXD6hrNFtJ/7RUoZogvPVDmfIucKt1royBnqR8ZV+AKZIh+QOmC5EDSHqgB2nqHj3KRMcAC1N/fvspKSS6ot5vdzjjBi3B7qss0PeM9VVjEOJ61jTQJeYAYuGariNNf3ny0pvtD/Z7casHTs492jfpeveLh/eNBDg7VO/f1rE//PkvF45nrfr41Rdch3PqgPNUHIfEQH1enS8buz2pI5SIJKfdDCIUPhOFaWzFEVt/+v5H2tXIWqbQrFsEpXZVtnG0f2iwQsloAxUIFbmNpbb/79r9r6hhfFPbXpKlwzCBWifZL1jfd57R3b0f3r6aMB1HgkRNhVPrW7s6TdzhovqZ0FQagcCPXBvu84/wcXSI9jTxDDHKWvRhPFv4kI3B7pM+kyi3Vi60B+dCpyDiRg4tlzQKUEL/KGkCZwDpHiASh8CFXAkoXuhf5JDP8JsqVQV1ymOPOWNiGKNA2YFaDbJM542WqCpdkZq1dQ+V1CMMGkXNIAppxGN6UDMbLfdySa5sVYx408WpSfYZsfBwhsQglwCzd7WvskxDpMDK4VfngF3wzBiCvaT23WOsW6QRm0ap5ZGzexl+yl3URCxpTtZaevDmZ/nBCdSUghVWW/X9+MHDP/z5u4dHx188vGeLhT4te3h4/FhRWlOI7nz1m42fPX7sYLi//8tfq8AFg3Q6SuEy/M22lqeJSY/EYFnDohvswbYHjxo1miV3Rm5N/1cyo8ITi8+FKp9e2vXz9t3WrOynEL0jEWz6QMpMhBZbMsRNIjtSKFrdKSMb2YxBhgKk2dMsVHDAArZXpfnmYHTZWf7g6N5fn76Ef9Er2RqmKHJheMb+4hXDUK0+uvaHkNWbbcTvhgIMa9NS6ZD3MMTcj6Bww/q5t+8NLFqlHJ+xGBxyKP9nDQIK7il8CICTuPz3rZIMaH7WVc2nLwqgYQn/VBK2RVtdMKu5U9VoSOUqXKFUMObJmaiqK6XASSjrO9HNvE3ZpzqYLJpcoZIrNbWnwNzo4Hsd03JEjSv8lGcIqa4FV8LhgDyFl8pzYwHr+ZT6ybD9XrR7sb1+DAxFS4m9ZgkgUSsB/rBmoCy1L7cDeWCmSVg0pI6ZJoOpO9BLUzjWkPSGdHD8CQPsEH7y6KHBWcz1slE3pvDNNskHSJnJosNIrWPf+tmXX/7mT9+N/KJNDSPeURI4ff6W2Q9RN+dlSIhehWoIaiUELlwIGDFZF8L6JDfoZTL6b1TOqXpOVnIGd8d2QxJzsCF1vL6yHF+8xRIYoDAkM8u9aTv47wIkA9gzPyKpKUebJ5x1nGaryPkZTqjc2vz6yZP/8T/+FokIaKtRU875O5nMQwdQL8fWgpl0IwBFb0/zigjc5E0ZXh27RbIpCHZjSCyz98/pUdsPH+DbuFxZuZwYMAJLF+CDs3LnkmNLOkTdPNPCJanJmwIUmyVNGUyQiLI4UFmlFctVpft5PG0zHkmsEcpAghpicoKFMAKT8lkvU+/S6rp4KjlpU8XgDedxIlSmptHYtCZbzZzydhXwF7qBorAVCF6mXuJyTb5V9tgQSHwYvqgJEUOsRJwJK3/xYVrsqUUlY1WKLTVU8/LEo8Vih4oyxlm6Wd6wwzJfYwFjaRADY5rc5bapW8Zw73DPrC4SuFQ+1UBnujDUTQDbYBO6aMrXX3whWOKSp4IahM9IwWpBPArCda7qyq1HuGtYFPrF4cxgy0aaJZI0prNBv3hbWZFhNkCnszcx80AL7Haiyb6xbkrNTfISAbPEtGXAK6nxsjrMTEGjtKbiGUOriwRU1snftrDeuNXaxuP79/V7HNNxRVsWNbLvjU6yXd+pllTw29WxCPV9y/viWvxDQZzvkjKamEa6q4HcWHt9dvLg3hH6FuGxSRMUw8+RTb2LlA9TFEHIiInc8rxVMLASwNgazo7QcVUFndo9SpqQ0w2yarmhpU1gLupb45ku+LmIorrcSwRDFb4z3dGPaKrcYOE8NybU2U4pUNWNXkbbELv6zcq2enFe2hvE4XwVVqx//XlUfZWVJQOeOsCcm9VHlgfcoDWoNHzsZqgLtUCNrIPaVS3LNT/mF7wkAo2mJdNS8wAfgMp5qlyqPHyL3Z/hWPtoemrD8t76tToAjbVxCOs7d9pmBHks5U4LPdrdcmVPGEu4vJgTjcI3Fi54RfKwJeiDjPTmrgU9tKNBNRTO/8LCcInPoZpHlTYrWBt8LX4CQcsYHILzWS1SSjWYTVuWWmp3QlSQ0LyFUclMa2SDYDsjYG9G500vse51KeYznNCDaqu837x+x5XMnovWnC1sQgZUFgiFYEVLsT7s4RGVRBMZGaFLyjKMojt+qxcnYqaXrNFObkVOaLjvLQ2j88qMJEDIj9EhSrykgJc25y0zBjka9kndpEUvBFZfK9Ujdc1uw6sYw7qogQzaWb8n//KhqRmdD5iSHmWDYwzKgTkTINHVv8gkleWXp2rvJ7QHp6EXIkFolAZ2slRm8YXLbQY6lHrIg6qXJqlrJJ+wg1+BKpJ32CtBlj7TiOUKDHYEf8F1qa98MWMe99nDfFTfQPQ3BAZYirrVNvmlxC48Vy4o5b0xCg8JB0Lbxf78xSsB9t52S9nXtrbTotsbOpAWKDgFBkJWhABrj9TJxZupPCiQGPYHtSr6mdtcPEAhbW4rhrlCdahWSmNE4Wm1IMhjMdKQIESPcDNrba8urhqNS3SFWmFQEWS1frPtOHCIxyNh7tIfXLFYKOXG6PDsYnPc/LYVWrvejDJjKXz2s1en4b5UixlpW1wZD7yYXmJQY9dkQ2Qyjpab7ToAmtCi9/07d72K3SbGe97Dt7n58vXrORR12BPqP8kxMPiQxhXeNEmyAE5Du1JSAJcMw7QWt7E1tU69C0KRXNQIP3qK2fGne9i5lRA/RqHczHC/5zEkONGpbZxrtGIRorIpzMprNuZCcFHurw6L+BPueMbSslalYFvEJt9gPxToz3CoU0sl4ZPs5m+Br+ldvPJkV9+8r9yPRWsUqXDYLMYXKVUUVaWnBmXIAyoF+ihen3OlgNE23Bjkl+RwoILRM+yJtoSdTBNEM9wbjx8++MNfvrc76s5qMps7/ii6kE3XoQV/hg3rG9JDupq+0nyQRi9WdkqlQ3DUHo4hA7vsYBF3vmA15SZriyoyjSULXCeY33BwgfvpqaCoVilXtxJrffDYAajBLNM1QqqEk/gzcSYAL63K2fs3NUct+u8lLvD0DmJrSqxXZH5aj4f3Dg3vtHOxUgspK4yJC0HxfBiaxWqwZi7JjfFgS/2MNn3z5MG3X31lU4Nl0nf1TupgGCnS7xBzrXmFFoVEtx47W86hxo5FOH32xOeCOdQpGgbTMLeDVe1FEw7zbAqToQIKwazUnsdmPbxFZ1IQf4EKuNu+YZMtLtRl+5nUSiSTaUX/aFSUr6RVxrgQU6e4yumDGEsqijiz0AWpRknG+FWG8kAo1i44dFMlsik3uPnpIqDBq1RPJ2iUU9aejpUPCmpOUXpQ76iaUjV1eKzWBb4ic7v6JTfe9OGrrir4xlfyrAO9Aw0iQGO+qxvY4J6I/eHxsQVR9qPuOQd7x4CiifCNYm2py47fILbYmQrrUiuo1dPLSAUDN1dGG7zqdpVWY1DulhF6GosYH0ZaOCc529jMR9h/6xoygbhmfO3HzQxiS1NH+JIMB65xISFbk2GeGdlP0jhco1HFGxuOqFh7az2zo9FmUtvm3fV1p48cHxw6cYTknNV67/DgxclZLi2RYC3jbDOpGkWDcV3L3iJkyQy4VXou9RCCtlSr8u3jJ87ns4VACphGjj+Wfd0rKC68X/GDYG10EOuN8ER+igJ0GlOY2s/PAhs/50eSi7RpGQALoNgHK6mQisIME41vykj2Pc39TF3ghZ7kseJRjfr3qcvAGu3BxuFTJpLbDVAYQU0d9fOCWSMQ+DrHcswF5QE0yYv5MTutbKJxVUkDCG6w1K/A9FlKRjDuNyUZmKV0pfhUYe5BqDVayFLKbQTnC3Ntg6ePJUsllK2C4UW1KiNlgHAtYaFNDEzauCpOLkhJOvjmZL4GRKpm7fr48FAPwGl2h966u7Znd9nu7Y7P8Goy8hXG0Lazt2fPXj43Um+Zf0AJw7FDnZSbh4+76aEHftQR50tplupSrAkUleCvKZx+ibiiV2qZbAai3nMrKvyz05vt+THMsuwHNG4gTkY83KNzg520T3y8kblkNWfgg0El0PTjs+dew2NxqoluiyksrmLc9oB+9fjhL796pDNyfHRodll0Y7igVys6X21DkwQBhZoFVFP9EJ0FI0nvE+S0ZHPUmwNbm9FuaViECtaXTlUG5bXHt5wy//HTBUyLKfNeqRfMwVyEvLongNzDHDTiNnnHMdJDzyL4ypabddbBxwpAVmYVK+Y8r3jjr1Jqy06I2Zd/HrBtGQKdxgSsG5dHntfVXlQlGKX1tTxbaXFpcilHxp/bgLIwudoKVffd1xAIUKJK0XPU46wHQEAWQEmpPAUHtIbXS3V6LDdjALv61FEB30yzbuvgNz8XLAOiisF5IFcB1PwDLoSG+W5Lk6NWxUDMtHSTISet+Z1g1SSa8zKen5w9e32elm/Y2KhN4LU39TVx9fnrF989e3r65q1Bx9ZVZHKdi70wrKqWV2mxjerLQyEtzFFZfhsGGZQV11FrDTQNGepYQm2PaWjDqyOjJOiIm+ICm/LLTi+WFQeFHxiVyTCdrcbxkupoSR6M/XweQqF8a53rrVFID/pTzfu3b05/d/H69atf/uLr0WKkarBCUidJ+6dt0kKlarFhjDul6KonLyRAOWks4pAj6fmbzWLtEHZEsjPtt+9s75xttp0f8pqKBornEKeMYtGVlLi2LvRlQvRIkJwylhH9GNDyPGVQTVn815me2C+lnhNKir5Ic9ZdKk0F08uxhzRgLo9Vo9r5rEq/lq//xb08Hv302d38n5YHWmn7gsgymKryUKs5ijWRuJjBlFvBGUqmRhRM8bDuYUT75slwPQ41RRLIuNvz8i9fQ2kTQQsGUCnPQC2lPwVjK9B+TPOePdAZ1cioFvCIJo71xPCGtIlDt26MCT18+Oj7l6+evn51fnnx3bNnwpZproza6S2065+jpJ+KRHMw0hXqDVaaAfeUzQtzCWEoGA0pU7BmPgZ2rU7vXQVmAAz00/4cOcypekBSZs5XXMSiCn+NuGLUhNP10ox8sqIdJ3pYbArBXFAN3DBTcRLw+reTp89fiOxazJRA2jyEveHFdDbWf3h9/vbj761eRQiqri59Owi12ihAbFdfICNz+FnZLk63BqoO/2Jf5RjpSyiU0sp1or2N13bqNCjEfDo+TMCXLmUEKkrOac0UHnZOWhmW3mCGM141zqgbEYu/L3N8rdbYkm3Ay89R/+6xAyMXr1oVrQSXUX2TWZYKV/X/8ir7T6kpXzV8ztzvqpU4dSYv+QM1aMmaBP2eUn2tikrCgSlWCpDRFxdLi+2ZroQ+PoNfUmLukOnnQsXoSZBzhLFiaqQbuaGAVILaldy9qtP+MHPRg7andsaPh7Jwz9mG3KmtSdbNRw8ffvg3//bj9cXZGxoQ0wZgQzV0BlB77pdKU/80e5FIwCnnNNiqUQx2qfVQRoTTOmBEtSvactS3by6EVEO4iux4ZqGN449FqWptK8PbumqMFxmppGrmcnSKUy/rOd1lmFpWwUXMrEGoo3j+9s3f/f4PtjjZ28S9Q8bEmQg/BiS1uErap2/eeXFc+jHxfYSlcHKUBU79DhNMZDuGXxKaz7YuxMSGBXOykS97PDQ7Ymaw7nQjqo7Cva1qFJAR1jd7InfiGQDdE8BSS2aBTFDH5FRazZAbQaTEoVJBoVQedLzUKo2LEzL4BFxli+aCXSyJU2VG1mgS6woByfPZB8g//ej+px8/PSt1csWhapFl2DhZp8Cq1DxfAMZu7PXxn1z9QqRsmq95CnDQFn1OrWsLivHKmga32V+dUuKGsvIghSdfsKmaRWT5/MXXVeOM2w9sXBsNwumpbGHFUJF/saUqpHI5kKqT8/DBfaMsjp1WyYo/ScwCtuvLT04W0z9uaVqYtINU80wD66SKR5qfrQPAgdavc8gLxe7pSLoYa2Knxj8JpVdKe3uh1qBTaGVSD8ihPdogZcvLDG29sS1DcJF4TCM40qtorNkNob8daoNoSsCa9Bl03FjTv/m7v7Ncg0oIjIwEAz0NQnVg7PB8CceLjgGej3EOExFhocQwh07ZkRRVLkwpcHKIC0/fuR0anQ/2nG583NAA4LcpSd4fE/HVZR3Lq08nYzw67m1EBKEKM4jssX9+DHk+ibnmYkFjDAILp8AMoS4oZXNLc9RvleYKlUrG/VYLUtVermp08RqJudZw5SknOTzcBGaKypAbzoIKbnwCX04fc5s6fsbZt7SeLuVVsKCATVMiZIANeAmrgiszmPpgswBMp1OCsXAYxvdhi4IkO101JfSlUr5G0sNNOONLZmlTy6T+1P6BiJzF8CZqCNE0m+audtFXqdRBUt3Zk6o3Gwu5d3Dw9sVL26WYXw/GM1GYUX8Go0KOsLJDHSUsNOJyPOF3pYOXWObiDafxGO0fk7lMdxzGk8J7KBex8uSVMoWFoCqt+JZhLH2X3U8m8grAFrh6s27kEbHZcOORmSijQvnBXPv1H7//4dXpBdDOKLZyqTXW0QHiSIMzgXx5sZivjFMLrhCodo88iL9oTstwU43ve4d2Y/8S9a1tkGONF5YXOX/y0+4V8tsEan5B0+roWYMMXgbhJAqUJ2Ttg/ZqVGfRHjXVkKWA6sVBaI7SqgEm3TfXGybwgxUS4nh30kfZug872uE2SiIr6lJn+I+mDoGjsdWsyGIbZa72ueAYF6b8JEjP/7qA63uFQzfDaTVyNUuxnOMybJBkBm6OY5Q8fcgIYivB5tH76tfI0S1aPF7gVTyhxJD+lmseetKFXk8CUq9XlpDwWdAQi6ZBCS8AB3OgQPzMyWZfq646qSxijI1+eP/Ows1GX3q7H/gbRhefPHrw3bPnjUYABbJJ2Wqqe5arkMbTLEwDLPOa46SCHTXUOq0djivGcupjOJm4JW3tOzXaMrvYYMQi6ItOQWUjjVQDmRFCf+vVySk8JPC/WhSsTRnnJcciO7eW6bVutlLrXoRrdOj7Z09/fPkcCujtLMOEHvikCvfRr9FA7JNSvVU46bIOXYOCQh1mQRE9TxzLl2Lw6EUNrPnq6tXWlm095ud7z2iLpBytp1lkxbwaFl87Pdzufq+vZRD4kvXP3MLAXJAbq0O6AlMzNJa7lWUsIk3CPUdE0ls5/XCHEcJGVhV1wVVm9KUbQ+VU59ZVeqkR7/98BrA0QhgNrgnFlGpairiJ/kGwFMVqTSs+WaBDZFJmeKAf3payFJ48Famq/38aA54TyDaEuvhGtUlZVcuFKWPxFU00MEyYaeDooBLqGsCf+SdlGDQA3IG2OPoSYhMRQDIjnAdEz7cSm+0H0vPKIuEOUtn4m2+//tf//j8qPRoE96X2z4YLdCGe6lYmODoGyaEzac2qhfCdlCjoGhvP2dF9qPhfMONGAyczAcB0uEZhWlHHEjQ33ukklLq6bha3wOPTRzG6d6t9cMbihw9zfoGjThshPe1VFu/evL3QfSGHN5cfLeILYnKBFZQhFH7zf6jzIxHHFQThLy7EMVf5XIav09RRyppItFuW1IP575j9l6cn953NlAPUSEx4N7RDw2yMWe29nd1extOgmZ7Ppw6+UWmqOyz6zN9qG8iD53gECSEWUiv2LKo4apsSxCUuSurQ0a/JEYkL/gvpfhTqRG0ZKrZkGV6slKenA1Btw48hIziBnUdLwRAdXjLB7itftWiaTqdfk7LknioCEbXydS2fg2Qspfyl8hU997cqXspwYEnxMDWKVNxbGpKF4ikWhv7HKuXlSEFrNrKsUoo48qr4SYLFVQRG+HyTxWnCEsK2W9SYPk+ut2BRqrWeZ5fvQZwa0okQrJqsBcnhVM8z/oxBxJgYUK35hx5MrBs35i9tE1xsNZAKmjU4d+7c/uKLh3D4j7/5fVWMP0IqhayEaYedXQGHE9fEdDqisWHpWLBojQMf+/Tls5enL53VHHESO7NI4WaRvYNxsIRpSA0lPYotfcXs+aym4RoeVXpEEQJlHKJwlWcJSKlD+oo3axoiB3Trr3ihUCwueORXiDAlaSX2+oY1SGsvQDOPyGjj3WdOuUlQSz0R7X5SauTS/5xlyI5jXGyHKCswVETUMGuATuLgLXmFKXgDFJTQ7391LAAmbzn9X4r4gpKay1bGkvu/ZOpxGHUFt2rLNqX/gZalXKnLv6XuAVSxyT4w+ghe1YAsekRqZr+qcRHLUuPUM2FDcwlK+KuvNGjmFFxppMIFV4N1FA9rcNLKeq5pGoOGPot5xyqcfCWCzSPXDF6ZLOag1c9qdG2dyXfq2I6lZarMT/hP+aG9SqN0mDQURU3eyiedHfwnE/siMMkLL2yOe3R8+KtffPPLn/3s3sHhd89ffP/jMy8NHAtoBcfg3q8to5ENKHlV4yz5AHLqB2zdnJxf7xzy/M7RubEOkmRoskIrMzttxoGEZTXH8i4/h5ElLSmlTpKEqp7kvqNt3EvqhqcxdwQfhShrRkFTIMTTP2h8AC8Heya6ZDSiynU49Uj74Nwek3DyE0mAVo1HtUxNHMjSJ05dw2S+p1IBVfoxFyKnxPwgfFY62A+dQZq/Je+KwEomqKpZRLDkK1MQhualujgp+/i4KfI555RO3aaeFfjP8AEApqxhOfD6WuD7nAoWLD+X/IfvqJ0LvavGIXBECWBm3nKOaa/l+xx1F7tTNduGaiNGOqpdWm/AwBygoZK11Fqrv6mEOqSS85tSxM8iic27+0YzhRvIszVQHkxuiOXTewcfjzmCEsQYgIs+lzZ7xuYWnnhc01ar45rM8z2NWJ7R2Ikj7+9b1HB3n4EZVLRO5+ju7aOjfVGWBuGrxw9+/Ytf/A//9t+KHUDIhBaXaufxu0uvvWl0MA9b/cnNN6wEe3ivwv4KmhvjVxjTNAjmh8teZswMrT7n/jPnF1xTt+DG8yFiIRm9/SpvpPdDBjdpkhSx2t29nS8fPfRGLai1/gJz6zCNEuW6GmytQmt621u9ffLiVCdsa7sGkRgSR1VophcEFi4rF0bDc/EWaeVGUgU0D+HKlGFMQDQHm5ZWeFR6D7uWm1HywX+hYsrHtKqIPQNIXWkL7zUlFycLu8nn4VI29KaPPPB9DNzhcY8kCNImxwoRX2UZTOb5QJ/Ez/gtoCo7KcuNe5j9ZJ86mqtTMSUvsY7MNb2yUzwVTABECxEgyyCjOJc+XsPdovs4OZsfFWsbis3vW1vfP3818bqjfZpUtTCHO8MLRpALvrpuVU4xSrUtjJtvTKquSU4YEkkkvP0IjUQPNV9szO+tjVuWpv3tL3/27eOHd27tPHryBDH3jo7kBz9BtH7p1j/521/9u7/7zfISE74VATPkOst/GFNcGXeJKKUgGhvidBioemqdFB1lU8icbjYw2PmQM3kMj6axSuz/oDnXDjFHftqcZkzvpC4/1jpiVZ+5TZWmy4ypWY9+946drtv2Njhs5sHRAyfEfPfjjzUJLbuuVTBLbm45EY2mG1bWEjAGSz3YvfUcGx2D7kgy+7C95MEwbG1EurxSm4wtSiPUP7jHKTnSqigfzkdRFfjhdswUytPyypfVJIAxaM+RolI/u9yl6NW4fPSDTTEoNUkKANjplLskXM6geuj/6qcvOZdMITs6sIJdrvJP9qltVWxS5+nnj8+5omfCIxCDnHIshagy/MFXHb3C2gWLEKwGf+rHDF6mJbd+ozEDqA65pgtXhrSC0tc4a6atgd6+5UwggtN3tcCHXMRoRnUM8tBmDYeBGqP+4E20OzIZCmqL0BvscK2dDuusq8HCjEdpRESHrJy5sTUzwQ4WEkgrqHYlrDsKwQKHRh6//erLo4MDr71kq4TZHk7fZqkMRKkDD8CMOANeKTEhh0UqIh3DQfpkRYcQwjxaEV/M8X+Q7Gv5OSiP5sS3ZDac8jmop0gsgGk6VZLWtt7C3IXCGzdeIPDzJ0+eeNGI1XY7t4w1t3bKyS3rN3rtBnPVOYZAte3bALkQX/1Rc2vTWLC+pCOmOx9yyw7BHX0m7oLoBXhn3op1ce6JWQhURs9Sq8dpZKqY1g8Zo5B+sIywl47tky2PvGSKU/ZGhcBwRw5JaVejcgtWQolgVNE0eWGKr3FaDmhM6aqQI7EEAYiSAx/7RsjBmLzzk3B4wRBpRLtVn56LFvUOg17mDDtkhk3Vv9haCbAdk6pIwpVWgerVeBYr8JQJHj4yWu7WoGeEBUaOQVShYURNxljRoJfEUxxy8ypnlzJ39u48ffGUgKw3a9XC2ra2gEDBrlOhF+3FKy2isXbZQI5ot7Ec9SNkhFNFU2cDo2CvmNjoVENhg/uiXrrg9dHNUO9sG6T6xKFWFjaOxoq6Io2jzc1f/fznPzx/rg5ulR9GCrSXWtWLecMt1DbolkQSUDrj3nBqO3X8KWlSuSchUbYMJl9Q5mHPsLbHflYYcDstLZKIt+mVU/jskX6fxZkIjLVq3LSJaW9n20iCOMcnSbQy/Hptd3vHQfZe84hOTGe2evc13vBM9FUNxE7n/nqP07vD/f1ODTAOZuF7K8C21z7cvNncUCn3s7dndo49+CMGZydueM38AG7DRfFgR2tF4Mg6ZVjoklbqGNBCYVVHXkzIZ0GNWCbKLAMUY8nKFBQsR6E5SHr8SmHOwrEV2IWhn1kZX8EGoiqmdjd+RBspqYAyBafXd5B1uxUqUab59KHKQCSGuB3KLnjKE0VdPQfWXcBK1T5QnUr48HMrS+mZYlMioP4ljUr65849FsrieLg9rJ7lFZ8088YhL9+/t/1GhpEsb6uVvvKO+qcvX7559+HgcF/TEZb5kXZt5SIpDpR1VgvoMwsevAqyPI/shzaOn0qQWk5Hwc436dBiEwlwBbMFFyTS4jE+0b3R0e0vvnhiNfaEfHFksW2tEuFh4TLPklFjgrrjX0bhxjpYoJqN12/VQ9DRiQ2rK+xXvyatj/kPoZjkYicjCrBKK3KvFZroLgs3faylUiirwn1aNYKCmIq1sgZJX2yc2gB0+8ZLzejtAoekZKZGDa9isWXbFxcXXpYU20QBs8E/rb/ZJhV0+mNmpiZ0rSyENFDsxbv3Ts4x3Iuyncz39MVrPTwDULnXOUzAI7OZMC8QaJakI6ORvxj50FjYn+Ao0PQ7ojDhxUCCgh42pGuLw14ccDPMcYcoAG9HH/WITyxxJhJM7KhjUtKxVK1gjH3pbNKDKZ/eDDZC/Tz9NEfDu9yaJz13hWcYL/CqN7OcWeT5AT/IJoHhbPSNxKEisQNUBLOjMeErRW29iStGj/aP8+C5eH2ZnaIoggmxjd5NIzx99uoEZY4/UUut7dn6j89f/PDixeuLC2dRHB0dWjNm7o27pNuExUlVBwZaiz78Q79GQOWUceHtjeUVmNIryil5a5khc/L61cerr9Urz7CqUjSKgo38oovPpRWWCQVnJFuzMfdDnbQZWvaDgg0zYg/+zuKL3lQ3hyozx5ihrqk78VXHqkVGaQ13XPWRC+luRNHn3GMRnefHY7SLgWox7dwDdzEJyOPobmIAb0PAIzJsFeHuLp6PH2jHVjaTvFvyYLH78dG9f//spQDJKX0OFQC5GltlpWne9puconIYWZSob9KbTfbo8I7WeXP9bPvNq9fnUGMIYjTtgcaa5QrkICIs5HLMV2hUoD5cQ2BaEJmoFY+FcK3cEkLX0LZFfDCZEsrFrBiURyfsQQeIuDqmFWhy62tMfUlPIYaBPmyDnhrbQRoCHFms9b/af7rtZhIrlw2FZOaSUPwf1As4xqGUY1qn7CARUhoFBqj8CQtRApgFDZNVUFbfUljIrEEGiq/JbmlYu3LbqGk93b//7Z+/f/4aV4VALU4by4FBBnN17cxqxzogcKaMZiog/KAVvtAYMiJiXJRKekRr6jheW39WgqlrMvRupPa3fHgHjfdv39J4izIaBZ14DxGfLt9tt7rotg4qNGgxXEQ6M5ZUmwAatGvLq3xhIM5n/TWWDMtgUVqPfyGUc6UVk9dHRaT3OXwaFS3Br9AcXOcZjPweqeZ29Esyfl5YFnQuearXlQF7tOVAPop+0WmqlNJ6QeOkH0yFyJXHJaVZieAlwXZHvD49t3d0c88qPYu7uZCOpPWyx/PzN45i/XR/Gt5F9mOJjARh4KB0/44jzF5KrqXSEd/2srNrVeO4plZQ/ups7Td/+KtBuju7+43XzntZIIp+XpluA1KQUNciiyPPEhbHkQL2KyPxCLsJomakPKlUbBK8Zro6gIrhVIVBISLFK1SueeTBqt3IAw5U9I4Sj//LpUpP4fl/UDzMCtKrRDA5Yx18MrMqiJDcfj9CMP0fNCq8wAv5ZCqflki6GOH0AnfPHIL9uEV1gojGFcvReZUbD+4fn/+b33jbJuBAMwZHHJFoFqgpnL4I57K4uOkEc+4qwxyXc7kJvP6eLfK0PL2ggbRi+5Z5JD0NIyj8poEpbDy59vrGM28RYGPCh9sbzme52l6zJQavrm2DhMHu9qYto9cWJ1iNsX3rYG/XdpoWKAxjxsUMIzRDKXX23k3f6xsdODeMwAXeVnShbRyeJtuoxrexBzcxsmsSAUnAEW1UhzkB6KoWUihKInSbgW4ceu4EsYdetDqvtMFNU3u14Wa/t+z723WqKpo1vRwTsxcNJVEIAaZDsLF+b/8A/T+8eIW99iihklbZ9uHgSy+iNDl4tXe3brpVevMyASs3cFW/wfZZJ6Fby+edvvp5JHDbWOz6hiGs99fviJZj0rpaH+t0bgcXMK07u3cjoN6/txXayLrNQanX4hOC8l6jH188lUGTMtJs8jt/pvPTGkkWn5iXRYTYhAY+zqFVsS2PyjiycLSjsHKaKV8LnytABWMd9SycTdfjqmzxvhO2sxaJPWUARmyWbgtLJYq41o6WKZScFFpJu5gEXaIvOIw6j0ZKlsGJ9eWTn+NuVc6Vt4b+5YenmvBdvdTbu3gM6gx2j8FNFU8ePtAZ1jNYFGKEUmGnvuom0wedZgVhOMTiTvvuUazxJ+hPbxwhVNcwDszI0fCycIb2O0OCVkB42MsIr5+9fHX/6Mioi8oJwzoPRzaSOjpqpm4272zf/s9//jXb+OLJ473tnUcPjhn1BHPDg7iS2ScVOh9z8me9lay1RTmGUe05whZKOjqJby43nmZMsT42+/Y5XmHYPB+7uwYTxBf1JMECEjsq0q0y66de13P8gf61vGiz99sacPCQ0mhkYcMgP3y8vXPV+AMQBYI1L8GgLHd0uHd3/vrsxbmTyOJ6SPAlPONoc6+O1c+hXkrQWH1zMqOuPKJGRRDrQNh7GpYPHa+g3eN18FJZtFEmxSSIwU7Oz7A4K2rxlQ3cOT/eheXudALszfn65veOVrt8C3OIpD+rUQ+41CkyTmDNI/1gugoyj+KKXszRafWaQUZiEIX6Kek231VIhmRxc+C4RnQU4vGr7S5JQ5kd8ChfbIYYdKQlsccRkAQCSl0gbGpG8RivJEbCYEZpgPM09rmZA/ZqtqpzOC2xtc26A0UXzh/1boA7e9uIhGejii23KyvEUr7r6/uHB0d37z47Pa1nQS2KdpK5+QQbcnA1Sx9r9w1BK/2975pw00QdXxaQF8gwqAQdgBi8Z4SwI/LVCxuxc7VeX784OXnz5uJg9w5pvd96y88aK6FgsQry2Lu59eTePY3Eg7s7jZ3EAx7qM4GhOOQzg0qMfiLMC3QYLDpl99xgizbFZmgKJWO8ASG6Yt3qJnNAc6DHhAJIb8jWiR2X786GQeP5liA1AKKLtRMjnW8vdWhbgC1o4dtuo1/lG8aJEaxWptDY9Kw+0lFKhxO1N8V7Jcz28b2jP37/zFK9CFANsefQreX7RP8+bZga7zwlRrq04CyKqOSSmSyom/NjPpx49Xei8XFn6oU5qffPyg5CffVSlyP9RaDRiWZLuJxe6YtuiuBNGSxVeSgMX7K9wkAtIuXW51u4g2UxbhkC0grAN14EJ6JrB9zM1dMJNyoDuWku1C+vM3VEwtijies1UMxICM3Veu3L148fO4yQzclAPFowXUjMUfz88vL7Zz9ShfsHhz53BA2tD92d0TydjbHC9Zvz8zPqTnDolY27Bhl/Bo3Nfe9h3+WtUjHYdJbhRDlkl8WOWvAvjx89+N5BvMXAWJGGQxUlyEWLW80LPzeJw4NxDY3yZzDXerc9ityuMe4WVzsSBgPiWXxOZWW5fHNpBuPDwXvp25+8e7BOczaWr/C898AjZ80L3gu6FG+UsgG4BTwxywRD2Um8ZNbpPVJ4SgLlU8bZwL3T5eP7sb8MoeqrIBxkWWVbEB7rHy5Ri4017+He3hFLyI0fCIPq4h+C4ZexNov8jg/32dvaHbtaIxJQCuJV8rBnKO9Fah93PlkoOCugPFpcPKXh1Y8O98EpBJhaFB9KUiGW126NXmeP/JoK2sCeWVXNAbcwqr+3c+fl+kmV1ut1mBL14H7s/QO1LqSXDGlivU+RA/emipiTbHVI1oDmLJ+fnPz16QshLRQ8g8BwZYSw8IcFufEBzW4ncAnHcS0jnMgWGvmrXJySbQqVyU+Eiw+yFe5ya4Nr/Wi9wFTaUkoSc37P9Q3XQGSz/j9e6hLy1EI/inV6eX769hw0U1F+apA0VeCaixGa1/BE1LU96Cyf/Y/lrz88vg/9vbt79qFD0kb5+0f3Ts9Pckh1sovoOBEARxB5D2ODXz959P/9D3/PXkZhItM1+ce/dJ8bjc4Qx/jG/9lU2WLVEKy+CtYwZnAxxeveHKG0JZp9cv/oyZPHr169fvHiGRURRwuvCiFu9RJy9jtiqIjWVd/PjmPm554K3NnZm1WbC3gZdV+Td+ISxF5aaupA1aSZlKTWrBt+Ki4ioQQkc7nTalXUGoZ0yWwdQxpvWemlzoZVdLsN0niM5sqOiQVKKR7l49XFxRseaLvjNtKQDKUaUlM6enp6PlMxn3avN22H7kTBqu+0i/GfW2ap+T/RXPgo2dgAvlK1gmbtbKpfo3Kl44bYYh6NjkMAE0TIt4SpgLJeJF+STjgq0FBUTtqO7nW9NGHV6dlrBmetAFYaHNJyEr3TKU/eXLw+O+NByBBTaBIE40lkhKtrUvweFpZrScGQck3qpEx4OWXJo0zNLGFuSfjXFigtGwYbL0EjXcw86gFrEET6WsYPHd5s/GBdnFm7x8pwMq3tV3pvObHXFHjzUQTqZjAJljS8invrvS6DKD3lamaMtIMGyZT7UDUBHh0dvH3/JkZnrGKjOjdUZ31HUt1Cuwa+eHRkdueDgf8hP37EiBiilohyh4Z+LJoUjZ4NS+aOlOqPce4cE1ve8vpxmNzZ3v72qy9+/XNvBXyg0fr7P/zp//7/esrl2bZPKYyU6o1g0ua1HrkVpThEU3Jn79+/hXyz3eZ2OxIDz/zPD6UxvkOxV9te83DKhUp4o2FT9YXawuEhxaPwnvyVwQz55n/+YcYNsCV6ysqOe0YOs5R7yJwWq4eWkW5tOYgDLxxyfHd7x+iQsaTF5OilUlwXIqDYKNlHq68/RKRTakR66UAMun/YbMHLk4uEiLc42yGnZmRCgRl4J3Zjtlpb/WQza5mlAWyjQ7JymSb4dkUAMqzdnnO/x5AAVwM4Ygw7P7yV9Lsfnmm+zGQnmc0WzApL7N1jZSqqMk514UafI+2YtrAr7Z/LV/VKDsGU3DVq4TuEJpfyWZQs6cwYrR8lwmqhMuYnrLyoQmIXPLFW0mEL+OlUaFsPZ4SgUZ1C/LWbt+/fXby5tAIe2iqlLnY9Ye+gO+BRMW92Y+11oBvcy0PRad0E7oALElnc2zw4PT+toFBna4O1sDoiMuQDAHAMc39nt67CyVldhQH7mUzUNL2kIp4gToyVT54mAfw2E0pfhz7A39+9s/3NF199+8VXB0d3LLajk82lmpy+taOiJw8fOYjbvC1OpL3DJcg4o9Rt4xCxmENfFmLkODhETdC8KET2sYW8sOzUZ83bCVpxnZzqsIYde3Ij4J7kHvnfZ+M/JJ1PcKm+ZmTkMwmBKS2T7iCn+ibWn5SYbrlxhP6Dwz3ng2Pm+dkbLRq2Eo8YiT1EoQcN/nfgJEBi9I8fdIMEgnuqADuUG+rOYVuE+OLkAvBQo/0tmpepvdt8ILoYQP875+PD3p36HpHcfE0+l67rKF9evqlBcuAZ1equ5q5WYf3GqpYHD+9/+vvfvvt0ffHxYpigz1dggG9RNaSl+8OWMHQ7l/uyJHHXoL5wZ7gZbYtJzNMogHdFEuHSSwja8DfuT+dThWUJJOn1XwtGh5hBYtZpuXy3c2vjttdlbTWg7J2GmoEXr17/+ekPb9++EziJc9KF6kJqITv/H16JsfGopro8cXjWrU76kS6Kvu04rk9Ki6a2nPn59uKdTgCMeYM7a7v4C6SfE8sAfqU7cfM6pMP0MwdiGZ815hFravwMDxjlvH1wd9ff/Xv3dBG98/LN5dsfnr78/ulTY4tfPDz++tGT27vrlthgGpMLfc3d5ubxvcOff/PVH//wx3EIosukW/iJR6lpHl9OfSp/LnUSKjX7nwEuLdxbX9webwAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_example = dataset[\"train\"][0]\n", + "# check the image\n", + "resized_image = train_example[\"image\"]\n", + "width, height = resized_image.size\n", + "resized_image.resize((int(0.3*width), int(0.3*height)))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'menu': [{'nm': 'Nasi Campur Bali', 'cnt': '1 x', 'price': '75,000'}, {'nm': 'Bbk Bengil Nasi', 'cnt': '1 x', 'price': '125,000'}, {'nm': 'MilkShake Starwb', 'cnt': '1 x', 'price': '37,000'}, {'nm': 'Ice Lemon Tea', 'cnt': '1 x', 'price': '24,000'}, {'nm': 'Nasi Ayam Dewata', 'cnt': '1 x', 'price': '70,000'}, {'nm': 'Free Ice Tea', 'cnt': '3 x', 'price': '0'}, {'nm': 'Organic Green Sa', 'cnt': '1 x', 'price': '65,000'}, {'nm': 'Ice Tea', 'cnt': '1 x', 'price': '18,000'}, {'nm': 'Ice Orange', 'cnt': '1 x', 'price': '29,000'}, {'nm': 'Ayam Suir Bali', 'cnt': '1 x', 'price': '85,000'}, {'nm': 'Tahu Goreng', 'cnt': '2 x', 'price': '36,000'}, {'nm': 'Tempe Goreng', 'cnt': '2 x', 'price': '36,000'}, {'nm': 'Tahu Telor Asin', 'cnt': '1 x', 'price': '40,000.'}, {'nm': 'Nasi Goreng Samb', 'cnt': '1 x', 'price': '70,000'}, {'nm': 'Bbk Panggang Sam', 'cnt': '3 x', 'price': '366,000'}, {'nm': 'Ayam Sambal Hija', 'cnt': '1 x', 'price': '92,000'}, {'nm': 'Hot Tea', 'cnt': '2 x', 'price': '44,000'}, {'nm': 'Ice Kopi', 'cnt': '1 x', 'price': '32,000'}, {'nm': 'Tahu Telor Asin', 'cnt': '1 x', 'price': '40,000'}, {'nm': 'Free Ice Tea', 'cnt': '1 x', 'price': '0'}, {'nm': 'Bebek Street', 'cnt': '1 x', 'price': '44,000'}, {'nm': 'Ice Tea Tawar', 'cnt': '1 x', 'price': '18,000'}], 'sub_total': {'subtotal_price': '1,346,000', 'service_price': '100,950', 'tax_price': '144,695', 'etc': '-45'}, 'total': {'total_price': '1,591,600'}}\n" + ] + } + ], + "source": [ + "import json\n", + "\n", + "ground_truth = json.loads(train_example[\"ground_truth\"])\n", + "print(ground_truth[\"gt_parse\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create PyTorch dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-29 14:53:34.445416: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2024-04-29 14:53:35.100124: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", + "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n" + ] + } + ], + "source": [ + "import random\n", + "from typing import Any, List\n", + "\n", + "from torch.utils.data import Dataset\n", + "from transformers import AutoProcessor\n", + "\n", + "added_tokens = []\n", + "processor = AutoProcessor.from_pretrained(\"HuggingFaceM4/idefics2-8b\", do_image_splitting=False)\n", + "\n", + "\n", + "class CustomDataset(Dataset):\n", + " def __init__(self, hf_dataset, split, sort_json_key: bool = True,):\n", + " self.dataset = hf_dataset[split]\n", + " self.split = split\n", + " self.sort_json_key = sort_json_key\n", + "\n", + " ground_truth_token_sequences = []\n", + " for sample in self.dataset:\n", + " ground_truth = json.loads(sample[\"ground_truth\"])\n", + " if \"gt_parses\" in ground_truth: # some datasets have multiple ground truths available, e.g. DocVQA\n", + " assert isinstance(ground_truth[\"gt_parses\"], list)\n", + " ground_truth_jsons = ground_truth[\"gt_parses\"]\n", + " else:\n", + " assert \"gt_parse\" in ground_truth and isinstance(ground_truth[\"gt_parse\"], dict)\n", + " ground_truth_jsons = [ground_truth[\"gt_parse\"]]\n", + "\n", + " ground_truth_token_sequences.append(\n", + " [\n", + " self.json2token(\n", + " ground_truth_json,\n", + " update_special_tokens_for_json_key=self.split == \"train\",\n", + " sort_json_key=self.sort_json_key,\n", + " )\n", + " for ground_truth_json in ground_truth_jsons # load json from list of json\n", + " ]\n", + " )\n", + "\n", + " self.ground_truth_token_sequences = ground_truth_token_sequences\n", + "\n", + " def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):\n", + " \"\"\"\n", + " Convert an ordered JSON object into a token sequence\n", + " \"\"\"\n", + " if type(obj) == dict:\n", + " if len(obj) == 1 and \"text_sequence\" in obj:\n", + " return obj[\"text_sequence\"]\n", + " else:\n", + " output = \"\"\n", + " if sort_json_key:\n", + " keys = sorted(obj.keys(), reverse=True)\n", + " else:\n", + " keys = obj.keys()\n", + " for k in keys:\n", + " if update_special_tokens_for_json_key:\n", + " self.add_tokens([fr\"\", fr\"\"])\n", + " output += (\n", + " fr\"\"\n", + " + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)\n", + " + fr\"\"\n", + " )\n", + " return output\n", + " elif type(obj) == list:\n", + " return r\"\".join(\n", + " [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]\n", + " )\n", + " else:\n", + " obj = str(obj)\n", + " if f\"<{obj}/>\" in added_tokens:\n", + " obj = f\"<{obj}/>\" # for categorical special tokens\n", + " return obj\n", + " \n", + " def add_tokens(self, list_of_tokens: List[str]):\n", + " \"\"\"\n", + " Add special tokens to tokenizer and resize the token embeddings of the decoder\n", + " \"\"\"\n", + " newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)\n", + " if newly_added_num > 0:\n", + " model.resize_token_embeddings(len(processor.tokenizer))\n", + " added_tokens.extend(list_of_tokens)\n", + " \n", + " def __len__(self):\n", + " return len(self.dataset)\n", + " \n", + " def __getitem__(self, idx):\n", + " example = self.dataset[idx]\n", + " image = example[\"image\"]\n", + " target_sequence = random.choice(self.ground_truth_token_sequences[idx]) # can be more than one, e.g., DocVQA\n", + "\n", + " return image, target_sequence" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'train': SplitInfo(name='train', num_bytes=1840803702, num_examples=800, shard_lengths=[400, 400], dataset_name='cord-v2'),\n", + " 'validation': SplitInfo(name='validation', num_bytes=242513269, num_examples=100, shard_lengths=None, dataset_name='cord-v2'),\n", + " 'test': SplitInfo(name='test', num_bytes=235013906, num_examples=100, shard_lengths=None, dataset_name='cord-v2')}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset[\"train\"].info.splits" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "train_dataset = CustomDataset(hf_dataset=dataset, split=\"train\")\n", + "eval_dataset = CustomDataset(hf_dataset=dataset, split=\"validation\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(,\n", + " '1,591,600144,6951,346,000100,950-4575,000Nasi Campur Bali1 x125,000Bbk Bengil Nasi1 x37,000MilkShake Starwb1 x24,000Ice Lemon Tea1 x70,000Nasi Ayam Dewata1 x0Free Ice Tea3 x65,000Organic Green Sa1 x18,000Ice Tea1 x29,000Ice Orange1 x85,000Ayam Suir Bali1 x36,000Tahu Goreng2 x36,000Tempe Goreng2 x40,000.Tahu Telor Asin1 x70,000Nasi Goreng Samb1 x366,000Bbk Panggang Sam3 x92,000Ayam Sambal Hija1 x44,000Hot Tea2 x32,000Ice Kopi1 x40,000Tahu Telor Asin1 x0Free Ice Tea1 x44,000Bebek Street1 x18,000Ice Tea Tawar1 x')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_dataset[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "54" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(added_tokens)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '']\n" + ] + } + ], + "source": [ + "print(added_tokens)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define DataCollator" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "class MyDataCollator:\n", + " def __init__(self, processor):\n", + " self.processor = processor\n", + " self.image_token_id = processor.tokenizer.additional_special_tokens_ids[\n", + " processor.tokenizer.additional_special_tokens.index(\"\")\n", + " ]\n", + "\n", + " def __call__(self, examples):\n", + " texts = []\n", + " images = []\n", + " for example in examples:\n", + " image, ground_truth = example\n", + " messages = [\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\"type\": \"text\", \"text\": \"Extract JSON.\"},\n", + " {\"type\": \"image\"},\n", + " ]\n", + " },\n", + " {\n", + " \"role\": \"assistant\",\n", + " \"content\": [\n", + " {\"type\": \"text\", \"text\": ground_truth}\n", + " ]\n", + " }\n", + " ]\n", + " text = processor.apply_chat_template(messages, add_generation_prompt=False)\n", + " texts.append(text.strip())\n", + " images.append([image])\n", + "\n", + " batch = processor(text=texts, images=images, return_tensors=\"pt\", padding=True)\n", + "\n", + " labels = batch[\"input_ids\"].clone()\n", + " labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id\n", + " batch[\"labels\"] = labels\n", + "\n", + " return batch\n", + "\n", + "data_collator = MyDataCollator(processor)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Verify data (by creating dataloader)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input_ids torch.Size([2, 387])\n", + "attention_mask torch.Size([2, 387])\n", + "pixel_values torch.Size([2, 1, 3, 980, 653])\n", + "pixel_attention_mask torch.Size([2, 1, 980, 653])\n", + "labels torch.Size([2, 387])\n" + ] + } + ], + "source": [ + "from torch.utils.data import DataLoader\n", + "\n", + "train_dataloader = DataLoader(train_dataset, collate_fn=data_collator, batch_size=2, shuffle=True)\n", + "batch = next(iter(train_dataloader))\n", + "for k,v in batch.items():\n", + " print(k,v.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[' User: Extract JSON. \\nAssistant:15.00015.000@15.00015.000Es Kopi Susu1x',\n", + " ' User: Extract JSON. \\nAssistant:70,00070,000070,00070,000Si1ky Lychee2xSi1ky Mango1xSi1ky Cotton Candy1xSi1ky Green Tea1xSi1ky Chocolate1x70,000Puyo 6 (Package)1x']" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "processor.batch_decode(batch[\"input_ids\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "import Levenshtein\n", + "import numpy as np\n", + "\n", + "\n", + "def normalized_levenshtein(s1, s2):\n", + " len_s1, len_s2 = len(s1), len(s2)\n", + " distance = Levenshtein.distance(s1, s2)\n", + " return distance / max(len_s1, len_s2)\n", + "\n", + "def similarity_score(a_ij, o_q_i, tau=0.5):\n", + " nl = normalized_levenshtein(a_ij, o_q_i)\n", + " return 1 - nl if nl < tau else 0\n", + "\n", + "def postprocess_text(preds, labels):\n", + " preds = [pred.strip() for pred in preds]\n", + " labels = [[label.strip()] for label in labels]\n", + "\n", + " return preds, labels\n", + "\n", + "def compute_metrics(eval_preds):\n", + " # Get the predicted and ground truth token sequences\n", + " preds, labels = eval_preds\n", + "\n", + " print(\"Type of preds:\", type(preds))\n", + " print(\"Type of first prediction:\", type(preds))\n", + " print(\"Type of prediction:\", type(preds[0]))\n", + "\n", + " print(\"Type of labels:\", type(labels))\n", + " print(\"Type of first labels:\", type(labels))\n", + " print(\"Type of labels:\", type(labels[0]))\n", + "\n", + " if isinstance(preds, tuple):\n", + " preds = preds[0]\n", + " # Replace -100s used for padding as we can't decode them\n", + " preds = np.where(preds != -100, preds, processor.tokenizer.pad_token_id)\n", + " decoded_preds = processor.batch_decode(preds, skip_special_tokens=True)\n", + " labels = np.where(labels != -100, labels, processor.tokenizer.pad_token_id)\n", + " decoded_labels = processor.batch_decode(labels, skip_special_tokens=True)\n", + "\n", + " # Some simple post-processing\n", + " decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)\n", + "\n", + " assert len(labels) == len(decoded_preds), \"Length of labels and decoded predictions must match.\"\n", + "\n", + " N = len(labels)\n", + " total_score = 0\n", + "\n", + " for i in range(N):\n", + " a_i = labels[i]\n", + " o_q_i = decoded_preds[i]\n", + " if o_q_i == \"\":\n", + " print(\"Warning: Skipped an empty prediction.\")\n", + " max_score = 0\n", + " else:\n", + " max_score = max(similarity_score(a_ij, o_q_i) for a_ij in a_i)\n", + "\n", + " total_score += max_score\n", + "\n", + " return {\"levenshtein\": total_score / N}" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/src/transformers/training_args.py:1463: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + } + ], + "source": [ + "from transformers import TrainingArguments, Trainer\n", + "\n", + "training_args = TrainingArguments(\n", + " num_train_epochs=2,\n", + " per_device_train_batch_size=2,\n", + " per_device_eval_batch_size=8,\n", + " gradient_accumulation_steps=8,\n", + " warmup_steps=50,\n", + " learning_rate=1e-4,\n", + " weight_decay=0.01,\n", + " logging_steps=25,\n", + " output_dir=\"idefics2_ft_tutorial\",\n", + " evaluation_strategy=\"steps\",\n", + " eval_steps=1,\n", + " save_strategy=\"steps\",\n", + " save_steps=250,\n", + " save_total_limit=1,\n", + " # evaluation_strategy=\"epoch\",\n", + " fp16=True,\n", + " # push_to_hub_model_id=\"idefics2-8b-docvqa-finetuned-tutorial\",\n", + " remove_unused_columns=False,\n", + " report_to=\"none\",\n", + " eval_do_concat_batches=False,\n", + ")\n", + "\n", + "# important: we need to disable caching during training\n", + "model.config.use_cache = False\n", + "\n", + "trainer = Trainer(\n", + " model=model,\n", + " args=training_args,\n", + " data_collator=data_collator,\n", + " train_dataset=train_dataset,\n", + " eval_dataset=eval_dataset, # You can also evaluate (loss) on the eval set, note that it will incur some additional GPU memory,\n", + " compute_metrics=compute_metrics,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" + ] + } + ], + "source": [ + "!echo $CUDA_VISIBLE_DEVICES" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.config.use_cache" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inference\n", + "\n", + "Let's see if the model has learned something." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_example = dataset[\"test\"][0]\n", + "test_image = test_example[\"image\"]\n", + "test_image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# prepare image and prompt for the model\n", + "messages = [\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\"type\": \"text\", \"text\": \"Extract JSON.\"},\n", + " {\"type\": \"image\"},\n", + " ]\n", + " },\n", + "]\n", + "prompt = processor.apply_chat_template(messages, add_generation_prompt=True)\n", + "print(prompt)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inputs = processor(text=prompt, images=[test_image], return_tensors=\"pt\")\n", + "inputs = {k: v.to(DEVICE) for k, v in inputs.items()}\n", + "\n", + "# Generate\n", + "generated_ids = model.generate(**inputs, max_new_tokens=500)\n", + "generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)\n", + "\n", + "print(generated_texts)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "\n", + "# let's turn that into JSON\n", + "def token2json(tokens, is_inner_value=False, added_vocab=None):\n", + " \"\"\"\n", + " Convert a (generated) token sequence into an ordered JSON format.\n", + " \"\"\"\n", + " if added_vocab is None:\n", + " added_vocab = processor.tokenizer.get_added_vocab()\n", + "\n", + " output = {}\n", + "\n", + " while tokens:\n", + " start_token = re.search(r\"\", tokens, re.IGNORECASE)\n", + " if start_token is None:\n", + " break\n", + " key = start_token.group(1)\n", + " key_escaped = re.escape(key)\n", + "\n", + " end_token = re.search(rf\"\", tokens, re.IGNORECASE)\n", + " start_token = start_token.group()\n", + " if end_token is None:\n", + " tokens = tokens.replace(start_token, \"\")\n", + " else:\n", + " end_token = end_token.group()\n", + " start_token_escaped = re.escape(start_token)\n", + " end_token_escaped = re.escape(end_token)\n", + " content = re.search(\n", + " f\"{start_token_escaped}(.*?){end_token_escaped}\", tokens, re.IGNORECASE | re.DOTALL\n", + " )\n", + " if content is not None:\n", + " content = content.group(1).strip()\n", + " if r\"\"):\n", + " leaf = leaf.strip()\n", + " if leaf in added_vocab and leaf[0] == \"<\" and leaf[-2:] == \"/>\":\n", + " leaf = leaf[1:-2] # for categorical special tokens\n", + " output[key].append(leaf)\n", + " if len(output[key]) == 1:\n", + " output[key] = output[key][0]\n", + "\n", + " tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()\n", + " if tokens[:6] == r\"\": # non-leaf nodes\n", + " return [output] + token2json(tokens[6:], is_inner_value=True, added_vocab=added_vocab)\n", + "\n", + " if len(output):\n", + " return [output] if is_inner_value else output\n", + " else:\n", + " return [] if is_inner_value else {\"text_sequence\": tokens}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "generated_json = token2json(generated_texts[0])\n", + "print(generated_json)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for key, value in generated_json.items():\n", + " print(key, value)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/src/transformers/models/idefics2/fine_tune_idefics2.py b/src/transformers/models/idefics2/fine_tune_idefics2.py new file mode 100644 index 00000000000000..dedfda82e72563 --- /dev/null +++ b/src/transformers/models/idefics2/fine_tune_idefics2.py @@ -0,0 +1,512 @@ +""" +Fine-tune Idefics2 by tweaking the `Seq2SeqTrainer` class. + +One can run the script using `CUDA_VISIBLE_DEVICES=3 python src/transformers/models/idefics2/fine_tune_idefics2.py`. +""" + +import json +import random +from typing import Any, Dict, List, Optional, Tuple, Union + +import Levenshtein +import numpy as np +import requests +import torch +from datasets import load_dataset +from peft import LoraConfig +from PIL import Image +from torch import nn +from torch.utils.data import Dataset + +from transformers import ( + AutoProcessor, + BitsAndBytesConfig, + GenerationConfig, + Idefics2ForConditionalGeneration, + Seq2SeqTrainer, + Seq2SeqTrainingArguments, +) + + +DEVICE = "cuda:0" +USE_LORA = False +USE_QLORA = True + +## Load model + +# Three options for training, from the lowest precision training to the highest precision training: +# - QLora +# - Standard Lora +# - Full fine-tuning +if USE_QLORA or USE_LORA: + lora_config = LoraConfig( + r=8, + lora_alpha=8, + lora_dropout=0.1, + target_modules=".*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$", + use_dora=False if USE_QLORA else True, + init_lora_weights="gaussian", + ) + if USE_QLORA: + bnb_config = BitsAndBytesConfig( + load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16 + ) + model = Idefics2ForConditionalGeneration.from_pretrained( + "HuggingFaceM4/idefics2-8b", + torch_dtype=torch.float16, + quantization_config=bnb_config if USE_QLORA else None, + ) + model.add_adapter(lora_config) + model.enable_adapters() +else: + model = Idefics2ForConditionalGeneration.from_pretrained( + "HuggingFaceM4/idefics2-8b", + torch_dtype=torch.float16, + _attn_implementation="flash_attention_2", # Only available on A100 or H100 + ).to(DEVICE) + + +## Load dataset +dataset = load_dataset("naver-clova-ix/cord-v2") + +## Create PyTorch dataset +added_tokens = [] +processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b", do_image_splitting=False) + + +class CustomDataset(Dataset): + def __init__( + self, + hf_dataset, + split, + sort_json_key: bool = True, + ): + self.dataset = hf_dataset[split] + self.split = split + self.sort_json_key = sort_json_key + + ground_truth_token_sequences = [] + for sample in self.dataset: + ground_truth = json.loads(sample["ground_truth"]) + if "gt_parses" in ground_truth: # some datasets have multiple ground truths available, e.g. DocVQA + assert isinstance(ground_truth["gt_parses"], list) + ground_truth_jsons = ground_truth["gt_parses"] + else: + assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict) + ground_truth_jsons = [ground_truth["gt_parse"]] + + ground_truth_token_sequences.append( + [ + self.json2token( + ground_truth_json, + update_special_tokens_for_json_key=self.split == "train", + sort_json_key=self.sort_json_key, + ) + for ground_truth_json in ground_truth_jsons # load json from list of json + ] + ) + + self.ground_truth_token_sequences = ground_truth_token_sequences + + def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True): + """ + Convert an ordered JSON object into a token sequence + """ + if type(obj) == dict: + if len(obj) == 1 and "text_sequence" in obj: + return obj["text_sequence"] + else: + output = "" + if sort_json_key: + keys = sorted(obj.keys(), reverse=True) + else: + keys = obj.keys() + for k in keys: + if update_special_tokens_for_json_key: + self.add_tokens([rf"", rf""]) + output += ( + rf"" + + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key) + + rf"" + ) + return output + elif type(obj) == list: + return r"".join( + [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj] + ) + else: + obj = str(obj) + if f"<{obj}/>" in added_tokens: + obj = f"<{obj}/>" # for categorical special tokens + return obj + + def add_tokens(self, list_of_tokens: List[str]): + """ + Add special tokens to tokenizer and resize the token embeddings of the decoder + """ + newly_added_num = processor.tokenizer.add_tokens(list_of_tokens) + if newly_added_num > 0: + model.resize_token_embeddings(len(processor.tokenizer)) + added_tokens.extend(list_of_tokens) + + def __len__(self): + return len(self.dataset) + + def __getitem__(self, idx): + example = self.dataset[idx] + image = example["image"] + target_sequence = random.choice(self.ground_truth_token_sequences[idx]) # can be more than one, e.g., DocVQA + + return image, target_sequence + + +train_dataset = CustomDataset(hf_dataset=dataset, split="train") +eval_dataset = CustomDataset(hf_dataset=dataset, split="validation") + + +## Define data collator +class MyDataCollator: + def __init__(self, processor): + self.processor = processor + self.image_token_id = processor.tokenizer.additional_special_tokens_ids[ + processor.tokenizer.additional_special_tokens.index("") + ] + + def __call__(self, examples): + texts = [] + images = [] + for example in examples: + image, ground_truth = example + messages = [ + { + "role": "user", + "content": [ + {"type": "text", "text": "Extract JSON."}, + {"type": "image"}, + ], + }, + {"role": "assistant", "content": [{"type": "text", "text": ground_truth}]}, + ] + text = processor.apply_chat_template(messages, add_generation_prompt=False) + texts.append(text.strip()) + images.append([image]) + + batch = processor( + text=texts, images=images, return_tensors="pt", truncation=True, padding="max_length", max_length=200 + ) + + labels = batch["input_ids"].clone() + labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id + batch["labels"] = labels + + return batch + + +data_collator = MyDataCollator(processor) + + +## Define metrics + + +def normalized_levenshtein(s1, s2): + len_s1, len_s2 = len(s1), len(s2) + distance = Levenshtein.distance(s1, s2) + return distance / max(len_s1, len_s2) + + +def similarity_score(a_ij, o_q_i, tau=0.5): + nl = normalized_levenshtein(a_ij, o_q_i) + return 1 - nl if nl < tau else 0 + + +def average_normalized_levenshtein_similarity(ground_truth, predicted_answers): + assert len(ground_truth) == len(predicted_answers), "Length of ground_truth and predicted_answers must match." + + N = len(ground_truth) + total_score = 0 + + for i in range(N): + a_i = ground_truth[i] + o_q_i = predicted_answers[i] + if o_q_i == "": + print("Warning: Skipped an empty prediction.") + max_score = 0 + else: + max_score = max(similarity_score(a_ij, o_q_i) for a_ij in a_i) + + total_score += max_score + + return total_score / N + + +def postprocess_text(preds, labels): + preds = [pred.strip() for pred in preds] + labels = [[label.strip()] for label in labels] + + return preds, labels + + +def compute_metrics(eval_preds): + preds, labels = eval_preds + if isinstance(preds, tuple): + preds = preds[0] + # Replace -100s used for padding as we can't decode them + preds = np.where(preds != -100, preds, processor.tokenizer.pad_token_id) + decoded_preds = processor.batch_decode(preds, skip_special_tokens=True) + labels = np.where(labels != -100, labels, processor.tokenizer.pad_token_id) + decoded_labels = processor.batch_decode(labels, skip_special_tokens=True) + + print("Decoded predictions:", decoded_preds) + print("Decoded labels:", decoded_labels) + + # Some simple post-processing + decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) + + score = average_normalized_levenshtein_similarity(decoded_labels, decoded_preds) + result = {"levenshtein": score} + + prediction_lens = [np.count_nonzero(pred != processor.tokenizer.pad_token_id) for pred in preds] + result["gen_len"] = np.mean(prediction_lens) + result = {k: round(v, 4) for k, v in result.items()} + return result + + +# def compute_metrics(eval_preds): +# # Get the predicted and ground truth token sequences +# # These are lists as they have different shapes for each batch +# # We explicitly pass `eval_do_concat_batches=False` to the trainer +# # TODO we could also just pad the input_ids/labels in the data collator +# preds, labels = eval_preds + +# final_preds = [] +# final_labels = [] +# for batch_pred, batch_label in zip(preds, labels): +# if isinstance(batch_pred, tuple): +# batch_pred = batch_pred[0] + +# # Decode the generated ids and labels +# decoded_preds = processor.batch_decode(batch_pred, skip_special_tokens=True) +# decoded_labels = processor.batch_decode(batch_label, skip_special_tokens=True) + +# # Some simple post-processing +# decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) + +# final_preds.extend(decoded_preds) +# final_labels.extend(decoded_labels) + +# N = len(final_labels) +# total_score = 0 + +# for i in range(N): +# a_i = final_labels[i] +# o_q_i = final_preds[i] +# if o_q_i == "": +# print("Warning: Skipped an empty prediction.") +# max_score = 0 +# else: +# max_score = max(similarity_score(a_ij, o_q_i) for a_ij in a_i) + +# total_score += max_score + +# return {"levenshtein": total_score / N} + + +## Define Training Arguments and Trainer + +generation_config = GenerationConfig.from_pretrained("HuggingFaceM4/idefics2-8b", max_new_tokens=500) + +training_args = Seq2SeqTrainingArguments( + num_train_epochs=2, + per_device_train_batch_size=2, + per_device_eval_batch_size=8, + gradient_accumulation_steps=8, + warmup_steps=50, + learning_rate=1e-4, + weight_decay=0.01, + logging_steps=25, + output_dir="idefics2_ft_tutorial", + eval_strategy="epoch", + save_strategy="steps", + save_steps=250, + save_total_limit=1, + # evaluation_strategy="epoch", + fp16=True, + # push_to_hub_model_id="idefics2-8b-docvqa-finetuned-tutorial", + remove_unused_columns=False, + report_to="none", + # eval_do_concat_batches=False, + predict_with_generate=True, + generation_config=generation_config, +) + +# important: we need to disable caching during training +# otherwise the model generates past_key_values which is of type DynamicCache +model.config.use_cache = False + + +class Idefics2Trainer(Seq2SeqTrainer): + def prediction_step( + self, + model: nn.Module, + inputs: Dict[str, Union[torch.Tensor, Any]], + prediction_loss_only: bool, + ignore_keys: Optional[List[str]] = None, + **gen_kwargs, + ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: + """ + Perform an evaluation step on `model` using `inputs`. + + Subclass and override to inject custom behavior. + + Args: + model (`nn.Module`): + The model to evaluate. + inputs (`Dict[str, Union[torch.Tensor, Any]]`): + The inputs and targets of the model. + + The dictionary will be unpacked before being fed to the model. Most models expect the targets under the + argument `labels`. Check your model's documentation for all accepted arguments. + prediction_loss_only (`bool`): + Whether or not to return the loss only. + gen_kwargs: + Additional `generate` specific kwargs. + + Return: + Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and + labels (each being optional). + """ + if not self.args.predict_with_generate or prediction_loss_only: + return super().prediction_step( + model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys + ) + + has_labels = "labels" in inputs + inputs = self._prepare_inputs(inputs) + + # Priority (handled in generate): + # non-`None` gen_kwargs > model.generation_config > default GenerationConfig() + if len(gen_kwargs) == 0 and hasattr(self, "_gen_kwargs"): + gen_kwargs = self._gen_kwargs.copy() + if "num_beams" in gen_kwargs and gen_kwargs["num_beams"] is None: + gen_kwargs.pop("num_beams") + if "max_length" in gen_kwargs and gen_kwargs["max_length"] is None: + gen_kwargs.pop("max_length") + + default_synced_gpus = False + gen_kwargs["synced_gpus"] = ( + gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus + ) + + generation_inputs = inputs.copy() + # If the `decoder_input_ids` was created from `labels`, evict the former, so that the model can freely generate + # (otherwise, it would continue generating from the padded `decoder_input_ids`) + if ( + "labels" in generation_inputs + and "decoder_input_ids" in generation_inputs + and generation_inputs["labels"].shape == generation_inputs["decoder_input_ids"].shape + ): + generation_inputs = { + k: v for k, v in inputs.items() if k not in ("decoder_input_ids", "decoder_attention_mask") + } + + # here we need to overwrite the input_ids to only include the prompt + processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b", do_image_splitting=False) + + # use dummy image + # we can do this since each image is always turned into 64 image tokens + url = "https://upload.wikimedia.org/wikipedia/commons/f/f3/Zinedine_Zidane_by_Tasnim_03.jpg" + test_image = Image.open(requests.get(url, stream=True).raw) + + # prepare prompt for the model + messages = [ + { + "role": "user", + "content": [ + {"type": "text", "text": "Extract JSON."}, + {"type": "image"}, + ], + }, + ] + prompt = processor.apply_chat_template(messages, add_generation_prompt=True) + processor_inputs = processor(text=prompt, images=[test_image], return_tensors="pt") + custom_inputs = {} + batch_size = generation_inputs["pixel_values"].shape[0] + device = generation_inputs["pixel_values"].device + custom_inputs["input_ids"] = processor_inputs.input_ids.repeat(batch_size, 1).to( + device + ) # repeat along batch dimension + custom_inputs["attention_mask"] = processor_inputs.attention_mask.repeat(batch_size, 1).to( + device + ) # repeat along batch dimension + custom_inputs["pixel_values"] = generation_inputs["pixel_values"] + custom_inputs["pixel_attention_mask"] = generation_inputs["pixel_attention_mask"] + + # print("Custom inputs:") + # for k,v in custom_inputs.items(): + # if isinstance(v, torch.Tensor): + # print(k,v.shape) + + generated_tokens = self.model.generate(**custom_inputs, **gen_kwargs) + + # Strip the prompt from the generated_tokens + generated_tokens = generated_tokens[:, custom_inputs["input_ids"].size(1) :] + + # Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop + # TODO: remove this hack when the legacy code that initializes generation_config from a model config is + # removed in https://github.com/huggingface/transformers/blob/98d88b23f54e5a23e741833f1e973fdf600cc2c5/src/transformers/generation/utils.py#L1183 + if self.model.generation_config._from_model_config: + self.model.generation_config._from_model_config = False + + # Retrieves GenerationConfig from model.generation_config + gen_config = self.model.generation_config + # in case the batch is shorter than max length, the output should be padded + if generated_tokens.shape[-1] < gen_config.max_length: + generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_length) + elif gen_config.max_new_tokens is not None and generated_tokens.shape[-1] < gen_config.max_new_tokens + 1: + generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_new_tokens + 1) + + with torch.no_grad(): + if has_labels: + with self.compute_loss_context_manager(): + outputs = model(**inputs) + if self.label_smoother is not None: + loss = self.label_smoother(outputs, inputs["labels"]).mean().detach() + else: + loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach() + else: + loss = None + + if self.args.prediction_loss_only: + return loss, None, None + + if has_labels: + labels = inputs["labels"] + if labels.shape[-1] < gen_config.max_length: + labels = self._pad_tensors_to_max_len(labels, gen_config.max_length) + elif gen_config.max_new_tokens is not None and labels.shape[-1] < gen_config.max_new_tokens + 1: + labels = self._pad_tensors_to_max_len(labels, gen_config.max_new_tokens + 1) + else: + labels = None + + return loss, generated_tokens, labels + + def _pad_tensors_to_max_len(self, tensor, max_length): + pad_token_id = processor.tokenizer.pad_token_id + + padded_tensor = pad_token_id * torch.ones( + (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device + ) + padded_tensor[:, : tensor.shape[-1]] = tensor + return padded_tensor + + +trainer = Idefics2Trainer( + model=model, + args=training_args, + data_collator=data_collator, + train_dataset=train_dataset, + eval_dataset=eval_dataset, + compute_metrics=compute_metrics, +) + +trainer.train() diff --git a/src/transformers/models/idefics2/fine_tune_idefics2_pl.ipynb b/src/transformers/models/idefics2/fine_tune_idefics2_pl.ipynb new file mode 100644 index 00000000000000..5541a2e6b2e9b8 --- /dev/null +++ b/src/transformers/models/idefics2/fine_tune_idefics2_pl.ipynb @@ -0,0 +1,970 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/env/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "from datasets import load_dataset\n", + "\n", + "dataset = load_dataset(\"naver-clova-ix/cord-v2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 800\n", + " })\n", + " validation: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 100\n", + " })\n", + " test: Dataset({\n", + " features: ['image', 'ground_truth'],\n", + " num_rows: 100\n", + " })\n", + "})" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's take a look at the first training example:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGEAQMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDjPEglh0v7VEPngYOM/l/WuNk8S6vIpX7WVU8bVUYrVv8Axn9us5rb7AAkilcmTJ5/CuWC59qmK7ms5XejJEuJkQosrKp6gHGaRG+bJJqSOEOcZANdJ4UsLSXVWS6iSQhcqGGRnNNshK7NHwZLGsk0Qxk4au9vIwdNklxnYu/8uazLnS4La4gu4IkjP3G2KBkVvRYlsyh6Fcfpis3qbrRDLWRWtgQflIzWPpjGW7KHHDuOPQE1Qt/Etnp9l9mup1SZAUxyeQcU7wjeR3+ozshyMsw9s4pdQudYsYAzipFWpQgApwWqGMWP5uakC0uKcBQAgFOoApwGKQCCl70tHFABThTadzQA7FOxTQeafQAlApcUYoAKZIgkjaMjIYFSPrT6OlAHz+9ykMrp5aqUYqRjpg1JBcSXkwht7VppG6Kgyat63p6Qa7fqvUXD9/8AaNS+Fboab4ggdyPLlPlvn36frirMeo3UPDOt2Nm169kywAZY7gSv1FYJSZz1r6GiZJoCrBWUjGCOorxzUNNn/tm9sLGxlkMUrBfLQnAzkfoaSZTVjnlteQWbFbs/i3VBZrbwzLGirtyoGSOnesq6gu7WZoZ7aSGQdVk4NUxFK5yQcetMk9e8Gal9u8PW5dsyR5jb8P8A62K3xIIrsqT/AKxQQPpXkGj67caJbPFCFbed2W7Gr2m+L7+78TWRu5FMW/y9qrjAbj+eKlotSPYAQwzRVUSnAwOKKmxZ81bSTwDTljYnsPrTlySMVaLoFwSv6Vrc5izo2h3OrXLRQyKmwZLGtyPSbzQNfsmmIaOVtu5Rx9KoeH9fTRrqR2Rniccqo71rar4vTVIYo0snj2yBw7OOx9KjW5rHlsegTRmXS29VG78qnsAZIRj0zTrXEtiR/eSl0o4t156cH/P50jQ8f8XW32XxXepjAdg4/EZ/nmui+G8o/ti4izyYN35ED+tdDqem28niuK5liV90GBuGeVP/ANcVf0+0ij1zzo0VT5DLwMdx/hVX0M1HW5u0oFKKXpSNAxzTgKaGGaeMYzQAUZHqKRmUjAqPFAEuR60bgOpqNRk0Pz0oAk3L604MD3qvTlODRYCyKeKjVuKUSCgCSimhgaX8aBBS0lLQB5Tf6Pb3/wASb60upXSORhIoQ4LEqDjP510epfDvT5bAyaaHgvE+ZHZywJHY5rL8Y6XqcXicaxZWryRRJHIzpjgr1469BXfaXdC5tI5FOVdAwptkpFTSpTNZQuRgsgJHofSpI0jgvJsABpCHP8v6VHaRG0vLi3/h3l0+jc/zzVHWbk2Ws6ZKTiKcvA/1Iyv6gj8aRRW8d6ZDd+H5L0RAz22HDY5255H0xz+FeVTuWTzAreXgcheK942JdWjxSKGR1KkEcEGoY7S2ksPszQR+Xt2lNvHp0oTsJxueAnzJDhFNT21rJDPHOSoKMGGfar0lncQ6tdWlvayymKV0UIhPQ8dqzrxbuGQxzxSRv/ddSP51RmdQfG2pqdomjAHYJRXHbJTzgUUWDmZT2ccE/SgKAeRXo3g3wvYzWMd7cxLM0mcBxkAZ9PwpPH+iWljp0F1bW8cREgQ7FxwQf8KVw5NLnnqkA9DUwlGAMEfrULHjnn6mkGW+6pP0FMk7e18fXNtaxQR2aOyqFLyP1P0Fdd4S1JtQ0sTSBQ/mMGC9Bz/9evH41k8wLgKR/fbaK6Tw34mTRFnjmDyIx3KI+ee/9KTRal3PStQCfaoJCQCCVH4j/wCtUtlj+0cj/nmf51wo8YNql/axC18pTMPmL5Pp6V3GmlTfgZyfLP8ASlYtO5rl8dqTfntT9gPamkBT0/WmMaPpUqnjGKZx6Cnj6CgBdoHrRge9L94fSmZOaQDvujNM60/OR0pAOelMBMD3pRj0P508KMU3HtQA4MB2o49DSfhSj6UAKGAPQ08tgZxTQPapNoI5oAFbd2p4poAXpS5pANY5k2HB3L0rJ0gfZZJrPoIJCFH+yeR/PH4VpysEnjPqDWZdyeR4ggbotzGU/wCBLyP0J/KkBB4wvrjR7FNUtYVkKHY4Y4AB6H8/515nrXifVNTjh8+SPYjiVQiY2sPevXNds/7U8O3dqPvSRMF+uOK8x0vwBqmp2PmvPDAGGVByT+NUrEO56VoN6l9ptvcqeJYw304q8CEndT35Fcf4HM9nZ3GmXQ2z2cxQj2PI/nXV3D7SknYHB/GpZSK7yW9pNIWCJuO8np9a4P4h3dhe2lsbaeGW5jc8RsCQpHOcfhW14+tFufD7XGSHtmDjHcdCP6/hXmC3q+Xh0zj0FUl1FJ9Cntl/umipzex5+6R+H/16KZmejeEILzTIpNPvAA0TZXByMHn/ABrS8W6f/aehvFzkOjcf7wz+mavXvlw3luxwGkJTPrxn/Gp7v/kHyt6IT/WoubWMfT/Cuk29mI1sYXIHLuu4n8TXlWrebZ6reWcbmOOKZlwvHGa9usW3wgjuM1xlz4Mg1PxZfy3MrrEWVwicE5X1+oqkyZLseaZ5Pf3NGcV3HjXwpYaJpcN1ZIwJlCPuYnqD/hXDjpyeKpGbViSKVkdWXgqcg+9el+C9fbVNcNuYioW3ZixOckEf415h5gHArsvhnJu8VOOebZ/5rQxxep62xI6VHkk81PikxUGpHinoPUCnjApaAGZOcYFDKB0FScUdcg9KAIefSnlflzjmpQB6UuOKdwIBmngU8AU4AUARYpdtTYHpSYFFwIgOafkg0/A9KUdM0AN7UdDTsUhFIClfyCIQOxx8+38xWB4n1G2gtIJ/PjM0E6SBQwyRnB4+hNWPHKA+F5ZCzL5ciNlTg9cf1rx+eRHPA6dMU7Et2PfbaUSwgg8MM1W0wiGSe36COQgD2PI/Q1k+E9TW60K0d2+ZYwjEnuOKW41W3h8UQQxzRuLqEg7HBwynIz+BP5UrDuXrzThb64NRi4W4jEco/wBpT8p/IkflVi6j+0WMsO4qXUqGHUe9WbiP7VZNHnDEZU+hHINee3/ji7tDLAunqJImKP5sncdeBRuF0jir+4uJGeKe6mkdGKOGkJGQfTNZu1M9yfapLhpbieWZtoMjlj6cnNQvFJ17VRkO8mPuW/L/AOvRU8F8kUKo1nbuR/EynJ/WigD13xN8ukmcEgwSJJkex5/TNZl14u0l9JlQ3SiV0ZdnfNdFqluLvSriI9JImX8xXgYDKxB+8Dg/WpSuaSlY9w8NXIudKtpM53Rj+VWJF2a4G7SRfqD/APXrn/AV35ujIhxuiYof5/4V0WqHypLa47B9p+jcfzxQxoy/Gtl9u8OSRdDvQg+nzD/GseH4e6THZqZ2mkl7kvgfgK63Ubcahpk9sW2mRCAw7GvNLnx7qMYNqtvEjx/I7SZJJHB47U1cUrdTB8QaXFpOry20WTFgMhPoa3fhs3/FWKPW3k/pXM399PqVyZ7hwzn0GMCuj+HW1fGEHOcxSD/x2q6Ga3PYW3ZG1gPXIzSYkx95M/7v/wBenEgUm9fWoNxMSf3l/wC+f/r0v73H3k/75/8Ar0odfWh/uEigQuJOcMv/AHz/APXpQJP7y/8AfJ/xqOJjnmps0AH7wY+ZPy/+vTgJMfeX8v8A69JTqAGlXz1X8qdh/wC8v/fP/wBelzSjmgBuH9V/KlxJ6p+Rp1KSBQAgD+q/lS4k9V/KkDrTwRQAihx1KkewpSuaAwp4oA5zxpCZvCGpIPvCMMPwYGvG47cbPmQc9zk17rr9s11oN/DGhd3gcKo6sccCvCdQjvrO4NvdQNDIADsbsD0qkZyJxdLBB5KySMg52b/lz9Kq2d2bPVre7Q4ZJVbj681GkTSdW/Kplt41wX5I9TTJPZv+Eh06CHfcXkMQIz8zjOPpXk/inU4bvxDdzWbrJA5GHXoTgZNUZZ0VSqgc9feqjBTz/PiklYpu5F5pJ5JFbPhmxs9W1mOzu53RHHy7RgsfSsxIvNYIgLMeiryT+VaUOia1pjR6mLC4SKBhJvZcYwaZKPTR8P8Aw+QM2zE+pkb/ABorbtbtZrWKUNw6hh9KKjU1sBIaHHtXFaH4Y01tVvnurdJWSdwFcZABOR+hrr7dt8Q+lVIIhBqlwR/y1KsfrjH9KEBVisINJ1QpbRrFFMu7aowMj/Iq/qoMukzY5ZU3D6jkfypdVVfKiuCceW2SfY8U5HVocE5BFIZy6+PtHihVXkld8chEzj8a831me3vNWubm1DiOVy4DLjGev60zVrf7BrF3bAcRysF+mcj9KqbxnoatKxjJthsJ7mup+H3yeMrTJ6pIP/HDXOwwTTSIkcZLMcAZruPCfhu907xHZXdw0QVS2VUknlSP602EVqenvjucUzaP7wpzkHvTQV9ak2F24GcinhlIxmkBBGAabgKetAEi7R0pd4BpikCkOCaAJt4NL5i+9RClAyaAJPMFPVw3SoSmO9OQhaAJx1oIzTd4NAcZpAL5Y9acBgUdaWgAC808U2nCgBW5Uj2rzL4nadJJc6bcwRM7uGiIUZJ7j+temkcVj6t5a2K3Uqgi2YSfTHB/Q0XsxNXPKIPBviGS181bHaMZw7Lk/QVzuJnlMb/IQcEHsfpXtz+KtHgixJfxA4+6p3H8hXkGsKbrW7y5tVP2eWUupIxnPP8AOqTuZtWKv2JFQszkn06VSkjMZzk4PfFXfJmBySB9KilhJPzsSfSmIveFr0WXiG0kfBjL7Wz6HivWtT8RaPb2LJc3kADKRs3ZJ46YFeKHbGODg/SoXfNJq407HpWi+KbKHSLeKVsMgK49gSB+mKK83XeVGFOKKLDuz0fT/HenQabE1zKxn2fMiKSc1c0fxFBrerS/Z1kCpGPvjHc15EZBnoK2/C+srpWrLLI22F12OfTuDRYFNnsepQ/bNJuYAeXiYL9ccV483irWwoiF88YXjCgD9etdxJ8QdIiQopmlPqkfH64rzO/kiub+eaBWWOSQsobGQCc0kgk+w2aWS5maaaUySNyzE8mmYHehUBGCW/OporZS67mITPOPSqILGnzLb3cExGPLkVj9M16/aFWvrVlxgnj8qyLfwlof2EbLRWZlyHZiTWhpp8qW2jP/ACzbZz+VJs0irHSMu7vTTGR3oYKw+Y8fXFJ5Sk9/X7xpFj0GD1pxXdyKi8tM9D+ZpwWMYB7f7VAEgjpdnNM2R917Y6mkKxAbiBjHXNAEoWnqmO9Q7IiMhQc0oWLP3F60ATlQe9G0etRBYSuQq/L7dKVfJxkKvTpjn8qAJAqj+KjCg/eH50wLGSQEXP0p4VP7q+vSkA/ev94fnS+Yg/jX86iZkjIBUc9wKVZEKbwMg9OKAJPNT++v51IDUHmx+h9uKlByM0CH1nOkd1aTW8vKOGRh7Hg1fzXjuseJtVg13UbVL54oo7h1URgAgBj+NFribsctPusr2aDPzRSMhPrg4pTfSn7zEn35qeWNZZWkdy7udxY8kn1qMpCPQfU/4VZmRG8kPGep9hXbaT8Pb7UYFlvL6KBWGVCJuI/kK4kxRuT5YMhHZBk17B4I1E3fh62DcvEDEc9eOP5UmVFHm3iPwpNoGoC3eTzYXG6OXpuHf8RWL5KRn19zXsHjnR7vWILCOzKLIJiCznAAI/8ArVy2ofDXU4rJriG7inkA3GJVIJ+houDRxHmAcZopfsh75Bopkmafn5OOPQUblXtXfS/DN4rKSVtQMkqqWCKmBXAEKDgKKSYNNCmX0FAdj2NKlWI34weaYhkMU00iRomWcgAZ7muwtfAGsyW++SS3iz/CWJP6CubtrkW9zFMMZjcMB64Nenjx3oqQqDO7uRnbHGTj+lJtlRS6k/h7zI9Kit7n/Ww5jb3xSsRDqKgHguD+v/1qztD1qPVL69Masq7gw3DGQeP6VdvyY54ZP9r/AD/KpLOjb54yuQM9zUjrvGM4qoW8yNlBAyO9TnLpgNg+tMompkihnUlwp7e9ANMlUOVJcLj9aEAqQ7cfvATg9utP42iPeNwA/wA4qKOIRspMg4zx0olRHfJkAyvSmArW+9izOTn2p6wDOS/JPYU37KgQhSMnjkVMIsZG/uD0pAKgSNfLyFBFBhjXkORwR1H40xxHIwO4g9B2p4gjAUiU8gjqOaBEqAKchicgDmpA1RIV+4G3FRz604UhiM6cMd3BIyB0oUxlA4LbT6nvn+dMIVWGS5yxIwe9C7Cm758dME8k5pgP3RD+E1YBGOKqb4iPuk5qwCCAR0oYD814X4ntg3ivVCJNqm4Y8KT35r3LNeJeJrwp4m1JAv3bhug96aImYhgO7kuyD14pZdmAFtVUAg7i5JP51J9sdjgRfpXS2XgbXdSgEvkw26MMgvJyR9BmmQek+F/sMmjW01pbxRpLGDhVA+opYtOi03UbjyBtS5fzto6BsAHH5A1j+CorrSYrnSLzHm2smVKngq3II9s7q6fUR8kU46o3P0NQaIjv5kjt45WAAVxyfc4/rViE74+TWT4gXzPDl8AcEQllPoRyP1FSaHqC3+m21yp4ljDfjjmgDzLXPDGtDXL02dkZLdpWZGDAcHn196K9beEM5PHNFHMLlR53cfEfSljKxQ3ExxjIUKD+ZzXmNxskuJJI12IzEhc9B6VACwp2WPYfnVJWIbbHKme9PKjHf86taTpcuqahHapIqF+S3XArv7f4cad5GZr2eSTH8ICjNO4KLZ5sNo6CpY3Cn0NPvrX7Df3FoRkxSFMn2NQYApiN/wAO6xHpmoNJK2InTa3Ga29Q8V210EWBJThxlmGAOa4TzAKcs3BAByaVhqTPcIyXgUg/eUfyq4FLxABucDkVzmkXrzaPZu2NzQrnP0rSilkaFV3jgAZAqTY2V6UyRFYgswGOBn1qlHM6qATnA61YEyvhSwU5zz7c0gJ/KYgDcMZJ+760ggG7BfjGCMdfrTRADtO77pzwOtSNHv3HeQrLg4FMQLbqGJ8ztjHoKniREZmU5JPPtVeOCPAYScY68VNEiRn5SD60MBEiiBOGwdx6gDmpY4I/LIB3ds5qLETtktjDd+Of8ipovLhG3d1yeTQALCqHK5p1LkMAVIORmkqRkUhAKlgevY9PrSAoyhxnbjaBTpNo2swJx6Gm/uyu7aRjjb+NMQgaIf8ALM88flVlTkAjpVUtHjiPOeKsAjAI6dqGMkzxXiXilI/+Ep1PJwfPava68Y1yKObx3eRzMwie72sQexxTiRMwZFRef517T4H1T+0PDtqznLxjy2PuOP5fzp+neGNDtIQI9PgZv77ruP5ms3w+sOl+JNV0uD5YgyzovpuHI/MChu4JWNTUx9l8T2dwBhLmJoG/3h8y/purYkX7RZPHnG5SM+lZfiYFdKF2o+a1lSb8Afm/QmtK0cPH1z3pDPF9V1nWnM9pdahMDG5jZFO0HHGMDrXYfDq+87R2ty2WgkK/geR/M0l94AbVPEd/cPe+TBI4fYqZJyBn9c0ui6FJ4W8SS2YlaS2uYd8Tt1JU8g/99VV0SrpneA5GaKjVxtFFQWfNOVHfFG5expYtsZyY0f8A3smuo8HCG41+MSxRcRkqAnfitDFK5neHbiaw1i3uTDJ5e7azbTjB4r16C43wipLmCK5s3hdBsZSMY6VlWcpVNhPK/KfwqG7msVY5DVfDFxq3i66WGRIkcLIWYZ6jH8xTNc8CJo+kyXq3jztHgsNgUYziuzEgXUQ2OWTGfof/AK9Sa7H9r0G7hHJeJgPrincTijxsFCpCwoM9zkmgPs4DYz1rc0/wfquoW6zKscUbYwXbnH0rN1fSJtHvzazOHbaGDL0INVoZ2Z6B4cff4esz/skfkTWtEMxbVYHtkVieEsHw5bj+6zj/AMeNbUajYRuzknmpN1sW0baoXPQUr7WA3PtANRxqFQDOaVwnBY4ANIZpQxK6q2/ndnOKsLGBEULZBzyBjGaz4I4mT7wBLbs+tXIVjiUqrjk9zTJHLFGQSJCFYdz7+9SKkcA35JGMZAz/ACqNI4yqp5mSV9sn3p+6JV8otjaO9DAUxwk5Z8/N0yPypyQxgjGePU1AVtwSS/Vs9e9T+apQupyB1xQBaRFwG5Jxjk0MOeKhtp1chQeSM4NWCM1LGRlQeozTTGmRx2xQ8gQgHqelMEuY923B6bc0wFfYq/cBzxipFIKgioDOCMFM+x9anUggEd6AFNeM+Joj/wAJTqTFgP35Ir2fivFPFcjDxTqYyeJz3xTiRMlm8Uaw0HlC/kRcYwny/rUvg3UZE8WRyXEzyGZWRndiSe45P0rm1DueBVu2jkt5knSTy5EOVb0qrEXPdbvyrnT5oJACrxsp+mKoeGbsXWkWr7txCbCfdeD/ACNeQahq17cR7Jb64kHfLkD8uldx8OL4No8luT80Uxx9Dg/41NtC07s7tm2Xw9HX+VQaxaCWOC6X79u+4fQjBH6/pVPWNTSzuNP3HiabyifTIOP1ArXRxLCVbkMMGpGU0OUHNFc1eeJoNMvJbKdZvMhO0lYyQfQ/liimF0eRaZpd7q1z9ntYVZwMks2ABXU2PhLVdFu7e/lkg2xuNyoxJweD296zvBV+LfXkjPImUp+PX+leo3oE9hIg6lTim2TGK3HxS74AK52ObydYurdjgEiRfoRj+YNalhNvtlPcrXJeNJZ9PvLa9tm2s6mMnH4j+tT1Lbtqb88gjv7ZvUkVqE74sHkEYNeWWmt3s+pWzXNwzqJBwcY5+len27b4abVhJ3G6MQLAR45QlPyOK47xtp013rVoLdcySIV5OOhz/WutsnEd5cQ/7W7H1H+NUPEx+zRW1+BxBIN3+6eD/MUJ6g1oReHbGfTtIW3uNpcOx+U5GDWmirhgDnJOfaqmk30F/bu8MgcK+0keuKuALlsEk55zQUtiWEBUCq2QKdIAVySRjnIqKDaq4Q5HWpmI8ttwO3HOKBk0McQhKCRVOcknGatBEiIPzHcevXmoAtuIvmYgcEgnoassyLtyCR1GP8+9MklhMS7dkhPYc9alMS7y2DuPNVYxbx7WHbO081OJ48ZJP5GhgPEEZ5K8k5696cEVQQBwetOUggEHgilxSuMjSNI5Q4X5h3zV0nK57VTYVLA/VG/ChgJNsGCyg+57d6ijkQxbiqg4I2+1TTHaVwqsSeATz+FQB12Z2KrYOF6cZ/lTEL5w/wCea89/p/SrAOQCKq+accKPTntVgHgdjSYyVa8i+IFmln4oeQDAuIxKfr0P8q9dXtWXqOjWd7q9tdXFvHKyRlRvXOOcihOxMlc8WDlIg6xsQf4scfnUcjTlSeB/sg8/kK941fSbfUdAubPykRWjOzaoG1sZBrwWIgSYbj1qk7kNWHRQGQZffz2Xj9f/AK1amnX91oyyC2nWMSYPQHGPrWXJdDOF5HbNQkyPyAMflTEaN7rN9d3Ecs97NL5Th0Vm4BHfHSvZ9Lv47q0hlQja6BvzFeFJbSSdSB9BW7DrepWVokEd55aIuAEwDSaGnY9amFu8rM8KM3clRRXiUmqanI5dtTu8n/pof8aKOUfMj0HUtL06xhjntrWKFomBBRQO9aQfdbZBryu48T6rexmOa5Pln+FVAFej6XcCfTom3A7owf0qWik09hunPgvH/dcisnxvatPogdBlo5FP58f1rQtmCalPH3OGx+FWdYt/P0u4jxklCR9RyKXUb1RwFv4L1WWD7QTFGANwGcn9K7vSJS9tHv8AvbQD9a0NPxJYxHHVAf0rPhX7NezR/wAO7cv0PP8AOm3cSSRHdsbTXLeQfcuFMZ9iOR/M1a1m3W90W6hIzujOPr2rO8YI50M3ELFZLd1kUjt2P864F9c1KdCsl/NtPGN2B+lCVwcrHU+Axu068XuJR/KupWPDPtBzxmua+HqlrfUDkFd6fng12SqBIw2kHue1D3HF6FKJQpIX15+tTYARt/3cc1ajVDnaO/P1qbyVKn5AR6UdSiNfIMPzA4xkjJqdPLlOAMlakEcW0Ex8soO3r3/+vUsUaEEooGevFMkroYpMEpgjgA1IixO33CSVBPHFKvlgcxKMc8CpFZVYKImBx0AFACfaFVmVlIxwMd6ergkD1JHWnR7JGYBBkYPIHNTCNQegH4UgI2XioGJVgR2q6VprQg0hkEkg/dsFUk+vampIJEDkLvweByMf4UrB7Z14yjHnjJp6yF0DhCHI6YqhEXnPn7o/L/PWrIXIzjmmnzeoXA+lWUQkDKkHHSkwIwvNUdTn+zyWT5wGmKH8QcfqK1PLI6VxnjPXLO2tzai4X7ZDMknl9xgg0gZ2ML+ZHiuT07wXosV5M8tqsr+axHmEkAZz0+hrodMmE0KOpyrLkGkkXytSJ7OA349DSEec/ErRrXTpbK7tIUiWQGN1RcDI5H9a4iKVAMk4r2zxZpltqOnQfa03xRXCOwz2Py/1qXT9D0e0i/0ewtk46iMZ/OrUtCXG7PDXvix2oufw/wD10zFzJwE2j3/wrd8ZWkGl+KbmO3VVjfEgUdBnqPzzWL9sbGNxx6Af/qqiCuYpgTRUhfJyM0UAZ6o2a1YNd1G2tkt4rpo41GBtAz+dZqrLI22ONif5UCBjJtkkVPUk5x+VAHV+FtReTWH8+Z3aSPq7EkkGvQJJVa356YxXkNs0FhcxzwTvNIjZ4TaP1rck8Z3bR+XHBGg9SSxqWrlxlZanoWkSCSzjK9MYqjrlwLHUbV2wEmyhJ7Ecj+tV/C155ukwOWBY5zj6mjxzEtx4ckf+KJlcH9D+hpdSr6XG6nqmnTabNby3kIEkZUjdk9K82jt7fZukumDf3UjJ/WoBKoGMUvmjsKtKxm5XPRPhyoFpqABJHmJ1+hrtY41ErfLyRyfWuK+Gx3Wd+2DjzFH6Gu5iCCR8LhuMn1qXuaR2FREJO0d+eKmC4HFNjZWB2jHOD9aecgEjH40iiRZYlC7o/mKjoM0/zY1+6hyT2AqqJhlfkBfA6fyq1bzo2cKPU8UxCyARlcRrjr0pd+VL7M7ep4qRJyWAK5yTyBjFKJnwPkycehFAEYZVBk2YJ96tCMUyQv5YAUFj1oEkhOChHPp2oEP2LnpTtgHamKzYy4APtTvMUipGJJuAGzOc84FCvIU+ZMPyAcU2QM6/u2wc5pw3rnvk9c9PemIXM2O+Pwzj/GpVyVG7hsc4qDy5D/Fj8akQFVAJ/WhjJK8g+IsYh8TyEj/WxJJ09tv/ALLXr4rH1LQNN1TUI7i8tEmkWPYpfkAZz0/GhOwmrmT4MvRdaFatnlVCH8OK2dTYpJbyjoWKH8R/9asTSrNNI1O8sY12RbxLEOwVh/iDW7qI83S3cfej+cfhzSY0NvIRqOjT24OGkiIB9Djj9a8mTxvrUCm28yKLZ8jHZlgRx3rv4fFmk29t+8vYQcE43ZP5D615FrTi71y9uLUHyJZmdCBjgnNOKIk7bE147X9wbm7uGmlbq7f5xUPlQr1YD3/zxVLypcdwaaYJOp/MmrILpWA9CP8AvqitnTJ/Dy6dCt7abrkAhzjOef8ACigdjN8aWy23iedY12o6q4A4HT/61YJITtXpuv8AhpNb161LytEnlMGKjJ4P/wBesTxV4T0/RdGFxbGVpRIoLO2cg1KY5Re5xZlJ6ZpMs1KMU7zFHaqINvQ9ek0mNoyjSLnKjOMVe1Lxfc6haPbfZ40jddpOSTiuV870FGZG6CixXM9iYKvoKeGUelQCKVutbGg6EmqzSJLOUEYBwOpzQJK53Xw6AbR7tx3nx/46K7BMb3woBGMn1rG8LaZb6Tp0kEBYq0pYljk5wK20I3sNqj3Hep3NkrIdEysCFGMHB4pzsUQsOSBSRsHUlRjnFEjFY2YdhStqMjFzyfk5Az+tTxy7ywxjGP5VWFw/9znjpU7F/l28etNgOiuJlJ+Un6irKzyuQNoGRnOO9UhLKf4MDPcUqzynGOcg44xmgDRjkkMhVxxjPApMTBm285bue1V1nm2/N+QAzViRXdF29c5POKBCfvgAWP1ximljQ6z7eWAweme1JSYIG+ZCvHPrUkRYE4wenftVV4yzZG0cYz3oUSKSQ4YkdKBlwxEn749P/r/WpoxtXGQee1Ulxk7nA+tWYgFBwwNDET5qOVwpU++KXNQ3RxAWHVSD+tIDO1eErdW90mMglH91PT9f51at5VeEhumMGlu4ftenyRj7zIQD79q8/Tx5FbboDaStKpKtuIUAj/8AVQlcNjh9XQaXr15bRn5YpmC49O36VX+3K3Gzn/Z/ya0dRlN/qM160USmVtxH3sVTMTLJvR8MOBs7flWhkMaSUJvNu4XGclcfzra0vwnrGtRJLBAiROMh5JMAj6cmsCZSx+d2bHTc3SvVfhzqIuNCEBP7y3cp+HUfz/SkxpXZysnw51iOQp5sLY7jOKK9iznmip5mXyo5KfiaKTuGx+YrE8aoJfDVyMZI2ke3zCtm5P7gnuvP5VXvYI77TpYH5SRCppIpq6ON0jwPZ3NrHPdXEpLqG2pgCsrxZoVrozW5td2x8g5OeRVmw8Vy6VCbOaEyPESgO7HQ1n61rsusqqvEkaKdwwcmq1uZvlsYYYelPEnpSiNaeFQDgZqiBokdjgCtHStQk02684AsCMFc4zWeZAPSk8454FAHsvhG+bUNHNzIgXdKwABzwMVvRkfNgAc4471zPgRSvhO2Yjl3dv8Ax7H9K6KJyQxIXr2qTZbE0biRMgYHSlclUJAJPtTYpA6bgMCldyFyoycgYpDGfaG2Z2HOOlPidnLbk2gdPeohO5XIQA8Z4NTOWO3axHPOKYDN8wHCk89xSB585Knp0xQs0p25jPLYPHQVYoAZEX35YEZXn0zUqPKrHncueB+NNFOBwaQFh/Mb7h43c59KYwwcU6KTPBp0gyM96AIXAdCp6GogjJjbsyF4PfNPboRnHv6VCkbJtJbJUEdKAHsmSTuHr/8ArqW3IiYjcDxjFVypJ3EgHr+Pp9KEXa2d2eKANQMCMioLtgLSYnshP5VFHLtOM8U65/e2cyKfvxso/EUAMtrpWgGCCMdq8W8XBYvFN+YQAjSbuPUgE/rmki1nUZUMUl9cbcY2o+P5VQl2bzuJZu+Tz/jTSsZt3K32mYj73T15ppnmbgyZH51KTGfQfSlis7i6cLawSTMTgCNSxqiDrtD8CPq9lDePqAEUi52onI9q39F0hfDHiR7KKR3guYBIhc87lOD/ADpfh3cTR6bNY3KMkltMVKtwRnn+ZNa/iWMRXul368eXP5bfRxt/nipvqaJKx0iSoUBNFUo5lEYzRU2KOeLb4SPUVQs7oPbbSfmQlD9RxU8Mo8sZNeceJZ57TXbmJJ5FiciQKrEDkf40JXCTsU/EsPk67cFR8sh3jHv1/WsnLmpWkDHJYk+pPNN3j1rQxYgVz3rsfD/gtNUtIrq6upERxkKgH8zXIpudtsalj6AZr0jwbeyf2cltMrI8R24YY4PI/nSZUEmzK8V+FLDSNKS4tA+4SBWLNnINcegUdq9U8XRG60CeNepwfyOa5q28DKYBJcXbEkZ2ouP1oTHKOuh2nhEBPCungDgoT+bGtlGHlkhQBzxVLR7ZbPR7S3XJWOMKM1bQqIs7cLycAUjRbEiSB0DDoac77ULZAwO9MRgy5XoelI7lUJGMj1oAGuSuflBwcdf1qR3ZQpA6nn2FQtc4YqBkjr70+OdZMgduvNAAtw5IBUA59DU8bblyc5z3FVjMysAfmJYgHpil+0NwBhs5/nQBc4oziodzeVnHzY6CozLKMqUP3TzjvRYC4GqZJNy4NUkZy3zDC9uKlDUgJZkxyKphCGU7AOSc56VeVt6bTVAxShuT/F2P+femAFXkAP3SRzz0pURlfOQB7fypjb2IIBHbr0poRw4J4A9+g9KALOakifnaeh4qvShipFIDwiSN/tksYbaBIy8845pk0MiMQ0mR+VWtRhddYvQCBi4k6/7xprwlgCW4+lWYFWEiKZHI3BWBIPeveNKlsksY3g8tIigI6AdK8M8pB71JJNJ5YUyOVHAXcSBSauUnY9RtL61XxzdwW8sbpNArExsCNw4PTvzWx4pRpfDd0yffjTzF+qkMP5V5J4Tufsvia0c8KzFT+Ir1bV9c0220yZLq6iQMhXYWyTkelS1qWndFm1mSe1ilB4dAw+hornvDuqwv4fst8gDLHs6+hI/pRQO5zv8AwkMFujwzyiOaNirLgnp9K5bXby21K7SWIudq4LEYzS+KFEOv3DqPllw4/rWP5p9KaRnKXQdsjzwD+JqVVU9FH4Cq+5ifu1v2HhDW79EkjgVI2GQzuBx9KolK+x6P4XtrWPR7Vo4owzRgkheaXUIY4bpJkGC3yn3qt4Ygn0+zFjcMDJCSuR0x1qfxASlg0w6xOr/hnn9M1HU6FsQ6jJ5lsAPQ0Rzb7cEHsKgmcNENvTbSWrA2ykHtQJnT23FpD/uD+VOUp5QIGEx0NMhOLeMHpsH8qVSghABOzHc9qYyRGUqCv3famyyeWm7GeQMU0EBRsxt7YpJJAibmGeRSAX7QigkoeDg4HenxTLIWCgjHc96r/aIGOMbs8kYqRZot3yDqcEgdaYEomIbbgdSODToZvOXcAV+tRSMEI+UHJ5OOlCTkHGwgkngY6CgRKLkqVDDOc8ipo5fMjDYxntVVbsMQoRsmpo3MiKxwCRyM0MCfNFR7sUu6kMnibDU6dcHIquGwRUjPNIj/ACnqMdOlNAMNROGMikdKdNu3YTPBx07/AOFQETZH3uv/AOv8OtKwE5Bo7UZp2ARQB4lrbeXr+oLjkXL/APoRpttFd3g8u3tpZW9EQk1d1xBb+Lb2Q4wt0WI/HNes6bOhhUx42lRjFU3YyUbs8SuI5ra4eCaJo5UOGVhgimiJ3PX8q6/4k28cOq2t2gAM8ZV/cqev5H9K5WHzTAZEjdwvJKrkAep4pktWdhywrCA7YB7HvUFy+5M+9N8x5m4GfrwKlW1LDMhGPSgAgv7iGFY42wo6UU4wwZ56/XFFINSpfahNfyiSfbkcDAxiqu8DvUeyRv8A61KsJzhmApiJRMteweFr4Xmj2rj+4FP1HFYuj+EdHWGOSSLz3IBy5yPyrZ02KO0upYIgFRWyqgYAFS2awi1uWJx5OrE9BIgP4jin6lCLqwmiPR0K/mKTVflkt5B/e2/nUucwD6VJoeTNrmohfJafaE+XAGDxXVeH7jztJiLNuYZBJ+tczfaJe3OsXi20W5RMe+OvNbmjWFzpMbQzup3HcAO3rVGSvc9AiceRH/uj+VKu0xAbsrjqT2qCEkwR/wC6P5VIqkRBMk8YzSNSZQAgAPA4FNkC7CXBIHPBojAVAozgetOZQ6lT0IxQIgP2cFsgDpkc1KdioGVAQSOlMa3Rshs4JyRmpdqldpHy+lO4AZ4T9/Bwe46GnO2xlwikscHtTPJiPVO+evennBxntQAwXEIPQA5wOBT0nVjhVNJ5aADCr+VKAEBwoH0FFwJd1Luqv5gz91j/AMBNHm4/hf8AKkBYDGnC5dUcKwypGKqm4C/wt+VOW6YA4RuntQgZLNc5+7178e1VzNOTyCOew7+n0oEjc4jb8xTw7f3D+YpgSBmqRWbFRg04UgOJ1TwXdanrd5d/aY4opJNwwCT0rZ0BpbS2S1uP9ZEfLJ9cHGa2o2H2h0NZ94og1MdhIu4fUcf4UXElYdqtra3dxbS3MKSiMkAOARz/APqrRtlt3smtvJjWN1KsqqACDwaydYl2Wkco6LIufoTj+tXLF9w60BY8ZuY/sWqXFqc/uZWj/I4ptxNJuAZWUH7oIPP517BDpGnJqs8z2kLTO+8uyAnJrC+JtjGul2l6qANFL5fA/hI/xFO5m4WR5vhzzj9aKjE5x0opklQ7z0FAVu5pS2Fphf0FAjobXxVqVpbpBC6AKMBiuTW94R1W5vdWnN1MZHZAefY1wA3mtHTL+bS7tbmPBYDGD3osUpO+p6/qvzWe7P3CG/I0sTbrY49MivM7vxXqd+hiaVYoiMYjGM/jXfaTdLNpcD5yWQZ/KpaNoyTehBBGE1K6OPvYNQ6iu1kf0OD9KnMqjUXXuVqLUgWtnx12nFCBm/b/APHvF/uD+VS5xVeyfzLC2cjBaJTj6gVPmgY8NRuyaYaTOKQEpbimtIEGTn8Bmm7h60x1Ei7ScfhmmBIZ0QAlwAe9K0wX1IJxxzVV4o0BLOwzxUg8kLxtAGOlAExuYlI+YHJ28etSCZWICnPODjsaos0acbjnIxz0/wA802N4FOA4HzZ+93oCxolwKiZs5qPdQSDSAb5mUDcAkZwTUX2raeV525/GnsqgZCjgYAqIyjAGwEYxg/yqgLQnXblSM8de1HntjoBkZ+lQrKoi3hBnGCKct0xIzGBnoc0CLyNkAkY4p4NV43DKG9Rmp1PFIZUMmzUj6YFM15kitYbtiFET4YnsDx/PFV7tjFq/J+WRAR+HB/pVzU7UaloN1bEf6yEgexxx+tAjl9a1+wbRZoVukeZhhAhzyK3NEuRPawyg/eUH+teRRyKIypAyDXo3g+6E+lxLnmPK/kf8KbWhMZXZ011mK+jcdGX+RqzqtrDe6aROiuqMr4YZHBqvqB+S3b0fBP1FaEWy4sWhb+JNufwxUlMox2lkEAW3gAx/cFFeVz+KdbsbiW1e4QNC5jOU9DiinZkcyOgs/AmjxKHm82Y+jvgfpXGeJ7KCw16WC3jCRbVKgfSvSLO8MsAPqK5vWfDzazrcbCYRKY8M2M9D/wDXoT7hKOmhwu5R1qMuSa9AvPA1hZ6PczCSaW4SMspJwMgegrgl2qOgqk0ZuLW4Rglgc8e9dHpfiNtLtfJ8tpcH5cnGK5xpvSmb2NAKVtjtdK1uTUdbBkCoCh4FdDPIrRnntivM7KWS1uY51cAqeme1dG/iKExYUSM30xSaLUtNT0W2wLSEDoI1x+VS7qpafP5um2smMbolP6VOWqTYl3YpN4NRA00sFNAE4b0NLvHc1W870pu8nvQOxNKwdce/WoFhUSbic855pd2e9LmgBroinliMnPFRgRMVBYnBwAf8+1SMFZlyenOKTyVxnODuzmmhFtTmncVAj+tPVqQEhIIPGars8SkcDlc/hUuaYUQY4+70zTQhiPGI/Nx1GMf0p5mAchYtxI7d6j2RjkgAAYp3mRH5QofjPFNAW42DKGHQjNW4TlaoqwKggcVPFLjj1pAUNe+SS0kHQOVP4j/61aFlLvtsVk+J5li03zCfuspH51Y0qXfEPcf5/nSAwrHwnpZu5GlgLkO3DMcdfSp7K1TSdXuLaMBYnYOgHQAjBrVU+VqkynoxDD8v/wBdRaralTHdKDlDtb6H/wCvRcVkaV0TJpTyAElMPge3NMtNShWDe0yKpGclgOKk0mdWjZH5UjBrx7WIjpWv3dpkskUp2g85U8j9DQhSdh/iQRXfiK+uIZUZHkyCvIPAzRVX7bB/zzA9gKKsyO+ibybqWLI+U8D2PSnPKVvbcjoSQfyqhqkhtvEFuc4WaPafqDn+tTXsqIYZCQNrg/0rM2OmdBPbMhGQykH8RXA6V4BN7uee88tAxG1FyeDjrXfWjb4R9Kj08GG5uYuxfcPxGaadgcU9zyzxPo0Oh6qttAWaMxhgX696xwR3xXofjLRf7S1iwIcoHV0LY9OR/M1DF4DsYot01xLK2M+gqroycHfQ4LzFHegTZ7E0t1CLe7lh6hHKj86YjBTVEHrmiSb9CsG/6YL/ACq/k4rF8PTbtAsuc4jx+RNam/jrWbOpbErPgVEWzURfJ60gYUhk2adnNQ780gkwxyaAFMRLMwbGT9KUQuRhpMrS789qUNTuIaIDzhhkkHJHvmneTjODyeuacGpWdVXLMAB3NFwHBsE808NVRngxvLAjPXPenIYGTeCpUd6YFsPTTIM9RUQRB0VfyprGNBkqAOnSkBOJE/vD86N0ROWK9OuagMqR44/ACnmZVxxkHnj09aYFlWG0bcbe2KeGwc1CGyODmng5FAHI+PJi32GMk4O8kZ+la3h+7V7GBg2cqM1h+NGtmvbVZmk3LGSFXvk//WrG0/W5tOj8uKJWAORuOMUPVGfMlLU726vFXV4o/wCJoyfyNbTr9qsXjB+ZkwD715fb6zcXeuW8s7jg7AFGAAa9IsLhfLAJzUvQpO5h2PiLT7VSs9yqyDIZOSQR7fhXH6xcWuo6xcXi2zSK5GCxIzgYpvjCFLHxPc+VwkuJR7E9f1zWSNQlPbNWkZylfQmcKXJW2hUdh6UVH/aM/wDc/SiixOh1fjdGW0t7lCVeKT7w7ZrjGv7iUhpZ5HIOeTXoniWAXei3KLyQu4fhzXK6T4Pl1GFZ3uQkRGcAZNJNWKknfQ9C0ScTWcTg5yoP6VZkcQ6krf31/lWPoC/Y4xa5J8v5cmr2rt5fkT54R8E+x4qTZFTxazwaYl5GMtbSq/4dD/OuauvGolszFbxN5hGNzdq6vUil5pE8Dc+ZEV/HFePMHRipBBBwapK5nOTi9CeU+bIzueScmmhEqHc9SQRTXEyxRjLscAVVjE9B8Myf8SKAA/dLD9a2PMOOtc/oEE9lpxhnADbyRg54OK1w/FS9zojsTLKCeCKeHB71nqihsk5x2NPSJQc7iaLFXLwYEEqc49Kb5isNwNMh2xrgHPNLtWkBIsi44PHWpNwZevBFVtgznJ9OtSAqq47D1oAdbOq245yBnnPvT2eKWDcX+Q4wwqLfGq4GFHsKElhjTaDwOvFPzAcU3A7XyEOVc8545poAWzdpMEvz0/Kni5jxgHAHoKT7Umcc9cdKLgTtMsduJOWAA6VFcEFkzvC4yCoyc0ecjLghsZwaX7QOyN6dKAI13oVdgWyuOnPXvT0DxcbS2Vxx2NL557Rt09KPMfjER6UXAsRnYir6DFP8w4JNRoSVBIwfSlJqRnBeNLkf22qd1hX+ZrmxPID8px9OK1fFzhvEc4znaqj9KxRIBWi2OaT95liORkkV9/zKQRXUWXi2aMBFg3NjqzcVx/mGnRyMGGBk0rApNbGxqd1NqV61zc7RIRjCjgAVSEcY680xnuHPK4+vNCRsXBduM80BuSfJ6UV3EHgzTXgR2aZiQDkP1opcyL5GXpJEkiKsMgjBo8Pr5GnJEeq5X8jWatyCvJq7Y3KGI7DwDUFrckmf7NqXmD7r81a1Vft+iXCRth/LJXH94cj+VYWu3620SSZG7PCk9R3rEh8YyQy7HizEeCVPIqkricktGZp8Q6jLCImuyqgY4GDWazbiSW3EnJ5p1xHA13KY5cRFiVwO1RBUz1Yir0MW29xdwqxp9wIL+CRugbmpdMs4brUYIpF/ds2CM9a7+Pw3plvBuitUyR948n9aTaHGDZSim3ZqcS8dao7TBMYz24qQPUmqJ/M5p6y1SL4alElA7mis3vUglyOtZyyVKsh9aB3LvmHHWjeT1qr5uKUS+1Ay2GGeQDUylT2H5VSElOSYg0wLoIHYU8GqyyZ7U7dikBaDUu6q6uakVqBk2aUc1GpzUgpAPFITQeBUYO+QL2zzQByWteH1vPE0od2TzIkkGPpj+laFp4E0w25MjzO5HBLYA/Kp/GE5067sNQA+TDQv9Oo/rVKPxpZJEwVJXbHAPAp6mdo31OCuITbXMsD/AHo3KH8DQkgUg4q5dlLq8muGUAyOWwT0zUYijHpV3MSQzq+D7c0BmY8CpIo4u2Pw5qV7iGEYQZNIZt2viS8gtYovJ3bFC5ornDfvnrRSsiudk0OqSJEFbLEd81ZtteltkcCMEk5GT0rJCjFRTSBOB1o3ZPMybUtQmvZd0rZbHboB6Vn05gepPJptWlYhu4uTSgtnGDmhc7SR0H6VZtJFW7iZ+QHGSee9DBFrTIL/AO1RzRW8hWNgxbbxj616rYP59sAfrVSxCS2ZQAEMKNFkwWiPVcqfw/8A1Vk3c6ox5TM1aDyb8gdWXeP5GqG4g4IIrW8WuLP7HekHYrlH+h//AFVz97r9jPAqQ72fIOcYpoluzJ2bmgPit2ysbW6t1LRg5HWs+704w6j5KjEbAEUXHYqbzThIafd2jWtu0wyduMg+lRRo0i5UincCUSGpFfisy51OCym8qYkNjPAzTU1yyJ/12PqpFAuZGyrmpY2y3NZSavZEf8fMf4mrMWpWRP8Ax9wj6uKB3Rpbyp4p28mqf9p2Pe7g/wC+xTxqVl/z9Q/99ikO5cRyT1qZWqqsqNyrAj2NKtxGWK+YuR1GaBl5TUoPFVBIByTgepqwsi7Mgg/SkMcz4FVvOMd1GrZBPPPpUdvfLcXflqpAVsEt7VW8ZzzWFta30Cg7XMbZ9COP5UuthN2VyTxgFuvDUwIy0ZWRT7j/AOtmvLfm9DXQ3Pia61CAwzsixnqir1rPM8WMDAq46GE2m7ozwHJ4Bp6xylgNpz71c+0IDwcU4yLwQ2c+1VcmxtaX4M1W9wS8McZHVmzj8Kq+JvDsmgXMCGYyxypkORjkdR/KvQ/DGoLcadbvnnaAfr0qt480+TVbC0jg2h1m6t6EGoUtTVwVtDywRjHSiumTwJfsgP2m35GejUU7ojkl2OZdjVQHfJk+tFFOJDEcksSaVPvUUVYhU6OParOnWyXNxscsBjPFFFJjW56N4edjaoCc/LU1sdmuSqvALc0UVkzr6Id4yjWTwxcFhkrtYfXIrykMQcUUVUNjGp8R6hoEjNZwZ/uirOqDFxbuOpyKKKnqarYW6iSawmVxkFDXmS6vexoY0mIH05oopxIqFKSR5XLyOWY9STTcUUVoc4UCiigBwJHQ4qWL5m5JoooZSO00udzaqxOTjvVPTrl59YuS+Oo4AoorM27HWzANpr5H8FRaUA2QehFFFSX1GyxrDqjbBjJBP5U3xb+88L3IbnAVh9ciiijqhP4WeW1PaQrcTBHJAJ7UUVszmRuzaJaQS2oXzGErgNuavQNK8N6RbqsiWUZf1f5v50UVlJm0EirpkS219dwxDCJOwUenetnUgGtFz2cUUVDNUJExEQAxRRRQUf/Z", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAGECAIAAAC9BtL8AAEAAElEQVR4AYT9aZNkS5rfh8WWERkZkftSe9WtuvvSt/v29DI9g5kBwTFBMpGiGWkywoxv9Cn0cfRGklEGASRICBA4RoDEoGemZ+np/W6175X7vmdG6Pf7+4msuj0D6mTViXP8uD/+7P74cvzU/6//zf+5XmsMBoPz87NXmxu//vLLW9euX5pf7I53Ou0O59ZYq16vnZydHZ6fff34+Y//+qe1emOs2Zqdnry8uNgZb2/vbK6sbZyenu0dHB+fndZrtbFmvT3WbjaaAG02641ardFo3nnr5sfv3JnpT/a6E2PtVrfb40GzUR8Mh/XG8OXL1e3NnaWFxfHxsfFevzU2Nt7tNOr1RqNxcnZ6cnz49MGDs7NBtzfZajUpMhwMFhcuD2vkqA/PzxsAajSHtUFKNJrNpk+ouAYMzv7naDZb5KkNuawDo1au6vVmqwkTuBUceYFLwWaDm/MhMANgQKkh+ORm6E+DWmq1wdASEGMpUKNmntWHA+/rHGYCMmePYT3VBwtQ5JastToI1GvD82QTBLdgyOElXEqtXHvLNQwYUuEQsmGuFXor+amNG+kXNgwuGFituEEYHBsMB4UW6k5lA6pPJWZSJGBh/edhirfDAeiZZxAy2+Od/+nf/fv/7l/+q874OFDBpNWC80BtoDOtRuv8/DxVAg9GDs9Oz8/Ozqx5eE4SKgdx8EPmg4GIUsP52fnZyfERJdCZk9PT84GomldiJZNTc2zsH/7oB5+9/8Hk1FSj1QQI2ToTE7/8+S+ev3j5g+9/f2FhHjTQQJ5xFo2axKytr3e6nfmZeeqJYtfb7THwHJwPW9BArgaCqDUmOl3YtrO/P9WfpMKzYX1jb29QHx4fH0P88dlgY3cbToAY5fYODx8+e3p0fIKmnolxRK+C1E/PBmdnx9DSHvMemTVb9TaGNd5BF4EsO2oDEYVjA5RiODM9c7h/cg4vKB8RpCDIq4hQOzbePtzaHzs9g0LMloKKFMGDD9fwEmNAObUCpQHro0XVj6yoNUBRDUVD8gzuJqfKU9RJ7FEDJQNSIClMeTgYaCL89wnPcvbCS/hRq6ElyVw9AYhAk5WnyQooUsVMPFRiyE2OYkbg4x0VwpOQRnUkonqALrioruCDvCCB0uGe2FtMO4gRSAO0kAdY4iVdnD0o7c9rq1WelMQoSw4lmSyCoqzoBh/tFmQG5D3n5/z86pWrs7OzzdaYolR3ZRKKRSl85VhrzFoGIkBuXdBwiDGcnavZoICX1HQlYoAaAZALlGmA+Z2RN0jwWO3nX8Vo7vBP29vbR0eH4xNdhAp6m9vb5+uba1vbD5+++Oijw+mZwUR3DDDWM8QdW0vBcW9nb3Z2HlqpjXQygB46qr+nRqupaR+tsfby5k59rHN8erqyvrmxvX18dqZgop3QUtTh8PiE+jFuGQyk8CvikJtwhGv8QmdsDJgyjuPsHJdRPKjqgIyVOvBQg/r4+PhEr3N6ejzRGwf5QbglbqqKhorFH69sjWOqOiRMBn9MvZKIleZSswJPhSUTK8HGIYEUKeQCojkiFFLEI2inoFZHafyf9KaIQAAWghoCHaLBpEmkTEtFMEVauPGJBaHK4j61QnCkEAdwSeNCJFI9dZUCqrwH5wK4ctYlLxA5eABQmY1XRS9lRRgEWgCNhZtGDg9sXkPALCweXMRBFeNJAyYUDH0mVuQODlwLIdfiEsdRAQAJ+JPi54O5mRmMYWdnl5BBEdM4yx1pQ8+4hG8oT7M5htMiugDifrO5s7tLOvWRfzA8HRyfn5wc12u4NdxU4VDQ9wQMKJM8bsQxomi320fHp2tbW9sHexs7exubW8ur669WV4+Oj2HQ85evFhYXer3u+ekJGFAI8gpPsb2jQyzoqNtpR0lqNActDKI5bI0EI9+JSbr9/sN7j56vb+HrsdCCSCGuSFcdCdsBml8lhdxVBrEtByTr62kcavXzqd44Gotun56ethutZJTLirOtZySlMcTvNw+OT0gXjNwM9eqXGQbnZ+sbK93eRLs2RgPUGKMtxoxl+phRilwPLaUsCcD1kOlKNsiFqYVkzIlHQlBeCMEi6lChR4IiAZ+Sp2gwjxWVD2lQeWBCNAhRB1GaJrHVE9vOWiyQKxA6bWEAEBgIGvmHF6TKbGBaA4/kw+gvaJqURKVqdBGq6k2dbp6o4cKUhlFmqyhqJALR6QJGPahYEnAaBffwCsyDUoEZJwhu0f6AVTWBSXDVxHNubm7u7R/YaMt/XL5tIxpOCEBcg98S92jk6cnJ2Bi56p12+/Ts7ITQ5+wMhOEVyNCW1M+BcC4iMi3oxKcrCQUo/uhsp0MwVlvd2PrJz399RuRMIzMYHB+fHB4fUQiR3H/8+JOPPiCQkdmFlcCT3bX2eLc1hpYdj7WaIaFeP4M4wqe6yqSqDBtEQc3GcGZm9ujsLiTAHloTuFEpVPyPYIMR6aIqD8NYagKY1/DIBz7yCb9UWTs7Odve2jk8POl1JuSO6ckDhYpqYNvRGd9Z25iFm4Mz2ibdPsokOOpCNvXd/X1oPqfJs9UbpD1Q6o0WbAoanuAqblCsSaRsWEF+6yQVuhEGmWJHphFNqdDkLCoo+iluQoHLuRArOA/CCVqe86KMVU0VzWbhMkzlEtTSekawPhKDwiVNjVYiGqluBQ5Zwkuw5F7ig4JQS45izJKdjKmMWko2fkA0WAaifMmdpVV+EQh8Sfbw1sJhtEnhRKAGJfModDlCcfEhh4E+ALvjXUoSHeOoTmidhrXT83NkR6R0dnCEiaZpx+3CqSFSIkyYIJ5pNlr1sc3NbR4g4QgPuAQqaZNVOe64tVdm5marPTbGU5Jx1vZBZE5t//AQ/hBsYAzYFUyXjNrw+asXO3s7ExPjrXq8PeUIw6R9SGPSneiC1cnpyVizSaNEEeQIEi2eSz1/8rA5Nz3V7YzTB0gapQu/kimKFWZFQkmLsQlBJCREyaFRVIZ5Dmvn7bGhqtZsnhyf7h/sz/T7MIgQET6aXodB4EDThDG0dnZ2jo8XOm2Q7IAfGYK/cSTyIoKiGsNMZZLub4wuIrrA0wsYFM9YFFy9LIlcRKPj+iOCPJIw4naB5qC4lKCy1Cc0CCtP+LGjkfrVUijwufSrGXl65g3670lMrMKOsXCSBa8rygK3qEeBLxxSKGcN4lBaTOCKg2LWhcYGwgMAmAnqhAgQkAaAZQtQknBqgR57JNVsnGOjopcDR44sMPALrLBfqyWxZOCJII34ww1rqdEsk7h7cNBUOVFa46vj0xNbA9sDUJMEdAH8Udj9swNgLi3MT0z0lmbn9g8OltdW9w8PUFi4QU78Le5PUPQn0aKzM5BHfYvq6xnTS9QdEoDhFmkUznGPokSKSttobu/tPV9evrS4QP/SbLXzquGF8Aa21MJwjk9pCcaN3BrDs/PTVmMMCtDSFrDAptasTfV7U/3+3v6+rXzMoPARUqyocLHSv5IQceJkVRFSFCr/FBTBVaMFEw6PjtWTs7Od3b1Lc/NU3B5SIxJF0QGJolgIRT86Odrb3+2Njw/aFD/D/ItkIRlWSgNuJPJp2Brb6YE4Ho3qrXQiyOonQVr4ykSpWJn4SgelcmF6tCfYj0g2R+GthbjmqUogo+KQSEMw5KEKnSoI5prMXmAkKWLt5aD2gc0DPgyvJshycEFxKwdLqxQb78is6wVxb1JgBM0AhrQIxfIjaAVoyezT6j4AycRhYkmFJESg+7NCuGFVGo4Zkqfk43lBNFRZGRckkb/JIMjly5cfPXsG/vjX4zygAHInH/ZQvJZk1Yc42bdv3nr/vbdvXb82OzNNDIAlfP3g0T/7H//lweHBOP4Px2+bDysVDhaBSsQqyuCPaPBUftH70NjO0dJWvdU2ghjsHx1iOSB3dj589OTZpx98yBgmvVPF27R5CX02NXRsZuemAUAVOqeBQym0PPwR06vLgB9vteZnpp6/eqVIQnt4JzMKywpfRpwSZ/gmjmqbWkHGkgg1tlzHUVX61rXa9u4evW9GvMiDOTdbE1RpXCt3B5A9ToC0s7swOwd2KlzxjcPh6ckpGQBHb2d8vAuvsPLi1YKXIgQIR7DVvQV/9V5UjVAGxF/iGa1KNrInoZwsDSX+ceSRJUNRpR+USuekREcQrPL4DFXigj5fCtsWjgqGCee06WIWhVAkPBeuWkgRnhCaWhbnWRyz0IDRNISmZxu64hfLYE4MngIFy6o6S8hMhxO4yv9ypfYXWmAU6fI/uQUvBvWYtAQJs4Kq+M2VlKCfMmbiQdSKU6/bRTqgDWhEhoIy7kO8RD1UA2lIcXKy9947t7/10Yfv3bmNF+h2O3ZSG412Z/L7n32LMfJ/9W/+BBVGrNSVvoSdQERWKizaDyiq1URyxp96j2RxtQcHcA7fDxboOwMzyyuru7s72E1LM2nVTk+JODBegdfrL1+96k9OnLZODTpsB9NvpijgbHYU1LDTql2an6Nxkh8j1hSEUm9oU5T+IcSKLfzaX+KOUhaFtb3xLkNs1y9fhlTSXi0vn9BFMmyyIHTCObud8ITC58xCtBbmF169euEw09lZo06XC2DhJzylrmbt6JjQcFYWWQl063GpmAv5kpTIXUmTJSbiBTQXqdPwSg6StZ3hCljk4j4EhRlmEKpnHoEqBxBKLaTDM6mFPwoLo1RRZBmZeWKFNjUykMctYj/1QmUXI+nPIxwQzSY3JlGX5Xgm8DRiXNFsOt4qWGvyeXIK2IukiH85oErgOUgRZnDjApghFl9OulRzXxWTfJPziGSylmwFggZTygs4Yi4AGSxfXFiALSoEDoswA9Vrdlrj8IoofLC3v4dZLC3Of+vD925du0oVeDswYUIAVAmakduPfvg7OLh/+6c/hhrG2ell6NrpuQI2fDY0FrxoIARueUI8dnSIl1V42gTjH+TWg8Dm4f7e/vr6Jg1Th5FICvIMPlNZIqpnz18sXZqnP8PQppF73XEjR/cLXzDeMbIPGrNT0+PtsZMzw5ARV+UAFXEru0xFMdUCZVEeQV69hjniZXrj7Xdv3rxz/caN61d6Ex2Ywljxr37z+avlFXoqtEe2P7jQRovOsaAwTKhotaampx89enh0jOOfoK0iHegJBDENx9oGwzGsBHE7gAD/jZXsFkWiekqR81/cs3evSZCzYK5uhIqMGFh1MZ3KufuYYqE3P7lnOg9mkTMEN7mCcBouRyM1CGUTZlhQkeQmVFodleL1OfPntAdVgCzu3iCHv2QXkPoXQJbiIizWR1EDUKiW0oqanEHMehzGMaoOegUAl7lL3QUkZ5DEaZQHnEt68BMBbpNYwUk2UZPoHKRwLQj7b3leq83Pzxthg7VMZ87LGSp4isDI0umMNTqdw4MjDIT6Gkb/OgPcH2SgGFLUbP0nf/QHa2sbdx8+pLie0c4AVsZYI76zOKx4e7TLkGLAiBFaZE/8TG2iaoDDB/jFD7yh97CxsTXV6ci1c3puPDnD3ZO+f7i7ubP94NHTmelZhn7xv7Q5dEzjrhRMiWzsSk+ght3u8c4OiFJxaJQTcgEx223xTOOGUpLqLIEWjO8z1Do/Pb9x+fK33n//0sxsd2LcYQIamkHr9vWre7s7YA+bhEVorekb9VzoTr/fI+Xw8LA7ftxu02m2vWNUmDnmsOb8+OxADzGsddrjugM7M/FXuGSC7wg+eMoQdQoRoWBFIQCtvIqCcQYOOlQuirQVtc9TzKJRDkglyewcKjqKCLs0Qm7Bn9EN5Bt9rfKJCXACK8QGYrqbqYm8pRILoRnC0apsIHxibWp8apXAWBfoAMxzsoRztKe2hyJnGf5LOJlMNF+V2WuOZONXeIEmvSSSfwSzVDDKGHRSheBkVwogF0s1ml2i1e44GKMtQYQCSBZx0SQ4JkO0sb27/fT5s5vXr5EDzW0124zo4/7JghmgY51W63uffXrv8aPp6WnQZnKNDJgBKOnmaHozkIgDVSJQQS+csVPiwNxKc0WCiMjFen1vb2f/oEeAWTuqb+8d4Dk2t7ZfvFphdPXl6vrxyemnH31k49N2gpwOeOvwlOm9o5jW4Ohof/fg8OjcRmrswHkQbDu8FbRcQDhwln+q8znMA9GSQVwgv3ZOkzM7PcsA1NiYcQgZ4BE6s7g4f2P32vGJClT8AobEwBHhIUYk44d1RuXwAHQn+hP9s/EuJDVrDczgcG+b81h7bG/7ALuQvaBvwEOnx6YDVMWL1NEBslR6kRJJk4HHJa+ZqdR6U7Dk5FwuzDd6WkCWJ5GFUIzoVGK5XlR5xBoq4EGK4/UlNlW+gZsAAeTZ2q1HGCSAcNIq7M0GV3lIFvMRKaEWZARqDjiQ+lNakJJcoJaLcn1h8I6OBJaIedjqlML61NeHYuVp4VvJM8o24hiPB+fzszML83OMF4EofwTroEAvgckaumWoGgSh659/8dV3v/0d+oHYx1kND4hfP80wkbXgxudmp7udDjPH9MLRMhqDYwdamOPSweK2j06OiZrVMDQGd1qctOOI4WG4T/cDHNS91tizV68OTw7Rxr39w/XtXQAeHBzsHTCZ4Pgpozirm5u3p6bgLWQDsvWv/8NfbO3uEqhRq3Zsb9+BECoL/ZU+yfnIPH4wPgUNp1VGF5h2wCzOTqGHLrzz5mcM+2BIKaT7IeOw0e0uLC4uv1yNt3Ay8vzkrNUdo5XAEqyO1RkMILQ7r5ZXF2fnTvQKJ2PjzeOjw/39nc2tTYkf1pj8diUUIKsISLSCKmc1Bk0gIx6KdG6TAnEcFffAnsRSpDxVs9QhVVrrshFQUS7Kcs1hrdHxokXe6Brkm1QKgzszUjA1mBGhJdUHQraZRZtBQMU2yCplrM46cmf93HqjZts8cAVygAj8kmgB2O5D/ot/wdluPPDAMJhw0ndwoO74EMGmshQkpwVjVKkxGSlLeooUmCmfnILhENiA5Wn9Xu98N91apBwOME0FRDIkbjX31s7ek2cvp6enqBpVTvMhVQ6NNBvIlMVLvV5v9dnzVusI5WHR29ERjv98b28/Yrc61AvN1BagQl2AOi2BLhycp0ZCHWL0lqs86hs7+1v7R4QgomKP1DEprn1aq+Hwv7738K0bt4i+6DCT0vry0SM9NJdwGgCcVKZyw6/6Ec9X5ZFCsZJlmGDGvhzuhecnx8dAgTt7B3tMIA7pGzEZnNCiOdaGnn5vcrO9hSzJQyUgQbOKEcMz67Pn0JydmVtZfr69u3t8eDw4P51dmj89Zz1SY3WDYeJD7OXg8HCyR2tD/eAixihbZBbpyh+f8YvA+FfyiLPXRZxmSKlS3DMZIvvSysmOpKh2pRAIB0jULuRzi5aDhIy2LvJGSbyyXlXdczHI9AGSWfKDW3hq+wq+KDkEkV5o8sr6KAAIqybTyJFbj4or4nTO1PL8Cw7WXpAODpU2+0gAQVCkXvcuSlpVhJtyX+rlGsjWHgbmoaVLMmSg0xMTE6w9IwP+lFYgho/SWIQlSuRV4PXBvQcP3r1zh9gFtWEdGjyg04CmQjY5ibFZmuncM07x8BC3jfQJ608JIpj1RQWd+2Kss4luw49MxCELbQ06Gf8co69u7E6KJ6mgjaKbQQZ86gnLhmgYMIc01MPhw8fPsQd4B/9wq86IGFpBWYiWSkiv5FE4XCyFZA+yqvfoNzc2f7KA/qu8cbjgDHfHvMH+0dHUxASjJuSUztYYDQXzi4yUIkL1ADYhfHjB40ptVZuZmZm7d79C69dOT1+uLO/83EUfdpxOGYan+ubswcHkRC/2JbH8D+6VpMUptlzRkacmvqaPx7phNct0ClK9eJpJ+iSlHJa2oHmSuRANRag1xVRAkBdQlNbr5Cws9UZ9VWvRaXpRgCOP7kygajsXyhLm2XmWIWJjIijZMQUBSoBFELCiYnXRtWBKGQ/5rPC9ljCD0gptnwSOmPqfsCdyCTqFETzwz6wSX2i0ulIm8At6elCs32xIllXDnc4RMYXutjk+jlukGT89PDwgQ4dFmM4CnRHhrKyubG3vNOr0YxnZRE0oXWhz2AfjmJ2ZOTw8wpJo7BevXF6cnZ2cnDw4OGJBx5MXz5FMm5Jj7YIgmn1ywrKiGtGT2Kj8cpBr0CuqZRCVJWzhTLDmoXm83tje3N0/6E/gjZuwtPQyeVBAlFqKmakZmomCg8VyibYMNoBo7QxO1sswWLrdA5YeKodMdhDSsXhvcXoKRlFYAwZVKGnX6UMf7NPr9bAXAGTw1ySoBNnXpiYn9o6Pv3z8eHN3d21jCxVos5CPobVm45Cp/POTmZ29K4tLgvOwqEhSA/gZ16o3Cs8UgSpMFU3BlSKRtgLOvarvEWMgjasADsVegRvJ6lkAluocWhVCAvcUMYN5/E/lqmuqBYL9XeoLtoFOFvAxX0CaU1PhJkcBJHAbdwiD2MIhQZIvSg+CBoiizwVluPKp2pXaQhdQyCIschWelXypmyxyb1SxOQUjLvwW2YUjirDAgbYACCE1ApLmWIelEKyIbLLkgSU9SKQz1ulOTBDUYgOkIDYQYEjw+csXHcYtmfBi2hf4DcZzsHYNDDQuLS2xZP/alUsfvvPuu++8vTg/M94dZ+R9e2v7L/76b3/6i18yKAJq1GJ3oUbM0aHriPlxIA6GasRZV4BW+C+HyEYUMkFKZYUJdJ3pQy/MTDGGaW8EJDjIZD6AhHGqFIX4ATg8kWoMwiz8STYtEF6L+ur0C3DbTpxBMNXTWSImW9/ewh7oeNNK0OsFUXSXf7QJ+7t73JrTpRNnzTEtMgKg8sbU1DSL8e49faY47YdIJ/6GR/yB3+HRCaoB7iHKB1HWogQISbaCLanRYa4K5dJAZqgClLzSb6sFjr3xCCqj3HIuqiF8//KPC92tWICYtNPGqjJqDcQUuzM/h75DkF5bu/GRlXpE/YWZmzwWJy78KfAgSuCZabKU8KhP6+EmRQNWaFU5G43yoAgL1aKIdYyONHpQKv6ULkWJbmxjSv1BhjIph0yKAatbWrKeQlrEsxiDNaEJmGNzZXUdVxWdJNwgO8l1lJi6UA+l7Bq24atXy7euXqFGAmMaCwYxXfcW4EgL1f/RZ996/913b9++QyVkAFJvvDWxMPaP/9E/nJ6a/l9//Gd7B3aCWX/RaU8EE90/4+xQp/qBtKoFzVqCpMs4TZqnPBN/9QpWo5PDjc2Ng8U50EV8vlQhKuWopEcBw7iiHYFX2Cwj6BtTH00YIRcYGLcQIDHODxusQEmjuVubWAKDvvXBWWVUaRYajM9WpDvswwJVbCAyswsvGgxbMcqUYTi5DsDzc4eVMS9YABPgK43eESujIhv8HFxQOqGbUwopW+CV9FEGa8aKTNQYJJCeq0oK5iQDi983CQ7QIOysNocloxB5wiltjUbKoZ/XvJS6dXDIsGJ7EQp38DVmCiZiSL3ceukBfFU/B7cl3TseRUReAZFHEg17Qmhgc+k/yXLOeIQA9+a3L5HLKHSeFjhCESgHMkcIguaMMod9+iMj65GSpC5VypoE3ZifmVP/HMw4290/3Nk9WF1e393eZXQVpehPTHQ6HTPW6itra6E90Yvd5QpIMGhMTfZvXL22tHQJrWUtBhDREApiYSyi/ge/94N//Md/bDsw1obDrErmwJUrFJd48laDdo5hSgp8zcEEBYNV9rV57KC8CkpLK77DAetXT494u+yE0UmHLy+IpNqwLe5SJOWVP4VmmURjUeRoCIIwAHjGcOoZLNgnq+aJpdRqOzt7mO/CDApMa9CCU7gOKnf2u0XgiKqfdupd1FxGY67ymnKEfY1LCwuyRo0LQqgprPPtH1se+j78wy0Q3mWQN8WCZyB4G+kCwTgb4qNGBX6EpwB0oiBPzlhGVMravBcPaufsvermDwkhHWaE0WYSTlAVrkwmX8FHwVuczDzy4NdLM9DSEh2MIGodwkznO7UlZzTdgiXYA6zAAFGqKEIBrUIFUGNSPC51VdlG+FgO3YjDNOIq6Kjr1Q31kBhtiJtAdRyw9SmHapCyYmBiXIcP6jqvw/2j1jir4xvtVnN2evqT9z4kyLl27Qpj3+32+JOnz/70L37y4MnTF69e8WoXPttJpUBkgEKShFPrYzpdFhrpc8I2q+EaZ8GgEGP+P/yd7969f/+r+w/brTbDTePtNm6YrgWecsQEVjrZJw47US5QPj/VEoRXeT+wj3BxynQ2Xq6svFhdWdveNkDiAdqV1VLyQtrR8zSvYQNcANNwGJTz3F9YY1RMfEQbydJyBNki0sD2+GNNFSMJIuIrf4kfogf0ren3nB4dWZjF4TQKafybNdAAKBrYnJ+ZhaeFP1QEFQ4QFPdQbzCg4IJ4ZytBssiIXzVSLHWyagxJ6qm4c2ldZs4B5l77wMRK90YPw3w6MI5z8hhdCAiuxCicIN0aKIgSx6RSOOB8ImhrqGrBX8RgwEizs1iI89e8JR/y4bI8ov2EP1XzUvLaVsHoCstQZA1A47+AAocauQitXlJjKZAKuS1Ih3xrBdmQSS6qE93S3qlMAuef4ACU21QE8Aq+z2TsRG+C13nhxNzczEfv3Pnkw/evXr02MzXVZqkPgOr161cv0wf4p//iXzx9+XJre3tpYc6q5af1VCQ4otCamZ1FuSfbkyg068S4ZuIutWgb443hJx9+8NX9B7hbIgX6CBVa+Lw0YHlPLqvU6gOmI6hFHqE/dCQwZLCF/9CY7g2PHjx9wnuXYjCst4jiQEed4Qhakl5xQD6GP/JQAHAk+RL31lkOem3x0tRkb2l+fm93uzfRf76ytsNq0v0DokMWtDqLZkvtsiI4Atm8E4fhn/pSBcy3UryDvMACEIdj+bXJqUnGmPYPj6zdYEPsYUSaFJcq7RzsZxymaICAgWNmKVBf0Cow5kJGx7nLdGkxm6wIubEZE3hINjEpmWAHOW2TEJdOoQpNCiihCAeIYYf1FkWidNUulAeBJg7iH87JBFS8DAqVvMkULAqOoQRAEKC3KE/ohQknt0IQJE+SF7TN7kGJ/MoJc5mcYoYQHiTxrECNfSZJ7KuKtNmIWQ3KnzFfnkeNvLZM4U3e1ZxjkKff293bm+73333rrUtLlwhhIgqXiZq1WXv/3Xf+yX/5X/0//uk/W15Ze+/tO+KHHIwpfAc9OCKCGr3E42NGI60FjShRMU9RDikY1C5fuoQBYCFt1nGw1P/UNxOQI1aE8qTLqj6TwSZM+WXtGsPwTOLaFKBMZK6Pj7EIqHF8wjJQono7S5aXM8UhewHr9K9FS1RELxkMY8S2QZyO56II077cvn3t+qfvv7M4P82SWijDbV9+sfLFvfvpJJ2yqhTbBRQaRiF4jUsEdLfb3d7aAIgU8r4lK+tAEbNu4u9PyDHZn5js9Rk+gyHlRR/QcL1UC9awKHXI20lgD6qqgNpQyTiSVvOBpjKr38QD5JGPoc1rjYNXgPJAAMpZEJzhTq5UDCSuiXmp2ABFHjVMaAxWOFJRPaq4FVwCLiqk+qiwFKOuFC/Vk8/qKG9mf6PLnioJ0AUqrWLBQ4lUT0hIsSpK9Tr/rEoOc5QQyCtryWEhaTRRkCYLyYvkomEng7AsFZZ5XW4FkUSNgmpKUUso2CFhBqN7Z7zWsn9AoYyZsr6aDokLkAiGqRbtwRj+i//s//gXf/kTx1XUigELceCl1YgDGoBWosf0AYmpxvhhXIiFrgQRxDmKplabm8Hqpl4sv0LFURjCY+ghsMEeaCcIm0mnUvCNqfEQvWIJKlEb/WHsAFds5wJ8eEeCkISYBdtjvqGMHWmOyCwaKXlUqo+ONqG+DHeCE6LjBUxZMaR/7Lv687PTC3Mz05OTtD7dXpeVIG93++yHsbL+5/sHdJgdNBgx0TeYqZ/CvLAMfvCLw5fozk/r7QlsQZbZmTlniHd6avLl6gpLzykuauEvlGJaoLGzvRvIrBiBOtyt/QfF6E+RNIYHP0RVR3ChqWbjiKJq8elIKn+yhrKUx4ZKpQHCUzUMZkTTiFcNQK3anoYXujANj8uAz6mqAwwQcjCRkRlhiyKqXOS5UK7gPyKAbIArd0GOp9RHCmX0G+lAk1j0w1QOzkWPKShx5jPd0S0yqN8FQhKrk1j4wBritZJOPss6rpZWEb2Sj1SQ/LIW4Pq4GmvA3KgB7WGE/+v799+6cwtdR5WB5zA/4weK3ZdsP/ngg6++/pqoocML6ahGKzESxhTvRcVoHR0JQKNvAEHXmVzLrDCVw+7z3niH1xseP3sK69gjgOWvZ8dnLFKCPrvFYURxB1hVkMS+AIYbHWOug6oYkkJe9J6J36mCf26ecnLSYq6C8pSJj/UtJOwBufrHgK/00r854/WHwlaeQjQNDFbGNHtvoteyoQGEaoG/v3nj2vtv3/z60ROmmUkhL9AZ9YSlXMIZCHPyAf2lM91hiWKNAWkNr8Y04RjvbtKXWFpc/Pze/YhQC+ftZzDRrHWFQ4aoj095B7xvBv4iO66jrJhrhKh8lR3F08WIGHNVSd4f/VqhSxhkjTKDijxVawJb9Qpwmzc4zp+FvZZujxEO5e6NczTGKkDDIjQPRZc4B1g4LMbccQ5CpXy5Kylc8wxbSkZxthWHZP9rJBaJ2FQnmAk8rNQ8Psg/8qROU3Af3qagvTgISZCgulOq5JPXBodpMKiGR+Jh2yi2Fuc0YMJ0fmFh/8kTRhG/vPfwBz/YH+/o2hgWwRejbAiO3JgSM2PXrl5dXVtdnFuQo7FqnuiEAhbtYtAJBhN9oMpER2BFn4CAAEyiBUNecvj3f/Znx4Oz3vj03NI8jhiF5KWfx0+f8fYc7QNWSXUoGbrmcGNWgMMUQwFg5sUGbrQBKvAVU3dnIXZq0kREQyAbb2dvibEq2AHX4RHU44khMu5HJYDhJE5P8/bBDFXBUmrgzMwAnQKWfL//zq3j48OXa7tMXjDxAhzwo5g+VYVuOCt5eARt0EuNDBbAWfQNOxmc0p42r1y6wpYzpEz3+gzSvfPOO0i235vg5df17c31tTWdoqLgv39FFWJOqhMsrpSjEh5JklOyUkYSLE2aspUm78FPTKIkaoFe1XsLoIUYc2UESeEBj6r8/HL9zQPIowSH5OOYS64CM0VCQslnqgc/Sa3OBcprYCKDDQd1i2gOhd5CS9VSgXzI4hHSAVfvYh42eNBJxEYsoa5DZGgLI1V0LAPmyx5ZHIzklrWEkoIhvUVZwLxvH4dIzFFvsOnJr7/4gjcnWYlNVHPWcoGZzUIOJoEWFxc+//ILfGs8fYFtFZEBIZDvIa4srxBxUYoogyEphurtbygOMg5u37j+wZ236I7/8Ic/vHr5MvtuESDwQsKDh0/+9C//ivc2IdzYn0pllO0MCmh7DF0u9vYgHnIOwB0n3C+LBU0t5gNYNAoGqrhBFiyh56Fjob3Dnni1AqQJ2ihLigLBmAitsA3W21Bi2Gg3XUBE9dQEHBZVwBWWuO7s72HfjOWyNhvgUAILQJS4DUugjggZ/Og2RVp6Opjf4N2O7nh7brL3we07169dX7q0xMAwL8Kycdh4u8noQFHhhPqKR1bmjLDVZ/la/H3F5DhHUhFxdMCnXKkBakkOIQSSyk0aGU03F+k+qTImd04kYj/lvvx8I0uSOFGadA1RMKNzufwGsIsbwUgLP/7/5iGepEJOgNooquXgH2/lBVKwjP4l2pp+f9yunFBoYuPZW/7D+DCMa4qi00BEGaTbCBPphFvM/yQ7OcggHnjAVoMtVbhA5dqNsbv37n//u5/1mQLAEk7dmcrGX2MgQKDLu/SzX/yCoU+CEZSFCAONyUvLAJYAPOnPf/31tevXWKlG0oDeBCSQMzEeBE5OTvzv/uj3+1OTMzNzhCQg2G620NHJb33Y7fX/2//uvz/SaxMPudKOKIOtNGgb9vZ3ME5qhD7el4RMo1zErwvAEjKEjSJiJVgIKh7aCnnGV1wRQrFBDHoPc2kcEhoMCLYODg6/vnt3e3uLVUEAIOCK9dgI9fr9xaVFAjQmGegE+z6hNKuhviEkmqwV0XKcInB2UHQ8zKaxTfcnUXred2PFL++CaOO4HIar28xSj81MTWZ2XDxVidEBgNxKLWm5VgUBK3xkZ+aIn6K0dRDsXAb5K30jF1d24Wm5qNRcOkENNTdi9/ceJfk/8rCUENib6P69cP5uoqRIT369HlUiscWKC9icVSb104rKOUUggwTtwqfQgi5oLKZqUWiHrlBXoQisJVRDbsmYWkXBWiOjmAQptk+sHU6NwBisb2w+efLYcfkBE8y820xHlrlXwZNndmaSIabtrS2VECcqWbgn68PpUP0UXcRXK6xdZW0NKKCXPMF7g3OhBLVcWlro9SdKIETIxMpVfCuW9947d959+w41IlYOtJqohFj68GifuzCLxXg2CCYeHjoxzBI/BvoxfuKiVIG84ZFk4wmIl0Cdg/JkZn0VZMiydPjIwBPeyXy18pLdKHZ3906ODhwYJfH0lGkEUugxMwrAdnoUR60snuDVbjtvanR4hU8nRkXYrKEbLM4B8dhLv9fnpW+Q4zUQznCe7OgmY2fESOw5AJpUBxNloFIb/XiJIP3JEQWOciBtNAcKoVSI6oMX8let0Fr4ByDopCy/CY+IAaxCOSn0Krd5U8wfj5FOJqv3SeVktmQCpppmJRx5kMflsihieZQ8ZktiChcopWCBCZwEMcKoEC5CUzzWz2NOwSNKqBKLiWTpyDNFA51wIVwnpwwKegXHQIBFMIfhCp7QVBR4GAy5Ma/iGZnuBYRdyGS+9/ARlsCfhKDv6csCm8pYfXfz2tWNtXU8rATKJUGiUYqgXgMUZH3x9deoMo/wsSCPspqnsLHB5g9dpgtQJGDT2gCHeiGHYaIb168TO2gH7kTaZE8XOrNHR8e7TH0fMDKfgRzABX/Qoy7UHX/tdC9AUAdFpHKoOvQ1oAubw31TjTy1CZF4Ayl7DrYO+JXVzXXUfXJ3ZpPx5P3D7d0dBhBOj08PaUlOThkl8C3QZh17yEI9qaY4LSO3Mp0FdmPMUO5DicxFV+UMbU5jkTmK/W13RzUki3xQRjd+ojQTzIgHpDiqIZ1RlgBAA1CdXJYf3RFxjoBUWX7x9TBB0esC/C3p5pdDVuZ1ckRigiyKQHYfkBDdqgpXOFro4kjO6g4UINNhIY8KP8DkbnRb7nwuylU9arwF7BvpjLLmXswwTdUFLuRcCgcrMKYwtiCa0TcepoSEh5TkBmx6RE77hIDq3tKVTmjAprKMxjz8WtyC+TVtst8nmS3osBiePXrynJ0mukfdsX4fTXEcCXKIwKNCvNX77OkzXjthcpp08qNfqDE1gCkvKuDy791/+IPvfpteL54Tw0br0GzNDHFjCQzE726jumDTZGcKV17H5IZDJjcwcmJ+vPLZ6RhoH7Bn0fGhrESqGq7KDzR0Go8BS/VvDF2q2LLR9h/SHVXKHguE/ITyEZ6MkBWhmzftAVNYvLl7+NPP7wGRCW9eRgNMe5zFp4KBMCAfaIKuN6R6DuyHngeAMD0Mmi5LWyQMfcJcK1EuEtu4tLh4cLADZpqhrkhnbrtc581Yd0HjisgmvzBIrShH0e/oXJUCEFiQG+DEL1qRMqVdtNxF8cIwHRtUwKw843kpXXighhbtoKh4gW6YQyaBk1rwST7xDPeZUFcjSbQ+CpY/knKIxujwOvTEgM3toSCLeXIlgKR5QoFMqvKlhlIR2AX1ADNdlFjun1/Lp4zlCIrS6FWFq/rDB5SY/IXGqgrvpVS4mvdCFsiwkMYwaFAjKFjf2KAvC+2EKM4W836VC6op0mAqmh18d3d3+5NTeGc8LkJEQEIDWL1xeXHpi7v31jbWOpfpGNOVPWFb3FhUKnVgvMkijoO9/ZnpaSJ2EJAfeJnBcHKK7aVbJ4cHRNRw5JD3MU/OaZ3gBN2YqAHkGPFCioCskSktuipyyjEixnyBSNcWfPr9PsXsFWAXo0EPrhE6xDCJgZJEoQZ7h4wOARZQDBAxTMwG1y6IKO4XHTaIYUhYYzB2YwSVzIw4YYMEkd3zCfrxtEFwBNsAuHokkvWZqRkQBgU62YxIh4mIQ27RLGi4XHvo4fhRObjC55olUn7jxBMfg0RJ5Ndc5LMumGEh/qP/jG5FYDgcPVxVErnHXEpdwhJQMYiigslo5VUVFRKwhgGRqmqhcai0qhcQuAgcGVsQMDF15XGph7TqyL1PxF6ROcgoiNSap1WRcDGgCksslP8xXS7VWWGQiGZQp9srxZAFX2W2muJFqCB1pHJyIuLUSzh9tjg3+1//l/85w6msN3v48MlPfvrTJ4+fvf3WzRJxJJqIYCJABH39xvXnL54RcSF2q+dlz1GvGXVaXJgHHVYrsQJt0B4HMw68SYUAA75jTYIoXvWkmUdBkJ8KjJINh5P9cQb3ecORfUV19M3mwtxcb3wecnk3c3t3H4tyiMhaIRGN990spwWK26N/CMlwlAJYyeEhPQz5i3QM4BAXOpRojDTEn9Adncea5QaFEQm10psxH0dYSXeFgqwTbHQczWBazE0etUWGe5usWyQ8YRiKeAeba/kOk5qcrs45/QF6QbBSb0QtKrHI8kPFWGUqgSBttaDBU674Bz6K2XTylwwi5LNgVm6SvyhkEnzMoVLwA+a5zcmsecrZ3wJopLql3Ovc5uVZzqQGXClhHp7Fy1bVJSnAR+Cs6w2QliwJOedJsChoIsyomnCqoyD+usZRsrYsJWoVrozyaD4y1g6wKm5kK7V49omMR7RSUGoMXYBLDtEhN7edTuvjD97BGzKo8d7bbzHj9eIlm/rYMZ3oTqBBOC4UKTE94mBHjNmV5ZcMtdPxozQQdA9hCI0KvWqakS+/vP/pRx+zywqNCRCIk8AnY1CiRv+Y7DQ1mBCyFmdDrDozu7O9yb3e5Ltvv82W7zPTUzeuX52emjo+PNja2nr49OXdR49X19eIR9AiDYGDwvZl3bCSG3ecpL8LTjCD3oyaZABZCYXcun7uLKckFYNz3RSFifAAC+JFbCFgE2mq7RDv7e1xhlwAosq+NeqkhlMUbl7E+89nLKVydo9/ZAlWNIJnjAd0x8eY/QO6PAIXJUaTYnuAKVI9dan2IskNZQuKEZMZAFrJNVyODlWlyrXlR8ebKZTL1p9V5pS2FsmW/mBDweryDRBwxnQf+TR3FhFS2Bm0TS4PYWUwT+434FSXyUjZKrO5CthcjQgclfuP/EaKQUD0wxPughU4xS7gadEnMQY2kOQuV2Q3Wo18kqyRWHuhLdkTTTgA2kYEc/Ozv/d7v/uv/79/srGxwdJp8hGzj7lfenlLQSQZmp/odenC8kGMCL3YoPKiRlZpsvCMhassUmKVGiGAIb/7IGW0HXxQBXrDLCY9PWPLX3BFlSmLItOF+NH3vvfph+988P77vAl8dHRANqatHOG8cf3dd969/fD+P////Juzw8zTQbzdgSG74KvXYMZMG2/707vlH6vM3UFDCQGfpwZVTNxhKpwM/7EKMbERoCUgnWQuyUoLJdd8t5ZoCwRra5uMEjCOS4UOh2H5tj669wEVstOx3XibnRwU8TWgRFDsxjc7z/wH1QVLAeOdyg2aCgpRJymQgSBVhCOrrcKfHN6+PrgWwyQqUS5kf5XBR7k13Vy/dSR/BcEs/o2O18kplNKBIRu9K/C+CTblq2c8Kf8sH+ijIiZ4lMRcgqVVY/A6l9HT/P7dE4o/SuQC9bcJ8Aj2pdUtGSocC1XkMVvYW1hUUUJe7wvQDDTHsvRTaMH1Kzfevn1nY20DLSe4ILzgQt/qYd2oE9sNsdkErQZBATkgBtFzhSqCLK+88V2auw8e6pSxRf6Xpowfuyhq2nh7nKdRGfFABVEJdPHdd25/+N77RvgNFrmNO1Tjq38oaKvT7b37zju3blyjRlECqhGK/UxmvFTKMEqieSB7VC3XX3iNOhv6yOsqJs9jnYp6bYgGLD2KgU0qqLr5lKi9ePVi7/ZbmDVca3UdpT9hlCsTEIy0snt2f1K3w0FDQd38C8cwwubU1BTMcsRC66lwA2ErMWjEB5AdTMVSfBQDt9Fk80tIKNJhiM03DyHm4Cnw+V/AQJS3FJEVSSz5quvixwM+FYiCj6qU3FQn0RqBqfIko9nfQAk+C6PEYxXWakxBv4J1wQHSi2j8VYoU5pRsVZlRkb/7qziTGQLpCsExFV0QoRgdEJj3QCxQg4gZrCNMVjm9L/8BKfYEuseMiaMUiPmtWzd/+cufM0DEW4qM9eFcWfpWVEXSeZ2Zzu7Tp7t7u2yEza5cW6+2V5ZX2TCYGSqCiK2dnX5/4tGTJ9/7zqeu8BvvOC0dFymdYIJ+8MZlYa/ajBk4HYHDZkCFWYL22DgVucTBVZ52pjV+5/jGbt+6/cXX91nZxfAS/UJel0CBWwQhmC2Q7HFq/YmKwggA6TwcSCmeGHV3RZ1JuiHURccCaBoEDjAreskoKg0ZhgSYrd2DlY1tXms93traOz4hVmO6jfBxY2OTVm5p6coCkZArDdVvZ+CjH2gJdTNXDUlQi4HhRWLDrshg/z9N1EM9iDj9KQe2Xj1UcuFb8uaulIuSK/nQXHKTJ8L3Rz0DtPYjSxR5kjjlYamsYDCqmLw6i0DhzEMhFthxcwWwOUqESgYQsKawkbOggoPdR3E0pObCPLaIHOoh8s6d+kdzSiLzgD4sVWrVpoWTgBNjC5JdvQk0U41+fRI8ZaM1FsgQolFSK//ijn0iTAcmWO9IQWMDtchSwVr4EGRONJ5dIvGliLvX7xHTI1yCGELiTosNv4Tc7To19uDRw4Ovv372cvnly1f4b5wk7xafuBBBlVzZWF/d2CDW7zYmiA7Gum3Ul8jEsWMUD50gZDo/74zxOod8ABWUBC1iTIhLdJKKQIkfkHSNBZp0dr40t8AjhpUQhMKgKjvX9pG5cGLC0V5qyEvJMg8IAcWPJJZ+iTAz7GCLJS+ZLOAkQ8LXYhSJVayA17l/fffer+/fX15dY39wctErAALgMSDX8bK8z3ExFp2Duq6+CIEkukqEXnYzsr8dGGt5CsGojF9ow3CxQ8DyLxIpopEO6+BvdJRrc0FC+Rtd8wulxoNhHOol+dCeI7vK+l6E8EJmMoqJHJAh5OTMv3JwAe2g515wJMkc/0YHZcLrwJOHpZkuGTBP9vcPF8wfOkBGMwtCZB/Bef0b4kp5HovkxbOCW3VLYSOR6jAjwuS/CHpgfISjNu/ippaUy9J0CCrKANlmVs+KPVEQ/jCyjwc0QmbT9S5DpezUe/nqZRqfQo4qg14mGiGYmZ9b+Of/47/Z3N9j0oAv+hnetGtMHjcYaTlj3o1VomcPnjy7ffNWaNbf8zoCm66CNbWzYBNboCEqy7ZZ3wmXGI4CDja2v7fHBJw24OpSZcmADTApSn5mLfZPjhLCSCj7k7lIEJVKTUxy+QJA1ShQAqU05ilSCJ/ggK9zVYwe8VNO8r/iKzgSvdQGp251ZoS3tfMIDNBXRpbAiRXiLAWhSujdPzikaPoJzjmwmj1FWARijxVjsPXWo2Lrkm8tIGxQZEulNBDGSIpikOsqG9Qru5xHhVOkSlSldKCCtSGpgKUKyHbwiac8Byort0Y6XSlHHlWlzSUcG2BKkopVR1ksLcc4J0cwsqj3ZDWVw9/Y1ajGVFo9MIONu0qXguVscg4QV0zUoUQK6FSX61xRHb/FRkgdHeSGkzjs4OeJfzBCOOb3sSeAq/MWsxZ+kIFnCbUYBhabd34sBWimbt64+jd/+zOmms/GkT6ejsX8NhcYtdxoDJhBu3r18ta9+67dJBWVdfhxrGstWJav0bCNJDp58a5mxTYrtgkm4jraPWYSzUjBrq8KB0XAIa7WYyIGvpeZ1ayukGIF3fEhPXhUMaRIHxWDdOYTDBjlI4cPdD/SJgfCGUhObk0gailTSmbZIcc8qJQ/2HqWAJTiIOKiWHruFsNk7eOKLQ0BkxJn57v7e3QPsrOT3YNIQuNB7oHfYBE5bR8mDiZx1aTTQnqMmGLt3gYRMRftcuIiRJRnEFQeljNPzJjM/JTf5CnXoalkMHTkNmCoIcVUFa5gIslV7eVBlU29tS31qWXNY4aqLnAOciWpqp98gjRj+RuVKQ2UaRa37JtHlS6QQLDGqmTAwx6eCFZEvnG8vpejF+WS10oMgRSG+BiH0yZQRN5Amld5wK90+sJJWXQsWLY8pAfLMoeJbh8lcAQpS5LDMaMSxoi++51v814yFaEG2KOjiMMjwNuiurFgc3VtnX0A+EAOQ0gYFRBY5kOkABrOh8WGWNXADBOt2UgQWJRvfrLnUgkr9vcOWM3KFy+P9o6WV1d+/eU9rIuEIRPUvgphj7iF6YG1Fm8P2RUWvDMfUmusxkD7JBcGSLTkgSJIaME5ijaQQEY0Fa5hiLyTQW5xhVu8ik9xwjuIRNmjHGSV1Y0GmzqxQormAi4AlPRUJpz0SQZkYGiZ3QHZYBAcFIPDfrawVFpwKGdulJwq4K8S4ly8YO7MXx6OzlUOSylbz/6leHnmmUO0qucloWQ0jRySkuRSb7JG9cTVB4E4yuQ95Uohyhe45gso6y8YWJLjNWLeVDXlyW+dUrykBabZQ35gaAxBpipVblQnRIkKeYwggMCookRKBp/qgF47th24YqobxkhsFhAfr40VOOoHG7RM9JcWF1Y31hcWlwCOInCm6WCJMxUgazLdvnV9ZmZ6fXuba1YHoYK81M8GYXSj2fqQgx1X+SzItcuXCfKpyulqViqkU4pPtCFhIyw0Xh9PtVFlMCV8bjXW1taIP1jtc+/+fT7OiU2yLyr/MiDJBgITIbkKTe2GyoCoHl1niKOjzsuTdB+6+TIcr0pu8QWQc1a6MiSAWxcNxEPvxyEv410BcMhLtd9djIo2KkWIBsP4EzKQDUNH70lB8/m2J1t4u6mAu/kxoSF3GFsloqMPQAjIbmqMstlS8j06DIadNGxbiUdZWtgO38spogsObyTq5F4fXo/u31CK0WV+JaVKqBTHO+kYlSwXURXdQJI5Jdub8NEcnlu7MPPcm5Lz7ySWRzlfVPRG2ujSiir0qqQA53r0O8r5d34vyklMdYA9fwoojBpRPnqcXzMjQKIB8pRaEjRYFnRiX5iTvTUUwrABd+n7LuQdXLm89MWXX6D0jqA4wJjeNs90pA5+0J++dvXK2sYmwziECag7fg8njVqiWrAQm7r/9PF3v/NJ/3yC1zALU3lqv4Sza9jarCo1NkNDlJNYoUV88Pvrhz/98v6Dg31WwPmxQ6alMS07CR3oBf5FXw3aBi3sA/1m8J+9rednpr/9ybdnJvs3b107Pjpih7GDfT5Z9epvfvX5i7U1JvlAn1bMgSEjGGxAHeFI1dIe2VecjhHAPO2AzMTZ5mRP8BqrCJlp4a65s3f4cnllcrxD5mbPyR34gI1BDYyALzCCjVBnJRsc8SgyHzJAgFsBAjFocP6PHWCFPVZaayaKUPDvHmasUpWz2agFy7dWcXijiKSW/Ektuh6DiX6ZE/SsdKRAqbPA9xzQVXXS4ZFfri30jSPIBGCQ8KmsTZ7kr3Kb9Pp+hHBVZgRdOMEOIFx4kCC2ufW6emyKluK6r+S0NSZFRQo0ipZKfPkW5SISt2F3YIcx09PFxcVf//rXfF/Prbry9Z1GB/+FomsSqAADrJcvXfnrn/3S/jKgXf0GfG0AGjmRtrrKJiy7LNTv9dr4Rr+OY7XiDAzK2Qmhq5BR1CI2nnc6zLmNv1pZ7Yzx6YLkcuM5xrE6zEJw8A6ytucLxs7XOorKIOVsf+pDvn91eentO+9O9PgajhPgoDs9Pcmrlcvr69u8YH/ELnyooi0gZNDxxTeAb2Efqu61iDCP7Soju+soLuMJDtLi8h3pg93s5Iq6s7SDho9wjZfubi4tsg/SWbusYi/OQEugK4EWHhwe42zYGRZjkP68xglAoME8KkVQMiaigrnhYmRdEhUk2qwgk1phya3dEeRa0oGTPAFVwYywA1lfQ4nq7IWU5jfJYKUWJY8/CqmYRWDYzSqpwRI8qocW5ijoJqs5zVR0rwJYQTMDNakrcp275LSq/PeOazNUYPNjfqjz+qKi0QW/FCrZZaWAZZiwC41cqpkgZJoZfGRe73M4hhl06gQJCIVE14fWeINnkq9xvHq5PDU1g9Lq2uoNJhkwDCRCT5Eg/fLlRRw23pXP0HKaZDvdsTHdfN5ZByxRCXvsXbt0CYdLhrEhXQU6DChVwjOMrjWGZrMxXvAKemmXvvXJx3/1tz/jNTrQpSDbUdJYYUsqMa40X7HhXRoXVjOCT0eE7uB7t9/6+L33+CgiNoD1ZiEeYQir3M6mpmev37j167uPaLrgkBESYY3sYNqijcMOLyvGKW0ZxFiBoubahoNghspxFbqSwWmT/WJhl4vqUOjVtbXtvV2GtU5OsXVWrLB1BX0Hhwu2t/dpNztdVh8Nxugns98wHxY9p5vjSBkYAF+H7QtH3hKsMVWIa7GbSnjHAxtAwjXXnJqkOCM/7srBxYVQjROBab6RLnFFkbRmPmL4q/SIYm4XQJK/lFNRUg+va1lX8qTS1Ot9uXjzJxUC3bqRrn8XuYH9jUOLijKWVOGnStPU+KgyiUEntXvpXf64CsHm4IjSqlLasaMu0Xi5JDxISSyazBk0idNJVCIlYadEJhziG69jhBJM7oIDLbquha+5zsw9ff4UD1sG36hV+uyH81RhXZpfYAiVtwe4R8W3znbQQRSF+lSeEPX0+YtPP/4QDQyqQSxdDqRKJWjRzsEBryJwAZEiHtu9eunStz/5+M//6q/pQDOF5RfJj4/RNJSHqIz5um0mt5jcPWI4dUCXeoytp6+xVdPcPGtBmJSg0wx+4ZNtT63RZv9q4YuYXx9BVtBAfIS+VryUK5Xs1Hc78Y7wSAhlQNYN7EmEBY6Z0ny4cx6mNtba2t97sbIx3u1t7O+t72w9efKUDhNb9LHjAJEcjuGd22/R/DlKDTLUJwoc8F//RA78SqmJThLyiRoVQfLcJ/6ki26x+G4BlEM5khoLiTukRLSlgKxypQWyYcEPoAcCjM75I0yrSx7vUsYnJr8BJtfcV3pmLclcmiVLlSTu/VaRJUdFQLK6DTxK2iREa0OpMJO9PA4BwAYxcppX2FyYEoMYNYY8yGF6zCKqLiKpg5OypnI4CBy4Swb4oCAzEcFTYKOChEs45+z6fj488bVJBI1yLy7N/+bzXx8c7vOlpvG2WxUhSuoEAKXQeD4weePq1V998SVNfKfZuIEuXuZF6DkaCraI/tmvfs3yo2fPntOfZrKZ4Ri6rAzIo37Uik4iOkIM8CW+IF2YHCqbz7776bf++qd/SyckT+QIBkjfc2/9kJVIaCYRilsngTsNA4uc2EuC+CnD/YDCEHDZrpQmBwNfC7Oz7Ly3t48DCT+lQf3GgsOmim9FB2BMLtQCnqKXxP3y02SQdrash/myMLtZZ6s81tj94u5XXz166PcRjk9wJgBnypyhYjjM1hWsvgIIlKiBsIEOtCF7aM0INHISepwMeRQYIos0kUR0I9I2JRpP5pJacNU2Rn/kCaKlQFHHAC8JGfsKIYAoWldR/UYx8SnZOV/UNUqxpt8+kqa2V8gGiSoTSW8WSeGQ53OeSFSyWlN1UzJVALwJCUl9A1i5Dy8uIHgn+hUiXltHMgk8/TfFn2tcG44O+LgsDIlmkLaMawhBPaiW7Hw9BK1dXlnp8/2+TpvN3idaXfwcoz3Slde22K5i+eXTd2/fYSH39avXrvltQtezMfo505/61//23/Ea2ObWFnv/tIcdwvBWh/7qGa6xCAHPTS+YV8OolPcWlD62Rqf67JxvMszNzfF9HSYM0UNIYCwW5bdqd/462dnzIygYlTNraCe7tdiLzdpstCe8wwVrYXz1Cu3tdft8y0O21/NKh5GHk2XhtsF6pGibhCqbCan4zy6R6sgNveH22NLcPJs38SLDsxfP6AaBCigRAsHqYtAYJ6P3FKEszoMLv3eFvRo10s6wMwcvRsFuqrJy/BMH1Yo1jpkZEnsKCp9KdVvJNlIGoEqcMvIohUzMn8/M4I1MFovqKJfe6hHtE5bxFHNycMuRy+rEzTcTvH0TJrdm8Me/ERzjEyqvoPFAMkSp/H9Nzig5difBpeJkrHIDpHpQgaeaCvAFRBmROsJDBUqZ/PkEqPlR+Y2gcECmKF68a17lMJeJgyHv6U/0x3GghB+EwegaqayhmJubfvrs+Vu37xBcKkfKc2gt4ocWsXPei0d3v/XuW+99+BFL2XqTk1ZGB7fT+ew7nz58+uQXv/o109W3bt6gojJYQtxLab9MSuW81pvRHWaOKWjVtgzE/yf8Yj/3Hz8hcgubme8aHu8dYBU8DlcEQBjNfAKrUO1JuAuRy35odYDsIiL+M4RJNvQRcMMnRQHKalLbIEeQEFoGVQzQ4gfsEGPOYw22smOpaXu8w/rWA2b2jg5Q35X19RevlnmRDbCoFC1P3Lo88b9SgNFqtsyya8FXnOkzswF9B2nQWhluggL50w5aCFJGPxc6RNmoSOTkSesQtH9efuNA8oAp5qRU+fPgLHSO6qdAsTowtNpkLJWXjNXZJ6V0gRQIpcQoXx5UquoTcIur9bnIjPL9//0Vt4JfqdQCVdr/NhxZB+46jvyjSkxcqkq5kAkimiXYcfgyuln9Q3wXqCn5hDyYAUun206vRTcYoGm32Sb1r3/+SxZIHx/3UQ7CfZY1iyug1IHhpUvzb924Yed1MJyZm6FbyCv6KATKObcw//3v/c5XX919/vzl+XcBT5yCDoASYzG4Rl0deKBx9C4HuzvlA1YolRxUic7Z6w5jw/oASBItAJh3mFZzmg/aGa9Xkd2jhkEuApPJ/iSI0ZcFQ9UMlwciznHZ0k32JlFa6tSW3aFoyOisnWtiNDv+p3t7uzCyNz7OFpm8bsYnP1i78fzVGn6CbyCygIRi8B2cgI2xoNPotYioA0UPw2OkAIW43YwzoBt8N+7lyipBJjVR3P6WSn7RN6Ksf6YpWhms0FRWrhVWORexkUB9o8Os5DdxlORvubF4YAHBN2UVDU1Csr+Z22zcj/4HQGUppaZgKFAgJlvwlOygBlSe4UJdr0OmMOV1BSmX21L8Arko7ChflSs/5ii5qmIALZiM7stTKqJG6ixqLiusGzrBBdWhTIzT3ld4XlXGY7jBAAzBs0kU1P+byDfBOlO+d5VbCQcgq/GODg43Nrcm3TZ4koAeNcMtEvGCCPJGuDMzs9TntFXQwEJABqDsr8dXRd55+86zF8/5AnmXb676Ir/dlcJFSWMMlL5Ho84ro8xAEWNv7dgV3t8/2N7ZfvLsFS5eq6EA740ZUajhpTOMsUA/ODCzNmT/MKqZnurV610aJJtnTImgKuEgNdFCTE1Oyheaw0bz6tLSnRu3PvrwQ0ZnXT94era1vfXTX/7iwaMns1OTfAHn2auXewf74ERIH6OyT9Ns8RoetSq/LEJnFMtYXzrgF1z05DipA0S876/PMeQH5eXl1ctzs9rcOC9tsC83mREPbLSZLn+AAb6ggAlVSGhkG9ARMZH/QiG8BoqCjHIXDycWpCUjKcmdNFIFaYLomof6kpZ6KsCBR3IeB3Z1LVgoewOBPDWjQPizqBLitkLMFGsyj39WGZTIEbblmShxWMoMVXFzhgcmvXGU26R5iVMh2sh66ZAhV5E+Vdkak6NglzpSp4giNd1QUCqgS7jE17jZ14dofgoPCr4YGdk5Jnnhf2L85fOXbICHOM8H7GJtlGI3MAdzEXOLi5vrq6Tz6jsDmC6poCMRRNHM3//dH/7f/u//z+XVdd/pRep8TCMf5NRxyxsUps5mR3/2V3/78OljGhYSNx13OSZ+4LVijIfo2zBBSmQIcQzOmhSuy8FiDFdlO8711g1CmnTDna1Qa9GriI4Ya2Fxbqw5Bk5vXbvy2Scfs5fGRG+Sh/rn8xojUnxO6v7DR6tbW+z2dXRk8IP90Cty9Ek54eLtXnOty8lvNBe/YAaS0g8WVSwEhyHG4BBzdNn6zhVW5w5PhtlAyU+dw2mMANhYhaGQqMD5iz+g/tYhcGv2iFyrG9mDYHgmah52BuilANZWMS1hZKr8xVUtYEbFaROHbit9EQ6HWI2qSUYzpyA/eCIo9f0McopE/sjApQpEIuqgr7RMMWHxNjko5IZrb17Xw32q8IFlZUh1VAVfPw62BgwZA2RWxoCzZK8ygYzCMUOEVZIrltk9MDdtOiyLTxUX2njC9M1tQg1adElWQIrVDyyw2O7ps6effudTwmSUIrhTqkKRsnNzs6vLr5gWoOuIJcD2bIqrcMn/3nvvXL929fmLV/SqtV6OCCULQCKNGtvDsOHF7vrWDu8xM8rEYC79W0iQ2+nTh2MRQDhASOWzYgysRaXjwPTvq9WVvd09hnVBjhaqXfcCx0Al0t0Y0s+d6nXfv3Xj048/mJ+fY6QVEAhMh+xUV5M9iBh9YjU5y4wwpLSwUFFpve5wRDfdCzjEExJQtKL0eQgkkmELpThhjba/PPIzLex00G0NTxtHhye7e4cfHbsNXsZTgcNRGTcgYxAVi/+eH1Xy4lAUI7xUNnt5ah+aBG7iaf8MnzBSLLleHRbVFaQ+MnBY8ptHNPqiCFRJI1pEDeSOFShULzwq3ISUS1PL/2+gbZrPR8UsqXZWxbm9OFK6oOZlOaLZFAZ1E3hcgfcB/73lnwzQ18iiSMTrjCJbHxwvQhQN+c8n6Jkp9oVbAgAC9YohGonbe359/9H2zg7v7Uz1ptB4pnQZm1TUBlp0rCd4y+fg6GBy2k8o4JFt7lUIInG+vjf1D//wD37853+BdmXFRaaM4GGiAHnPjG177NOPP378/DlBBNESXVXwcqEnRMbmNSm6M1aoGZODRa7MBKD/+GteenDja8ZndvZ25hemCVnw5ShB/E1xTTJlqtdbxGwnp3g3lE8gAEhtZRx0jInBITsjM0bGaierILW8QKRHYSGsr0dXovDHpbN0t7RsIaATYMZEQbgZvsc24KxvBdGikIdiT16t7p+ebm7tbGxu0z7/oz/8Q4pIk3KQuIrvlAGiqd84zJjcPvXGY/Rb7qoUEgVnFnEqWblVO0uWPC45BMFVpUlq9BvHqECVKWB5rBOiVJAMly+QTaVWVC4KCpxNMKngEiTeqCaAUiQFxKh6GkjRkgvMAnn0/A0ghboAKKnWmD4jlfsXBMDNAZ8Ysa1BKtBVRtN0t/Q+WcGAXulBEJ9+RQFNz8yg/byOMz9Hf8CQjLJclK4R+s7IJrtOsz5uuDhgdJ7VROzO0pnAI+NYGU8ffPqtT7766quj/QNmJUDBiCWIga4kisTw9p23COPZWYiqmZAlfHD2GEzSkUA1dUBxWozZYANYCD3diakZ8Gz9H/7wD/n2+cOHj9i4C4yJnzAasEwXO82b2tqguZifm2M82JFNIcqamAPDYPBsjN2SGSCSfvvp/OkJ5Bo4h2HhprYI5CJUbAY8+UeFsj/0JEBBtUdtt1Tyf7iyvvlqZQ0eMqjV811Q1Z90inExUsFvaOJIpN/4Fe9K4IFQ6ZeAOHwWBnNGBkHc5NEFRZLPnMlfXVwkv4lAlVV4Id5zXCDkWpHnqtoKaHSYJwWRZErJYJcSPkrmyobKdVHVXHsKhTKugCr8Hz0NibmJjhdT/21UM0cpd8GPAopTmQo74QRYiQdaZfMWnMyd+phVGLYdWVKFkg/rSBQ14G3MDz54jzUX7OBoK4JXiJoCCa3q9aeWCZBOz/K2JxsFMVDh/Nmgjs9u9Hvjv/uD77PH0exwRpSylFWPHVzEkM2OJifpivzqN1+g5YQtjJMyL0WI7gD84BxTpDpyUlp3jZL5HYwB2zgy5NP63mef0Ga1a+ds+QjqhMsZCz7FrKmMKhP/8LpQ6/r1KxgjzQ51O/HQIBEjoI30K4tMz/X7vbX1dR9TiatljZHSINjQOeClrkeEPHYMFK9DnlipWqdowm646qgzUChH82FLwwAevWiSWIfuuqnKnJRDhtJykVMR65s6abIyfZ0n1XBbVfjGsyoT1asDb5b7LYggqXe/gFBQf11FAHkiSyC9rsSEgpA//gU3YQFlhGnKjjC8gPbb1QS+ZYLKG08raD54M9UqUhsigHOBKwLfOAKPRIMCqMxthBBUza10YscpGvps4d0tjpfC2MPQXsQgEQihP5tFnNHPfPbiBctzuoS54+7nxVgqCmenVGD12bm5ew8esiQU8KgNL0CzGHmcTWLUQ0yrduPaNTZBws2zizDAKUQXoHREC4p4rCW+UNy8Sz8BrNGTY77jgedFVoYr+G4IAhgjSI5mJjm7CLNJZbvTnZmpX708//jJS19wjtSoO28UF6+i7qL5V5YcCwMOd/HZLBZvg7GT56y5bbLCZPbh48dwTfYRYdMDcVvhYoKqsi8Ga5Qe9BCiwQabHmWfbbNzqPClr6Hdir5uSQFqFP5CVTmAxOF1BS7QI+sUEZn8F/EcgVPl8ifp1bMKaHWXTOXxqLDZZVEpCEulxhQr8QGVvlm6yufjoKgKJZf3BX4KlsskycA8SolANWFU3op+m4S/U2XAVTD5AZx4cshZ/1L9CMwI56BkPakh8QaX8bsmhs8KnzESBIUIQr3ML3xAB+iz8n0aPIQhbrPOnOnyq+X1zS32k2aIgx0c2D94ZnIWFOgTs5AMlBiwwSWCEt/exNsxkjnd75HZaarsiIoK0AlHD9jwgvFWjK3bdWESg4xBw7YbEsAT3SLH/iFz03uG/iyMY0VDbQxP7VgRGulnQOz6MppEcAOn8cTwxDYB7Kni8uVbe7tYqQsZmBcWS42Oud7wDX1s1nhtCI3XQPXX8ta67VDw7gWwzmenpml04DGPHYG0lCE+6k/7SO1SpvFGcPDP9Xx0bHytmU+DyDsyYbiovhZQMd/8qr7FHTXj3QauAor0iJmzoqZEMDM1B0Uvnit8YFOQRymYX4We/yk0Si/FzQBp/Fhq9Ay0AlQczCBD1RpYxfBDGQoLOtKAgMwvDP6bsaLKlIsjILlLFYFeHhMamJonARKtKykXhQFbKnijeFVqlEfkC8TgXl2HpeF5eXUxhXjGX+gNPFAIBwqoYhUIFNrisMKEmD+qgPKtbWzT4URJnjx7jrahFbxFSTsA6TQU9ASev1i+c/M2fp2KgMZIqfIADF3KRuPy0tKzZ88W52cbjTaDSGwJR5e37bdwrJnM/X73i8/v5nNWeUkNCRPhiAWEaAqigbISkLjU7Zw9gdV+WKZe+Q6MhBji8cqnWxRzU3bP0jRYb9Gfal+5fmN/ZzshTCW9eAZZGPpx0iooRsLrQdLgfgK8PSRUm4x6nR3edTmFMgM4ESDmw+rZFAqzYFEdxgdjE/7BcMo6RS8E1YbSSl5UR24GJ4Epm5PuBPZ2ehYTI0fJpcxKZmqz523tnPIjhzPApfmRi+p4aF0u2ksWCfF1p8CLRCyd4kJOi0UhcCZ/qcsKrCt8iekWI0cMCJ2JRUctig1WOiRqPIW4VAqVcFJUAlCLr2oWstc6lFRIwVQHSskmzhSkRJTVZ4AVfzSAs+kxDCoSkmhbRqBJjwYX5AIF/4JvzUC20xkWK/mrmoVcisckVLS8ks85mJhf0egQXAaMiH/5+RdZ79maHO/yDQTyMWriduv4u5OTh48f/cGPfkR0Sw+ZlLAF7ylKIHn1ypUvv/qat9tbffSbDsOYoVnleRX0zOwMXNze3JyamQQvNWaQiQJUkiOfWguOfGODpRYyDflCFpi7gA10vHbQkYeFcPZNev+dt2kiWKgDvTVmuY/cZp6gRQzJTroilIOCwhIMzx14Fy5oULVeP+EmQmd5hbcUYZV5v08TwRd5WSXBppkYHBueff3o/v3HT8lD7x44qdaVW2pK5FYECQGg6AsPGQbmYbBiSAzmM+yAhjI65txNWWIu9nCF3A77wihFV2lALqiISiJmFCpKRp4c1CRxoblKkjoRCUo2jILzIMUmJbrKrU0BCLkkvBo/H8zMTNF6ybkUhmkVKsgTbDXmGEcyCFALq3RazM3PUV1ctGCpefQQQoODaBT4/MKjrE3Io4gsj3kOtxWiwb5khC7hc1iObPTDyl6GUGfUEwJDMQXJYS3JTP4YpEy2bVbJeRwTgQXMwA5rs7NzrO2kx4g7oIUkkkE7mWeAdl4co+D6BvO/u52ZaUDqwm0MgpZuZ+jGFq3mc3Z8uf0Ws1uE63R8icBZsiFijNe3xm6//c79B1+32o3aBEsi6JCgHb6hDz54WPbQkihHpajNZ9Aei3B9HUDQHAIbMlCrdkimVp3VcEzjqV3oEIOtzET4Ep3bfDMRaMwTJMmL5/BdO+ByyC4dgxNPehN5x8Gk+vzs5CThHW/8fPjeu+y8x9Qi1dPqgeL+/s7YePvBk+eM2GK8KgHiE0eew41ICzCKPXNM8l8zD7rmVA4exJ8lWEIORa2jQJRE2OYSJU7A4cS1NyVF5x7BVjiXZOgp6kVhag80ipSjUoZgJvsoroKAGhcUyGS803DUZ0lH4K2YaouVFPy5D6SCn0DMgj+BmwL0tthA0Pb+4iCloA23AKOFFACpBaGGObCIpwFK9kDkJ3TbLw5u+ily+FSCTCUASEUqwYhjbzCxqqg8MqN1Qan9VSBxFM54TXWzfOhmdpZAgI1H+WPEBhGepdknbqckO7izLnVuahLmqEqoHTwvWHmuMf7z1b37t2/d4tUsRntgLHCatA1yU0+0sDT/4EF9e2MLgGyitHt4tMHnGDY2V9c3Wdj07PkLTE6WYpzpFSsRTQ5iExQgOOrL1hNp1ljYdv5Xf/tTdyouwkMloZFFG436pFpOUM6rZ8Qtunm1MxEFmkmfWwUFaYwweqx4CMz6vcn52dnFmanPvvXx1OQ0i8xhgq0EER6uuNWf4z0HWY8XpTZA8r/SDH5tbOiLgbOiIgeWSLvKO29UR5KaZZ9HnLDeuGJEIokeoGhjl7LEF3prwUCdf1UmH3tp5RRJajmTRAVJHj3MA4yugLAU10JSYJTOfxWTf1Eu8FLzBBIqKhJTFby1ZPRQUF7wvCiBakWJEjIJvwAHlOwxX4p4Y0aeWg13nPjJlY+kulQaaKTb2wNriyQrRcQ7J20g6yALNuJeSA4BwPNW2AXxAkWulkejzNJaECRzvz+JuI5OjtnJKkpiLsch03pq+CxoePr09o1rvLmJ23bo8HzA+jWeuFphyNLRqR//5V/+3g+/P9OfQKL4ZaJy5I4DRHVwWUztX7l29ec/+9n9p89WN7d5nQ3vTTuDGWB4hvtYl84UrWELGsmW0RmARKNY1Y9zhagiTQZy0EaWSyVEJh/tAtW2WkfHezQf7NsH74jxLV+ehtHsZNqZYB0g7AV0mnzZCjAetyY6EzcuXZqdmmAXR7bGxwbojTBFQs8dTvElHb4TxfAWrw5ZO0mqEHn4J7/p5dt/iAbDP5ps/IquFySUheqmCYUI5gY1XBfqeJCZHPAxZqLGcFjQVInmmmzxATzlzkfV4RNCc5k2sh+vhJszDJWdwqeofxYAm6oCM2reeiyDParyiQRq9kKxupAsl0NhgJhHRDRgs5vVI6VLjakr2DLuoKlripUZkDPan+pSMLXLBVECZqlUcBKYurjkkXFatV4TIOIgNSMEDKU8uBcjnnjkXknDkNyaZdQQmRfmZx2ab587in/Oin6GD3kNN+/lOmEv+3jzZndnp9WcIbZmzF+4blehkAAy0e/x7al7jx5++sH7BFrEIGgOgX2jY8cU0kD+0uVLK5tbv/ryKyayxjvjrD81ZCZ6d8cAw7aIo9bJgmrII6WwVtOzhWCfDRQGQfCH++Uzl74wGSHDQvqj5+evVlaYQWPjmazF9mWdKKzREXEOVRC04emxO0UdftF/gC80IKy35eWj48NdgjksE3RIB6YUGkqdYwbs4THYNLyx1mgVXS0sHnyIt2gNKQRKEb2oKotKGpVCU5B2gRYwmVA77Vtl8pyhvXhY0A71lbkKhOcVMMWb/ApPU9cIVJei5CVfkb2s4t4GULhkA0YqVdW0SyVYFMKc5q2wFx/4GtAAV9TyzMo4l3SKjKq2g1GAB4zpQq4w9xqAcfkCyC0J4CW0ZKvKSTeZxRflBybm43AJVZrTy/Phwe7u5PRkCLaekFGV99YaYjlcYjM+F/PkCPxRhbrQsEWjY+lRZ9xXJO0HEjvAFgIKBcdRTkQ5breyu8dnn1i8zeAlYNEW0MtaY/f0ZbT0F7/6zQdv32HIUQtBla1Z9vJLPSz9/IPf//3Hz1/S2x+fGGfTI+ycPVlQOIZkOBg7wn6IYlRBVN2XW7i0LIugiPMByt4wvEc/qGWFN4uQyEcOsOQZOs18+K0b13mnP6MbDgrxWEplBSZ+yiCAfreEquGO5eN7iPdnZqee721ZBKSjQ/xY2Lc37BAsLSw8efaMATATSQY+UZHSZGCBJYrBgxLGP/wACeXWD1E7lSIdiIEf/nlwhkFJkxIVS8lFOZIBBmjMuS5IC7Y84kK1rm4C1MyCG1WuNkGB9sSD4EnpNKwUi+kEOfKQTEVcFJ2H8bphq7YWSfHS2qzUw0tKCNnGgy0JyU/lAjF7ubABJgPisxNo1hwFbIBUNfJIww63eCrs5E+lXlJhatZue5N97hjHTkVCpQoYaDYxdWBnVJynHty+WXWeJsW6CnGsr+7iB7EEg3jA0VOI0QMNMhTQcMCOQ+w+ND051fTbU7y2frCytv5ieXlvj0XUu2yuzqtvL16+ZKMkl+K3XfqF5uIk4SfSlM/1JjsQv3XzBntFElEgF3SXwSL2iADHZrvZzmgYswj4fv7sibJmI3sigRFdYVSOtyKZgAZV7AFW+X4C2Mnr89rszPz07NyjR49mpntj7SkbJpfBVX4La2PJtySlkeNcRmcrBkXeuPwShKE8OB6MEthRZRdxYLmT3a6qRwNte63tYYD2rIKxCkdsJ6kqt6ofAajdtKSQZ4gEtqKkfqZSxJPmDxqK5nHmkU8dDIiAlaS9EACUPEnwZF1AyJWVoggqPBf8C0DT9CjB1ucSUEqC9qg5EpDFwC9tsbeqtfAqWPbvPazSF391KNwCPDagE6UMXtOi1kBOwJEn1VEkkXSBQGYxkcAU4hSMY63mLxMdpSj3IEdi9JJLbCEFimXwQKRiBMX1pMIko+LkDAB+in1yC5HpgAqIgsCh4iHjM25CxRsCemmfQGJGwAmNypKkVgN9Xd5Y50uAfKZzeWX5+YvnzKb5brHvFBxrhbymM2RG4tmta9eBQ638K6Oi8i3mRApfSMASKFM7HNIM0bDwXiiKjd7ySgBnUqg9K0fcg4u2Aq9rUnBLjzcbRLKNBAtApG3ECIai+pOTd7/6zdu3r9P1obPSais8ZKZK2fT4KoLiz8IkOj3WhzbLKUfTeD8IThIdKiMdjPCLJGEJsnHOQSaZ3e7vGYvztBC4BhMBZVCJpfF9FMBVnXW4nTZSAahc2BAvKAFwpGOKUbWIPKtx8QheB+mhrvu8kj6kmFmSonyUDwmqVcmTXx6ajzOYg7DZLUBdZuM+9eKGDTKFVmwgXw2zm5QCArS2lKryARLmiI1PMH/hIWOYwWVFZrAyT8HJh6k1KZLMhfnBSDoDw8oEA+9EtGoFhQnTcAyy3iqqI+SYUUChqghX1megxiqoNyTzvCRadcZeBI+z4AHQQSDjjQgRr8cdDg6GYCBwD9myfQuvrFCABXZ8Ru3Rk6e8LIkD5O2FSd51dt+7E1b4iAUiHAy/uvvgR9/7ASJmhCmeDjypyH+JF2pzs3PkRaF5Y2x8anxrh5nsIyqEGVLuqgUXXBB0eOv6VBejcgm4E7sciNWX17p9X2suu5ODt0oAm/j88W9OzlmhnWVS+vHR+I8mD8St7T0mmuGOcol05QuHL/TwrZQuIdnB/sHs7DRNI8kKD8jpDHDFGw7ME1MZ2j/d6xEsLS0szs7OMvRMxp3dHV4yWtmgidwgi/ofuVKZoJAHxDlApNiVfWr20qPIEiTjbk24QA1c1QDZ6E9UTrQtb5q9KC6zShgNCH0UqCBQTk+AtkWJuI084C42kIBYzlAv6SSRDaUOVF2nRkw/jfauogK4edco1otkqM0FJdq+TTnZI3NjGPwouVGtyN5kcRJtAJetbkTGlDQvIRqzpI0FJpgEZXXRtv2irSlsK2qtDaSHDYHqCav2wTU5wj7QozsaAgVn9bCKc2By6Z2UhRxfyWo2s4qu5TdSWanPe8zzc35n6pQPB2Ad5+O9CXjLwEx3nEF2sjd2d/ZYmlSGcdAuagGVl8uvCJDoNrScvCYF/hD3y0fqJO7pT/J58j4rkWr1fZZkUz/9BzqQ+FdmkAsHwBOiIIuksyO+OA6aLl8DMTYSu3ntGqNY8/MzrBtqFaciIdIzmJthA4Jx5seZLu01WeEd+clthnKOcRjMnDPn4Nd5M8oDUB4xhIp1UB9vqfK5dhw2iaqGK0b0+REcEgc+7zn0UfKbV69979vfvrTIe6oLjBHt7Gyy3Aru7u8dPnr2/E9/8lfMvukKgnskDVGxRccu+AiQa7YVSgTANSxeX98CNSYmXWfOKN7wnIXkBII4IZg3PTW9trYOVqy2mpjs0xZTI59qhLGOUQ0H+d4Rm2ae8V7qRK+/s7GN/KbnZ6CWGSKQZ0wMYBmq85PSfD0SJjP/f3LsjCP4segFsEwGsUwA3BE+PSt2T6MTScTMMML4xMTe/h7+llHz5CTmQxWYdjwkP8tpAMQ8Og06soEV0MK01OERuwEdkMKYHMPcFEAz0DaYTOzLtg57+e41XzSDdFZrItOJ/gSf12M4rj3hflZwg1eieIOFVS2UwjkiV5BjoxF0Ynd7Bzi8XWAjzYjd+dnk1DRrk8lJjayEg73qvkpPGmdtm60d4Lk3eg6ea0ao9czUFBPJfECe9w1QYfbbevb0KW4dhWAsx/cO0TBCdF00b9kz9ctWvrxcps8DCKTBK8SEFj19/vzGlStGIK7E5EODDQZ9qIWMGATxkiIgBHcjbvaTJyLCY8X1gGw0076ymumaN7QUHWdN0eLi/Mfvv/fpx5/yogEdgRDllw9tcqRRf+coGJsi7ezvbm+to/xYuK/JMfF9hkmzhENWsbk9HGARCJraSvwDLNHD9zSatHUonwzj3v/O0rq8AF6x52SnPdWfmFuY++T9D69fvYzZMM6Ebk9NTbOSlgJsZ4l7Y8b+xcqKpS8OngUELKVeURZnKBYsagpfL11aUCLKhsnO6Yxp1pm2JI/UMpl/7Qq/eG1YTt+uNDh5Khw4MNF1X8rArs/OzwJLpasHmkzASIBGbc4MttuzVIUcuhM6xWjCkO98cZHa6vVJBOYeuoxXkJOQFexQPjAG7PTMpG22TZDeXR46KlK6rSQ3+aR2aGR4pDs7N41EycDqncKSzrjGT/uOu5mcJGd4QU/MZQi84a7gIBnV5JGLQxEB2/tkgxMwBBp6A6ZYyOz8DHlQZBYHyTs7Ki2GJqECq5a9QAwq/ALE60KvxIVwHaoHaom/oCbYyDK2kxqLmn0tscVaA/b85EuTfkubGgb7+y5oAAdaC8pmAQSicaQVUoCKoJ4+fb733ocMxDOthMug3dAAoweoAS6DFByKqANTTfASXxJsbSZlTr8HWIM47GRQw8PSknzw7h22VGLuAmWQpUxTqDkhFEC0py6UHQ42tzf7E82N9Zfocb83jU9fX1/e3NzgczjsSsSqpgXsjM39nPVIu6FTgLOGQ9Mz0wxAwWiu+W/TpLMw8mSduaO/U1Oz/enb12/CHNTXejVWtv6FSvP3sYaJcSFIGmA80H+AJMiQkbh5Eq21CrgTCQDLOinIH0zLnKD36hCsTZdVbGJjYgincl2eRx0IXQrmaqxWUVhM5QgzddpEA0TcEwupo14gotRNAVxQijFoD3zgBFs0DBeWAWh0DR21AERjGGKloMQ8r7nIMokSATmhHSF+dFtmAJxdoYbsRWIWJiD54QAAzJRAnBQL13hmXtCTGCkVPkoh5r4Xpkk7bhLceQaG4KSd5MOqMoomE8ggQEkQiNOROrGiKh8mF79A4cU1vhZoiyBKvr6O53clv8sT0cyjvR0WM+CqCb/VeZTU/7AC/eGdBHEDXDAY8kme7a1t2s8OozN2Q/hkvU0AjhAC+X6f/JSK0KgxUi7MUXXyf8jiTl+bwfDBB9rZd3Rzc3t1fePa9dtkMXbNXxlEk0fAptXG/vhe4vLyM149YrXe7hFcHt/e2yZ85/Pj23uHfHCX0WBaNIpH9Z3ucINGvJqdFVYL2twQQiASVIZWAtaCB3KlShhEBlqeRAW2kGKMyEMnBDoY3GheXrx879FT2zpoUw9ClRpAXr6bQm8s3y9EJSOHyI/SEsvBBfBCoYNUalt0V2jlf7mwLEVUOHRCDKnJ2qoHMIVLbvgH02ON3gs5TPeJapc85BbPFBGQXAVkEU0stsC3MKpmK64paE2U1AxAw5g8r78WJAJf6GJiUpARRf6AHNUHTp6QBCyqVVMY8nZY1gT+FwBUF+cdMs2D8wvFghermKa8wUGEgeFF6rWsfgoZSBFZo0U0SvRtip6BBX6F7x8TyGEBqBOhFxZki+fgDy+yswGMX5oCJcIkQk2/OsmoiYZXkIIQ+abqDoZ7B4db29uY07DG9r3DI5aP8l2ytY3ldb/PxHpv9hHVCecALFGAyoLDDEdksuNCDK5IHJViboMB3z47/slf/+zddz+YGB8HTYZtcNMOesi5UIVmk7S4uPTl3bv7x6c4/988XTEudpSaCmCbvdWdvX0U0Z60PoHijMFXqzbIRT+enGDMni/YPVOD4EO2hBmgxMtHNOUYmOConIaFRLuGjv0OTo7o6wywRqyEYST4wiFBMl/uoy38c82F9KsfitFs3Pq/3PrQO7NEbVI+BRAoSaq/yOcnbOI+tYiPyUW/VW30FD7yXB2pSObeS2uXeT7kqdUnZ1Ae1g4OjgmLSYWB1id2KqDgbeWsMckVAbFGHnqocD60FL+WtKyEcKLpBk/lUj0nrzdK0wKGxQaRFjdhhF5uhENWqArbZKyKTi7gF+dhjYZJAKQa6yxAkGMUpkCNHaMHZHXyAAGeEx0hOxSJ9ydhNA0pMQyQ6T+j9Qx6ko3wGmGjTgyZYzPQZUCvlHmHxtlY8IA2Zh5era0cnR6wuGhtfZMtdAlQD/cPN3Z2zG1UWRQPZGhXhSPLpIuzVxGNHNDxeJiTguwb9PX9B/RSGVsywjTKdb2e7xaH45wbS0uX6IuxzNxBLqeWmZOzPkSZ6YUhnWbUkG5iZxxsGaihffCg2YITvi03xipcutfWgTy0OcvLZvL3ev0Xz18cHhzRcmpO6ghMpE7YSNeVyTv2CDvyG6Mj7oA+2RQvf9DBF6NZbSF9ystHkbdSG9GPPgAuUTKMSaOvsAuLBKPIo35eAsojxhUdjVAqcIV/4AgvefFbRhXd94LS6Jvqon1xGBeRAihpTgeAaq2E4A++KYwsyhCOR5DxgtsAABbPzK39UFbEVVKzhAjDEqopGZWyV8KlgkAhm9Rp8aFE8EAwD0dUXIXnMZzHzUGZGayOsYfUZUXJXHFVFQke4R1FJIoUS0qV1SkINJtHhI5sAYcl2Lli1ze6DKo5D1BJwjFWRoAGn8PIkDmlHUMac+v4XXrq1osSO9H0888/R3y4cUyN7hBvgx2zDUync6wj94OuSBmoEi4mBSNNIjA4gRtEvnY6eaSxs/z7u9/6pDlBiG4Y2dKPkEx7hSiV6GB+dobBUPZrgTYMBUAYcVTKQT6qwrJx5HCYRMI94yL5UGO3YVBGv2kaj9jw1Ak/Jw2gCp7BCOjESNgVb40+x8amsVHbOI82F4yLduEU1tZeLS+vQJ024o5MkKmphNQIhHVUbnuPT9Q/CT1MQB+KvOMWNZ7CEShUifgf52ZBFUxmWUTUfBj4XsES+pK0O6M8lgYG45ykoOM6QbSZmwvIMiBqF1RGKPkeIwDLMUoEE4uWxFGlghd54wudvbCB51mi8pcSluaiYGuVIbk8N68WmcMqoETemqdKLFpOrmII+vuCTAEIaM24FLC0gOGvjEpd1uBVIUYqjPKoSA3PQfeWkIGxnN2dUzq6aCEZ8I/sfuUYmrZqJw7gjLAxJOSShyGfEDjFvYkyvtLBDIrQ6WcpEYrB6jVniFEtOg4ooRMIE130EIcriywEvGBqQxnJZH5Gr2ksl8Da52FcxP/k2dPllVety5fpEeChnMqAMqhBwnKN4Z1ud2Z6+slLdsugc1ZEgn8iApOzWC5tlnjLGybRztgJn/qAAXHwDIwZrdvd3iTiR+1hCozAmTpeYptSZw6B6PDpi+eMG43zcv6Qt5PO2A1gk33L9g93dre/+OKLnf3jA1IZKKSoYrQujnJJbQDHQhBnrEj3qQjBPjLiTHW55kK60iyQkoNcqgsU8JQblYI6yjMTOFQATLCkCgQo8sqRJB7RfMtV1cZ6df4i6SM9sywNf8L7ICYaZABVSSLDhRsjJ5TxNABSucU8LrJRJPWlrA6iPOc3FIiKICq8UxDVKCZuFmqETLPlEJz6Xd2ow2DhHUjwR+DKbehXZQPPukijGjNKYCjJtdCUhOsVehO9paWlbp/PJrxC0KxCwidDGkxRWgTkZFafBjvHe2BIEoED/Ub2x6JvjXvFY1K1fpOgwuEyX06gBHjggsnOHUEBw70gZ9gRxUXEIBYiaJdcyx0N0UoABduFEcsImTW+8ff4+dNFRsnP2II7aGlS6AotgkM3BPT1pUsLg89dKRikVRfqAg8RGg43d3YIkE5O+5Sza+GkAXvDuHAVphEizsxMrq685KVVplVo4ViXyCO8BFjCrevXrrGL092H92dmxoebzeXV1fsPn24yuk+XiplyaohxSoBDIrbdFBd7WxU3LWZhLQ7CeiNsVUDd0iBLNugpPPEBIBBgUfbwXUCaCk8kjGtSuOGWJwVWuCbnyhMyB2alTGSzVGF7+IJgLzJwUcAhcDXQG85gQVbBh4upW33ysQCpyiEHwlW9DwcXljRGF1+uo7tBMmnxU9phNKF6rrVxma6NSPrMw2uBaDKFKMCat+S3IhdIyxawKsZr3T5IYS4s77hwaghMrkKrxplBdIanJ7osNeUzgUhcGclDetWjCWeRtiiPGD5xaFUY6ilu39pUNaIlR5wcInZ+kF3AGgNGZBkt4ns22UKOAs6GORashQAVOzR4SY2MIGNSTJiIKepEx5Xxg4GuEPsAZUgkqLr34PG3P/6YWQH6csQe6q4aAsXZcRI85mfmsUxQVGwqDRnkeLhSZ5qGd7SX5uYYMI6wsHAlx9ImzhgVbQLsZrPV6ZlZQj3HubItK3aGjjCn8r3vfuef/Yv/4d/++V9tbO9iU3EDdkVsB9ncBj5pDsWCi+BtUEBHdgdhuMw1ObThLFUq0iVL5CQwpZ8zV2kDuAMaPJSSPPQJOPvAy4uzpJNqbQWuRpIyo3tuOFKAJ4g1oOCV/CJFVPlRjuJApeSVFisb1ZQ7T/6RHCSSWNUrxQnfU5sYwGoqK3lCAyfBOvOu9lMzIsBrmlmtVxPUlTBGcPyLpZIWnCgndtRjU0b+ICOSHsG5KouuVA2PhoJ6YRpWLa8CN1xi8zk6xzt7e0yYggDaqSlYINAJuYmfUHI1jj9ZpYNLBpTO6bZCoPaI73fRZ0GDMlQD+eCFznjt/EybwIQWQAsSDbTIkIFQiqc8sJVhqcX4OHmOT7EE8QlldYJw4puJ9hmD+y4WyFAmz9jekE9QGX/zwg0DTPt8C9HmqQDXk0iMHmLITPi7t264nsJvOmjSlMJ4TMkyrPF2l5W3DJO5mErxmAEpinytxi56ExP9B0+ewCEnXorHTS7seGR14V3YTK0AkXhZjs3VXBIbfEiHn5mh158pF07UU8kTnKnaG8wGJvE42dAPxgn44yADR9gofdwXTpnG/+o5qSaLlQRZTfEOJFW8jeKZLSIrkNWSCmgQzmPAACsKBMYZbi5VgTqYospF3XVHxt/iEO2z8hEOYgC2IXgUdImkYCVWvawQLVWBJ+yUUGMZK8R28ksFiNUUKLGU1cnYigafq7hgbc4gTx4AeuY3BTmDDCGwr6Dg8lpjdJULCnJAUupYAbTBKM52FiTUyMhx96Cl8+azIGyR1MBpAmNsutNmqJIlenheYyI+Wq7PBKAg0TrGabgCANJlTBaIDkw69cmslBgSZvtCiwE6r0KApI8Bx+oeNhXmEw0YDC+JMuUOzSoZyhGW8SJBhzXivASk/sBt0aJi2gy6CU4ZHjC9z/T26Qlb+KURzFtFEufbM5h4rz+5/OIlQSIjCIntIB7oVASXh73u+KVLi3cfPmSuH0SpOg0ZTQ9rM8L+yCdiwIIVHdwbZiU5aGDcWIKAKKlgI4rgipWYWP4UkWU5k6icHbXxh6PcpopSo2fScTWFx9x6JLP5RzeCMhVEZFoBpKsmg/UmJ6J2cMfCUb2kcmMBWzx0oMABFlpb1ZP8IYtpoKJwNugFB7QGHwlMaje/mXkSAv3hQqmnOS2AtE9UoSBJVu8uqJAGMdY3cFHhBVIchbHmT11WhfRQICpJC1NwE1Nr5leURJUivBbwez/4Ph0EdkT/i7/5GWutQYlHTnVyQv8venfQAnaMTbBRV7EJ9mWZyDS/4zR0iE8OD9lml4jIIFybd2yKyVxcLpaD22XwEa7IfGItshBTheIhvcxzhvJ9pEDZOebS4iW2Z+2j3OwDOTj76S9+/oLB1LW1OzffolXJ7pNyxyk+HbTyJdSb4G3UtY0NFmsgkdiAX1qActSaGjZrvDp9RF3wgHNnnC3N5ApN28nZIQSzcOXxw0es4p7o9+OfZC+gEAz8YLiIb0b95G9+mls+FxXdYotIWS9naVE5F7wiAPSGzggjV1okaEAzZ/hPpbn0Rf8iQn89ZH5klWxWAWR474mz1Ui2N8oGKBEoyQUNslNZJcWgwgnyGcKAIUJOjzFVga0YBq4VWL0VjtRdyKmXc+orlXr2HhyCU1KRAtqm1IcOcItDecqXeAEIevoGsgoKV0oGwSQX1ZqFIjpYilVnAYRyf/lfqi2ACxc5lzzi7pFsVlEKxleaQzClDaQeO68AQybIFYLpFZwT+fzv//gfHbGAn6HB8Yl/+a//J57zJ8QYkh1SPnHTZHsUIhd8KwNsdvtY3MU6HbqgjDJBFGQ6zs5WoyxTarPOigXXLCHFR8AGNI2WhLYEVBwJRkwM+qsDdnXUEZDjhhfrWdRz++aN9955b5aXrKf7CJpNh9hfYro7/i//5N89efzse9/5Lt48K7iFbXRFG+FPo0nYtDi/gM/2AWLR/AaTLPBC05k+5Mu7Jydb27t8Ky5jALXO0N04yBlllkEMIACKLyjyHQSCecpFBqoL/EBnLi0uMn1GACYrVR2qojzPIQO9RNt0lqgCy2q5xuVAQ1TQOIHVIwpFijGbOLaIiduRuF7fc+VN6qgeR9CkUXc0yssc3vFfLD38KXnya3haKs2zYgCUMFFVCj4FEGeokTRg2QIEcorJqeBh9spgxM6K47UlHy5ayuLC5gAbKeFGzgRvYgP9NNUHos+kNMD8/eZRajBNVggqQJLJqkxKcX6/WTIJwQd3KU3UiLNCPGhLARSHXTwUwz7D/iRvIY99/7PP/uanP3v+6pVrRGQTRClFPAmYO300ZHrKmSWKU2mjTZvBgis3O2KQxQWsjh/aHKEzlCTEQBdxoLgktn0v6EI1wYiRPHaigGx5yE3wcvPmtc8++dbbd+4wYjvZ61ILAQsmenZ+8tEHHzx49JTdA/jMAsGO8wn2KholSsEK+XqaKxzZg2nCT4USDdX4JNQH773HNjAL07N7ezss5f7iy7vs1Ur7hUisGcHaRhmsaRK8lDzWYs3t4cEhIRpAaDMdBYN42E9OZpG7ncX5uZ2nz4uywV6lna4SIqHHwx02LdMoLiNoi4p8VAjYwBk+kq1oVzlHUUQnaiUML8Llb6qptfn/9WFOjpKA1slfjbLK4SPV03pypN6CgGJUH8THzodlkieLTUAekihmizgKhMggL8pm4CkYRJPNeqUh0AIJ+NyDQC5gh2rE4J5uy0BB+GJmZszTfMFMtL55BAxJYDP6H4MoGMYYvlng4s5sGVgRFwpjgyVMIOyxmUK7S53kKlmGZ9OTvbfv3H728iW5IQfyOaA8cwOsu+EFN0I+ixNIM956vMuyPDfUh7AiOvQbnlIRRKL95CywDQTAx9VEek2qBoGiMGGCfGapNoguLi3ivln3IcrOjxnkU7jVrn/n2x/cf/RwdX19erJvI8NybpZL4e1YIBu1kaVsE4+dXr00f4k32SZnfvTD7zPNxsI4PlTCqlTWpa6u7qDl/GNVMBiqALQ6jLCJKyMAbRZObWwsL+wfIBfXY5Es86IrmGZ9eO3SIq+iFv7A5YQ3tn3yQWrkt02fLzmrhfJac4dgVUfxJ5hGByiShWIKy4rISxbLm2Lh6pA0H1wkjB6MnvOoQLZ3hYsr0qWYKJkp/hi4VQVBtNQIZYIVgzhy5ox4iSRajQ6kSGrhkgIlnYGvQA1vsoRCK4JJmFwIlO6UkhXaWO4g34UvlqXWwPMGSgM4DKv44E/KjDhRgStAR6DlUeyxehpKKCfhVRI0OK9qiVg1P/pXozV5DHrSTpvGDzLC5vHKLL+/eXP44z8vQ5+OfHPQvDv4MeA7gsQauH1Ej/OFANsGF03wOdpqMwdcfyiT4VgFq3A67XEQ29/fsxOc3lhaJxoQZq4KtmR2IyS2dHz5ctn+tB7DMUb5hUllZQNz6exCxIrgx8/4SO5bNCB8Lxr9A3Nq1LA0sUFtbro/1ZtcmJnl2z79bh+aWCjP1EenN9E8Hbty5fI+02uUJHwhfGI+gfEyVjeUbpOQBjNz0y9ePtrf2+lOdJhv5g1rlChy4RdnT4C0wMsczORSOyuU4DB1RzHih+0PyfcIiSeYgNpdNINwy1uFQJ6i/UXgpZDF4ihSXuFVf5EjJw91xKL55VQOKxUlIISztmFwEnCgDWHRNSm0ZqrHPdvcASkHFVEQVWDj8owHqKcklrbFTPo7DpIhIWpPXWpGypNDuDBWsZoBOnxCMVgNaFErUNTdSutTjMxm1WMkyKSKoJnyKGtwVFlM9dfMnqoMSRJdVd3DhJLPC3GG4aCaWkiQKyUjjwJTjlLC3CDPslPGIVmKz3pOanWyi44W24/yGk+7wyqMBOgsssXfE/C46jPIOH8JkzAZZwZcwOPh9IIMYaXPCQqAwqI20qio4iDFBTQoisKziO104/SUTWWuXr6MilILLzlT3n/Ii/mFFuNLLfYtFg26odAAFfwnA2cqozpeM7i0uISh8ImHxSuXiZIkzoiXFVN11g6hxAxqWQG1unSPIO2c0AybElptwD6qvIGxsb7WZ/X8YNDvs0RCA0hINWC9CSvgLy/Ob27vOWOddjNBp/YACnQQihOS3zImuEFEKPepyJAo7YZcYT5SUAdJVdwRkteyz5KVWHOjlsTUTM2DkotbAQO5NFDcuJyEIIRs0Vc5yT8R4Z8KDNWCCP9yawaDQCgpoFWhchm8IJDianYOcQl6pnvjgXBJs1L+xU/hDrzXDEyGUyGVypyUTQWcxE1nhnYAikrNLkwzyxgfc8UZnUl6eUxEgUMLBslFgfRDRC1GqVjhgNepHwKjmhYXH2GKklUCx77EGS+KMADD1lxIFafucARL8Hmwt3/OYiTGA5kqRQujAGID/Ead1cq+7RRUuQKYnjAElQX5kM4gFW/ls1jD8RUoCscjFkkrLSsMfvjo6WeffooxhRhplyVUw7Z8h7ysdcpXnze2tthaXqcCGhIQRMxap5o2W9rt7Gw1G+wV70yhxZ2EZoaL9+56vO6wtbVbDEm3ngEfoz4B2YprzO32+vrK+ETr2G+jtfmQKHEVbSK4s5s3o2N8hY5GTbys3d2/qFoXmyE3+Clc8ZG/EQBJjqiwZBXH0BlzCknKFJ8C8JL7HP4iOAoquGIzPpZZksq1wsPRk6EQ79BEihc4yoX6PUkUf4FDqmEo7bb1mFyOVM8lhmmaaOAEq4ep0dwFS9e5VQVFaQSfEgJICnZCXnEP/gEQHAKRK/yevsNq5Y7mYknvChUCyr15zMBZkkKWdY44XJANt61dFMimKfpLNpGVEqHZfIEb/joO2vp4EELJoh7Lz2KJZ6eT/e7S0iJvCwICkcFuRlP4MA0v0PAi8nR/khGhrx48oFdtlzewcIU0AET5hCFAxloxgwzVtHhdgarJwEIklgohAl/0ifONEEFTfEhBB7FGZnU3t7c2Njdnp2dYDRu/ROfd9odOLIvf2KFsZ3ePngydhPMugb7b2xMXR3PCNWyQj4Osrq5gvbAi2qk9MHKFoNHx2bnF5ZXNfJOdd83gDnjhpzOsphkwguarg7/54sGXz16urO+w5wChH2jaBzJkK8FPNMPGiv84jRgFxoAtwIOorDKEuf7kgmgZHbAuqbWk4jJIU3WgMmdT9anRDbXr9QEY0OBEdYDCHVVqKRur2kb1KX+uOVKGW6sAAj/qSG69MEMpzZWxsnqm3vmgOqr8oyTSuRSa5wLKq6RwS/HwJf6Ahin+2baB/PplAGedSzYQEUZVH3WKPiBhiS6eR+W/Blzy+ROM9VzlkIiQAxgLUAQACgRM4umTLw9IALBNDmkFI+pEQXUlKAGVwiEe1NhMZYzXhb/+8i4LTecvLd68ef2Dd9+9srTEzrnoOmrCq1/vvP/OP/3v/wcu0A2Exn+VhMVFfB2HESjeT0DzWL80POZ1VoASFKGxmqPqRF+FCIMDgiQc7G1MxF+CGMBc31hnbJfXBJiW4OtkK2sbv/78l3u722xqv7V3SGUPHz1s8WVzLEGrYoD3Ndk2vLRrcWnApBq9LxdMrGGIEM3OTaBNT4h1h6zI9iF+IYwFb1iHSc7OLz5f/guCwag5JJW3qMiER6FzVOShjVLcdtemUxrS5kITGSTNn+DGABo54AA8sl5Xi4Tc1M1l5OKPhyYxui4pnEud3jroXt1bbFQUO8TWU21qrkpSTUGl2BdKFZQtWP3xOPUpgwrrlB2hUGFqWpJG6eV29NTUUi9XjrUlRIpWAVjEYKbGAcvywhj5yVXwVQoUk0bhFDZyqUnCDQVkRuNYjwoPkiyYt+HIaWmq0cUATWdjWaHZ8ApezyRELlMfD6U45eiY6pXKeI6+bTi8de0aWzt+/9OP3nrrxq3bt5k+4LtpVS24o+bkt6Y+fPT02b/9X/49kPG51Ee4TLeTNRBl8RH+Gu3v9ybYD+b4kI4yrQTfRmADdlBiDYV7cbN5DMySRbZLTlxjJCgu7+Q/fPxkbX2NsIrtidfWNnjBZn1rE2MCB6qnH/JyZcUP56R3PvDFIAiGUnykJPrxUPLReYcjcA1SvQyTSOlOjNMBYIaCLQYwOJhL3XBHtsofIsjG4sJlWo/DVElJibTpBHs1zfqozhEJgMJd2+I4HzWBR1p5xEEGiygdW3CiWWYfMcLhsIs2F7kAjiPusAjYstyOQFjOHHKqpPJcp2Ky+UYn8+TOC9HgVjTM4B9YmWye0ZGqU2qU8ubTi7T/rYuL+t8AO8ovBlzzE+0EiQuEYGfY5HB9ODZ6JMYUKCiPzoIJ0ZQ3Q2m7EDX5vM+/MLIiG6hhIiesLZSjCYHMKbLiN8xAMmYonMz2ROx2muhqcO3ypbdv3Hz79u0bt27w+rg6GjVgminOCDEMvvPJJz9miMntzxSz4/t1dzFisg2jQMSUYeMTFJI9tbC1M8ZgfH0Wl48R+KKAxcoBf9yUEfRcGY1S/+yXv0aNsYpEDlZH5xhDURejjQRIoOrryNDpgC3qht/Ao0dBeM1yotejGhLlsszwB55h6nxEka/HZdrPeARLgJ+0WbACMKSAFTtZECPissCxyIWicldGCIeDUSmwITd1AoHGlRkToAlUORTiJNLKQUJ281R7JTGo8UQJWKA6vCTN//7jwoTy8zqPAlavOXw+OuciyCWxpFcAqNJIjqpHz/7+3wLv4ll07OIuF29AeANWlfGNFJngkfyC9RYx4HTiV3KnNym0mK2inN8KUTKTGjjKByJgo7mACu8D3DAqPJSZ1lKREA6WWsPwvKKdLOSwiACjTwiHFPiDR0YTEJJID+sLs7Pvvn2HYSCUGIWmTYh43YwoaKg2c7MziwuLkkBQdHpMSIOCY6uoGYM3LEDi64EMwLDKlQWg2CBdCKYfWDi0Tz62UdKnQZaqbQfVr4Bqb+gNnpbZOZfxOBLjWqdcGYJBqZomM3lTh28RnJ2AnA47Ybr8Ql0HdprpZ9gnJpMKQ11pffy1zzAzM7Pyao0R0s6Az7LXOtkIDENNZogyRuTbWHcfPGCkmMpAgTc0lRO4gHVQV70Nwkg1B0NszIgU6YAhTaS5rLCUoEei7OIPKhBFIMgNzIv0yA+6f+/xjQfGB+lDUMDqv3F4e5HExaik3DBjuS/2XK6tlqug9SaoqiTpb4AhW5XH/Dn4KRWaYlaPi3zwiMjjDbiW0ie40IR8cKUENEFCtyWAQpaOJ7AtQ2LawoCK7vFIpbXzjXJYKZAViCpuNq6JnUoymdU64OAxc1OwFbAKxF/+2XcjfgM0236xuzVLVUBQ5dNG2IwANRM4Ka46qw3ZSvTRk8eMSRZ9pU5mFY6OtskDSigAH65loTeKu7+7R7QEFWpFzR17UWv+yQV5oITy4zuuDjJKTGJ3VTMxXlF/KCnUsrIDDEgMLaSSCTiqKQQAk3bNb6vJpyz+dtl2uK4OuVEKzQblwVTjJp/luU0FgDgfXL96heWHkF54CgvNQz81NbF4w85fvc72rii9JeET7iRY0OQTC0ITBCKxNHDO9kvnUDdgIwdksa9EYLnRYXKRWVIiPZgkX3OWLJp4cBcX0kO7JzEsOfkFhA/LVewQ+VF5OUaV8Wum6lwuc88pcAO1AltlK0IQHf/b4r7OTIrpOUj3mgpR1uAjzKLQisqtrMS35COr6OMPFWiKkZmngYXglKCKhU6a0SCHQ5plbGqN5gQDoSnxEXLmj8WZLsJoiQ7LzwMETBC3gGxNpb6lxWtoB0e7RDGs1bGU7w0b0VGeUSI2xSUSuHrp8s9qv0rnF7n6jPjKdTqJaugnsPIoiGfNAnO1IshAbckr51HCsMEkqrZ6FVVhCc734NIchTLebjG5hBpndSeYQdvWCkebYayKM+bmg+SzGyqbB/No7NUDS+yIwEReeGuNMRjGLDmcyEs/4Qr0x3/r14enlxfmWOC9tbdr9ENNPvMURsDShpuTDXjRW6W2g+VhHtvJ2oC3QCUqEqK14/vnjHF12YZWGavI6h//7ILH7SknUpUwgPzNUV0GemRYgNr/iWqlClYNaP88R4mKFI0p4xeEAkN8GNu100qFo+p5qqJ6lJz58VJ55dcMcRdVUslc2jqFJSrRrkAtlVJbssk6kyNRL7iFegt4wz80qTSkSpZn6T7AEouXfJZJ/kinQsVYxhzxZsk3UhphQ1F+qCOVpxOoycJsHpMIm8lmn1BMLAAypSXBqflOJAmAZO+f1XuvUAT6ygWdsyYvzkg0Ck4KrpSV0yAPwyUJYug9Zz93lMFtrxm0VTaFGhVCBoTS4GnRoOVqVQ5GLrEdlJsAnlXTVsE8hkGbZoY+k58UMC8uuMUQb7s9gSVEkyQNDCSR8MfRUro3fs2B0S4KA8zZYgIgL8nYoi+xs7M9MZho1vIVIHbN5yU1VoHnrR3moJlfu3JpaXNvTx9VMY62gvFc9ztQCJ44SxdBW9gJqmFF7Ib1ICwLuXnjOnDYqwlrgXJmRDAaycEgQDToKAylkV/5723Exa83HIIu+ThLLLeerZCn7LVgagCZWWiaJEeUz5xxPGbLQQ4Sq8pGxmAt5KwyjC5CsDcFXdnsIhfIZydZK0uNZqBSbgIhoHxCMp0ozoFMoSqHV3kdEDMmWkpqNEmegluxKQSGD45kU88FeoVYdUwuKhLrDyHBiMTCMFJtmyVVMzIQMjP/ICEhh0V9aB4e4V1dM8SykXM2dOsQ35+dHI7dZC9dvmTfRtKoByPA9ghOTp6/fPlyZZkoHfpQOZSZVTzBl3oMAPWO0h4HK3dkiPL3nQQG+pkj0EBdpMHOLuytwraCDpGP1ghGq93BUEuTwkCDROxBobeyHUvXezTVGKYih4rZQY+RnzQohnHUYB41AasCknTz0jOjV7u72zOteYY2MRwAttplPyIjS8CwmO/zu/fKOEX4Li+Vs3EJcB0ZCPvlGm0Lk4uwAhUpVtsbH//2xx/R38AewAHa2Pm+1WBfDQBQumClmdtpD3cKctQAmogkAhJdj9xTdy5zx41NqKAoWDwNgCTRbJVyFBSFXIEtzLTG5KvAj6opZa3wt47qQYWBNcCDVBNAr3ObLHRO/ngEJXE2q7z111wBWp6WFGL4uG0yV8nWI8oXFQvA2oVAJdAtHL07R6hV7XjCgZxieGS0fDDwqbD1rClhDZaQGk/IgwxxVq7IZIPNe19/gTrxrZCx8T5byDG1y1eheGOecUD2i0d8bBXMML3gSyVAohr+9Hke6LFKaOTlxq/cZuECSBpQg6bbitkTN/xWhzVRXRlqEzSJGfhigitZyF9Q5Yc1F0QZCf0lwjnw8WbbSsgiBpyt278E+sVno3JhlVkwXix7bX9tYnyi3Z0gmKOt4cuiclnu0Tc/ZfNJ7MlwClxr2mh4x0P5iqMyuUzGMYlC7OVrTTxweTqsZQBrbm6eKXfqEynbZtcS4po1JHW9cBuAXuQfJ+UlKcorVHMSqqRFLareVZAQD6hReGQxl4fZU7QCJUySC0CL5JBbRVG89bn58ijl31TlFI2cq+dySX2LSlbVVY8qEAFvUoEs9NTgT7IExYITSQWbkl1CqV2u2ZCSscIrGIRdpglPBCykZ8Ex2YvgQC6RI/lVcVFIldxwa4ERBv7yHwn4yNbH1064jRpZcHp29umr1bXtbTR0fXuf3U10/GyX1+3QMx5jp9l2kzt0MuM5DihxgY9H3HGMDcaIiF7REFpSwJKB7jC5QN2u0pgj/ugbA1IqP/G8PfNCFiG/hIAHTygMhvHS9m9ZAjXhe8yE/MDKW8ToAXqMdqe0hOMh8PHn512eEKBTNzoKVaRLJIMF2sLY3Xt3eQ1tfn6JZSVaKjErlekV6P4f87od1LLlE26eLdCwN6TDqkMGgZWIZqAuAJa3MersjdTwq8a6fNCvN2b5UJW88MYQjpFgXhnFsEAVHkQUyiCCiRQK8SOpy4tKPFqoWSsBmrkkpIkk24XGVznyVH16fXiNPag5I6h5fpHn4uJ1VQXJi9pKpZYC0Eh7Si3RxwoCPyNMvYzfGNX5+tFrzEJnwamcBR5CKgYUuILQsZVHsN1OhaiIFu6WdNJQIa5ESiAA0I+FatJ8otL7lJ8ySh6USAc2FZjOyJFRt+rELTtm0xl88OBpAPmSZyxOEKyJmJmeYRdJNkvl/WFqp5VAt+miofUiS5+hVutPTR1nBo2CR+yX1Wqxoqnj3NlhWUaNFz04YptUxxVQqUID1VE851ABPYw8oEkedvMxA3K0NjY3Jsbp0DPFhnKBg80qh0tEwpEM5dDaQDY2c9LIYDAmEO7aP2U13qu1Naz0A7bE7U9jSdu7L5kLZB8/GLG5ufn0+TPX2KWbD4lyjhixWk+RZTMyV2MovAdLmwZnJw3EiCMJH3nHOo4B5tosjg2ZdQckmPLLBUUVGYcmEYWR5FFi9QgekKp0qwLcah1owGsdq/IC8c3jzSpKeslQ1fpm1r97nUpJfhOfkgaNxoav0f9G4REOqaTkGSVJ2cV1KaShF9JfA4EudQLNiDbAUajVT/seK9TLjwAqsGRdSSFPeFndibv/R1XKwTiWIE+h8EdYiImT/VIq4+U74xH/6FLeuHnr2fKKE0iCIQZxv8dxPlPb6Wxuba+dbyBuY4ri7/iSeQ5yM4WMGvB3Sv+wxasvzurigknHeMCL2lFRZhZo0+huqgIYgp1Pha1d5pK+pW8FqWDOyoEFCkQbAn6tR8+ezc9M0zXHQZOFcRy0FKLVQfZjOmad0iFjNVgIdkJr4zCw3EorSIW8ybA4Twj2nPnrw9/s7Oxv7OweOggAPiyyiGxw+TGvMJO6wcemKoE+18WL2CaAGMhBFQfIMMLGaqY0ee7eod5LgLvfGRnl0HnJiJQObp7ePCJBTjJ/JEsdEfWMUmMaPFQ3SjaufZh8PvDgN65FIKYUiIUTyVPo49KjgkMuS6amlBiVrSD6A2UOIJdSpZznUTHTuQEhyuYyP6NTECvJBURMO/XmHsgGiLrYaIP48M+1ZGnWrV+6SAxuRWQyNwk+QdzBsnhZoQYXSlWKIMCCLmgqx2gj1uZYy1jp7+B+P3z/3b/4q7/GFkEoWEj8wQFvbLq6wrCYjql7W8h31Joxn4QhhgauOFIF2C7g5GD/0A9JsVCCMaLxjg4TJ82bnwd+ftMQu2zDjP7E8qFUZauxn4BvjKI6WkNJAmGKs6Hy/SePbl+/zpwFqovGsy0lQ70wg8EdJiXsgTOQeXgy2T+vsRG/cGEHeyNx2PhAJOtn+R71L37zBd6e2IvBJpotnuobzBQnJKOgghErO/sRKvjQ8DmkTU7YSDNatMLbNCAwFJbxSVPemU6FtDGuSyGzEPKPPIo2cqhEqUCL6vFbHeR44wAYhZRYZQ+xQOAFTdWEqwg0IhZ+qcViwrFYBRJ+jp6KRDDhXOUsmcxcCvCruhWw5uawXmUPg2SuFRdKyFgqAgqlUlHQKlBVpuQNFPEp6Q7BUYOOt/zpdNKXiiUgEz/gJRpIwiyFcJUmmOlKgySnAtp0eEbOMC6J3BqhWmuRZy4AiJBIIZA9PyE04rlaASjAv3PnNq8KvFxepgJHF61el8dQEn1D8CEo4ksRjH6iplGkNr9UhEnwiQmDY976KlvIZ1gf5dzc2pqbnuY7CH0iJcyi033+/BmJaBHYMvQPVSzepqhkyiG75JLDgUN1galRCtvr7bxYXZ2dni6dRVA/O22yipXFTyfHh/sHh/Txx8fZ05fMgKqiw0hGCHAHM7u0tFD7nBYHBoCqRkaFMtk4z0TaF40m3XmduU7I3IzACbHkBlctg3vMyE0KyMEjvALtDd9BpK5iBgJIRULwggRSEio5mmw3n6PIGYkViSoTs4mQpaxUrxa2aLdOImiZESnnHDytflOAkhYJDHLmxlMuzUgGahndepe0Utjn/nFXoeEtxaVBbqm+8dQGjdGzFIw+BbiVA9FrqbF0ElKLtlLVp8rwCHrt2HnhNakkUiIsjyUkW3lOOkABDfeEb9YCBTJCibw2OXLkbHUmmETmSN3EUntpclBlUszVrPPm+rWrlx8+eYzqo+i4RoDgXtn4uvTUyYxHZ0CSVLx+eQ3NqQR3x3M5HQ0C+6KW6trj7VtXr1y9evnTjz+ZnZq6cvVKJvdaX9+79//6Z/+c/VXxwuy8hINNB1NLYJSZ9UAljihYxbiQQqNFD+D5y1fX+Yo4E2fdHuHQ8ury1/cf8j0RrHP/4IhvV/2DH/RhDrbOCBcYU3hQ7ZyjoGm5rl++asAu7CJn5QTXYAmVO5FMN9l3enR5YQ1cl+GWMdUG0+XfIwgFiue4hOW1dXpKRIcwlIaliIgwkfxwMmekqB5YP/fFyiIzBUZdrjsBp1KDlxqxsveaG3ZbKPzitghOQQvRQA6JR4tMuTiiCWqf4iQVVRM9TllFTLzrnvjogUd0QTgSZbeE7OwW5Y2paTgBQFVoa4HHhfoR8QYH0vlnLQb+gErZ6L7Pc+gDBCAonyN20qUgfaGqCOnmJhu55FtBjAvKF4CjGq3OzLYTdo1BMBiKTOVPeGpFhfWOplhbjf1zmapqMbTfZC1P5l4hiNFwvTVfW3Nkxy8zkR8VInpXJxg1cSJZnhDGoB6MDtEgMHvLDKxYcpyfT/Yn+PbmJ++///47by0uXsKo+GASdlKs5eMP3/vHf/yf/qs/+ROA4KZTwgVOHMES5BS+vLWiIW/LmJMo/PHL5/Ty6eBu7ewRnNm66ZIxJgWGBoMzZcCeDgw3fiNarsA0gyHa4qWlyyyT2tnbJQ+wocdmhxtHoux8cyZogueM/vIwSDAaoPwNiizBpROloGsA67QMhKlGUMKSWt6owBKQhhIVGT+pwtNSob9Ux8lozPGKoumKOOwLycjY8gA0q6t4HMUq4tRUJKsI0scUUS0UiuiJtu2MBg4E00t1XnOnIxSyNVAEcYs5paDdnNZpTiE5+G0hrpLfa8Fxwx/JucmjNBcmmLdKjksOSORiw5lCFgcO+ME6+oSAZGbJIsUhiXyIAa40+QeFSSMrCMkQwJkO05QeHUBJDhBxC3Jg76sz3HAbNMRAEG5tgnWLKqrCy5ldv2YyZDUcKDH0j1wX5ubJzVCPfOSgvA19eFjw8iVPasBUSISpdAfYdJqtpG3q6Qyjb+wh+a0P33v/nXcnp3qMpgCGqNszU2zIfqz1wx9879Xq6k9/9jOYDwTGSX2/0iFX3/ZEy8L/BhVpKu4cN2i5gdfuyS+++MrWCl3HnWqiOiuwhwWUhCN0QuA4jh2CWvy5OACK1A6q503/pflZtlyFbLvVZc2CDOVdTfobERGKRX0EeUy/0ZHQLA2NIKxgRlMjzVlqSxIixUkLcHC+xyzMztbc7DRRJXIRMMw8Za2iVxyaBxlRO5kre6OPYB4bLsrql4tQZgZh1f+UIneAgSKCp9OmCeH5ijT1gHluHoqCHqXIgP1bhf8AEAEKicq9LpBVCUtRI/+EE1DgSV1okG22GMMrO0hAjXhUpAT6qBpl4bPuAlDcCLpUyssZ8gcIMg9eEROOsUEcz/GLIHByvE8ptmEHLN1W6KJlZggSlOiTMgYPZ4g4qJpdmVFrAmwGZwBGRVOTk+zVTE5cDyE7nVb6o5evLEms9IkFtYZJMhvuSJ2xaxQmrQYeDs1C8yA4a31sSpAmSLPTNS8sOiCj9kodjNPeNF0MTxWgWl2U/5SUexlBpnaPf2b2lk0AWNjHCk/Gclix2SSWASz9V7fCOx/Svf7h9773688/Bz68J6DIjrt2bPQLLNWOR+YhTVBRBufzyM1D8RCIrZXyIf4RDWWwtbtLOkAMshSuBMcrgCWX+vu3rl+7//iJ1AGFcAyzc8BBQt1GXmHLQrJDpNbiIlMjKwjDzKqQiREDaVahQQOvH0uwuvX19VvXrwHF6Ei8/Ec6l8DC/gCG3mD4ppy7j4jmpG+T30jTEu4AO3QcF6+Jo1KrMWn8CG2j29m2QKaVzQyZd+x02JMQP0cuwk1aSzBneABkd/e2cEUcyJq4FfNlK1ikBcAEtW0GGagI9aJe+jnQjtoR45KBtZZU7ScMWX05M8PKeL4TOdET3M42G+ecT05NwAHGTbCOycnpg33g15mQgXesMeERG4+ywgXSxzsMszSpl8K9Xt1vBNaYnAK+e5jDEFTkDKOB1X4Pzykz9EJZjBELygFEPDExDn+0imZPM3MLliZfSYQbsBdl01C9hJUI1CtkAysoQv7IgLSiCFHnyJl0XBVkticmQAanhsTRftRpeqp/vo0qwlvkgw5w5BSlJwV54zHTuFivQVl0EamVQIOdAH71+defffsz6FGEWgD6HPRVCQMtdhJg3wm+P0AyPWnIBxum8KiEyTfygA/co5kAJmiphMIw2rEfq+Zm2sFaHRjw4cuVNeYHmvWJxjiblrgeG8xQO5ohCKG7j9uhYlIgT7LgOEyWFBURUfAGBprhkVidGorL5B5doRGnCNeABYXJid4MH2Pji9CTyKPOi6qsSmc7HDwBDEJrg6U5NS0QDAdl0rDG3oMAhMipqcm9nT3Qg8DOxPj29i75mcbEIzIOgO6yEkZP4afiGmx9iZpCLH6Ffc9Y+A4tsimLO8ImeQF8/ril6UJ2aBJN61mDUPiUV4Z8KQQDwxRYWjvRRaWgxtrRV3nSYHW+zI2G+X0tnjUac61Z8qNlPGLcg8s8h81QB7whH2WM8RedYDst+d/vXQYb7AqsZmemoy0s5febL6Rz+A3CaAmTttQim4a8UtIBeaACHIGrhixpbhMLOK7h5KqFSWcWFgEJh/A9lVCVqoAdkAi/cQQ+tn2jmG4bgGnDSwbc0xAj5/Op7ePT/YMVWp4tviSwsflqeRVBwit6xiCmk4sEOY8OgckSNc1rOvjaX2nSccnR0afPnq+urvVu3oShsSYijCaumqdwneYR7i7MLT56+JgNidUQvbMGwDDqORPAaInz19ommg9zXM4gHZGEAaA2hmOiJQJPgCqarZ2d1bWNCV6W8+OQYyypYNgXX0lnCDPHDEiZmuTLrj0GmqgAlwzmPOEsEpo+0PhPdCFxUC8X0F2p0gDIRl6Gwz7+4IOrV69ev3yJYG1qepoOO591Y+uB9bW1hENqGGRZwu544TtnJcIJtUDDuIAKP0ghWL3GJKvHQzBs5cOjVExi9NWVi9Ab1YzrYwPjxRnA6WqClaBxwF3JFxpvynX99CAQWKHIZm8Sa5NiBjlrEGgPBwjQx4XqBZ8jQtEwfpBkDgRmBkRhNOWGBkkuRTDGQmYpJCyVzw4MvMVWpdlehyoqGMcES40+kOv8hM8iIhoKVSR5Gg0wXFH6SSGHD8QAKrwQqneGhVYAFMLxSj3UV6vTHvlxvbfocINtNJq/uf/oGXvjst1cPnrAajEeAQw1UJUKQIFzaW9Ecoxe9BZAJKwwvwtIT2pt11bIMnXSyTrM96t7925evwkY4n88OpNuTmeDzNBvb6IGfMcM5cFf0XyxAwVG5IuOLHsmtIvCx3mG82wvSRmeUoWk8tjGyhq5RaLaDe9Enw++enB/hnewJ9AA+M5T9mZyRWEpBR58RvDSwry7OA3Y/SXrbOWPAO082os38CAAYaUtYQ+MDp1wE9Lc8Ybj+pUrH7337sLivK4bHTF+bQ9Z68EMy6SbJaOGGJ6yxNwM5WS7/2VxQu+qexMV0RFwSEuJMs2MBvDfdHnOlYGcQnD/PhSKS6IJJMBBiqIQtlZndh9oJD72GjjCgwoqAhQCgPWCT54KQ1iu1nL2lAPCRYyzhfODW6PbVXALZNulKMdIPS0hyOBOtBLwnJgBEOFUITzHHrBwMwAoVQdXSCLF0mbSHWQtdwwJeYOH8DlsEsM++UFiiawoooHE96MdJViiajAgv3DDDNWaLsLdh09W1tfd2Gh8fGqyi/Apopu080YXhUY6HJCfvvdcuOlvEEb+IGujzfjp2aDLOBQNLt+iRV/RoNOTp89e7B/s14YTOBOiFWhhuwtJC4+Az/JRQ/pzvlPDe/wnLOXkS1L6hjE2WaST6aJXRmfJT1tKfMzOFAAJe+UCMrZrwqWqmEkuLOjh8+dv37o51ppFq0k9a7rnF3N8jLLSm2e0dX1zB3pI5FZW5gi/1S5kjZbARSL24OnaId1hDAX20TdmhJkIl3AVcgGFO8z3GRqENHwz/Ohk0uUlDLyBo+j5irdIR9NVAvWgSkAqVO0jDzWVgzvOOkXvSeceGcp/UiCbK89F+YsSmZg8lZgAaNkQRzH6IURQ1gLHdVX8ty7A+CMCVmkZLM6LKrMZyAlbtDUdesEWHVA/bFTlHU/t6gQLMwQsF2hSiBBIaXYqlCgDLErgRErtnPNCDgrMM9kNWB+peoBKx9WgIk/9UVVSJYzSkrw1p0QAGgBe2boUYs1L80LLYoozazhzXlc0EuW1R3SMInQY2AAOhTGGYs7K6CT7dsk4kaas0ZLfK6MNcWpZg3HndyD45UI2BXKZ84BPV7kemaxr6+trbFpxiXmF9Akd0ZE8sdR+G2xEhN9ksu3yzNzt27du4miXrtBJ2Nze+fzrLz//+i55YIn40k9wHyWNEDMsXIDLwAqx6J0uwOuNzfWHz55OjI8RWR8eO9XlDhlbW3TX6BPyjXi2FsBQNQQ1DDarXjg5CmOx8BEyxTAC1sDi73ha5ArXeMyn6GkZ8WcgRGMoBDWMmHKM131o6WhPQJUicINxMXWcm8RaomnYQEXiP5KfZmmbg+qo5tLCARrQn9/QHT8SwymSL7kMLLScPA2HgesR+0Wtqc54RkYyJpvBJeuwpgJcfIpkSkGYoKKkoxUm2+qCORQGviyCgeoxKgIRtkVOhOn1Q6DmR81KCcDUQnKqKLZUaCOn/6ybf8iWbbbRLXQJ3eZj16jJ8QHt9jnfv6G4fzHl3c2dbm+cwJo3hhlK8uvug+H27g795t5EV25bq5gEW0/Uw0lbFgYOVR00BZ9nCzBgKoln9TZuGJHV+r3+1uaWDBqcj7c7fJUQzw0U5nB3dreowaGIjEDgFYnpM7/GItQjDMLmtlH302YMwtbYEHKfcZT52XmHwPiXgJTQCv22nRoMFmZnPnn/zqcff/jRRx92x7uMT8S0m0zZffLRez/+67/9D3/GNpVndlr4vA21yWacA9yNuMJfOK2JQhQTC+BAa/Ll/Xs0dnSdd3Z2j/iag60kZNu1gj8WhWwtSr9BYcoqC/kid7gmJ4pKAorMc1od3L+Kq8g0nW2+9ry/z54amcKzaZK1GcXCw5AVuzVuijfSAgIU+Aoi1ZlQEiOigFXQ/AWTFBGTqkSwy3UwlIkZuSJHQYneDt95IZFMUiE+jEPT6BIIqQABRiJDJef0C2Eo71fIhqBSOCNuFZZWHadQMEnVsELmEdom+6CO00L2qCmr1hS+W6LR3g53trdmZvqwl8yMhPT6E7JtdIidlNrylLTwJfaMaZ0z3M6mQadEzQxMQZFr37soTcxpWN/d2UMdOPf6fTwygwdbG9u00L2JPlOsJ81TvocQRloLTCishq2FndVPEJIcU20l0F6wpT3nH5SwcgaN7PZ6ztmi/qyt2Dwi+EAZZ6dnmSjA3x8eHTB9xAAJ7NBpEiOiKWNjh3vHfBk5EfgAZSCk4ttOBvBRLL0GDaSRuJIismLi+fvf/R0WQMzMzUUC7AzjwD2udXZs+o//6A/g0p/+2Y8Z24RrNiuOtYRzBD4VV1VdrRZMCMjQW/jFd2lZMFgRVwbUQcHmnpxYjjSrbVEp0JFTOQKnKCLPyRDEqRzzszsPUdoPB6OEz1+8XJif5yO+vHiEnehv6c2wen3AXvyOxzEhgQnAU9pKBoNxFMAsmmrWWn139wBTIaCq+BP3E4sFB3SI4cWCjOeIMxcmwly+oHxEMN2b7G1ubzOYCHztVNlLGkwmI00BVU/Yb4YK/TMs5F0TBIYr5SswzGjZ2c3oLXm4gEbiARwKrgexUi+WTCL8d0ibzcP7E+Qin23qoD4/v4DyoA00tOjL7NwMasoHJ1EUggwYRXhB/sTYAguK0C9uwtHybU/458nX3ltT0/1XL9dQcRwhmxHC+57f/pJq26nzQW+agdQ69owR4ppxuoAAW7DSd3baykyaQ/fIuXBDOmGWBIejIYRMdeIcqrfDh3Jwqvv9G+x8ZWODQoiOV+H5sgdAGY9mYOZo1Y9zyqLkp/nEdBE0DRqN5sLc7OKVBUZmIJbQ6NHTJ69WVlAQdbhJ8D8eRiAjamZneD5+wKghewDPnR6fwV4GdnD9KhSRebs50Rz7o9///fsPH/ERThbDWmdGxFj8ZNOJYUmowCJ3f43+VVZ01iERpGVTTgKhOjZPjsSHmIJtesyRXwYx9ByqDtDkkRKBzshGKNRDh8UqERwCxOnVamzX+u6dOxMM9XBDOU3fQAqlgrC9/T3GbfTT2QcSYAwlq5uVBKwCS2CmrxQXQjBm1xD6bUeHx/CdxMAWfojU0ydNSGDCnEa7i9R1c+vrW3gK9iBh7Qk9E9owxnbZcR/XUuuyNl4zUD3sVjVnpicNOrGKbb+sNT07ubm1QwBEezY7O7u5uUU18Ac2YqhEILylwrov2AhWijdIlAh+fX0DTLqLzG0RUw9x1azvR/vhG+6WwIGlkWRXZMoCjeVXJhebh+/4KNAy2IqfBktIIFiHlwx9zMxOUwUahvydS2EADVvQLZ5l9yo38sV4KEssAmLO96vtIsnBRfDNTTgA1TjwCiHjQ/uZkbLL4HANcEna8QO0AG1nbmgQ/DhTOEZytEXQjm4TaOEB6w1m9y7fuH7r5s23blx/9/YtBscn+pO4m4cPH/23/+9/ymdkC0ZqrgGRMgMNaocXBrZIJetBqR3BMAxVmEJ2qO2Oj33y0Yfsle2MEurV6zJKXV/f2mYUNkwLcJUYxoqejkrQKEp8I/c26ExSuiA2B0rPrIDxCg1UwUPROPwiDlz6v8IPJMsKC7q9ZSTKEVeva7Xl1ZXdvV2+1aAjYvAO9wgSebEOCQlLTXOmBu9I/kDHGIKbbqkxNT2JG6EUiJkhKOPpMy/Jppw6ch9FfuqxGYBj3hA9xAzQvMjGumnXj3tEg84PqGtMmXU6+OkQqgQEyOP4VcSvs8b58XGkw5M0btoqrp2QmI+60MtjuTHBOpChhA5hf7bPqEawYjLYZhxY7K+D2TOdx6JliMWfGuXQC4sL10+LuThrhuil5cqBBLAW0OI/T8KEaAh+vTvRo/nwqzXM6J0zP9Pb2d6D4ddvXMU8sFU0nk2u9thG6PAIa8H2drd3J3p81SZfwBBiugLKH0jhQViAyokACQgIW200mat++PSJgzOqkTpJCM7Iz/HgeHggv+GmJWyKee+eHqA+ggnNibEmcRNsv3Hj0meffPTZd77LsOX87DS+l1dA8Ze97li38+4/+oM//J//13+HrIf0dlAgbV5w1E6MihHqm+bmMG++jEMrSqNKDwGl1WCsWg5iYFRqcIE+0SpxJoj0cUjLBVrhnwwOJeJduItzQCbo46mr8SRSz4089BlIEfGUiCiqQwbzlAM+UhXcKmIEWdp6sde5KlXMnS87XLtxg+aHchoRgqUdxXeN8QKn/WkwsrOaVVWoBHmYEQd+GIGctIrqECbYDFlQuL+3z2ACxFBLcaLWVzouapJaQwpVoKEEZvhs3BexIbO/WCkDIQ7FHRJnu9eIHjQxodzB/xmPgLyzqng7NA0x+Ape3gpAZQgyYdcGbvj8jGiYbDh7fB4+EhaWQV4AARVmoX/bO1vsMohET09YC8yu0QOmkHe2t/f3apcuLTFCAUBU2NkM5SrmSqewAEHELgrfZQVawnxfjzkhZ8T89mu9RicYJBNxMc86yLZcxggg0Z/qwzTYzt5DcwszxfF5RnuFZT3hk36uMFMUUDEr45KHTTo5pHCATErwgEfeBF+cpsMbtFH4YjZOX1pcghm8GsAgERuVLrM2u16/89ZN5vXJYNPa5RsDdM9c809b8aMf/uCru3fpWzJpDSBw4g+7x0mEDZgan+eZQAoTvmXggkgcYPiEhtCusgrkZHqStUuTm3u7LAHI953AESxQB3OKdtSXBCrIIAvYRytpGIiCHNxz7yMcuR6gkEu4A1PUKWzD5UOiJiP0ESRLv2Chnuo8y1KGgBpngR0eYZGsnSKx0+lDg0NwYqEUkSVDTER7YAp3URrNl9YFwFRLPpqgs8H25hZhzNRkj1KApBa4T3TErpUEvr6JkciBYpFZOKMax6loUDgVqutyz7AGcQ5BAlZPVG1Tw2bl7dbq6jpo4bR07U7ASTWBNWvoOXe6bthGmlM6LEnI0AL6TreGcTBG1hn2O9w/orlwIBwnTFawkHH8Qtn57PwUCFEY/ly5ujCSyuDa9SuQCKH9ye60MT3ctVcgcnEX4bOAKOgBVxx9MgE0iA+LeHW9Y2AOpa4+IOSAAKpmNIIyGLj0sOdNVn9pzJXuwkgHbUVWJYk8w0fv5CYeLZJGHYcEj+NwxoqT26r92BJz3tqJSzDkMG9gdudn53iDmaHVlbVNeEjbRSVMk9MwVGtY0hKCE5LlrFgboN3/T/7wD+y7gqJSMzIHMlqB0nMGNUjgC1V6+bwiJ8cIrVFO+UVWJqzG+fza8+VXKlpIgICCaswWkNRGfZALcE2IXFgF71nbwlFNoQ+iVEPMT2chP/KvdBK8BkWeWgXEAZA01wMCWRWHWZg7g0X0nHjKOBXjYqy3Q8mYIMTCeE8b8KBvd6teY9uA3Z1dWlE0gEiTyZB2jbXZgC2tiuYwPdNHt6zWmq0f4memJokoiNdBG/Wx7iCFefKU4hWO2X6wlJye7oPS1WtL4I1qkDg5Se9Fw758abHUKMkAlOZBGeohH/AXF2fx4lbsc6f8+GWFD5SCD+NAdF5Jt/1UXFwWhFMNK+foceUxaBXGkpd6KYukAZUmKFbLOD6aS3K6CuBBNvVYz8AjYLO6RmNQgvHfukUaDRtyFmGWaD66bstMcy0ryCHjsBIIgLsJhrkHfjEEMlmR6V55yz8yOsuL1OwwsJ4Cz50BYlc3sd8PIxD0o/gczsbGFjmdYD0fMBx0cPiKVtfoMt1FEKBy5H5UG3719b13333PhpT1pCfHjCCp4j5mMm74zp23Hj16Rj+EoSdQZfDF+If55qNjcANh0CLyoZFhFJ5OEX4Q94mdUAWVsSqRRpc1DX/zy5+z1DVSELROmz9AyMBkFTeKIFQJ5Z/6q+JoACTABxBwdqYgTyHSOdD0ALNIMQbxiu0iy5nJqSuLl2/duHF5ceHSpUssfaFVhhG8K3r3/r0v7j0kkmFPVTBSTcWAcIX5bJyW2y5xKIGM2FB7OglBhzpc9+YGMJQUYXsLXtiiaQAgIQkk5CG3qhf4B0iIEG8EaScktFheIuSNCdIMf6DKOuU3VfjAC/gmYKNHeQhoSkGDGsYKIhLNLBokkxU6kq0US1kqEznruTiZQuZMAZkqZHht2VxzV0FK6USbkFkAMKdPzENxXkBkvI0PpRJg8FlUeEQoDxmxZOnZ390HMI0nSG6sbxFaEE3ReWDcn1Cqkqk1SikUkI2DggojzOFRflVB3sthveLERA/N83WX/X0+oEFHH6VXrK6zykYqkkasgvW70AtUaYEVq5+lqX359b1/+EcHjHfx0iVW7agMFbtIyj9WM9K9wYYUCaOCTNLTnjiKUzjGJV2Og8npnvIYDMZ9P9nV3uInHUQ2DV4C6/GND24spO9RPhifox9QBklhJa7DNg4wJjvcFhgg6W2Bya93wY6nFOCOP6YFIAx3TkMvPDcRYySr+e2PPvn0ww+Id+mIsZCJ2um9Qehha3jzygJf9WQqxakDtuB2x3mes0O+M8r2EytH5SwlTiUIkMP6QNGnHhYhiQPkgyVP8X8kmg6mPoWDYayGQnKRZR4WNdJH+kjKhEn4HWQA7m8qUjuphUAHtaSq1CyWaQcopOvNDACcA2D47HixS0aLT6UOGoozFtKe03XeY/txJr8AKPzSPTUfysPbHciH8Iyohuqpg1NVpc4qmLjq00bPRw6xD9fW1pgjwzdjBiC+s71vLXt7xvGxw4iWkaXDQjWjBfTFWAGJDjGtgWfRrR4d0yBTXI4WXkEb9x62iuE51wYOWsqwxluaaPTewQG5GPhHFeIJ3b+6FEEyarRFLIW3JpAE7YzcsnTc70FtH+x/df/+78//kOZDY+HAlZSuAL2sNiPL4xub29njQvL5r4MAEP7OQZ3Wq1ev5uZmaQyoDoHzBlD4o6Aijtqty5f+L//kvwInXIIEkgpOYEk+MuHrMs/AJy8dEiKHVKtGXGlz8gDhKOni4iyCs0mWJIZIyAKsViQFTB61up0JXmbli4iwhtYJcKgKI3AUHJ/oz80vXF7adsL6jG5+FwOw/6IAwMqIHMsqISBvdAhTeasnsABIIA+2DETggJWTj8QbtGmL8DRcgYz2YvOFhhXlNZe2kjCIbwXRYGOiDEMxuM4ZSASsJ0eHjOsDltqknvHy45O1yBjPRCQAjggbFGCqZMswoBoPEdzBZzYGpf8HpvAWnS5DusID6eFwfW1zfmGWPJ3OOR/Qg1i8Jqtr8U0wimumoqqNaMFa2AB3SYLIxGYKK0q9kA4anCIU7moMGOAajSXoKDQYh6VXw45DDlvBKIaGoY6L4/0DcKc1ODpi0oZpkwnyw2l1NMqmwy6ziqqOhXMoDdESM7AxL+P0Y2gel+IEjqCENLnzT3HwdRBGF7x2FRBlyYANMB5AiA9YKmCl3fe/8xkdMTMAV2qBZm+GgRRH1VfXKcLLGBYXI+rjv26R6WO61Hw7hzicle30PFl3DHAQExv6DHzFsNu+c/M6X6GttQk8sCR7hawFwRClD2CqOcDUJhHyvy9tamo2E/zh63ixgsUkoQ3uALeUgWzo55+ejVEItxjTYngKW9mmxlu76BoJWsIzaqVX0Bnvsp70xasNuqcQSZRR5Bomigr7Uh6eYB4udwum0QYFA5oQ32RBP98gQjFB0FKSwtQHLsEojhtGhKSEhljafOyhkMABooHT6LPJUtNZNma3jo83cIeEZ4wD4DixTLSE4tROnxjy8bh7u7sA2N1hgfr5DNMIG5uAnJmZYkxwbW0Tb7e0OEdox/gPk+UgT8eatZOwBiSVrisutXle0wUs7QxDyuwIPTvr2DmqTDc/+sUAA02lH58U5ZgBjAxZGJPMVkzSB0fD7oavRkAajQSQ93Z25+amKdi7ssgAFDKnSCyNbiSDD04RcoEjUniIjzk1MMOAu0oZ3qRma1Qzwr6i/sSw0kKKOdAOPlHpH7MH5kJwkI2W2/fTwGjP8WgoA3NrFNBaWOvpdtR0F8dQcKyBA9QfP31GkzI/O8MKNNzyuAMJajDiZhQTWwMyn4NlICL6wMNYRMRK0MXk5L2HD3hXARZACjji9M2k2xNbKGeGg/kUxKRIKoWIwlc0h/nSZANfdIVLCKOnB9mwGn9jSooDAv2ia0sJlRzdhzjlwY8yU04809a1EN0EOHFt30fwHOJHc8ygM9sWEFySRxaZXqkv2yfv7hBjOPNPgCRwrTgoWxXuk5eZmKJ24pTKoyCyAxcI2k4b2w1QHkpIrDnIqNlwD3/AkBdZad4Y/udLAEQjh0y79hq8IkFvjSZCI7D9pW8jDisr67w0wzBpmb7NlFlnembKQdWjk7n5GYZimUNg3trdQ1Qv6rBa5ATdyk/FYorTbh9BMqPp6IlvuvoWOO8DMWLK2OssdKE94psD/gd5b3IdLnhd/A+lpZHBX6qYmXGaj4r29w4QGp+WwV/SShwespnn7tLSPDOGvMGLanIx1jrn+63Ts1NMzbJhI/3KMvBKRRBequNSBVHvObCQ6kY2wlgcjR+o7/LiJRZA48mstjbFuxx5D4SpRhSeqTVky9uOOGEUutP1bQoMT5NQrOoULeGz58+ZtdRvnqGr7Kmq0WuK+M5Wq9/t4vgT7MlbSgEEzLBx6GfJwq9/85vf/f4PsDyKYIE8QhNUVH2fUnCMj34Jqci+cJGOIw/IoYYjavxnLAlzsbyH67StSeE530nADhc84idgFBdRzRRR52I18ksITCxu40Gp9bzpSkvKGUAbHyBmg4aTgxpb4OzvDVgu4lNRY8gpZ1+QMzvelPyZjCOPxYFORTDHoNz2IkxRbnS6aQ3xbeyelJXkZC4CBIalhEY+D3RL62VSiZrxSSBI5JPlCM51zM9PIzC4QS2pTQ+KUMtLZKwLZBKXd24ZroWNsAHl1vn5KYk2ArZJQXhjLReKsFDpjLGCIlOGckA176Nt7yEO+JPmHnJ8yw9JAIdxM1SJj7qiXeAJ5hUZ8p6EQkF+c6v7k1btHYsFVflyzvQivUw7qWBCRs7IERugAx2505cdW1iap8GD0+yXTqI9DlpvPYa8q7xG5A4i1k2q6IiElxDjIKwvt5wcHpNKJIaPm5qcZpU1X52k/1BCIDjJvDENJu6TkUNkCkq0mfDHWgiCWeD94N4H77/HRfAgkT6f1IMPvhjftMIHAQ0SdJGUspz8kUtsRsp78Lxk76LmbgfnxOfUcDfMlYglIXdiGT7vM3AoEw/W69OxgCn447sPHzNzg3eklUT1o2ZyGX5FdSFXpggHSbWKm4c7jouhinT0ZYoxeLijIHS/FR+bTZaL7L91ozkJBxGHm0wqLZwAe40dHWw8u9862j/e66E6TDkiAdsTQcl4VbBRY1kjbSjaZFkrCS5A8B06PMoRn33AB1sm7QyvoTG37+wYXUAWusQly7CokPQUHyMc49RdJq2mukxtruxuvHixzyQrYSbRDgxBm7EN1qjB62jz2erKCvE9qK2tbIAd86BMijlO4JrK7traNssHOrOTiAr2OqwkMe7lD/p8mTi4E3k1bK/aLWoB6/NTLAFfzLI3pod6OrBabWlxnkq5BAIk4wokcEQ+KRUbeGQNUC7PL1+ah1BMgMFqG2s8xfkZ40LoEbwlG6PD6jrOljV20WoSycjUKURV/dQyMkA7H6dhIGorrdApgmSoK6xOxWTiDdXjEzrNvHrITvH095iVP9o5XVlbJx8Tl7hYWm+kCQ/pjOGMgEUnCj7TfriwCr+C+dp9rS2vrOA6WCzj8iHfqkeJHewRB2YMu132S+JDVLiIwgLQRumCSo05O+LN5y9oVaaZUwEmDbiqhl/MDxykVOuf/J/+C97nunLpEjaGMBi4ePnyFYHEoxcv8/UqAwwKhd8MY4dyGYAqFZOCAf7DTAprkBPGCZOopnhaisNw0iMFO7WPnj396N3bCJo2h2E23ABD6AABSzDcPTjZoAWv7Swdn44b/IGoXOYRrpGAGkd7sHdISIVeWlfaJ3iKEqvbdacUEKBCQr8No10UxLod2QTLEWppvmKcgC45yW4wVRvOzk1On/cRMPpx+co8/hmloS/DWBakUs+oBaVHOHblal51F8PhtRuXQZV/TAui8KgA4s26/Bovi9LWYlHUBSksn5GqwppIDx21eocR1ePuVA+K0vg4qKDIfDlbqeWfYChXJDMiAOT1FmCCAagIMp4TI2wwQSeCerhaTM+vzMhM7EeW6CHV2mdTtj7yKQ9oSjmzLIg00LPa4tLMJQk8iH7oKLFXMeM/3KOffT7c2tpWvvRuIYwkPj/AfnU4JuS5a0ti5OFUKS38GaNVtdomw1bTfmaBNw3p4g9W1tZWllc3NzfYe3c4nMD9NTttYDJ7AC5kI4CcnplBadmFW8zFHR76iH/0GJmtuv/gwfvvvp9Gnm1dztB2GxApAQM6APXWj773HZKMUGNDRJP93vjzlZcPnz2jNRAYhMESKBSu/It7MmoKw+zMKxVoTa+fQCL2orsij+GKYyBlKw6XEtBSbO3sPnjynCVAdB939vdWVjcY6CYexROzRmp1eXln76DXP7n9znu016CgXNMNUn51lv20t7d36A4wDILxwEcpKiiEszTC0QfMWFGBMhKQBkgAuaIejiARF4UI1Se6DHlkQTQZh4AzAGe/D3VBZwhFyRaYnKiXcoXrMXtdW5RMnVAkjtj0+M67FHBQJuqqthip2CWlBjAhLqRuUYoiQleFs+6cwJgnEKkhF0lwD10VfXkcdVf+wIEqLkzx1itQ58ViwDIOcXZ6kHe4z5g9ZPRC4oTgNnBgw5Qz3tdZ+ak+uKHKIEBYCCvICYOL+YVMmCl0VQNOULEU2kRAOZqNdjIEQutHpEQDeOoLEkbL0cDSjBBE4c5UEqKSpYWFm7eu37p+/fLSIjLgBQb68H/+l3/zJ//z//L82YsrS5f82khUkSF0ohHgWHO9xnbzdDZoN2gWQAgPSyXhgkudiQbpaRCW48sYKYIJdCXhPq6/8If8bPyISfnOG3YROpkO7C/ML0oQ/6ROliukFCJfyIYi1nkbsrPfSrhDU43p24wTj1oAWXPwy2L6U8cEAaDgGQgZDn/51V2muOkwbW3vuJ2lTTNe02gUTFpj44cnZ2wfOzfAfEuNANK0wAq7IhvtJq8IigbmkXXjVErtOhiA6JyQbpEQlAiGVhJCwZhzoUrKPBRuHilHVBTdtLUxfHBoRU8ZvqrGkTvESbXxt6JEJCyPpQKkDizSQVVv7NtZZ4RWQcYODI/ITC1Ahh4WBm5tbZC4dGkebtHHxhXZTwAIWhaVEXUGiO3KaRCgyof2UGH4nDz66dCAGpoBHBVzXgwgXbosK/cIN8hDOMEA9j6fd0n/EoZwwbIFVhbCUt4/gRlsXr29u43I8KkYCnH9zAzzDwUe57CXc1Q/RlD0wuplplmzcxFbvceVci/nCt/BO0Gv5AyMzz/96IPf+ezbV5m9n59TiI6WuQoaf/GjH/zg8aMnT58//95n3z47PaaTVDUIVKFfECaYEy3T+6JRQHYRlkjyFIPktfuNrecs5CYmhEMyoZrT08dRHJ3RtaOcIkRHOyBoa+YXlsCZB2SLi0J7QgHl5Fr4r/dCaYlvWOOBWtrRkenMgmEbgctJLmfhKViRh9EDRvthFu0gvYXkEg9GFl2RQnmYSCOQmQFiH0UvOfxgtrxtxNIdsMVfuthGkqi2NO/U5C6zZK8xyMO8dZQSaFogdBjjaDTeqYV6SW45LGJcRONuvFtjCzQaVBwYopiZnWFkk7aLkZbNjW2CpNmZKeaeYBxLx2mpmdZhBRFBLEMu3LIYBhUEYXb7wSugQ/R26K/DIWpkngSlZEWdLUk4yoaHszNz9F6IjRlZ5A0VhvSYOmCKF0GwlBKSUVn0hnF9sKBlt/M2rD179hLnzQCu5ho2waQQpMqFQC48QCbSJGZrMyJHZxRVKzpkvwXnqp3rOxjzBTSv0NC5xPqIImGNFoXXNqSUUcBO8MWV6kG24gfhMOrDTf7krjj4rrDaRSoiJgfiw4Hpb4iXuEH2+VYs36i9fOnS4sIc2t8kJB5m7ymngBjBm/nud77zH/7szxjTVqi8M0Mg0IpTpy0BNFPFvI0w3j08OXRhUtZriarhnFqCkbD89sGTx9evXYMUCkCOHhMCYE1O9g4BpYeNdfGITHTaWCEj9XbvyMhADShpz5GfCmRORvpYC3LkZ3zsOEMZCuIgCA41T1hyyWOP7DNsB1enCB9a+FAH4wmeUWS6EJhUulA4QF5mVbo1XtdMPaCnnCBScWQwAVlar80Ck9OYmKhyAXCGLHd32cRKwwgvSKbv5z5UmBZqBAnlkFUecgLAagyYCR8IDP/sgxidJYpofjUXtFIJmNG+IRJaM6bbKEpPdH5+FqHubO8S0arWJycvX60SBAIBoLzmCp+3Nne2+OAcM2VneBNBcoKjz589W19jL3XmhlWdaA4MYVjWDaDZfpxkVonR6ScmZKU2uIL/5cuXcVYs2w764C6LUFYZRL+IbaKlSbIkMD0QMjCvRBRBcTBkESaPabWoglwgQyJrH1E2Rx2OjmMGDdZHwPkyFRVexR5gW4LM3FAaiYG8rswa+e9giOKFxDi4aCwiiQYgKmSBX6AWPiPLWCJ9YiyfcQKYApMxGQqgFNzihng/gQpZrIGg9WNqUcQtrZBnC0x/7HBvl1Uk5MG8ecw6BcIKNkaBLCKOR48f+3bX8SlCQZUoakUxJE5+EcdpIsc6NWK9JUt32mNEbGubGygtpJKbVPlMtTjX/CjEPOIOt5c7+MFMjd4XiycbfCGPxqGz4s4Er3kMARmVC5+4Vf9QWVdZQb+feRusb26gvDDU9gZyNSHrpwHCThgf6vcMTdyVTzvVUHkt0dfG0ybWGWoMQWDDY16fZVCLzgluSpIiQ0pJodR5by35Q4L0WakLN7yPnsgXvR/IgD/ixAYwAG7ZsnNnZwcdIASanZ/BHxwyUsTHlFhdfHhMN8f3Y1hVMja2fbaHkiGlcIbXKemesgi5c+3alfiKI4pgB7w8yQI1/B8xAkaIMk32u8wxIyBIpSXkGtWkfVf5wNqmPM20HBA2/1VNBWYKGktZXBoRP8rHKCGKghYwYkFmAK6ubjEmg67TT2M8h409mW/e3t5eIFBpNhiqp2PW77PbnJ4lXIL9ytJ2QN0gijP2QgjgTIK3bhuBKcAtVQOaMTnwQX78V89hebRK5jdqd+/f/Qe/97soLF+eAixwWKVLLv7BekY1mRZ4/PjJnbfeQktUF7r+RICUFSKWYIBEa7a8fNrp7rNX3drq2vNXr168XGaAGwdMdwjPBVGIAp7HbxpL6HcU/RAdUq/EkZcipUA8Od5+6+bXjx7ixPVpMpR/qi9HeI0bhsEm5p8ZzKfe49tdkSgL6G0m6oB09Ji8jgfToShWJSsI8DUO1IPAihDIlxBUOfc44P1JRp2H9Q6QeAp00imCzVCb7/Xpr8/c1YhhRweRAC4cutA0ghJl0yKduhbXz/DKAQ1u7FtkPUKzJxUoaFOMd8oASrtGLsCivmKQtoWzpqVBgrwdA5a488GU8zGHaIQzGOzt7mP/aALsBRlsm7YFJQNhxMCbAFQENxAjNsBUF5ybnZumwOnuLvPT4ZvTDsav1KZuD5jbohHlGnzAlQ/W0zvEX8YLSAyZpDS5Iy+FbEU5A4mGnl4rL2phG5NT/RRk7Ij3h/oUR22JtcSKdbU9XqHmbVLBLszPIjIICQdKPamu1BWhpOrCQaBqHhSFM36w0lfGIBSmgokCikQwFyxZ9LwfDtge4sXLV9OsD2ejClfRuS8fHodF7iwvxRSvXbn6+ddfITtIYHIGKQBAI0elkHCd3mPn8PT8z3/yE9atsb6VV/hBmEAXZ4p50v8Bq1crqwvzCxKuukqp9SsHljfnEwzKDM2266DuMoXAomhGs6kpntiTReWy0UXROaWJciN9+s52GOjn+C0StJC+Usi0DdKOMghDUC8UmALcAAGOUWQ0mAcgoyx9gwkLpA+3Q4N49dI8I30EU2oryyayg4avz6NErNQ7PpkKUIvbe7YxoRPSGYzhxgAtzdjJyRlZGebnIxSstQwf4OCFbYOk3CGFC8YkEtRA7JDAnX/HJ0dMMKF8tK17jIK3Gkw22NCD8fn56sparz8Ox8CInpvGzyakzBV0eQ2pgbvFXWFLU9MsuOctZxyZfECjYQ6xPqYBD1yCVavxmiipMKc33oW3eCzaE+2Oz1e6264DLxDIa7eM8oElCgoktamSTmG3NCcxD5IDobLps7PveRnI/EmnAAPtIBBeyRjw15DCOTwJPq/wSQUit5qbbLrjMIpTNJ1fS5tB0BiBzQKBPeaVB9gT1oGnMDRyVwGURBAQStfu3oOHb7/1FosL4lwbp0dHlOJtJuilbbl27dpf/e1P0XEsttap01/im4DyxZEedIbWi4HyxWcvltFKPESb9VQsPp3o8GYebSAeERHweaePP/wAkRGUYwTxyxWLdFoAtSc3OEer9g+Pltc3X7xafviYBoGICsVUaY0nJBECMRVS6MByEcMBXf2OswG2L0YuZMXi1aSRskEPA4tGKT6VqbI4dzpdARLWuNUm0DL2nIb72atXtOZsZNg0OGGq/HRvj71INp+9eLW+ujXV69nPUXP8xwEcTv0p2npHqHRNig8CGiwHQjARllhQIhkshm/QoHNFfpa42G6wtW2PBd58BLpHXuhaXJqjVxMHqaNm8RDULizM6g2koN5mAgFhtxjAqE/Ba/ji3KrGzjg64Ol/USkDToBPIyd3UfFgpSUjIZ7wlF4TbJIu3Kh0iZ04Y2b8mIdGDxx5KMTwGTyUDomQzG+5tmA4DwkRlEBQAmm0PWbUWFYADAFSOEJlYRwdTceSWd0PdfBTnw8l4hDIYEL5MD8IigoX8IKqOaMhZCfSx0WGDCqk44OmSWJ5HdT+HUf4/+jRY1wYhdhFzsXV4GbfV1On1itXLqHrDIbOT0+jOjTJbI5jTEFVeAc3pBveuHqNf09fviJJJBlmHGufsI5ZpbfS9Y11zIB1MQzQMu7w/6PqP547W7IEzw8iNCKAgAr5VL7MfClKtO4R3HAxZlxxR67573FF0ozWwyGtZ4y0ac70dHVVVlVXpX6ZT4WOQAiEFgA/33Pxsoc/RAD3d69f96P9+PHj7mfb6zIW+Dn1yy//cPvuAwcUPH7y2ER0m8kALJTDJenIfBeG096C4ULZaSicWEVqsdTIhFTx+IsD69IrJvrIGN08jZqqru6Fap4sKiU5J/6V7IqAgXD/0cMHj3fWDk/xk4w7Le0FoFleBl6FTw6fT3XFPRtdAbbo4cr5jfYkRonsH+lvAxXiSpzTRtyK7xU2XRC3gmjYm7yFZs3P3MnyreJeoNtRfNgMEXfSgcprNtJr1LuVHO82fH3v1oRi296iOXgvLf1yr3pt+T0ghc7yCmEdEg05CXpwj+gvz5eKAZaULGpQh/19e5mA0Ky+YI8ja9wGYQDbWm5vX3Yyhg119q/seju5SqxXXjx/ReMl8LDZxuLe517PqsZa0ZtVWw6nj8ulZm0kd4M0inflPzPXDLk4Fc+QNbbBXC+qh8lDs+ZPlB0ftgrx4YGkiEcyuJxX29a0vEEMmoo1cWQJmyCBUe9f/vmfJaFoq7+KtV5PqvwyRf3TL774+rtbTIo6Nc0TQBwdEZ8K3+ypUbB4/ywusKH22gaFrgtgp/7P/7d/Y2TNAgEaIwM2U5RBqpPk9ZdMUXw9r2WeLlSgJyxi/n0BI7oSjehoZEfXBgMoREaGiwmc+/BCq0p4E6wkyB1guY60MTUpmVrsb/n+/sGT/+mvf1FMQ7xl+g1ZbpYarZ4rq0LyNBh61391D0GCcj54373+L3WbkgzEEbAprq1eHFLOxfIuAKkWYOhrBJ76Q6aP2yP4ammc0zy38fFJ89NUWE6xWkb+EPfP9tfvZuW+2wlWdChYfCxnBku55nz39CoeJ14Jfw46KU4LRsbUnDBVYcB4ElTTYr8DLgXwr2K+dhEKENfhrF+9du0xu/j+6HCSant8UmFbbZN7zdhzioHY2d5++OjAIJPaMJ+M1GzRXrXRdH5ch0UkHWosIE6Nyhn0Sy8iV67znmcPIvXbMFp5TrRRBKYungEwX719ffvOnetX9ye2FuYJjbZCoPHMDz7//K/+6j9IR4T1EkYvjXrBekoJ+nzxxY//+//x3/Gg3669m5HVadHLicWEqmTE7777bn93l2Eg1YhlQoov7BkrJQYPsOwlLfF1BBgfwg3/iFpC0E+dEkySVIMagduleUyqqemtRxHpolBJmo8DRL56Fe/XiH5crjuIwVPZeNseK1pqGrrzzNp+OCl//VZHKRRTalsu2UBirCgIy4OXthmKNRVkw/xVPbtTr+uUtHcCsT+j5iOBmDVfje287K1oEb6e+re6oua7d+zwLCQ3elL9fabwUGiEnp2wWVnvRh6gyq7pFAKB1Pbi7Jo62/5f6EHfefTo4IlcaOX/BJX3BIuMoe0Fb5z34MHBk8dPWUtTFgVk2/efWWgMCkcvBm7N1d6QMCPiYrnpUt3+RdoTZak85JWXBPXyxXOpPcDDQmgANYWrN808K4oGuOCr1zMEZB13zAJVjU9wVHHgNKYawtCH6LywQCHvqLFh40SPQESREESShdqW/t/YoFlnOy9BMq5Ttw8OnrIy2KWGSvPQJ2hjFIxN/vTjm4oeSN+Y4Tt6AkOFYM1QM3Rr9okSZdpLtAQ8pNDZZ7/ZlwX6ZMCmxUmacaza24DQpxoYszg9qCVPUE8rQhhNKUw3CVRWAHLwditcEzniP5la0Q/RDNKjXc9XHJFQVUoBqsKIU2WAc82lWloN3kUp+DQggpWXWws/qZlK1lhdO7nK/4GxI4kAs2Jiu+itUPTQZWJqprSq9+i14xytO9ndhsaoU5GKmeEy0y566NTdREcESviBJLRCNFMaWkMKE6uO+pLWcV7A+/nzA3htbW5Sj+hw/KH5rBE+HB9Mss0Yev/BY+4vK6DRChqxXLI87R1TY5nPeBHO+DDjtmUJZaKTPEGS8nUt4iQUyxuRmyfkQq3ow56Nu3uaVNZPDVNjRIQBbB9VTTXkkWSnDNpfCK94JYcPZvGYI8ti7T/HqJRaafrl3dGTp53SQmhpiLIwUD8/wjX9NJ+t3Pb2pq9LnVbRENRm33Q+NUAMFjxCaLmjVW1JH6B4bNbps+1FTWBY9PelxzfNt3VJVMbqjm1lvrt1+7u7t++3mUO7gIjwwqUcf1VHyBDed0L99o4jEa5dLdcLmtOyikMfksAzaynVXGKbVLu2tBY8ffJMaHuSp4xxV52IXnrfJLPQEdHp5MvquaSY7CBKmy6GqULInkD4jAcYwcgoLFE9qp5QnwXSvRDeEXepdOUJFv9BM5MXxg/Dqu8VQnzstKN0VaBUCpcWDtNYbwYgSZmaxqDNW9Qq2UfrRQ2CqKcRHhDPX714cHDQ9tzjn5O/FHh29zdBxJI1gszVocvHghLilRqScb24vFXGHFYfZDUO7hhJstA9OjSd915QyEZtnlkDJGqpNB6bckHAbEGmNInuWrLwhFw5pr66TbbYRRGhB48OEGTr8iW9KSqds1EoJp9IaQ2jAf1nwMZkHgvtm8oAVIo69lsTsSTag3d+ey129HGxcGwhjnIJSrj1lkoQ5/69h6h+uP5MwApSxglykF6/NunIKBoSnNcHorNMWnUBQCERLRbEoL8lozAKTql1GhRsLK4Kg4Rm7IgCiBhkfnOZmiVsUMs/WXFwCmjW16ztu7q/s7+/98MffGZGeeviJsWj/L/67e/+2//u3wq+PXl6IOgncZFMrqBx9kKdYYcLUo+++errfzJDBbdRcqIsNeorOIxLbP+4+suMAteOVVIAE8GmEqbUdK0tBTYuXTh95hIe8bgDeEltjWULkcnool5EddYDDBHLYWpMPDIpQw63oj1OMlKhDlxbGh7bOIwHL47LfIkbUkTPnhWEfCnxg2GYCrKRRCRTrWF9KGmUP6PoApHf8ZdQCQsUeUgPuhEpfehr419Ie3r69KPHj/WAJtFSU8RXFlor6zwToq88QMkDwnjl9dMX0p5piGLTYGHKVAs95oCSqlW6jq22NOp1/diZD3IFGoT5yvukSBiMZt5lIQ4ePTt7VqJloIoGynA3cUH9vOIfNlsWoxJWED+8CHrVJ7rA0BgaDv3Pnjvz/NlLq0YnLULIRaMhPqQO3iFMd0bmIDvYLfenuipSoV896vdIQFdAvXHjipvK+I2oLOa82mCU70HGZzUMy6PJ453tzYyyOK89PoI7pgdBPVN+0dDZn6krBak5GqGFSqFbUZp3axPE83Tr0sUvfvSpDQ5/8MlNK3ikBgPJh0ZZnvgXf/bzr7659Yu//cW9ew9vXr85bsgE34bKKE02hZU+/ujG//A//o+IScZQZ0w7Oiz/4jtRkvZCQxZoGXXOf8ANfGa6aPuDg0f7V3exnbbIjlcJbbTryYkQ5k3lWKfKBCI7EuY5O1IUhnMNioNdj+FuykrEAgPndi/vfXrzptGVHSsM4eXTmhCxh9e//5v/+Ps/fk1029qa3WNBqx3Q6iG+mKSu6lMxcGkuI8pudoXlpi8Gmn77F58ThDzJEiveWdshfWDtuDA5eU7q21/1w8HDA2K0KQI7YUHtGC2Bs/GHeMJqhwN5RCxZduD4qzn2Y3TbLnHOm8iL5a6Y6iLNViDYu8WmG/grNLrgDhgGzOCGzMjhtU1Hq3LbbnEj6oGm7t3s7PHG6nmDvBiSm9O0SI9yQYvJnDlziajJdWMyR8KOze96lJT5P1ysxbw8bw8lkrz5P0/dnL+jJIt/G20VGEVStmHrMC60T25iyFmjztMmXnJBp71h6/fdCX86ji+ED5KKYFZAVL/qtbh81ULoeNz9+NjEWmeNn3L6zFtHJjsc45OPbvAz3VNMvk3st8zQbpmXt/75P/unv/7Nr//49Td/+Zd/xlrZcR5NigGOEgbg2uqVK/tGEQJA1xx8XH5KUqJBjA99GKyufPLRR+bksU+7V3d3lfz4I7q3YYP3X/zt30nmY5jSdZBjG70tQiVPAVYLXdKAUekGPCEY1pEyOYH2OEpjco+sb8JOvfbqxXMXPv/0o5/95CfX9vc///wz4x4OgN1EeIaGQ6Tk8bOnf/zm1ugouAVJ+4yUR0CAj8ZFaZD574KsLkRWotJlRmWkgbSQn/8gQCdkRZ5MQptFv9RBEvjxYWSNUq3cuLk/nrVhX6MLMnnWgU6OjjIro/0Uclr0CAmyo/SBRwS1pM/Ceb7BUHb12vX9YB5CbJioZy8Shu4h3eXNs/Zt0h2xInpB6w+1pUNIcxclTvEDPtJrSddhGC0tbzYYDsE/fQJEJ1mHo5WT24P0YpIHD2COgUrzFYmjczEADcHyErtF05abCqR+g8P8Nj6e/Fkc19YYBc3IOyrF3UwGZ8LQn2YyV+I/XpZZaCHWVFKrKDPoiIyFJojcS2Sng9WUkgqAJA8khxnJzb3sImzsW2/rCo6L11SgoALXr+6aNHjw6AEzdEEy4JlzBhbIUd3JYsO5zcub7Oy3t285tqbeSJN6+xMSJMqmF67u7vzTP/uJHbJ/+PmPrl+/2aT+BWuzVm7fuvfK0jVnzD55okoAUPGBPOnS4wd2YkYvUjC2sfFxlAuXRLNvpDAjHuKWYM+QPXHi8P3lz/7s049uXMi3e8+hfOWYEyPicR7kg17d3YMT50z9C4Gi4lC079hFC2qETa95hAsWn+5O48vvrFbqH1lKYmlpny8A6tii5QuVnXab0pnJQLURLG8iYvhUZyjlxhK28Qah1Xh+5s7HxhgpOaeoHX6mB1rG3EVCtHwyEB7QtVEtUM1QV53bXCuwEI6ApZwaT+N9Rg0azlot0dZ3izqFA1e1oZYqTtAbxHtDhZ4PcshSFXwwktRgSBjNg/Q/KiUFis5n7gSQOntQdcZmH2Ta6eVYBmkXjguz2l6qJQKO1lWAC004pDycpMZKm7XqlXpYbvrmrYmIgTCpBAxoFjin1bk1DO2piySl7g6wKEH2pR+ao8gw9WovGTDF/XnBPdMVJjG/+uYbc/mbF7hkGgD+IgYjNSv21r6wv7v3zdff/LO/+PMGKm2kqTuPSlNPKEuh+q/+1T+TCfDZD36IubJsQnBt9cbNa/+b//q/dBzEN7duiVuoihORkUi6s5gJePC6Y0FdeSJWDDa7oG9DCOFKA3mOlJBLMyWzugBBk9uWoRigZzu9KyCtS/IhAjYhQ1nFr+zvd8ZZ/MgZGCr5pf+JVD5kyStLVAtjT8DRkSfN3oMvh5PkT8hNuaWNZQg0ZBS3rnJuHaHEf7WXwOdPwpO9GVXre37hPE+qMgAjReQvafW20hpix2ol3VyqWTisruoY6cyKiHKkVyMUXlyqP3j01Mu1mD4gjPtF974HgSSHuH+Jfeit3L/78LvvbiOC20EykubV/rZ5URrlJqhst7rkogIi/dOxkfrRlsAaMAcQsCxojhqM3iOVgbLUD+NO3sXW9pbKxQDqOpCuFQgvLhowrFua8wz2u7bmPvrgWpDXKE8gOCDUOiwM9FpIphE9HAE7tiacu1eJ4UtfPUMUmUXQRFcf1RQ8X0Kl6EwMDN0t+3/z9vbdu77OICWLNcicTGYZeMlLdZbkUo/6VaWxiBpoiRXp5WtZZgPck6ynCE4t167f2P/X/+qfw45HrQY1G3JQABCRN1astmCROvhdfYuSaSJhmE/Qu+DBz8o7cDb/1z4SZ63ElaxGUuE1FjJuxj9fqRaw4DMSSfq4fdoK7IVeyWA//dFabjxfW4DZ2LNo+qwXVl1iRTimw6LLZXGe25Anbc8J1tqDGBI/XJBkCSomJXwHc+zyu5b0hhXpA+u8S7eHnaPAKFLW1PsPd2/fe/Pq7eOHj9+8egNUal89CuJjSijYRWfI7kQexj9G0OdiH6/tbv26vEvoHEnqLhv86RPLqVKxOYPiUPBcO4tMAVx8Q9d6cPBUi/fvP77/8MAEsHl0IMolM2C6fdvc6DMV8ljME5thF+o4fPZKgiJsWBP0hNXgDjFVQjEr48JnRNYvCmlAL5uNg9dhuKQqxYvy9VRu8o4Z8d6cZB71MohqGNSRsMLVPzWOLdN8zKvV5TZXZUIhmMu2ejnT5tfAeffe/ZLF0KIpi6yJHpVEpirzujqZkW++vQ1rS581Fi4QUxc4wHVq7dqN6wcSHs26zL4KhHIYviASdEy5FSMKe9IImqIvZp6SnD312acfcdKc26lRVZvi0oZKTpHclGFcvcAJrXDTS0ShbA+/aFQzWKePHmJwyYiHQRFGDuGjeF4iWZ3Ypa9QIFs2QE/cSm6JYm4OUfuVyoCoat2HLEkHS/hzmIfwAXVCilEGvZOOSFclLxot5DwfCvMH6JSrLrVaDvSmhLO2ijScSBtIp/EbXda7ATtcQ6TKQ9lVYqHhHomQPT14goNAtCrAqrrL2y3nt8e6rT6trLdpNSNmv0NteRGb2AaRxyt7+88IqWw/BzXgtJ2FNjZKbWg96nlZgzNIeCtbySNth7GJjWGVWUJ2xQoGLwo4m2izlzDFZG2sttS8Hvnc+fMS5uiJVtNZcfHcj6Gh6iJh8r3c8T3w+qKlDuhWLVHnoFdD+a3SYz88fPjo+pU9+5bOLmMfdPNskR2caMWZ8xeezTqhy461rZaI1meuqrrPeICxtdsaDCN4ajd6hmG3jo7v3r3/8P6jvb3LehtD6dDsFJ8XrIQWv/nmFlYKmVnHy6LYydTAN8SWAbGmk92V3Z3LerYHDx4YClc/IT1qLZ6OSwFCLybBI2KWFw2H+IloZE7Xty5v/fhHP5TZ+Rd/Jv5gTJyWaUOANKUfOUqJFR34wxouMOhrKRWJp+uIHbnTJ9/FpF3xgoYL+VmiBA1c681D3sX+zq4XdC/DmFn1EnmGOVNn6PiuqKvAElM3uy576rTQDTHWiUeQNC0DKPvICkOF2RukzKj0JpRYr6pRR93iOMoqZjRUq4hpOJ2CLMUTnpHF8eOLmirQm2ogX7YiPivpe+Xd2sU5WFGM0boZHo+9B5GaCEriJysL5NNXJQIE4N69Rzh/9drewcPHYJXYo4vQAQx07cKgX+PvEQx0TTy1KPb6pgW+KCJnlg+qm7VfmJU0ZtZE0nJVnSRe4rSY7OsXLw51L425z8pOjWTIu0Diuu+qChrXPe9ZBRojSvfwYHf3sviJLS2MPl+9ahkd+tjDVG8s2lZIcd0GeK/bf2CCB2h35uwSqElE1IodrpDR5RioGXoWVW/aQYMaVsZ/OoAB9QorNr95pcdjhqzhePz0he0DDSCt0bHwwNS7ZdbAEIhvIcGz5/ZzrxJ0EtaZoRQFtuLRTIilZ9/duf1nP/8ZZulwdEIdBxUbRkrK0D7z8uVYZXtIllbUJ4k113Tq1F/89Kf/5v/1b5lRI3q3zVuDufzj6FSZ8OMc9JLruQunAvUnJO0m8sZw902afPjw8OBAgFZI0gylwO2b1+kMPcj/IzhjDOxToN+QOVc7M5HBJHzfJ0bHpUPWrHCBXlsqIh+M3wNzavDo8VO0pFTpLlmpE08XUQ2lwaBz4NKE6fgEbkVBjB88Rw08s+8IFDUWgIMTwuXq0JmEcDQ9jy9dCvKNzY3HVsx0lI7k3vZBMZNg3Zle1AhBXggfuq1zW8lQF0y1lbl6/erdO3cQiTyZe9GWzU0SgxSgRRhIPLIyojP9Mi/r6eunV6/u6nMqvL4us2T7Mr9vQzdADQjlhqxYzVhcQY06EKSZvg6dzOgzhEHvwm+U8jv2jfjPE5giTnt9exD7VlevXt3LZZwhzf7+LtJ6ZMu9ajkmPWvwmgpNBjv6EoVQeN5eLNgIne8R3TtZzDiSPvPai9eBN33wGWcd0h9sHfTL33/52z/+sZNM9LNv8zzRu6WNnWLDLNch+2aG+5ObN2KbGOvaOB1tvlQCiDn8Tz7+5K//9heWHJwy/m8mABQtYmLVp8E8mjHEuetMCTDi+vhLuGBpFJmUqcNRVCcigPSU6XQb0eiSuLFVk4T5BBBlAr6bpDZkQ1WL8ztJnIDA4aEZ8g1QdkSF2Kod8c9yoRVGR8WJwCX7wl+4+KoVcDO4SeJP7+/tUW7Lt3NMV1dv37t/++6dC2ZuNTrnC3WaJ1Fy7NxgQdHU6VEiZUFWyDdOImN8X3c1rTUX6eqESowTbN2gTApptaeTQXR5JT7YQzwShKpa4Jj1oic0LqsGHs21Bm1nmw6bUxasETlBRM0JIKDg4dsXppxUkI8jhuRqbeXqlR3DdlOnda1rq/IIkMHOUyoulLV8SH9t149rlbm/ceMqKYkZJSTb/QX8x7IbBCV0D7A+Z/u3WA1Mcw7OFDaRuiZanUYFMgjgUnhMKRSZ20EU+fsXI8BQzcMUlGKLgrh1ERminlbGr5NPHBYORpl5dTEynlVDYl7czN8hN/SzkR75KAEkykNsqCUQY0GRcB34+p279/OhY5zW/Tu2JIDgMhxZCnXO3fv3H0SfxO9kTIz9xm+aZnH1CX/1139j6z570aqW6J5eO8NmJwGDbBpVUNHiwTarBRLGkz4N4uz5s6d/+pMf2UaN3y4yo91i8s2EK3mUh6NQIbNJHoa5YXVgrR6JjbLN4+torBjrYuDg8e7o7R+/+ebKzrZzKVDUlBZPNHkyzFCtqhuzn9rd3n709HEhsJ3dL374w/2d7R//8HPwGfGygkZR//Cb39y+d4/NMOgkqYLa+IYWk+SedYmthttJCWjTiJO/hlYTdSFf4FpMk5LOWUH3kfREEEd4AoxqZqeVAzJBFl7jn+JjEmN9TNLhCq1ohelFUhbadq1IxqhcubqPPV63rn9szHxL02ipVBxb+9qpswRJngdXhHhKnNWAO2EAZ709xDKftJdFbC0iwFVf6/V+cPQThnm2gJcS39vd6bpl3l2EXRyqTo+GKIlid+dOzfV1tKJ7tditMQ3zdFGSLnF6Cve2ChWHlNGaXeN5vHt7O5pyr6dT2FUXU657XoGJ96hERWoLvcmDHzu4LU3nmCulFrgXBmVbRinq7N1Op/3jazDnfuwypQ/MxNJ1ouy37tohWec3ZHHv7ezRHYhrG05tQIqz4zbriMgVF0vSK8lsZNIInt9cpsgPPvnk91/+Uc2nL4y5p6UaG44WpHEAliCqatWysKpASiFFrSQhrRvwOAMWAZRhW+RO/fQHn51e33G2AVaWLoIEEBxiIor4ku1rbt+9/fMff/HTH33+yScfnTt/QeRYk9V53szO8Sc3rovv2fCIIDS3k8kI7Mav/5nkTVEnJ9mgPiAHCRjR4oTQI15ejLpkLdJlekf22swGPOoAXCI/UhFT8CYHKUPSl3kzfjWdnJIIjdmzUyUT9FAqc+UDTBoyAGmvpRrztRoMprOaCSg4vaEatJuPNujsSK4GSY5WPZiGFWpUUYF5IVuUjFZVkBTIei8kSXPgwnuo3qmhqmJUamkWytP69iqp4T9BMDcq2Z0apfIxtDu9nAnFWYJp7Ml3h6YEOmGrjeanYm5kHGhrWAUNYU6ABS2MlcB/ziRjUDQ+2lRCK2m7397UEVlGL77Hxk4oibyesNqWM4+fMogtVjUUFBtgKMYnX/DTJkH95vatH//4x8RzMUkDV5OS2nKH1IkL82JX3mflKdK6hcGerh2fPj4jE0w6iVPs7Psyjt8cTgMb/DMrjqrQJvtvX7anbMIkQgSpqRoCIH7fUCK1A6MQPP0SGHGu6OXNzSR7+rLAF6Ml1PGAZK/ubTtV78KN/X1Tg2IdZj24u4qBT/3GA9K/rLV/fPisaqMmYvr1fa+Ncnm0IzxBEysW2oNWSERUfgz9yXQpbrqlHq5Xvhc8hgHainfzYV6rAUv88bRrkt1RFBbPWV3YjElnl5w2zJ0zLui5unp/oIuthJlJ8m7yQyftFvzokcr295uWViJtSXK8llM0UpqN1/M5xwApJXG0Cc9CqX5X1ltdaD4gDeZKeYJwtxZvLvRja8CPiAylgTOlTv4MqAqkCL07TpA3Il/daoV93HEZFst3X6ieu0SE4yGNJ5FoWNnQ08tg09y86gsoI0ivV8lSRzUa35tswgHo1EDE8qukYNA05uGiNcMj8nGK5fZ8yKgGM9z2Yrx99uaNc+dYTI5G28JOG0yAXWdE6z/cvnW74abjdtZOk0lao3HE1gpwGHMVek4AyHSm4GzHcbjvUlDAqZaPHj2ueIb0uNtsqiTqsVEhFuMoUIgBHZkXCDTztonrs+euXbnCUbD5xdEsb7NZH034+EZdh6w7uNa0oUVyo65g4xRtOhzvggRAUabkm+tlqWn6MPtjeihF9Jt792p88aGzSVG4rgEcxnHoODYJqoAjl0P9hjHIISaA6BQ1BZZ69Pa9jfQunj9H9Xs7Ir3X2S2iVg015KORxoPTbKzidoDQgZOcpFHLFYdmrrxBhDe2VdUuuvH3lsm3bE/Bu36Sy95Ys++qBl/Zzsym5xnEUxNlst/xZgPCEV9Z3zxJPjqree/uQxjwqQRq0ZKS3LxxpRwhbWELCaahg+zAmRQq360sPncBvkOpwYiMTV+U3hKASswnEvTNf/+8rVgWTZ3uAlxzsarCCJZm6/AQNeqiSe/xQEYYqEPfI8bw+PvX07Ax9uqaAoSMBKPV1DwNES323fvaKIJQzzb6AAAILPZ3hdNut9krl+0Uf0HqplGvWgyRrcpV3xu76b15c//+Q1Fp9t5SFdILYj1MY/Usm/m1BlRiG0Z6vCCjC2tGZr47ctFDK2nbqZIEIh4mKQr9gtCD2UICcKtQadPMCeOkhn/20Ueff/bRzuXtjz76SGrxhYsXnx08NRH2j7/7za1bd5pXwzcZsB36UjatSkZio+mljY2r+/sCoxq1hYAVwpg0e04rtiju2uWLm0xCPQ2CIh0SoSZFZS2mQwDH8Dy6+9/DDKQZLqbrPdSxjxpUhpsu/Pqh8WUkCreKi87ZWML0XQEfQ5EZAVdNEqAynNGrABsqtoC3U7+A5vn7dx6o8dzGOcnEDLkCJNhwHGzIdePaHnGJ9TRwFArRUfX5U4fdt6XA4XP7tTSDM4d/bgSxcuS0HrEAl6kyXJEzcqFDIsOL8DlybuSTfCCg9vss8uprJoFXkD9hnBz8SuTd0ZwZsJn4C6KRb09JhvIVC9nk7/s+OcrMZymj2jpIBfxTg/7QieviGPJV3Sh4l6TFgFg8ZZL/3kpQiDn8IKgOalTXZul3i7/jAYPFAroWoW5h94gWrvZ+4ptupHWQXlk5eGrzojeivGvvpAPrJd45GffO7dsiK9/cumNIbQrWyifbDwOK6Nnwl+IhK+igrp8Rhh89PGLs6QOuAim1JFzGzSLlp86Zv7WXP7QLMI0kNJ7QnZ0/K63avzZVNXtlrvf5q7dmYf7siy/+8qc/3dy8sGFj8dU1W7ESAq4wifvhpx8/e/KUi9JC7EmdmExD6LBIOJQ+kBVhO+krWuNM12OMD5ARhvWMLuSxLpwbzpYvBLaF7NiSefTJSPYZbsQU/+d2eJCQ+FGr9YyFbmXLtO4k0VFSrJrFNZ2EXiAdpZvySczo7jBBXUymXTBMY8ukBo/tMHav7r16U0IE7MCRKFBoWZZFeJa1tKkxEieVHz5IxbNZt3ZXDq3RabUh8sLXW3lrbqUKSZauzKp5e3dmfJNvpw28M+DWAjs0ApcmQG/57RUXaAhZ7fmquulqxqeplMLL70U8UUtDKuhFDXaVENe6DyBdJ0ORM6BqrF9ZQ7Evl6l51VbD1LZwwE22DD5q8K7XUqQqK+3A9tVvhncFDadnqAF0OLN2ltD7BDqRaElOJJnqdQvdtLb+q1u31u7elXhvScHjp2KcLx3jaxrOS8UYj47v3L3zg88+CVowxWNNL1BkarTVKRR2/PaUw8eFqZcsyOspg2WW7d79ewKJZv2l62fPgMHxYbm3L12yBTfm2Pae6DmqBA2ALiOKVBiluW5MPE2jDtbL4rpx/crz5xYE1uPxHhJ0jtoslx4Ig9NxD6n8IM9TxEGL7Ye2xLfpmMWn5ABCwGdqQ8CYdPLBBzXBdFAffiVPzJseCWjcwp7MUwa4LLdhciSJPd5mPJSmMufy8WsH5zJ+qlao+nulH3JsQUu2xhCKw8NPWxdPc+rRe4mZzz+8Ju4GhDrA8S+8uSJxpoPHdYDX9oz57JAgxsFePHvygj+4s3NpmgOg9tIHNgVPNi9eYJlcmUs8/8EkcpMqsbUODmXE7VLjgX+5iB7uZALDoEcpV58hQKVCtnIacpcoE/2wPHF7PZ8Ke4gCZCQiKNWNKkKFSOJuYExMpvqWEgp1Wwv+jD73yjytoaF6DrAuIP2fKmGaaJjHIz8moOo9EL8VXd4EjAtmhFlx0/cH9x/8z0+e2TpabWz5pUuXT+mmGd83yUagrq2alQOKCeqZvcmI8Pmooq4FJngt6cZUNfjlRxuOtkLMC9hrdLcmEeuiU9jELnkrGWlwqpnuPH3+YjYwNIeKxClOrFjTUdh7ixLNhHQIg80bMYOGERTnBH/5+28KH09TSKB4ZgSpkqvA9o+pY/YEa+sBeb8xm4RObFsWf+l+Z+wzs9wkGeSkZQqRKeY09EH5iIDzZABSqbfv5JVYLSZxhjhrxiSPnVntVJ5Qr3k1cFr18tNBF3tZBBJXPAuZvpcVrUW+UNsp1+zquY3Qhxuhv7y12QHS62v7e9tw6XnwndDC7IdJhv29XY3a5BOhXAgicsY03r+kqxiot6YLJXDW0F1Kjbl5R+kYeIdZC9L0dQYW4DuRuCiKNKiH2p4StSH1Akpo+ixCqYoR7XQGGyo5/nkAoGCUUcSXhVm9p2btEFmUTiDROh1p79QIflJ9EOJbBIu4J3eXv+PpdB+ESJ0lSzrjp4CPucDp3PNp+Qbq9mD6//oKNfjRTqvgNSDOfn5jtg09rSR3SEuL0Ff70aotWcjq9MIs/jFTHVyRgydXV2Nn4cvbopqWx7wnqODxeu8CWu9kDd3GeYtXHZ6UVa6HFdkoYe4tyiGAjgNtgnBmqi2P1Ev6Rmj0I2BVVbhGyHol69RMkzU64d+W/iDuJgL5TucawZRIDuwcnGc0g/oIi0QpjCMl31rbZwPnszbOl3mCxZDx1vqZDvQ9u3ZKENZ2vCj41XffzZx8Bm04MF38pEglx9NPu08AaNWNq3saHZ0d07W6emGO0jA/EL1QIixA4WoqIxA+vS4hx4RTF+ghSrAIjcJc/40VG0DEX5NiSicM2h3hkmIkC2PqzErbDBAWSur/g7jR5NIFuUe+h+9KpwP6qUFqEPNWJqIgBggjVPRYLMsADqqlZZ5VMA81/MIjoKkIT6E4sgwAFicXXzFZRpx+gxzJUWqg2DgbjEYO/DhR7HfCWTsst3QjVsNIydYvesKG+23BVGvjziT9MEj6l8v5kxhSJ/ap4AD+NmWWHs7G5sY/jEvF593FuBLaCIFcbf84Gqfnave1krqbyVmXE2769LV51tjJMyTJkXPlQBbAkycik25mIZbQ5QoDStDcOPrd7//wox/9SD26mrG/zcPgM04Haqd3X7p77/bSR6FpVjic0vuhbDaObSAqmT366SVSnBD7yZ3oA59hVbbFSmq5IqaVMENbp8qLttyuAQrbhei44kIPKITqPfYVXZKLmEwR1pDh8tbFW/fukX6rzs19SGLdswnXu7fXHBdXYuYhCv/9r35DabOQSJqR0gmKGSySNDReaM0VG1SHXWOLT5iW7ro50lMlQ1IvjjlZOAv3PlOmPmiUGQnNc2SgvTLkmtYWKZwGXKZbPa7UQpyeTw0ZXqv+J6LAPI0ODz+mhIZP3qrlRBOZjZTUqF9MNbxvgNg45+zpK7s7i1x6sgxMlBxwBgGXVdCNSJs61QOYc7WgV9frHDOL2qUSzivBqvG2lxOgXF23h7HxlaERo0OADLcE/m0TtLd7+XvEF0H6/u3qh/GQZSQJBr7qMkhw8ql5UcVSX0vbHD6ELLkHVWpD9IrNGFvLfhX6Zk7BgrvVycWCBFl6byeWWUS+oIogRt7WRTre24wwXSIX484kqzBFN4FN5/pw+1Wnx2YfSQtHJxEa6yzn/PW7oz/86leN46Ka/1O9Pyd/lYtCMcwA3JaxRBr0eFQXWywxZGBVj/ShhcuPj54VzVwpXYL4KwSe3oIOWhZ5fAXAlTIdshJ+18+kcrXJx9vb3trZuvTnjtT67JOrV65ysXlOturQNaEZb+3q3v7q6m+NRXSI2gZ2v0hYe1a7mpaGLVrk0rN33vJEA7BEWkKWWZoVGidMCYAeB8ZEbjGH2D99/ASHjBbMD2lD3+YDjJiXa0cNy8nyXjdQHUam3gyBsgt5VjQfeF7o7SRjRc6ZiXanjLWXRAd5zSowp3gZsZV2sv78KSl8bej1SrbJm3fW/lpPoxLvq58g29bB1Cl9evXMUvx318QhSEy2CCTAGU8h+cGE0PqeRIEgAY6p5HjofpHBZBnpF6iAdDp8/OHCuQ0FhApURwH073qDVq7Zvat9YWqgOgeppf5+o3ut+xSaqM040/ZKhR/ZdSNGD7WQphnWeo4V8w8p2xMo34GsQ4XzjNWGX3whzrSsdu1K5MY2L+ILKkV1Asib+PDOFkmfXL9BCJkpwSG+HLtL8Mg9aZTt9tvff/n5p5/YHQC52F+AFZlcRGKSGjcubf3V/+P/maCDfMwGYODCkgZryIEy384g5PjOg/vZ3UqQK6xFjWRw5C8yOPyA9LMlzZAIyo8PrVos6R1uvNkTw/ic6ySwmrREJSa1q/Dl+iqrc21v++Pr1/d2drEBXWDfPl+VjMTbdpAdQcx8YP+wBCB1LzUTWJE8TXMi94FefoD0vn+Uyv4koi6lWqQbVVvpuQ5Kn3D6cPTy+UsSjB8vDh2M52yY149sTvGmlQZ37j4iK95z/sODhw81Lav5wYNHdsa2pujg4RNGQJWPHhx8+9VtRy4EMH3HAVycKfwc1vcfvvnqVhl+sjIfPrH+5uGjJ4cvXjndS3NO/tR5mG+xtw9Tk0Ufq0lZBFKo/dTjfFjHtr6O3CfIx5+F3PGmf5Fo+vk1HhE47D7/9KmJ/A+W8zv8Snmus7lYNZiQwRwcSlzamoRSzAE84vcNSU0EnZBraQ6tFmqjYC5/SZDYNU3WuB3Xy7BwRafBrD9E/KCZTzkYHXrQ4JBf5C9FkG6Nc1Yw8HnsQGEljDdyXeoimqHzRwFALq0jrbN6X714KQaDEYCgNjACupZpA7fod7//0rSDe+h/stQRHPMPcOr84Q8+tfTZuD6hsEeTJhMff7InCYjcfvPSyOe9uw8eSoUAtZOJR4AcqBOLwUQaFQboh5X3TmGRQsnPIbeFlsM8N6kK1+wID6AGC6Ik9Y1RKVBGJJFobfvSluAua1Sj3R27W/tBLhhQXEVstCl6JM8Seh0fhFf6au4MD/wlG86Znq1WEpO0MbF4+eKFr4zo9ilhnNwhMkr4U1ewJDUD8ygT3uclv3hJXu3SY1NUaOqFLeCTvLVbP2vF0/u359rBUsRHkG/nwjYZxRWGEBSffv4JEDNjTZNFe7CeOnXu9avgl9RUncerLw9fSyklDgqwoSaU0dmkqc3iJWB7LzppQ/qd+ZFz56yCeEZXKN7RkTkmir1+tn5hEEnUEHYINi+lGr1OoNDtw4eyJ4BtrGkhteAY+bEsQdDch/dFLg0PXq+/daa1LEDS+fRJ8wkyAAjZwjM1TCt1JSimJ8aG6Sy7jZyIzWDP0/atYfuAhyTxrF8hJKxMuzkqBI6IstPkiVjrkJHdJLARqY/ADvmON9OAevQJFG9E9cOZcwRYksErp6yYR7EdeXM8zH+z+C8tQiCfTw7bZzqxbJaw1TgWT9SRJj8Bawfn/+Jf/YvxdBgA5qUBFmtV/G7BBbycURRUN7rIxNrd3IIFNwYawDfCzwadBP7rPR48Odjb3ju1fpbsVzUCka3GCcMKg2Y7JPfNKFnCcZsYI0yS2NjUClTssFi2ccXgHlkVFgdockIS6+nTVMVKLiria+xFv2yVx8l8NA5EbesgqGjMi2rV43jgi6LDEaFureJQw7ve6tv8io0ViN/DeuwSW/DPIIx62G5ap20BYUSb4zcBQ3ZT8pEBWeIFi9bWRHIRaln+u9TPMKJwIrLevERNca5ks799a2GAofmL549hdvHSeTILKU0DJXbN6FP/fvjwOXMgB0Gqrp10cJdYhCY5Q0dIcJdhxVLkQUSTUcIVs6T7u9vu2NBIpVpXMxYg4ezE0Whb1AsNtCs6fP78zrx7vC0TNtO2MNHzet1QmE9ES3KiZ817nIT5vSrOgRX+SZ3N8VjoqyxO5AGJCdl/LIOKbDSQ7JIH6+090xwsmBUv9UJYHOtVvMXq5QGZ6S8es2olqu3Mz2+cXX1r1cNry0Ls/vrlV1/J4bNWOwqsr9r37rPPPlVHsl1VXHdUzZqmmu/f//yLnxQ7Ys7NTGcjiyD1GVqGgwnuumZ5qe/tM3zw2Uc3T1kywqEhJdNbYQJpGnEso1jaRYfM2WSuWFkDspZbq2jxqVdKPa8bxd3yEBtDexpdx7HhjQhDNXWSMAJ0BCFRBkZE5UpasHbr/n01MxU4ygbwygjlMCByg7+aibetSN+8sdWi1oNgReCrFeXKMKTOJ6/K2JAqDvewk2VNnMnrExM6K4cbnRY1p2666VD0Q27MXasF6q+dsWlLd+ZtJkbcaYmmQ+8EziZiyIm6sCFOJTU1PQeFhG0Sfq6lF9lE3SPAHObnpu+s3fVrpMfY5nil3TpWOkAWwxAjkh3vOKDWdwAeH9+4vucPsIddZaEhIciZV8QJn9TNS9ifqqvFUIQFRlvNYfpcIKztKLkxiYlivYtASQgaNtgjl32vqsSohgqH9InvnqUFFZlWvVExLHNg1I1r10wJK8YgKqBRPjBLRMS9pgZbwyuMfYWlAC77vY2BxfTBI1bk/Ap3B+hiZxnQycttFyYOlTPhjYm/uXP7D99+Zx3Lc76sAzeOVhylM/Y3NEjv7dt3AquhXXN80NK+Gx75DTBGvDD269maUothNCwkB2PhQglEoOHdUz6SpKPkkNVbzJIGb8FnKOhQGTi8Nzl/8cKG/YQwAAFqaZReJcwSpR8blp1ODcCZJPqVLuQQrptfl/9XtWSdksYiyNVGw9/dy9sa9RMHeksLx1ZdYEX/FpZkgtq7CqaAUyiZcDQ8HXUKfHGihrZGag0YxrxNlZqhmcDtgIKr164yHnY3UGu+X1MlbQVH0E2wmC+TK6U5YOpLQSuRTsmPPr4OCBA7LWF1TuhAoTQxUWlPpLjdp9y+Fjn5UAtyOWMXR8WDF6+84K3UoBcDMiJkQzzpfb8hWZ+2jCMLWnZ3+ZxcVtZ/RRXLBKCxmlzoQ9F1RqcazHwgKIIrigfMGE8K+0gIr504zfaMmedamXaSsUCZCHkw+kzjAVExHePPfvbT7+7coQZaq21Grfx+EY/2OJJ0yXaowSOrdngyMyUsl6n0ggKZVTnsR3xzEefOXt/bc0P/eWCJ2KvXDf2Pjv7uH36pboZECtLW9o6juOFiWOuTJjgn+9EjXi5vIgpMKiQZXmgDFvxHRhkyeB+UwAeRfBUKKs7U0skzZy6cPWdvQJqsY6Jthj78l8IjZbgUtRpanLDHMht6wi27srdjQp3EC8GlRzEyUmP5S2tWxVLfaiHbhgPD76pJYDs910Fg9sgw3cgxLbshNuYepZbMycXNDfAgNHFhJBiZ8+eIT3sfBQ/ujBoMFzHAvYopj6oitSrxKK4sZooAFIo4kS9Ps55pQ7/yYieDI3PUHVt6WUl2gQANRoE0UlFAI1M93mDl6scyAQGDvIsoRHvvJYTorYCwTMy3c2XBsZRhqU95TwMGOOqYNubbFBhSKTCxd2+ImSgSgspE8EjW5fKeJhc1wP7s1KaI3Mrt2/fUYOPEmfWLcn6eP88pt8MF516EyiBBwmVnGlDVNWKQ/Rrk+jVNLOhrNbuILQABAABJREFUbpoeHrmPtn7TTScz/VuzyG1Zh3VQkgrKlFB8Ts57S39fvXhF63J99RidyOEv3Jkd3lhDLA1r10haei/vUz9wzwLZg0dw061yEEipOrVYx4ILVqC3GcoHt85fvGAgTfTMk9y+c3tvZxuS4rqaf38s8UlfHkyxRI4qOjfnEg+K+V7b25E4/elHLW/TNpfWCkGqce/hg9/94RuhIRAYAp12rlLrt04YtQiOjl4ix917j968vSFhAI/LEZy87thDTj44SYV31Gom62I1r2eZfhwhs9nqMy/xUHjk7ZuNFdkZdkpo3id6JzyJxcWO+CaIq9a7XbEgd0ubm1vtTaSInzFaWSDlYxsZrgJgUKfoTWTbf04vPWKjCZrRXHhmJblTvv6ql+LLsf1c/Zl/82tEbNoKYLeMOMfO2oy6HUXnk+ovVg3808bIqOpHaPzRBIHAj4QqY+HVoWiIkN1BJpHrZs/mod/gi+CUfmiW89Ss6OQ1QHcx1cvGEFOQiSXZnmTj3n2wxoStubx5WSWsEuJEXqvDn7Wace3CeQKqPdFVwTchH3M7EnbYwbYr1eSo3EAbovncXl7ATwcick/9WjnabmOZDVuqLPfGI1CZpV9tOTcZRFG2fYHylEoQsi0FGUA+o147iaobs8wS3Lp9D9LGFrInTOMKowGcCDMsL14bj5mC65Ru1bmXKh6bvVGHEYWu9OgPX3/1xec/LGdsvB5ljDKA6v+Q5Z3Of0xifdGpqzu7/9v/+r/8+MZV6xhQ3DLFDJjWrI5bF3hxxCdNQHnCVKCJ2vmaO5/vR3fXZap+9c1tVqQkpQa4Z1i6CB0v6X4It1vye6P8aliXQIiyngI9X8mglkHSjmBCr3k0rtG4DohiEzshDx7F2TN/8fMf72/v2p9LPzvHpowbiLGNMBgkh0bqcN/pQ6JmEgQKLeUXzlWilvDr8fO7IDUCpzSIVfLug9yhzcsX0UEF6gUwHBgOLUbx3L/4rkIz9pwlBd6+aBuy1hnbZPfZS36U7RbDm9wCYhSohrUYKxJVbBuAmuvQuEdJUuAmUieXA/p8UfrENveo0WpqrEdU4feoebKYABABsX6PkW24X4Q0X9ne9CSMNcFfPSsiGzudP9VqJO1jZdCK/nEZvCuf3f2Rbq/7aGiABkH1L3e0+v2j9ABJxaZI7cODxxng6XzVgzVFhbgvY25IEXrqJ7CeIu3t7T88eCA+Zo+fTuPp5ELeuivjY7zLO9CNatXcH5lSEQEygIQlJZm5vLpTQjQC10CUDAlnmyg0aJRol0sjg+F9m57AtvAbO9LpXRDIIzhl1vra3t5Gs0LSqxu/xyO0WW8jMRG8lyZz2rdsWKvbaaV1VJiIGbFYcxbG+w9vHx081ANKl7Vv0bk1I78kQTEFRI6GAiYdxtjzPlA1AfUTAvV1k/Oc8DRXwjbHgcwz1lgJJRlr4wJd2IKWZqw15a31EBaKZZ2RCVzwFFhOkxhlMquZo9XnBeOjpr1M1DcvFOBK8vIiFmiEAVoJbvguK85682fPHuHE7v6O2R4mRPX7e1t6c6TTNG7PpOymENCTh8+wTUadg5wta3rw7NGN6/s6sQEvSQcEVIIwtGuUtQm87g4lUodFpPz2L6MP/SjUN1/UpipoVXKQluBHfMk6me4dDXqKgEP4eZ87Klo5wscj39zaMujSL+mkHzy8f+3avm68fH2U2eB/rtsPz6iKSefCAPT8xnlDPPCmKgN6bNd81sRf8PsHQh8oDZCV7WeKGQS/o6/e5kU7tE5aCrpZBH/n7l0p9JiiEoeYPLBbveXdpyzeko1bdTRq/J9MrQuCwQlH8HJDEE+SPcje87IsJxLR9mFfDBB1gynP4ntxqA6eHtjgz8tjfLheaUJT9eM1TN4R+3HCCX8nBBGJS7sBSnjQkrNnOMhPnz+EDxFBZWGFpqen3Vg19Gg+cnXt8ZPDy5e2dAsYBqXhPaLnFLHTzt/d/nBxkVpw5sM6hC/OVheH2chbv0ngROXZNDWDtQKAOSVCdc457m0NJAh3xmlZVN+qrvpKcCYsqgnkjp3zdBEgFJt+p81aXh29oe3KLSaa3NDKmh/rrnzdWxK+Tqv5a0DBs1YwHx8/evSEkSNPVEIPrTC8KF10G4XHkw0Dl/VZ/utRT2sh7BY5b3CUNRmtG1aD+UT6gRTsUzSEYiooez9pHoPgd8ruWxZCiZzsBn4SZQ3UlK/J3N9qUE7nmmiurDU5LXb37oI8v0ePn+G0PY+ZtmrXj5233LQNW40s6QPjihG0muARU/+ADTp1LiD5jdIQn4tuzo3gDPJUtPDguTPnQMfl2Nrc+NEPpA7sfvHFF9tbkp433715/Zsv//h/+b//Gx4zTXZeBDDYayc6LkiTJcN3ll5tbCJheMPRsgPaC2fNLEIv/mAXV8kKzcboO8gYLIhPgI6d0jkdNYrUwz+xIn3t+PzpdYlkRdI6YvBo3cqHO/fuWwrk8HSx5DoX9we3RcCTKliZGwYD+0fsIK0lkj1EIQWZ9KBs9UOEIJ1U3cKry5tWa559+fbN8zdt4ivoZD/KJ7axedYkzvV9wUReMjsN4PgQt2uuEfDFjYuyaxSoXxLvG9IqltHomL9TBgd2QdO31jN6HckjlFMUGnLlPscIVWYtIi68qx+oxsBrK2/lhxbUZ0+qMiO3yE29PiiqAONFrd/X+Qrzw8AZyQaXhm66COZKb1GVyaPWOmbB9SzpOyeOvHXu0tqR05SlKpzBBGndpUzqimCRjp20qAaw+ZBUMESKiADa4KH9gJseIfJMa9VQofk/V/NaRiRQWc3JDcG7DPby1klx6YMXztv2mMIi1kc3r3rMjyZJO7uXEUFhBaQEF61v68iL7uA0rz2azOTpVNiv6lyoxWZHdhi5uTQ6KAxZpJf/+PPP3r8+/Ms///knN2589oNPDQI4jHwlMvfu7dk/P/eTf/zVb37x9/8JJNljCGMgCU73xkNTbM7BYBlRUrsKeXThwiBCwI2Ji4/brrzBFc5aGJn1nN1i3Cer1EmESx/y3M6lHyxAXDU5OXu5Hziw+c7de/ZxI/TCWtwmDobdyKwSemWFgsnlhXwjTzDMMjEPUBQ+clAJ0ac+dc8zDkAVnZulDGTXwo6vb99x6vzDF1q2yEf2CMMYnuF2vLLsqUZwGc6oyfHOA8p84YaGzK/ZH4ofxiJhGjSG+ydlfMUkCWS6bwMGA994OHqyCIiqVMYwEC9U8JmBMBJrPHus/mxGe2CRoLGv3o+XPtxqzUGYIhxbkKRPk2EqcKoeKNiATbhDQ6nxsD/qHB1LaYS7O1eu7OAOWsF28/gi4PDTWIorcgIe45wv4T0I1+SfRGq5njHo4nh0w3/FUo+0pa9eS/JTwJM7vimhHnOyOtUSOSf6VAnvIm0lFFleidTTl3kEEe5154Ii4p/gma8R0G3KgHW9f1JD9bj5pzvfwx/v3ByqasJLmln9/JOba+8Pf/LDj/avXNV/2bc6w0XkjU5yoS/+q3/xT//uP/0DyR8TEaogUX3aQh4mgsQkqbwwEdu/cvzi0BJwbrZR6/KSUmRP/A1eR0b8gRdjyxjIyneY4gsnylp00LGar15bvWg6X1tPnx8SUAaXW5H2IBXnhYw6osZxEpAwzM82rXb2KKZqVgyUMFlQd7RlEP1h3YxBqx8jbsifhCmSFc07KVCYiJSDHq0rAoMouyoMnG6MFRznZ5ySLHMyYFDCsqoN8p7Gq2nAY+ghB/25vLkFt4cHHJVO607FkvM4pKw+ZLL+7LNy9uLG1dRhGsYadZkx9e5IxniTbsXU75lIA+Cb62JqY21rp2k1MIk8jiKFhTVLxDrDeeIoJ1jSzAifythHY7yRUp1AAOEJ4U/pXA46mb56dZ/59f1FfD1RGPAAAUVCq9/+NNU1tEg+EG3Rlmr0FUtUw22zCITXPTXPa72qQBzwV1Rx6mo6Je7aksf9+dEfCxBBzbiah2GXQSFjkB4eclqO7EUCm6Caqlz0HsIygomavz3Co4mGBehS3MFnjx9tnznr+IgiQgGeIEQOv0D+ox/+6LNPP/v177+caF7P2BT2TtP6Uj/ANoBRI3mrSXbVy+2/XV9KFLszt6ozqJqNwQ4NcWRy06SNrp+TJqZkEVL9xsWLQhmGQIaCeh39fEkyqK9uvHlzZJviex9fu8YDf7cuE6sd12rMf3XxwmY9JHJTdy16K/mYp7U7hkBMky034x0o45YYmy9w2kgfdUo0L+I7ZoXnoCpBmEbzMZhWl4Ejb+TNaw43uWac0X/YnTxw4i+ev2gDJRHi7c2LljTwdAjF0slEi6zm/KXK1Ve183fI1TeQjl4FYKP/EbYskE9vRmFNFh7C/lJOEua4EKHVhtY5ZX0KifiMrHvg7b4NGIGyfO0tP3rOYqZuE4UaT+57ACZgzutqn9fnewxN5jI0YAbqUugEh255fyqoKFlZYfBIT/590maYXBEN6dPkjrWn5fEHvRwuMJbGdVyVRbJ4sEmGTLj1069eSkeV4fs2SrYr+AfViqKqRMcO68BSIlCD1geYOFq3Pzc0On+FEwQ4Lgly4i0fW288w0LforfCYjY/+cmPf/vllzGpOmMNPc0b+tB4IKcI+joUolAv7zmU/ZpQR3SdiuaC/khkKVLFaJbKFYNmxK3xZmxAaEYVwIZMwlO8fUGX5eA8Up1jqk948/7tHyyFqXPRKADIPPNaQwqgrgS5t/wyCTbB5CGy9oGCNrJ01oCfPcuZjhCDmKcAj9ZwGSJJN27/RjY/B2Tkqt/D6yEeJIyVzb8CIpFhCcCQbKog8TEUvn792rPDF/I3X74St3xtfU9dyMKR+Y37Uc1QbKHiyc3AmTqJsYs8S6TCEF5a8EJhIgXKcEwPHj61RYUiIn8eaRoA9eMhkzQsd8SXOy7vuzso61HqMiKqgCKQh73fVMqDIWiY8IztBb7gBTpKobQHle5yuQBwDanQb0zUYpDn6KnbL4D0Ei4ur6nQ/IY2PU4X1Oxi/to95PrNqwKWxCtDvrrC3PRkyjmEjtupz53UVHPkQn8OB3xj2CxIoI2qGtPmIpaegNb9AQIwweDRFJ42ixRZz32xcdcEjgVPwQ4FVZFNv5jCmzeuI6WxVnGS/IW60635EGJSaOgle7LwOzJ6s5cVEd7MOCXpU5nwl49xCFltQGI0d/68gauruX/GGaf4SCVEbzSFelgKUEpRinwjfLeSgrWDp7YiP7zaqqUcLEZci+Be0GNAYCuwc/b4TB2FsETuWFIxFigg5eJe2du9c/chmiCdh5rXKaMPa6QlgxjHjO9aglM8fmoe++BxgOSbFELGTpi7UMLs1mjZtEQgZK3aif7o+Nbd+xafSAJ1Csvu5ctiqwE1jYKENRGV27l8MSEbXaRVGklMEyYO0CTDJStj0KLLIo9JmXhkGx90GNkaWZc8h7jMjHwkKUc7u1t8KFJLJPmge/u7qMmI2u1TDrKe99LWZXsf4TVO3PvuDhpdsSeA1IU3/MxTm5e3njw+BMW5c2t7u1tDRrQCfP8Cso/r5WJugWkE0SxSz9IYBdNSJFIuhZm10WyHLQJMHTAOkZQ2tvQ8t8cya8nYRMF8glkzc8wsklfVLHjPdX7z9lV2sAis8ZssgazkomTT4rA7dfWvHsDTtLHWlQTSgDF66zVte0qRSO0SKsiLI3yTXaf0YlVtKCiOUpgERs0SJlz8M7bYV9JBsr2XikwgeGlkjHsjh0aS9RG0S2u1vQDkN0w90EOSKUU1jYnjB7FtYsr905T3GAbjVYNWYouaZLPlPLTwe+GsmIZD0i7Tajtlg5O3F483CFX92IkeLayKb7RzZ+tyojZ0cEGGkAtl3VEdq/D46dN3N64K7OiIAYLmI8G9EH3tnXH+3L0HD8gWuFsxUTSLkVMBhYXemskEXqyFLw+ePPEuJJ+/fH11G0albmnOf5Riv4dACwrqP03TRYT1tJMCBCtYtxFhHEu0BujoyVitWnXLgrIVMpOluGhaEEA3+er10emzr8xsp1OIRgJ5PW/LbLOt9/bOlr17IWKPmFYdWv9lU5Dz53BatddvXqc57F+jm1PZhcQnoY5ic+k3gkxktpFDxA+8ynxfNm5UOvnTfk8zIZANIwvYZVWRgpFjN5Fd/XRYJ4kWJkk2ty7pWkn/65dvbt2+/9kPbs6BrU+9RVUMGB7ev29KBLktzGBkL1++pAaADBjaDVLsWqCoeoLCXIEDJKM7wTrza8Coc0Zb3qEtG3XXSaFYSIMr+xjZ9oBDZ+aLpKa5EzwlvpwOCQnFdI4aHC9CroRq6k3qIH3qGYzhvVYRLzOlHjWk5Cfqhw1djHuPX7bayGkseu52n8iiZjV7Qc2sG2fRAYEb55uBbNM/w+r3H27MMJekJ6bjn6U7SiumC0OSHqVvjVAhH5UWObKeZutySpy34nn886yUpzG6EBGRpB76MKNpyZuzjftMBoXuCOOaI16e82WPjlh0SI4QgDhWsF6nCZaww/1HT9GjzOJSdsWuQAK7kc9xIqfpEwmDMAjM/r549ZJYExNtBdkwc5ydQiJsRQ4SeUJy62JzsayLOH95Z5N8Wo6TSbauqF2qVUBM7Thy5t3rJsXR307r9rNQrbWsgaQfbMtAPXjQk4WH9x8SC3sPowAXeavdfzWHcQAJloEI2UlsfFWV38vF/+o6xg/4wT+FF0TcrQbWlMmXxDW1qafBNLVEBAIhwO0VowVlCZUsb41hmfXzvIiypc+2PMAQgoG8enUnmjZJN5KzmCS4LKSer9iMTkjqT1xIIoIOWr7yOww2E5lSbmXsvrVZ14S4leGitJm+pJn7jw7MdE6HkJsEQnNwV6QtbF62muK7e3eNVAfZEEx40XZGz4tKGJHz+DEZv612zNlxIPTzQ4DmyB8ZD7TykZKYypAT/Vb/PMPtkCNT/6f/w/9xa/MC1jvDxlrVew+f4jw4DDq8rc1YREB0FGU4yc44c/j8kK4OZxmkmY3PnkWa2LO6NqttTj1/a9mXG01EuAmySKPc0dGBzfNfvrQnnmqz4MlTUgI3r7jyipUoNrHb2Wp0rlhVZZCqgZCg0bVrV3//1S2kRhMF0ASWKleTQnNR/+PsjjNnTCdXrYYQWoxCMiEpTECHVYHtjekfwKAJd5gjbtf66TUW/dmr5/fvPJSMLYzdwQjr9nlycmEsZ3+YEcd/WO004d2WOcL37PmzhO+83VTZm3pnxS4IHM5ZZuW02lgb8iLuSdTJZ6RfJ0P4v+8Kkv6TpwMmQKNSlEB0Hz0V8MMahhVBTAAYcYpU6GApfAWAYLuNpVr9OQCWV+xcs2e+PEK0qYKGlVcZwzhczTnpe0Y0nVyYOBSqtaFW3PEWKcGlYWnDgB5NkIAHYmzo98z9dfzpmZUSNNHYa15FzI9u3vj1b3/Nx9/YOHtlV/rbzs9/8lMdl7kOTsBXX3/3f/03/+2LVkWTSUj08aL/DOt8U5NN4qwZWOW95/PYcsq2bU1UJ1LWedafvyb7ApSJRz64YMiEi8q2+Iuf/kjfYZbBwp+Ee2XNciiRWnYCrHlNDbdiBspq3ViWgqtOZBVHqJq9+pLmhZ9j3NgSM+mib7AEugWpSeFwK7yPy5h9+uzFlZ3dxsND5cEuHsNquqnzdgESyHt7pXlTOlm/6s3hE+gp5I39K/q+cfPUWu3AJ5jYjyupi9jfpfP6sVi7sOXYevbTK+fswpkR8xq487cqkJvUNe7i+qSgfvTpddaRl+Fwg/CbWq5/dBXISU5zrvhtIwwJxnuJi8mp08xwRUUONi+IHIw49EiAXBoLaeMIIHl8qN2eaDNxmxb6jgj+RLKTR/72ifuNaJYv87X31aqOLqqjEgkoxTbO4X+fsEalSSxXMOcbwRPWD6ni8Zlcc4R3p1LqQp+oPRBOcwMSdIeRwJv2/Kp8LzSaH2xm5YOX55l2EIotkxt37dp1Arr0saMGNaIiEBtD/MXPfvLVb3/1s5/98Ob1G05OaKC1eVkH4rFSUn1++uVP/uf/+Nect2kZcoU6wNog0uaO0+Oz1DZQAwarxNfiEfnNGqainiG6pP9Z2ySETCGdAmZk4ge5eVEBBGm5fHooQ1uJiiSVkZ2ppIJxWlxwRmymwmuSp5hUDAiz3h/6ZzbiKNm5fPHiraO7FHgIq4KGAujAnfNF+0AczVWHyquJSzm8LaIvCHDt6v7X39766No1w3S+bfMspjODRJ19djkWDs/rmBxR4EwRobZVK4ygPQCtyqDJRCYi/YAULbzb5BlgPOlDCBJobxn35H01JvcXTZpvCafEIyTB4HvQhvNiCrupI8XRms66ji7FwiZrpwnwlw6g7UsXW8bgJkB78+S/P10pXouGLpPk0yVTl5iqYYYB2khGRyQHDgU8xSZ/Fma47R75MDS0NInK9T2P/P2DR0/lXNoy5+nBU/QwDRq0Ua6MZNOgTCIjSGSfPXtmD13hdsdRw2z7sk2ZhsiBmcJpFw4BMh+V+LjsV46gOqO5G/Y0e9Zy8NLD7NKlPaMEYCFClanr6Fj68z/5s59+/sNPr1y55vAvO3GpRLizGiz2uHThn/zFn/+Hv/nFED4WZ7W1k2wX3ies+GarhJevHeT1AthVroo6t8YbjKlpR1rhYh4NtLEsGNwanTNJUUztqGXV5y1fEnVp089hPTAI7+R1DQEa560KMHN1SsYkMQsdwydJSApx3Tn12vCGDxXgTthbcs9ODadPWYxraXw+XkmADK6pgPc68ZGTKLNUcuP61f/0q998c+u2g6yliCzCzHhkSCK/9N1TOztbjyTiyoQbYxN3QD+MiQlR2JxxVwNKb3Y1NAS4L/MBeWC77iozHyIEXa6GTlb/Q8KWRuOETpLcQKoyNXeCZ99WRV11zu5aDczYjQFPPPRv5A//1J2kRpoRgpVV0Tq+opEP1QaGDxx1lYdPX2xddgpEG6O8ffWaNCya17sBX/r+MDuNjmuOw4oNgRFetWO3NUGkjXXGolnRIhBs4dvX7x4/eU4nw3NwRxYDG4xzoJdZBabXSMZZFiRra+OCFfFEaPzJsW1Dn8FcY0lbrY2zBnhfq3Ro7sIj8YOHjw645urnJAu7CLo4mSLKDUeYJQdd37xxg1dc+lNHywk5RN1wBf3a6kc3r+9u7zx8fJDTkFHL+Tf4dASYLTnRlkrs7OxATu9EssYfU0AEpVD1wtoF3HAIQveKvnCqjQdmdhDVUZ9ct+aTubSGzZ4uTSCHEv3ToaQbMrktuejOW5sOrAgmEAOieTKfMvSPDXzira2LdIYMCXdKcP/ko5sXzpy7fk3Mji/3/rtbt2xzqTbTDzTKLbuxYD99jKSsiGGNNeRnzjx6/FAoWTqAp9kgIjQIAEYr+zs7v/7yaxLhAeUcnoKoqZ+oaG/Tl69Nj/GI0EK9BmSwPFHy6EmgUDnd9krU6ZNVdslIPnt8aGSVjzTbM+ahCXqw1il8mW2MPuKAdl6MXIdtDHyR9WVfTZajqVKqZmVFVHJheawCshtiyx15hlxWWtk6WaybSgiB23mFjEo+Z57IOovnWDl8X1ndgLXyJ3Jel6TZYD6BfxFKCIz/NOgkiOjcRgEr60t6gg6f1WdEhIbFUp19SBYQjDE5PyfQ2NBHck5u8GGY8k69WR+FMov4fw8Ek6wAAzOAudRawPgspASiWxxFID1/fmh9L7+UzCEiNmAFEQ+f2TlXZLl+JLzotTDImKesWYbOu1evXbll3DwBMc0s82fEwDCMUB2+LlP61asXYAgexeL1wALAXBIOMMMYf+kkrtEfbZmsAEOiR7U4GEba4NOsHWb4LSoFTCTFSmF38OlkX79BCpUIMamXnenXzDsmqfNRKXTIqHiUE03+/Cc/+fjmdSc3snk9ECx4/+7ZUzNitFc7HzrdgXieBobAnxTRwK3NU6dt+tJh2kSvfxZbW8mJH2jTiFBlEkM4lPlc1iK9bpPGxmARwEd/1WZPckTkrGoiNhF8swQnWm2j9jpA1OIM1c33kr86tZxRTZIh/sNz8+Vs/MWLT58/47DyHN0ZSbJAR//55toN+w2WFKABr/CJRZCA/OpYqnBNyl8y+LbAikQ5fFIG4QhADfrgu/nOMr6MKxIOod7Djev5u6DF483NTf1+DNZGIua/LzmaoYQg8xlPnVkoGhOuCW5sAVKBR5apg5XswWH5i4O0JRxcsBSGir558VLI30yUa7XzDEieMUbC4pw4m2i8f+/FSFrrJx+t+IxNWNoayOogu9B+TJwa/GIv7IXTjgHoHC/4kwwouVS4auFi4kX0llUDPax1C3BBjkY8vKk155aLsxUchxVDbfypIXKijOW76gA2gJkPttXyyyBJ5NIloIpQmezSK6qB1CtJvLmDkYYkjJEG88hP7+QpOcu4nVSSBn43MucFeVMVwKZPOh0CPbxJZ4cxNQYyvwnW1kUnR1r3fmZrY0mI8FJJaf6xMbvWml3erGkfLadtSJMGZ8oTk6Tacrsm+hw12YygVXkz8B/UMuSW54mWNSJcJFxNGRNEBWe1ONLd8VADdvtqsSHjgRIhamM3IQuJcs4ArWyA9+YgkT4MjqadGk3yO9v7rKSaNsdmw9GBjWewL1jrCIne7pcY/M7uDkZwA8CgDCy10o75jUzkeG7YWdFkaAIw6gd3Ry5INScAzyygkW9r439Ko6OTe0zJ377l+04nHbDK1xqWRKUwheLAHx7ozG+eTsA3QiOiysj5KwT8SjowWqr/1nd3nEksnAWde/cfEVzLdEknQptP8I/+SCi20YtQij5KSEcTKWPtolJMwjafuQx5/xIV3+OeedzcEPvgUFoGS+bzwnCSqmQ5pDAcozZi0942HnHn/Db3op5Eq/BrlELDm9ev59lJkVjikBR++EYubGXt044FTczZESJR0gqZs6Lx2tWrN+2VsLObtCQsFhTwfky2ndZo888GE3rqwcF7CfYYeIevae/NxaPzCIjMbg6iLvtLWmgITtte3jva9hkOJdDxKridt7cpyo4teDXUK0iK9bCzSmb39Wub4CO9f14hBISvl9WUOPuzKnnr7fs333333cWNzc1VKVMrFkF7LBKvAzE99+DRY3oLLIUXLzlZVllxJLWl/BpwPejHxKarT62eE+R0nuw8wFIwkbOsgIj1EBcjmR752BZSPbOJ02yNWDJC2yu8ZVyQisx1DoAo9shCBkHq/MuXITATq2bQUBqFBuAjjjiBoo8Y7GYQhjg2a735x93dHZvQqOTsacfWNVEztEzutrc2c5BMS/Vxexrrsg7B31CNEwv4PVC/aoHiRbv/05ndvT04mn7BkU8+vZmw2B7LRqg72wvxl5GDsAHQpOIE3sqqNQxaASe+67GWa2+OWiwY9C1QPYx5Qw82QFgn+ch5unxx4+9/+S0DBM4cAb+t4J3c+BORKR3QRCTfrROmJQ1c/HCp/m7p3zLuyYMwK4GhCurVJiG2g6i0jI+u2699nwn47e//8O//+j8mRGnjinEPFQIG5WEe9XsZilL36KkQaG4QJgK9na0Iz9GrNpORNnfw+NEdp0cfPP3oxQtz4Fx4vrvXGlKvTObp+GeqBnIM4dzroyl5bF3AjixM8LU9wZ/blB6BqJ+bHvgtfsOm2oztu9v32iLgwnljE4KoGFaCf8SjyriGIlpf3rqzfq4pZY+ePJUjIB3m7YvXL5/ZKE5nMa+olhEV+19phUYOT++vOWCYKWUQy3f3ANGbGl9bvbBxkdSYQQ6gikpDT4wWTDNBxy1Kdh4cP8caOlCTYHLMxtglG6+pQfLc6yYckw+dOirs2XyhkRU51CM5GbLq/ac8A5PGzxHN2q348uiMGQm8VlVJHEor2pmFZrWJblEjHigOVjpol79pkbpHozCotBR36qBCBSWLNSlgi5y3HyxgP332vLEHsciDIiBgRnZa0bKESrIdA1ExATQYkxwo7gd7OgurIJ8BIii0V1MLin0bYLqnct+X4AGY2VyJQ0V1HNshFHZ2CY7Fcc3mztozqqkVBxm/FjmkQ4xtsaMxlMPRY8c4SbjUT169sn/t+hVm/ppU7z3j0EsW53MSpFF9/PHNB48Pfv+HP9bbB2E8NZAwZEVGLdXTWtZrEVa9SKNfvQOCnfr//u0vrCIgYfocp15mndBjfXVmMaoFPsxlwWL4Mq4fjiBD+eTPRAbk0WmI+ywRzkqljmbDxN3+8Md8NQya2xFyystiOH32wzmet7DWUrn7nBZetX5+VAYOq8aU8sDuPfr2F7/8pUexZ4ZBifVIg94R6+ALSuMeU5ljANhI4lS7BCuJ8+JwTVkU23Y0xvAz9Qsn4lEHMnwFqUKNq/i2ug9PNzfPIhm3J2PC2J/hj1VsNEHp/kUBSQYkofXbGjOSaUgHq74pXbUJhwsEAk+ikvz55NuA19N2KyKbKu+FKTXtKBDO80GrYcu8q+4ktEZCWsyDrNvjTXWzX4u1YDgDvJJP6/HyBuNjkATY4D5VercBkocxVACW7qnV6jwAzRoGDfUJ/FHjnBedOfRdwIaNHc3UQ0V0n9mON9yssTz6YGXmzt62HToxHTsppLYiDk07bg3WrINtahJPACAHIyopkB4e2wv0B59+bHnJf/mv/oX+2d6yohYyQThaxmnwObd27vrZc//Vv/7X33zzHfd5Js5wsBl3ck+OiQT4qQRPhSvFZX3zWlhMP/Tu1P/013+XDPYYo0/HBiGW42NDNEEOX+gGUKR5+0zXZg+FdcFQaDRAgVJkbwMVxYIaTn2a00ZZPmp303vd/fA9thHIdZh8++1t0BFPv/Ua2hLWSggSJwly67znX/72D5kY/w35T/rTZChBbBKgJ6o09OE+CApwnGqhu/HMx/CrgWhFMaqbaXhvES83U9X6rQpXXT9JjJLkpLs6ZX33wnVl4J4RWxDGxgxbELvRPy5lzSYlbsbG/iQZwTRwzZ3eGoHs4Um59J1CdUMZ33zUNoN4L49x9GfGmkiKYjW1iJKirvyabGTpOoVVxpZL4kTh+/ce6CD1VPtXd51PA06JIflcAyJb8/TgCeujM7TdquGBYzukThnKo4FRHvmopYELYcCWJ3oSjSHz3Ac3cSSrGT6w0x8Nn/iZbjiM+Ueff9ZyQOFzzpvNTeSAQW+ohuTcMz0HP9WofQQvkmEBUAmQjuXTjz86d2ZNNF4AxsZg9cxTQgW4OAbm+Gc/+tHO9vbB08dvPliw5pCDNLwFTJjZPg3yUN5a/1knyF+iQ9a4NaJgBrIOxbCRK1K3l0H56BwPGQVJcHQf21ZCS3Eb3Y1VBqi7THjFMDK0BN2TBC9ZBuicMuc7GeCzFEgU0UY+hmMt/79Et+irIGpcnxFD4jI9Jnkw4HPgLgQW4dFIi/cRpuEyq5m8KO67QRKQdICIuvTli8yDiF1SAKrMljdcBO3wPsdXw32ZfwubUxjwF/d8/vyZe5bm2HEta2G7lJaM2nBKeLRXADCiUZ0BvGoSQLTwUIobp5a2K6Q1UIKhMkZr7sSE2ox5WiuC2bskTT/UCzOKGIubu7iokt89GVDhjKC+64q7E1KqKRHQtyYj0G4yo8JxKtSFczVpsYiZAjIArDdAj8VIoZAVi0yPOXVzaniyv79nrzeRSQs+1SCzUAIQSagHSpv/BApkwlBD7oZggHWrK1CZ024hP71Yu3XnjnihqKw78iANGFJUMokKiciKsKZ0B4K1dr4YKPrUFYZNK0R4oU7re/ToLgEgv0b37oODEadO+oexFNza8x/duH7v0QM72BY9HjAEXF5blZ6nVF7VKbJ59nQTWsViBCc+NP0WpVWYfYzb5BjU/BadFERKrGgtaXEPldKugJpgqHfdgEBcGInEC+quNmiLyzjANE2IdpnM5RPsSlBHJ5EVlKRx50QxSUNduqo8j8EJ887OrkosRRiFjgc+SyfGei0DrETnaEWmVlH/92/ZEGUgI6n7yZPnsq4MBy5uXazVYVXoVk9RyKqDOUEIuQDoaT2FvwDK1OkPlDExBG278ehORRgN+qEv0mcATeWHCF6pYzR4051iog13EfPy5csirQ4sQPXNzS17EaD7pQ0LUA3V3l7ausgaPRC9WT+2tnjmg0/UExBs8VA9vzwSAxAQwY5Q4x2F0YjLiZ4wXYsHFGKVHDmIs4S4Y1TbBJsn2R5NOS8fTN6pGi4eMSYQ0ZMYGya6rLSDMIw3sKhPouF31Fo4URmuVOApnAUEWYzTcvcxVy6YFWHm5lR7cGCb6cPz/JnpkonWwDfSoU6W1zTKeeEsFBplmtEjVqhOA/CX8P/dd19RJM4ekyhNys15FBNpXSbi+PjKlStQe3NM9D0vsUDvQSCZfj6S8FRbFhmtMRdFNEOHDYEbm9S0FOdWrbpBBLQAuQ7VAzg5DceuJ05bmtGhjoptaKrSivULZ6guE6355CmXMfFyTYNtZ0DnkpLIM8akFkhqrOGoOdvHYvmcIuTGg2Hw0r1Wie7ywgXR9ycmkqOtmoGZESKpLAcV1e3gIqJrWp2Zo+p2ve78bgvoIGhmimUFBoripr0FchvO2BlXWvWiAPF2FCzY3AM/IknWMHyanl1nCGHpmec0QDekyqrq8pkzRvA2Px3d4v42NBfZsMzIW/KcxQbaz3g2Jrm8v3t4aBInPXOMpDzFvd2d5y9tEP/2408+Onj2BMGNGsEB/vjJ388o9j3i9BsOvkVhZFTiT19ddO3WQqVQVbCibmZH1s0zvtX6waMnW9sXDcDck1ljAcadew+v7m+LT4hFvvrwamtrk3ckX018kTvaum1LujdshVT/gzI83jPrvJ2E1VckG0jojBszogT6yrrg3l/94m8fP31yX16nrRxevgG/3VZ2d7aQLmjT6HSirjNY20FLF8TUED2ySyWkfcV38uNzdLS3u82kIH5RIBsIcSTe8ZrOWASJ8rof7eorxMdVhzxDqvS8guDMetSo33W/okBEXEBIY4BD4uhEO4IHtqXR2icJ9K3k43bUhZN+vkF5BABC5uc8zVdvtjYv9Q0Sgd67itW7ZTdWOvL26VOmZ6HVCb2GYImDdZgmd0zSTQFKbBQj2jAZIDUBf5pqOPG7P37TlLvaVcpQAcdowGC7YQqtiCc6fU/9JC6JwbGOXsWEctMGqfPpQYLR8ii+WcwA52hRdYwSeRs1uJAe6kzggiYkw29q52mpdVsXLJdTWXKQ69grqrZNkg8mIb1h2Lps17FnnCWuCCl/eert0cv3nGARM3oV86WF2mjo2TPhCmqv0UU8EowZFCBaHHNX2x6msck40fDFf+yg+IGBp3DJeY8jI6KKx3klmUUzO48fP7t6fY/DbfKO6/zxJzcVhJc87IvnZNS+ZCBsbcQNt4G72DEmGRPiBL+c2NUea7jEjbnRMTm30V2IT7PBxFbi7/vj1X/37/+jYQa/3NMmrT+8N3fxw88/g4g7MWsk/gRg3YvDls6etQ8Eq28AjYZIx9JPQ5lPSfV8oft3H5zXe25tRXmnnDT5kBkKOnmHL1+8f/sqwzZ9WfeCM07wuOg/UiQFPVhpM/uR1VNcStAAxQia4uBqZF1dF328dede+6JKJaYrSN0SKBMfUlaePjh4cv/xk4ub20KKvFvaCg5WHjWwRL+oXfUY5jchxWTnB4MNmaKaZwBSwIyVgk2ynEEEYORBGsGw8kY5Q/ijq/tX0kT6VJ+qgqK3+jkkgEgDFTsHNthI/QChAYWhBRub2JnDikNwivJJxoREqupPn0wFtkavYOsq9WIeimBigLwtSR/8sRHs6pYO4S2HvMv1J/eQnkYkyZ6+f+/RxqXzdlN8fHDABbq0uelpduTIDsEXIoWdrcSVQL5qG10nb9uX6dAN8I+01SOBeXiVSAVT/5PvsFuEaIHV12g6bAV/xs5PH0xDdM9KEpm6aKMBjxqEEHb3tnnMIKfqZgw60/J4las2CS918tLvaqENPmw3xG0Q8Mg6IO3CSS0gRDSv1HT1oICeiioBtY2LG5d02qdOvTDxhVxeuP/wUaEWgsISzwljS1pXqlx4pt0gWYclfPS+3UdjpBOdGxWV3HnKxOXXX//u8qWiomdtO27TxJn18j4xgJH5Zt0+AAA2LM9gDVlwtutaSqDHwiQqgD46xTr2wlA44mVhkyfq64CqtiaWPfby2EJhsf8HDx/YANjRL3BRYGf3UMvLUGHIsdDEby+pY80OchIuSHBCzpakDwFIjFvpwi8sJnP69dv3TVVl4AvSkxrDktQJhXkgRkB2HHrxOv8gGo8wpBiMQL0NJOPnnOJD4GpsGhFMAknq+6HhzTE+VmV7h6WH8ltjGIxRpZFmz1wm05SGrvWWAxtcSesoDYpZs1bpnINOVrZOG3gQl03F/qSjINnevmRKUVUIbD0AmrsI4trGBjNWXimQryGgyiNUAG9kAqh+wPDyyFbYho4/3u1bjWVrMr9Lhd2biIK/ah9OI5oyEIN/eqRsHuVJJb7qBlBlhdGeKKrMv2mxupLprEJRk6FMALAyi18wYHhfjQaE7Vi1gBe22poHKglYnYkdXTbOc6HPnzfmblgi68N6Wl41vpokpQnLCAR4PjXdUZFnsZJX0rda5vDgRuLkK8J88vFHf/c3f3Xv7h3bMjJ2futdrUmyU7wE53v3H/76N7/93Zd/JOkxE6BkjdIUf4+SgTrQarMSjbRNoJT0H7l67Bd6zUh3wDoSh/qH3/329TubdknybsJeRdaqjEDqYk6XNzTAaQOkEEjPkt5KBomw2qRwq18/U1PECmIDilb0dLpd+wFKSOMkZPVPRm/laDUnRlvOnOIgUb/ofyIW6vNZSD4sFpKbOilSJIOJ5T5nrea5kiBgywDdtbj1GTmYiQYwpvDA5kuh8eWDPtHA/2hZiI2nVBxQqYjXZ+H7gnoO0lJeLZzPqRYxhQHqiWq18tOGW/WZiiUxlV9d2TJ7PU8H8mrHPabKO0yGsqOfYVHxZL+eoSrnXy+ESwWnpbqUsWvdn+rii47z6aMDAx773hoGHb5+Ke+DQFfH1GwlpyCmXX3lIAiCaV64wvZBJsVswW8dD/IOvIjiw3WEynIaVe2FZdDVpnICGNKZbt+9qzayaJzqHQsGza9d3tSuNSf8JTWgP/wkjbua893W7cBplvkVSosWnjrfMW110IYob98aXBkYf/n17XMbm2vrh3cfPpagSnPu3Htw587dx0+eqEd9OouFU9MbR/RkgH5ExTiiTtSpZVwQO0JAF8nUgkS5vmLA3Xn55tWX333rcR2cffbEgMOWp8VxbMM9Axd9ghezcHN2iMGGIQjLxBI3ZNDuEEWzoc35OyV+zJDkToDDb07zAytlz13c4Q6lyA63s4t6QS1vsQmG/Df29767fT+5mepAL2dIwghK2WtzirVXJhTFgwaTROHkE5f/dKnB2iVp8CrlsiuPF/lxNZTAxjBtOGWVGV6xkr6q/6Rab4cXzZm3e/2kvYEw+SYRMmF5yTxAcYWRENXXOiS9ODZ1PKLp3BMF8/GRLcHIeAXkcGXqHuDiYTAG4Mm0HX2oJxxG9Mx7akggGY5Mgi8ZBk12+LnVQpgle9woz3zuW7wdmJM5hyxeu3nN+lLRDrNOuuKnTx4D7OrVK/fv3z97Zrdqp+IwiUJEN5eJqUlFXEWZ+Uxvs7uz++ZXv3I/B7jenPK85yDduHpF6aAiDEZipxsvQQR1QClJ7tnhY4esueCNlytEXUfq0M9BwDu7+7/89S/vPDagEG5o9zuDe3kxplDQGtIRaRYwIqUm4OjFBfK6gDETuXYueL/mRswHJJFRNxwUOcE0iUABtdQtIaexizuETsY26feWwlySbAJM+NNHjTRiSc0IL8ySmY6Tgntx23NrJnGK4lEhLFFbrDm1LCx+IxvMoAIoAkr021DBtCBiDltP7e/uFoWhLhsb3EpLF3jEulEnRDx+/tzgXpAS5ME/MjDGhSSUR0nrGDP9wyL9yoRXXBk+emVM6yCeqT2hl4erNr165WCysxfOSBkks0OfCqgf8CfyP28yH4ycS1RUn0ecNa1L9xdD5AOKvGpWQKlBU3aweI5UUMDgtwwlFxc2JS1/cBNsVi2qp1yVWAHWEUDkwyoqOGpJBRYhHiTQtBFZEjBC6VcXXqiCrnWWPM02Ii8K+ZZPaAdp0RgqjgoMHOONBXzCdFUnXtiRxhZVx1T8RcepyTcVA0m/r+Lkp6a8Mz63C625YzMedcl7e7va1j7BsrLipMZ3P/mxuI+DNbWIcHIORJTbI5KMdULxmfqN7a2+1u80RkA1/1CYE/n5Dz//D7/425cTldQi+xl2smgv2EXFILvkotx+zhM/P4tG6bxr+tVwpdAOarPu7kBBzo5ssRrHVa1UIXcpedJt+Yv83ipygiGjKn5lfqDLnnkkuFRumcU95JvWNos+QoKBs0LQzTbwemcjDEvgjUlM+MEOYXlRURL0JNusAuoYfDsawtiUrcDqSgIGeCYXz54RcyRGpUK1kMh23AcGYc8O28oPxem0Wo0aQi3WN9bprKfWhZy2e/ve/mX3Y9pYekEh9h5FErGxRL2ggHeHo+PTrMqnFTXa291F3wcHz5Q36LSsRisiasZqTzqp1g55xWRALZ6xL0SYd0SKbZHSnCsAXgggFsQD47rXoYPuDhqEZXTEG1S1LQ0T7SCPi2p7jI4Ize1XVbXNh0wsUA6oivQ4vRgFUH88G2UOz+gwwjnvqgNBxCeHEUnJ+XMX2jLh+MiZTNTVphs2CTKbJqYkjfzN63ePHj6+dEmgec0yBjvBcg20pcohYyB0XeNdZBdO9CGqztOyrWY/UBm1jXwXcO7eu2dlkp4SdyRJC7MpXucYmuopYouhvKn3Z4iDRNP2AaET8VV64pkzn33ysR7g9SyCy/QMriZ8kNJ8WbYgW6OzMd5YDvwsukLw9HIpff6rxLv3Du3s9vop+yKdWtZxJt4Gg8nRgpPSkdlPeOIoTrZRh2GW3rtIiHGCLsFaJBuYrJ51LHq8pMEQ8kaZTuFA1d/YTMGIlvZEqDgV//qvJI/vVJPNX379LR6YBaNCser4UGdtV20D9GcvnjlLS3aINf6Okxtl00Kqoi1OV1RqIiYO1fWrmE4Xn5ELfYkZECTBL7dRzJtWF4TvagdARcSR/f6Mwxov4ioz6jNwJkN5EZru3TEpaKKflFJPP219HDWlvjAcMRRmRQQtxmF4LFdQNz23lyvDIXAsuwb5Hrw90LV7Sx4XVWZufdUiurHKsSvgIlkC971kd5FAhCroYri4xzgnIxHzKy72SkxPUHvDHaL84jnne9XhcTpYk6cXLopc6QpK8MQusV3bX5w519aqgFc/7NSIwWXcjlCQsS7GtdF0F9hdvzFQDX899oWWGIub0JLJaC2BLMApb3r7+eGz546AIeHBlynI1nKJI7xd8dhW+994w5YPI81n1zkUE06E79Hx1f0951L//uuvGXfOjqnJWmN7OB1vbXtc8q+qG52QDkluZ8odxi8pdjNcsSbMTwdJuvnaePe9fqnMlAXHodmYRpI0bjp6z75QDd2iZra8jpKgW7YmNfq9U7SuSCtYE3g2crIv9JHRpfsIQjqJjtwmQSfcYACqAnfDOh4Z05sKAaq8VEb31v0Hhy9aACSNw7jKHDhH1ut5X0mnt5uBgcHISKYgUBL6KnYR+U/EIbbQqLqFjrVsPJqFnT9GcjRTxBAD4u/U0JtaMchBjZlMcAFShgUPkMFfkSOdCbqhAqpzMAXSsMYEwrvnLxmSsxvnCVa9+SwufW1vhDdvBRMNsR7cN3H2fscBR4FdtfZl4zTmiRhY6wgnsi60b2+lOFpHnfYmdMhXlCxx9h2Ai98/jwS+SX34hr7LwSR61NKiQu5110dKoiEjlM6cP322vV4mom8O1GYzkU4mEgWYt1bZZsGZnBO+JYwQZ0it/Qqk8mpdjEb3YtLyCPenkiOWwrX9doMPTLaAsGLPUi3bo+T2FJgnUYjJVM81DMs3O39hI9YXM3HI7OszdR3LAZOdNCnO9tMvfvS7r/5IJEitRwJdVAQA6E/wCT8d0CZv87ETOAk6PWP/TjVbwnUnb7YZFmRX/5g2o5CBejDK9kARDpCHIsJl3Cid4tmeSOUHvQiBZtDaYPfRk2e26fVqMtrOebbHCyovGSDgolbJN4k2btFpKAb48oPow/RFTnhlvb8uP+xOQmDQSJub+cfxRFxbQVhwc3bp6isw+524LCLia4a/noLc6Hj0fQctYM8yXNpsiXddnIOvnRKbQ/nWMq1BZ6me45GjqEyo1+dUr3dxKPl+9cbcp/lXm+cPURsRhdmHo83ti8Xm3zvIY3LUwDszPjYpKU3yvJ2ojz9YuDvu6dAxQ+qwH25VlKpRkx41qGV6JdQOltqfD3gWzig8Bpm1Des4P+bJ0wr7ltd+8mb1ff8Jo9GoJLeyi1dD71tTKhziJlLoYhmsaFjM0TJAW6zWOzXVNNO9SuFbE/kzKTZvdc/LAT/NDDC+JzE2aDPNf+vOXcFyadasniETE3rv3v0vfvi5gAVDhZgEhQAQGKxe/pl4sStwFoD8zBpDhCYVvi5y+NMf/+i/+7f/A4lO2bE8Hwfxo4EOQdenHMlP+Bn7Ji446k4faY4vvg5lcj7bDNuKqHe93Mezqhu7wN6T4LqsqFPdMeKEhlMUD4y7/W5hyqPHBzubl7wMT4MFXqYBMtvNSVcFXPTCDKq1P6cudiqHulQe+SI9UTtFvBiPJ4cyq/Q65CXfSzGBSzQawzDIAqOeJDgjNNJXv//YMkMU34KT/nBVS4o2HERBcuwBpfMOIO3mzTaoYfALjJS6JPXEIrgig/bdnCFmm5YdX3aW5ognqQnM0obf710xjV7fIq9CAxACDvhiF6fF8L/ps+hrs4YgrlZFCiDWcIs3QOJ5GAWIhrYv9WS8jh71MA1N0lTbjcRBZI0MddMnFo2IV3op1guxMOGovhDy5ocVx9iISgsM8fS40QamBcaqhLn94KbShgfSqyzt76SIC+eYTxbadtnQJBdVuEjKgpGKR0SmhZOmlgpF+K7t73Gtbl7dv3ltj1bcvf/gP/7tPzx6/IS1plF8Vz4bI22nlFHsE9ZK0Dp49FjPiYBOZEQy7eL70rZvV/b2r125cuf+ff11y2zVFQbJSYlmhMhyHFGXt/ZCMP1l2ByUBD+CDHAweHfU/mKWlHz80TXukoGs1G1NxJagiYshmw+A5PPiaAVLFQ3cGIBm8mlt1Vaq+i8jnjOnbCtgH0Krctu84tmhg0OePnh8ePacOFIJiTrBYQomDlQhFv9MdV2/uv/t7bv47esiEYY7A3GCZV6iVuvWjUrLu0YXwgoNKRDqmj48UN3RxPyi7eJxYh0q1K6nEAr8/mi3oQQ0F6l31deFx2xiBnSMwwCcAELadYwqrhoiul8CLeZbpEXLRUtmGqjGtLbM3OXbwNOy7fYlgLl68aOWFqvtKrF310dQ8snBU32LUeM0puG4YNwphZOByOyXwTpqPQCrfNzGXtaWDgldsg9whN2wapFRFvDlGEsPRajYrDPnL3Lat7e3G3c5euOl0bxh/9rzp/bgeb9/9YotXt48Lkd1e3f72aMnNmtKHMdtw6uaiCJ+19lCKfp3ox8Vkqn//f/uvzGcacX5uWYJrly5am7tt7//UijFsKQl9D6xbuyjhD9grQsfnWPCWGS9CE9eTaEXzVo9nCnhVG9v//7rryK+p0Msf1XF5eZZoMAw1JO8egwJxSF711FJ1l2zCzdvXPsXf/kXjQJ1jtADz9INUIyRMzdGkwbV3qsiOBf0l+F06UKJ7Mb3xnlPX7xg9eVYFYN4++7w5bMXr9440lRNhP+6FbrRrnWPNX96OSXFbvoop05z6WvX9/cWGLrVveJX/YmaA1pa1JQvLGGeQICPtjDY6kbJOOFdLQzJhkEDsK5+oo0VMeOv0NjXIU01+RkCdZkGECbP8kfFT1zg7qw+i+ko89bR67LqVw3Nmxip5bqaaW9FaMjKrJd0TzqkgAg7SzY0Kwtze8s4dbadzdSNTOswX9tfiOOUDRJA4JBo5vmLVzp0gU6WUNDQYF2d1n7LZpQoTkY3L4qCmOeiBCNDMyOROo0Gu4lH6Rf8k47MyLDxmKzLJHv+8oU8GjbEyBz0PB94oVKUoagCDG1p0VyvMBcPJD+eep1qhwQtmGqoJTWP2ES/0Y2FVd2Ei4ez2tP+/u/fvZJ4gTHg3d098+knn339zXfipBabYfEMwTL5y6zsyOiaQZSQTJrp/JocntcaNTRl3d6/atSLNkjUuI69zmfE+kRC6zjh/zhLjYhm7IcRSBGbfTQasbsXvV6+eLlzeYcQCviAg8mWeju0zCIqM4qTSPQROpAwa5H+3t7OrGo8Z9DHUN17+OzJ4fNf/+EP5AbnDAGjPGmLrPlppLNK8yYGYmAARCfRvCHWjwQfH3MyrJlwamjsI18IowtIajP8MNPhwdfAgxyoAFweFRnwWM2NrFKIMec4UTOYYU95Yr1xsaSabg0BvJlVCK10bkiXwLgfpDyc3u+nvOl37+TbuU+r3aWKZlypPX8XANoXVHOiLlvufEOqwc552+aiGrh3554oAhtr7yNZt9rSzdniEygN6k6f02daqdiq6NFNrYirWMqnN2dS2BV9GhCRktwnro3nzZ46BfCFHmbg9LyPh3mNKJBmT+8AgZEM308Mii0OHFHMV33/1h4Cwo6CGWqG6r27D+zHozlHINk+3hYeKjFzCiTun0zygwePHC6K1JFwqu03cCDjx98hXoSLlJxV+0EthmANFS9Rg6LMZzDzxo1r21tb9sb95OZHGe7kuHwZyXC47qtWhLN29vfv37kleIvHL53+NKvGaSP9fK2HbeLVZih8zvrnPobL2NF0LSswKgGkRgsN3kALLL9HbZAkOi0fw5hHT56cWrbHIBJ64ZGMEEXTeuIG2yMdx8fYs3t52z9htZevX9y990CmtJgAsqrueYPRxKJszST8REzdrKMSQrVFUiu1s8YwyfRwdIaK7DTwbGRi/uX5q4M6d8YEH/AfIoKvdVG0Kb57llp8D5XoQmzwSQHdztdHWtqhGq9wcIsGJhNqCPGMSfPfQoqWU5db6tr/PO4kp7LTaahtRXyJwZD2pFroGv5u27eiNMQmpxR11qjQ+Ob6hhaTDLXxMZzpvX7Osgtwq9r+LtQDPPoBwySp2hahP3n8TFF5DQ63HO4M56jhkRQvxyG3CyDITTBwY2xJb7AHBlILWO7DyuvIEYZDFWLX15kOQnNxOzRMUBMzxeBUT4dChukZPlublL5mK5r35zdkvJlbsLqaUWg/NW4YUKtv3VZlGSNLyQSEKW+L/VuYFs0j1RjNQBnqeV0bnvqQBb+VUhsJiINuWg764cPO5Usf3bhx7/7dFkUue4GdbrcUNiP9KSDLQL93zvbtW1+/eM5YXGBglXz14sXW9i5c6fK9+w/IHwwNLP2GL66FYdddBSF7SyADFRbDZ9e5xowyeOrtlTSY+M3vfttQsqfKyUjL7TltIzFxfTU3D2C/jZc21C+GeOfBw+/u3NMvAZqJ19wsBVW2umsNFUi16vJb+klGO6ZBtOZV2WWUpfn21n+G80SuvIITdMS42YED4NCcGtLdcKCW6gixqJ2kU6MJyNZUKMNcDIQu0V4LtRd43Ned21oicOryFVZDhvP5od3bV3Y7tSCH2281IMzURPn8VbTbY0t7j/FkaY50AO0Fb7ntBcYb9T1aYAVXBiDvqYbGQped7ovjVxhzyyGNoGQKvH718u6rVxPQGg83wkGpsWCybie8y1ucgfAfld7opAhusXQpL6GTiYczl9cugTLh8rJy6Taix15ECM/j1qpnMiIQCsYjBd3Uqm7Il1Z05a0JfxzrInzAia3cV9VCiMpF3+lQOIS9PmpV/aNhUUnLSysBsoDT70rODb3oufO2A0xW3dMEx+6jjz/++rtvmQw+DznRcxrcBh/7qJJm1lcubZzneD+4//Dq3nWW59KrVzIKXv1GiPG+UzRFlp48PzQ9j4MBmSgsPnBALZ9wdz8WAwVGCfKUzuNkILAJzQjkr3//21P7HYtG3F9QKTM+cvr0hs5kswjR/hETPqtigf1qJIbNVPB/w0r1099ozEqod3lBHFY8CevA683jVUeT2LPRDDjO0jTj88q/fefoLcApxOMxASc0AdJG01G/2pNzhKmWseh9X7A+EdohdwW9wcfwYkAmkrGKaUyeqqMyiXbdDMD7mVv0o8ILjys296dQZK2OxuXJtB+4G0u5UIy46AEfPnhEQFOzgVN575JXCBJIHlH2tWz41dnLsaCGuI3myCtkQYsASUngpIICr4Z85YZYCGEjsKbq4PJh5/z2FLZvwHTaiXt0mbQfdfAyY7Q7C63mKedzmXUfckUbKoEghuAhGvGHIqBHPbi2LcN4816I9kctcOPdaUlsH4oiOUOrmkGdCuG3uqqu/z4eRX8D1y59sS2VebEP5jmVjjRrq9dvXOVsM+qXLl1u3infdqjtAsxdciDPnj638Tf/+L+cOXNLkqkyugKZFKAVTWLo6E/D5eBMAtwBgAYXwoJmIPN1zJO2TZ2V6RYEzTONd0D+DMPsdnnqv/mv//U3d+783S9/7T2Oo8DZrbt3T2jqZeRbmkjapSlPiwQ127PMadcyxdJwkUuOWlgUHQudNlUH49rde/dtHH1hjjLXT8uwcEqV6RJvQkLvSccMQliLJXsifQoPLuNJnLdOilGZTiByFwJSc4hBXw08kIUQUZ8SmX38YG74jaBWk6TdVZ8UjDdGY2TapA3HVCvd79+0txTLwNYGGnXY3FHbeZjfIP3EGpBowV0EH6fBaBw9kBull3qmQLXxfPiXI5orp8xdZFNFnvTD1T7K0NgDjev/ggKEffqb3U1VvO4JAQnEhKt3w98l/mT++zsqz/iNBZhX0Gqq6qZXcp4nSUwkg6fK4bm0tUmTTTvODEYypF3KIfdUlsJmi07fWq5FSWySxjBCxbZlidwJpAHkHUK/eBUegdnvwRReWgRgTpFwLR3Gp/Hsj22EfvPmtcPDZ0ZZRspkVaWC78jF5GBq9Zw6dfPmR08cJf/mWT7I0MJvs5PGOfxMbpLCKM/h8Toxw5euiB16FapE3oQ4261LrxPg0HglrwSbyodbhhk6wL/86Rf2qvv1l38wKprV90QePMAufEuyAyBPo6gCFviFoB5Jn/I1kXEzU55FikMLTB4FQ8/NsN2+fXt/e/tocwN31t8JbqpmBumF6mlULLYciZbjH7qqQz0B4KOCRo2LLwHdLgwlyIgWKjXluA6AnCFAz73PNF+5sjvUyZ4p5vey4Veg+VLcOJdrYD7xn2oQNFODmLR6aLq+1D6CcbU+ppK9rW3tK6DyeTRQ98JQST2yJxYPIyqpcxGR5SLUlrZI+RB5qbaqSNCxDX05xi9xwBG3kFbDvB5ycDZ8YlMlYgUACAKsRnp3CIApMWRwARgpiApHdmG6cPT8pW/Pnj7d2t58+uSZYryUAWfFUmNOgZl/OkBhdna3D5+2ByGHkGTJFGyt3zQUiasXMItuAx9o3Z1P/thcuDOP/BpHhU+CV59/9snf/8M/6GDXj2Z4YMmd6/Xm1xhZLwL2yv6+cxX+8NXXiABpzCD6Zjzqh9PBsr+sT84htFNgHwPpxm8eCW+eWz+Hg+7IOaSKxB4oCRBNcxcJ+GozteVm0292ZrSHKaWHBYGDHeQoQXJGJdicaB2XwykT1I5Ow5UkIAjLGSBRdYh1BGQn4UhEPKRJB88O7t2/d/qUzMQVsy3jdtv/ue33vMRGccYshaOg9DzEasn/SBiUSXv67jPwpPPMnOesIeUiO7znhQvKTNQiPiRgDQT8mamXKYEAJ5toLSOnqReoXvDuMG9BeQZXo9Keyh4BSVQefgfJYsbqtBbRgDm6Hz0+fGmqiK21HM0gW4RrrEINzEuVn4ZA3RP16Ru5iJynxn2RrGiYVedmHGXNUVXDDAXse9UhMWzrhw9S/O2B9t2tu/bOb0sBVXvgh1pAHLdrzM0FKWSjnlGs7EMpRpa2PH8pJtKmBGUK51uqIcloF4lTh2+eR8fo3pI9ZNCTc2OXYsOgE/7EpEg9VkEDmpyuezqrBCIY9PyWwsvJpzvGMCsrV69ccd8w4KObNw0SdLn0jUKy2Ua51cZBOn36Z198YdnN+FpNfkvD1x3o1fXJAsGQev7i+dvJJqITEukunjbKb9IT5W1c8Hb289MuNMuGPj6WeZBKwFEvwS+YzpV8nJL/ZfGNmCCwYJ1oI19IsEpRJuKGq6BYL02BKOWivhh+TGBdQuNjL1TBnyRqkSuac/T+/sF9U8k5CxdWHj1h0Vogb/rZxntPnh4+PnxqQbO60L1amv5KSKbCfmNeEPZxWxvLxXRgDKTVw05xTmsCesw8QHSyNriRjqrVBLf3/Fdent9J/SmqBqYAwk7nHglq1ASJMdkEs03ZpwYg1L9PNZkC0olUOt+K58ysiPwwVM0o2z7o6SGTwenzCgkzr3Rx85LkVq0JDQFDIhpjv723Izu67n99dbec2cAHgncPDg7s479+cQO+FINS8wp0+wXXW+a67mCeZ0+eeoMGQC1ODdGoyjBivs8aywUnTQiSyqXIyq4cs/dedWyrZQB2nbBTvCjRsmi7hNnTZ/QYUOYcPn3y1KD53HnJ7dG3plI0f0ZW8uUoo/vxfljgMsvYnb6zjpYOlvqmAJExCvj8889+9Y//SCV4IYgKNRNG70QLlvcLSK4o03gabWe6QLts5fSWz+sNSi89Z15LFA6Fufdmc5lJbeotxDlt6QIAlBR3pmOiAo5G2Dh90YZfhuMgFvwkxU4uYITWdZe21qAuSRjx97ufbKmvUSyfu0xjOkTmmpA2IxBJUAHmLjM2CJHw+sCkP4UpWJ2RtRUL376x89NBdsXMkZoEs7HvhIEjqLAFgcmSCMd1VM1U6JdHI7v9oRXaCFjvd3CdLgmUGg+DysahQHCUE8p3GHC4OHkIkEuxmqjoiSXrxVRiwPfH6xhne2IggNMQQQqTCu3588hK3A9lqpktkre8u7dlK8mRw7wU5Pb6y+fOMuv0YmmYpgUIPebtX9kBmfUdIkiorSMTHm29+8vXqCT3e3Y/AEFyAzSui3Ua9Ec2K/NvsDgoFx0K0TG8dEkrMWUJMkQwvNBlZsK6npKDrLciqVAJ0Qm2jQvyf0Wrzp29yIgurgXv0UJZTovNL1Dw1fGH07IKz5j3DTBFVbW0BZiAmGa6dn8keKFwpeexX+4ACO5x9agB3+jNykfXr339hy8dbWNuRbW5/os9nXdpBbt+3c6Puzt//M4xYicfvhOZym2PCiY9XggkaYPbQnsDda3UWvYL4xpMGN6Ow+8VlncZBZAKHazk842rV/hEKOxgyXaMu9h+5QWGwE02vEMvkvU5lvjoHR7Dc8EsDc/GRochbRTxLOkb4mCiNcN58v0sRY2h37+3+X1WdwaLJdiN8OJNjg/Rm0fTxmJd3IdsMt5nyKxMPNbNR5g6BCYifjdJn2GuyiLZ+UIgNj5iyLgFY2WJvmwomdWHbANXVV8YyAoO7BOGq5vDMlpseKNOPaxuV63CHjoxHZlBl12jxtu0v6qtfMNeu2M7EKTVXuiPDzN95lzX0mYIH95xTjHonLMkZskLkQ2Rtsx5b1N1OPZvwaIlby8/vH+uw7HHhLUYtN0IXuQ24KTVEOzzZ9hvTvPgqh+JNSG0hPPjGLiXWl0jfHS8tOlQnyGP9UDWYc+yqmTg0vmJSaxYwu/meA4SkEx3AL/MWZBiX8jO61Udv3s8/Kk7HVvwTkeanxBhmKXMzUTeW3FfLYbI7zJtzMT1q9cbwqqDV9a5HK9pdC6lEUWtFbO+dv3aN7fv1Ki2eAci5W/JAGPxRmUcn8SgT7ssv3jf3n5JQn1Ia4yI7odVo3CXOH5+d3/vxo0blpF8fOPald19mcJ2hfndl3/ocEVv7lzeOnFHioVrJi8tWQY0Y6BvmgF+tgfUdT+RG2wRY0gSB4Y0GDZQntzO3XAjx5Wyei2n360h4RiJMafdGfuFbolyxOVZ1pS5AjSARrYkuFJL3cLimVA5j9rtbJlhqeICEfgFI6/ojjV4oqLV0xfzZXv7O8M/7YAPLhHancGiP6oBkYkksYHDDzpe+4QGhug462V+nVzKrLBX+Zlz20Ef0Tr6l0dhpsX+N8a7BwePiAVuAYnpJsHW+kS6dUd1dHqD3fxRhO03EAQC8GA30K7wVaIXjI5X9686hKXNOdPp+MzaiN+Ze75EMwUf0uagXvo63PEtJOZTDSOtvYosPQQEDIegLDHK0uqFTHi8TFVURODEs3xOUsFQLnzuiWugRi5sqqHIqCQnKrd+0bvMTK+YE27SVZBQ9gRYy3XNAl65ekW3FvHV5dCGN7pH6UkldHBpdE1y6zYvWDbUVGBNBmJtluXV7MSx47injWFfEy9FL7MU7YzdUmZCYAgqAPbzL374F3/25/aOt1uKruPShhAImM2EPv/k46sN26njjn2gZoI22bGvNY43j32ye0q970JI7/mEdriDKKcvasK7v8CJ6nNzYQNp9IQEIt4S2EFM745tqQauTcqFmI1feZbvjMeV97oa/VFD/BdOLrm16erlQyh94jHWTecbZCqqvelntAKHIl2zWVJc5DMSbrLQdK81Klrp7sC6cDc0oOeu107bcuLcyyP7t9lO/MOF8xeJBnopzrqomwNtrloVfmrVKQTOFnaGdD7l8Zk2uViAgcdQ7XjVuVvJovoByq73BBGsMG7x5NQTFYfRUQqDdNLLfYxDhyDEkaEzxPVdQ7eoOq1kDEJ9WnSPMMTAFjOFqBdHB/pGMlHEEEjYet7oLQXMzbecaH2dAVA/lLTm7AUpHlKw1HVCogh10k5M9s/P/HLdxWLmMo7CPtKD4wdAte0KtM4fshcOB0mwB6cMV05t2CFvYak/9jR8HY9P1E2NIs5gTh69Dn24ZO3WO9qUisvZ+eijjy5vXb539zsnWfzhq68MqPjPyPix01pNG+/uqs1EIrkyOhklP7+3t08TCi2Jc3ABZ6NCjRXGNgVtiE3nwhX1TsAfAR3TDjvsHmQBuqhqVB9quz/SNGKQMCsxT0Zboss8T0zxsT6mDmER/EWhsqBmsRasPUBmNahebYgIKJB7ShnVYtUSDR44q0f5YXOj8g8Gr1aMR3w1WCYr34EQp2pLbrnbCzC9OHD4itK8DpYDR7fsyby6urVdWgTEzm0bmg/Hndi3t6UekC53NFAZ5iGqRYOqnpuLyYQiwcLOnsRog5z2jEGg/JDEI66rBfczFiMEyooDSkez2Z5sezVToSUOHgWnpfk1khgoEaa2l2dWKr55Y0025d/f2xGi1Fm1LHN1zRgGro4CQ20jo8xd6W4tnTOJnhUowckWOxKbA1UES6X2IQHowBYvhutcmcBHQNQYdodGZIoApoUsT38rPjO+JRQCjYCmV8ZjT+ydJT2xp2L8IKcNrvUsS08ozaRZUlZAcwQ435AXaqb4zJPDp4RIso495B2G8tDyxk5peHHvwaMvv7llWAwwtsC4lJuag8B3SIwo/gpHghytnzl11mAST4Av8VzUjyYQyPk0RNY9uZ4wPcAaJ4+oYpVumRIsdPd1kexFS9m7zL+28kQWxUgus3GInXLZqHXkWrGUkj61qji/C+7kY2KxSU5yWS1+IXhmQC3xOOIjcI3US7iVMAF9qN6fYODf37h51Us+SgZ8uXERYsSk+r6XGJd1AtGi/i3m8QWmygTKDUUjHuSzqnPTVRLkGgA6tO7OZ4RjacRK5fGA62Kru/G0z1IumrBqNDWVS4voN1PV00xmcq6wUKDkAuw8fm6qsYkXzcGYZCuh/r6Bq7dUE/Sacn9Yo1pTyKYd1w1RdDvCFYoZnZqipRKiKUuOcMQo0bAMXPnYTsFiDY2nCZx1zJ5t7l007leJ1ZXDgAg7lPE7OOfbxBWXq1AYDx7Zz557/uyp5EQCwIBraIGZLDus5duv/kg+jXaboqqDNz5Alq40xHLxZAg9EZCKwsUyMmYXaI2u4M378xLLEer+/Ud33t2T7G2BYJQc6KLE/Cc9t+4+/Jf/4gxNs8PfKLLqC6ciLE4Ti4TGAE523a3b96Z5ablrF8+f//xjvcyly5sbaPfrP/zx8bPDITWGkk0tRXK18ASGEORofkbgIKT3iU9s10T0hkNNkBkDoRy9ou8tCVIT6686oCxMTALDI+VQT7+0VIIhFUyIgl7pImVblzbtkHl170qb0jVV2XsLPFU2Qg/hERBaVit5adxMFaXM84lnI4iqHi6md6luQw42qK/jssekdusXxvGBX8CQqueHT2cMsCHkV1WUZgxHoNfDOC6pPtpHlEa6AOgpKrmiAwYS9cYfxJQu8ovdRNWWyHROeM1oEdPOXzxviKU8dsgUsN5SHs6ZdfsIvd7a2jD9DZYK8wZT+fQabD5RpMAri27qX5bBG1LI5Nc3DkGeHb66dOlPM/Sdlm3MymIJKSKXrkCFLgQeMZs3O3WmZojI91U/OAdTv2KVAgvF/EmBDU70CboVhgBpzoBQmSSQ22f766//8AcLJ2TaCVO+O6eDLYUq5ickNqKkra2q07bj6BAKX0jOqxdvjJDEm1oC/qZNV8J41eq3E+nBK9+bHSVFK+vffHvHDuEbG5tEECTCIDogHBlhPi6yRn6J1M0r+7//8o+Osrqxf/WzTz+RJ+PQT+EqtYiRP3ry9JEjwHov6sJ3MayQZH3cAQPmIkskGHkSydcTyTaBDtHmayFCm9OMz1UVSQwiDvx+6aiIjZmyLJv/7vja/0BEOf1N4K7ubW/vbW9SUZ3m9Ws3aMeZdWsk5XnHHh8gYEmel039KbyeT0sJZS1+X5+m0+a4NzBMk274mzGT9fX82SH5Pr9hYXmDMK48Ztrrdmdb3LRdg0JiQullsJ05Q7zsjC3fWCye5X7y5BkTW6rf8YpduwFmDvN5cwgMkBOOtxkA+7ZlmiQ1njpllZb9cakZRIGhUUjAWdzm3OuzMgzokKoIB2KzMR1+5nxOwu3oVUlc0IsP8z+MfJi5uMO5wjH9vKEn6yBgYh2FULoBAKNsn3uv2duQjaBghOHRowNvSVbVBTx6ZNAvM+bcwcHTMsw3N8BVzYlZ+Pt0o09f0L2rLsk6NciwCXvqDWZs1tplcuRdjyjDRal2G5cEQ6m+rsPMGUP3euUtcefUPXj46NtbdzQjtVv5vAa0sw1cjeV1nT11Mh0cWRDHf+VoeGOwrKjOBX1BBcGvv7t188ZNBOfS0CFuVrI1MtA0NYh8u7a3++nVa//FP/uXn3/y8TmbP8NitiI0gm8+j30itQvK4xgldtmdZCvOZSECgtVHcbXz/63eVTmJxMDaqR+JxyERJYCcwA7ZIguoFJhiwdc4JJVLuH1ghoL4BMIff/rRpFUXeem1qckr3s0QuFjpnKJnT19KOdm7sl2dSylZKs6J65QN9XnV58TnckX4vJqx8mV6AxNAsnF1C0+f2tzl2G4IXnJQrKkx2ydPi9k/xy3bVMkoU1Ra3FaeBFgph6i8pTuUxAmqzzs1vnAkCZb6j824DkHcpWZ0yc4L+gSpTt4lUCNnUYCeeJGgSNNHJd+CTmzh7Vv9br3l0HEhK/B8HUJAQiXRmTVN0J0CeuG8YYATElCSTLORErFkE0Vd7lZb0UimsnTztRUVDLKe6d0HOVNNqMkdVFutqTGm5bTrON2LvMQP1esQEoMgVG4pWvwCF1skbb8JcgmeKZCJZCwvbm3+4XfWYeqAzpw6eKZ1/d6T508fPHzIuJhlZz1zPWzBaN+N/OmRoJQu+vA7MhmthBmnwZ2cxgzMqOWwU/DzaOXLP371L//5Pz9+7WDc0sVAPO6qiltgGMR+b13c2Nm8YEUOE9irA7tHRNAYhigs5CUpAjHz1nQL7kYIGGt7GUxQjihFUWBPD1xHnRrKafB7oVTffcJq/jAeqd/3vbo2MCfr2DRK8h1Muq/TO9tiXVtssZ66HrBHtPCkkrGCjZ7NnsNMDQNBVIMWynIwKMl2W5oOTL0YSKg630/sseY4Ibgivo6qjuV76dhxd16+tkVXC2U6BCn1oglGWbLxtPHk8SFhCekFbQgjy4qTyZ+R4NOnz1MSN2CCUYKGgDFJcWaNpTQXJry4LrfHK84mTcJgN5pJNxQzrBQvtrVo3rtllqe3EFS6K48t/KPjCfZeXHCZjqXmHPaFvPRLvrFpb4VJi7Ey8nsH7wzZzp6VYBclLFpALDyFhAkNV8rjwjCn+zUUaxXO+Vl+fMWUqFrbvoyDkIH0tbVW+gQ5wzyThTiViqnrTkv77//f/+75b79kdvlg3uMAmHXpsY1oze3lDzC1CZXha5ZXFcl7zZlIBgFgjbnaTWWWA2hVujAsNMaQ5G+srn5767a0VqdUkWJcs7bH3QROlpr/aOEFc00Wo2Fw4pt7MPeDpQi3B4tQRrihgPtGAJGgJubf0htO3SLByYLR//ccijI+KV11dA3NFDwNR2Of+RVgvTWKUeE+vaZsvyoVDILeY+9qx1b6HhCmqTwPzoUPe8OiyxH4HgyMOC+5vU1NGnhM1YlaOPrmvcCqO1pjiOwIwhJBl3ch3m9Cm3bZW4obTSVKUZl3iUisGY20xQj90TmYWMAcCRHmMc3QPTvsJPbTpy/xmjjimrxw9rwFmfkJKXhoTjxH4ubpN0dvG4sN1uBRxJkDCgDS792dTTcJrwBKwLkXN8fV8zg7lGMyRMyQJSNhmqCk7lMaDXuFwqBDrbf/7NCwb30fP6N3w7GNvksZYHQWyxLVx055PJRbGmJi5Cv00OMp4Y+fmhMRNuVbZCk5HkD9ilPGqM6A/MO3twoBBl6CQdElJ0OeFQYGqupDDZg4iW0CZ9HPKVHZIH3tvv5xRlMaonLqDOms8wgclSldyIT0y+9u32nRpXEBsJADCCNG2shbIFZG7rs7O2wNGmadIAj7kr3qaaSwIn0jgXl/fqejsJp6mgUzztF876g+liy/h+KKhnOPokmo+qeTtJY2CUZHgh7Rpj7v+D4FTyoarNRtw7Qjy+XslMrtGXObBMKTlPCUxgkaO93ZrxI5nd6epARKHFlh400wUw8yvbDck9SgNxcRiIlApcyof/qMtZcMp/Pf33FjGWMz+hRyFDgqKmyde68PUQw9V6UuT4vqQ4+z9LCcV1MQwq9lw2uQv0R/8MwdZVLD9Jn1NbRdN3lHhTwAMbFRzxC/FgAJ1aHMdL2BTXhAkbAjcCIWsvMr1CM9UrrURAakrVxM075h3dyTpM1dDoXgCCHIGcEbWTspD1NkT7E8mzbqevPeAmibUyVpoY7O/tKlvk6TpWO4s8AZ3AMVoDTqAyGeHlWHQhOevdWHFf7LP//5b37/JYEA/fw46VAv+E4LzZI1yw/Ii0abwryCCujKsuQfYgU6Ohl11IZSiG4ZOKFpwGEM8dALBZYBw7tvvvn6B5/c1D0b/CO7AVeRo/GO0ElPUVKXOAxAESQEOIARJlKSSdpJNAc3FY6oRfwWi8WBEYRBLB71vZu9HcGGFfCuslEEUCXmzSKLEDPkhSApUtLfQCMaaV03l1T2XrbNGKHKOrXp4PDFVQOtE+tS6SkUHO0AXus8QKfFvXgle0etKAJorOaIMijjHgZh1AqRWunXvKkRrZfXtaUbFZ5w7MgFjPT6eDiVDJBpzjvDOQVpMWtXjaCppqltbPax441HmcWdbGt1MfviQSZ5+rdga2vIfEHY85zy2Bs/xClydFoM9A0ZAoayDKDBq1aAgVzaM/7rxWlz6BEy38toJAwitutD6+9sWMa04zVa24Dy+I3CFnB2/LbmCRMPjZ4YzIhdCnEQGmEAQiJMYR323s6WfZCGZulXzY0hAI1GR/i4N0CLQKAAo6s0Vu/6Tkaqndd0aEJp9mcohQwNvvjR5zxMeVBKLx+6onWqJb8a4i/kcr19c89GxVZ+W+xxdOS49NU5m7j5/zevbQ2qEZhw51I2cBsnFHKwnekIUvQ+/u7OLQr0/s1ZW3DjJuoRPeRhk07sCQN9ceMiK2iEL+YE7jERgCct1jE34yjqE0kXbsXhUB1ON5tkLAsCZfRjCYOiUBxSYTBKiGR5ufv1Jckr3rlWZCgIYP6c0Xb+D0qSflAhM4uonRQ9YFYFsg6ePLHMpgBf1G8pwmIY8BIr3EHNi5sXNq1yzCEuApOMdhKzcCHvB9YRYIQVtqMn863q5qMWy05pDhXkYTT8osDwDGQMDvdq6K2+nFw0mQqIYzJLJRX2URIKteKIFuFCm0SWOxBxOLa9fLTy4MEjwx+GjcAl00eNy/U/enIXgmWGm6RHUVX5j9xeFNtxR9RbHcQLqFWaCObfDlDBiHyBHSxZZV2lofzzF4cXL5zbvOyIwecDfAz1jjoNrP07sPfm0RuRAP324UGbD8jWMtxJJ02AZGQjNPIuhKz2yIA+4Bk2aBaa0b/YEXiAzlecLq4jdpTGZEZre+vSj37w2V89/Ts4AlQ1xPTtO2kxLxYJOSNn5dRZeYoZ+A8feERCmroN74oxjOwZjdftwEFwokbhqXaClHdHeIjAsfRedYoAOYREYJdegVkJ3XHvKg0bfb9+BxdVFkkaLVSRj10spay2hlrJhioZdS3zNHZtimD5xgVn7/Ao3t158NiqN12LGmqDkfc/3DJZC6k0MGK0TExmHqeRPDxkIpheE+ullvgClGjRvZDy9fDVyzsPHvH4L5zrkBWv8wYJh4Bzs3S0G5fmA/yggONYVtcBlE64jJFTIViSG58gHMENHppA4BhER591k73sfcXo6VD8BChN9drUPeud6ppNPzFdqABlz73O0MPPaYU+7WhkF165ku/fixoxj3oqcPSJNlJ04owCzV+3EYHZ0rcGu1qnCGw2L4s9K9Rryf/OJdfTwS24DTaxMYj7G/T9BTsR53E/enhw4eK5geeNxwwEyQMnJlF8o07vor9kJNc2RnITGCYkGES1U9ds7YA61Q7dNI4KmcZgXu5DPu4CbiweVo61/vCuTORS3Efe8pZ/8Omn/9P/8lcUXmnOFKdlnCJXjVLcNyPuXcTJRCqEa4o4hPPow4vyZ9M0UCUrjG7OD6dWshYitxeJM1yk2ZqjlHlqg5mxrlEbsyh2fiqoU4rV9MOTBnZrDTF7MGKkDO9YRoZYIVu2J51PRP/ytu3NRCEceqllqvm6sMqrM2dvOdfEUWbxcwgyf9WWrzb+w5CobgvcHECUjRqKzbRPjPE1wRr5V9q7Xp373oqUj54+2X+5Q9/QWbdogcXPv/hCLTohdjdSqhRrG4HALSagHACqpLoSEY9Ovuq459H8npspSS4HCTRvZdo/btKe8lsLDZtBQ30KgvSyrJEzZRH2bt+UzuwhJ3wzaeHytzmugDDS0NfXZ9nHFocYsKNVafJk1DpPkHgnIAfKgXdFdhpZoSRMuPkSHEUwTduMSDlKheJYjiA43SAa81WUOvQTWQfZkAn87Ljwzt7eNntv0InXVsfTWPXoVE3TCpWqn9UnMeTBcN9WNLwPToE3TTYTGlWRY2t8FoFcTEe61gdh8/e0jrpaHGzYqYIuhNBkYTN0pd9a9AOWiexN3qH8a4M3aUJqUcM7iWYGyFny6o04S0vFkZtZoQBsYM/CzX+qM3zMvB2dWW/ZGnthB9Xr+/uOoGZx/vpv/tP/59/9+/v3H3z+6ccMUwaTzGjOIG1aWWrjDYp8mHt/U47aCI/m/CMx5vSMNeF2+eKlf/UX/+T6lX1rpjr+sI8ZddAeX/hw4aKu8/3xX6//PedzjC7Xt84AujFjJO8EdFAwkyaLhlzzfKQAQvOJi4WCEsE+dVDJlx7QkyeHh7/76hsz1PbskRb6Zz/6/GR98IhSUiDFtzV71o7NhthLM8YixeBWhfENzuCPthmQKa95b0EEjVGVLzljA10tSXi9u7djj3jTQPYhf/nyhQu7eLMfgo9AEnjxssaF38CDR6L15JLMckohXhKTvAZr/Y4cMLXFgSRt2XuvjfAbFdatdahGYgQwEqWS6YoPEZ9/b5xi+D72MGBZQcKiZ2TOdfe6lxAPjmpIeKpeddU335tponHAMOIg6DoaOMpQsGWGZQgUFaW5mu0G6UzRjqWxL0GLGWgfMN3nAMN6HG9ZuHMQ8vetasJHSwPC+H2+1QGDBffWbYv/4dwZSBNQdsE9r/KRCJ7+h/jTkFeHr3NHY3m+xyBTBTlFi+8QwVgP1eY/9yxLx5ixrEdSfX/82Q8+uiosd2n/yrU3L17+6Ec/enH4zEYVCPHqh69+9Y+/uXPnDjo0dcMWtB2lo2kt0V8YEfcpxzHc8CNkImA8qsGmyeSriwme3rQbwaV26eKZ1ZPk7pP1k6KkSoBFYMRqw5GrrO9ioXwlH2oMxShTvX6nHzmvWfdpsuZiV4+SkUXZmjWfd9g9j/HGkQsqwEiD7ss72zr6XHmIULDpN0eWpjm19FOD4vpAYrDNkdXOYOchKGss3hhoNoYRNkVwfSjvmExY3gUAJc0qKAiXRny5KFN3z3KXIeFEJh4FGdWb5yB5x6ZN5VQvurdqi0U4MFEmd20AylfhlOpAQE6vOE5ah4drNHDBBeUdyfkxs4RMDQULUp8W0DMhMD7yYmrMP8S7OvzwBQ9ch74phJFEghVd7YMt1aLlyw5JkUQU2RB2sozKRCCJlvzjiWtmbFxQarYmkqZ2AhqVWrJn1SVvtlRZNVRvzQ8IfiPTULg70OkIBCxi3lbOrrZKk/lQlfEDm6UrEAiy1ICKKt+rwVlV1ZHMm3fzx/C37eOhpWdg12lYLoOHczYsSfzJj37wxeefCZVytYt585kFwWaRydWre5999qlZBdNCjdUskWsE3+E1choH4GkS+Zhc9aMkXAkZWkBREW9tFUw0yXfefca5+yi7LD+aae3emuCMOWkj2rFLo1CD1egExFLf4VWR3mVGAp2GevGs1saCaIsgJMhRYXkrrejG9x+FFSNfNJMgJj4f9Lki9I3Y+rUAEVV76K9QhCMZ7OQH45pi3saj8Ig/mjJGimCI3LLwWPQ5MuzJo8f713ann8kMk3UFk91sKCoUap+flUcPHmGLwy2pqS4Ivc+sGZaVe+M3DGyWzPhxOH1gx/3xpgMww39YrxgIWBv3oTihyfYq9pAJoD/xsNGzOe+LdfE85PJBElPCO1QJGBzJ6pyQsVoXgmhlaWnuMDpJgTtSRqhMAyg3wkcfkq/iY9Dp95AnVwdcZEC7b49SBsYVItEtClZV7/g9oYIUZFRS37r+/IllA0xqRkMe0QfJsB3w3HzA21f2Xzr/vqMSeI/u625lFrExwd1P6EeT9iMk/UkGDfJHSy4gYg1wKYYlbm0mjXMwswgUlQOwDJePb37069/93mpE8zkA5HCqvGH3Au4JZTLxa3bpOj66iBoTrysSZ4URxdJPd3JMn+QL+cG67kBNwGU784dAAw39hoqQKXLEiJGsNDcaZ6gUnfuxYKi2yHqhpT4ndBy5/76rPOHEKGlE91FXjrWLtHdqanlR0lMD+ve575XkT21Aln3J8tm47vTZrToCHW5VJXBj6BZdTIGFcSiDMashIuNzbs5GAK3cIVYG92lWZjuFHUkCthULF85e2Li2aJ0kFVXXrSebixilomc3Gyb6xyh6qbZPMA6UBdpIpUSMiVXV0xagAlIrTQvmb7qrs0khwQ+7CHHc1GkE7KfbblVwPmE19PK7gUox/ko5rey01JGus27gVf+rty/1eGSc6X3+ygHmZeNZIoeqLaY/IxYkryzfPa89ADIIwEWLPlodE1PrMaTbgjZlvglZmrYS3DA7/r4d+e3/pEs0YmkOgQ60qnG0mvgiyGAXgkv0YOoe+tWMBmvV1fwjjXZ3/Muf/8SATUglSLB+6bUS6fUru3sQv3v3/rW9vUHYG7ozcrwQLmIlBCMuCbtr8aFuJrg6sjPbNsK/dZe3SozE8tGAQGBE2lbP4G+eq3dpXl6v1QXRGU3iigYyecQmbw8G8PuTRCeooaSkAkVbUaCXkXBw7s3qCqA+dRLTvahmCaWf1Bz5k07/tRit4TLXUWvlmDvB1Hg2+pw5VIM2ToQ5ukcKRcmBv0JAfCkbImC/aqAsxn3S24RD2A2K9Ve92PdqIKaLKCz1j0VTMkumaT/jLNG+5FvRXole+D4jTt/DcYCeB66qJMiZN7WekIyiVFQZd3SHH8rF92ZQzJ/lrQWqiKKN45XHB8/kEzieme16/OQZslh0FK0LPlp1zVsRLbDi2S5Y1pFZnfdaD+Ym55efdvYMYxci3uAhfHBwBh3FEXCNE3hSFdzaOCwCJ9yr63auayX+mfJh3ST6TlU1Uv/u22+/ufWd+mmfLgQ5WBA1Na8G9HDwdhRePDB99lQbCP65uXx4rN98+23R1bFxMG3ahbM9E9WiKMK1Rj7f3bn9T/78ZwYJOQK6U2pprABz5FXc1PLCfmKtE4g7mqEyJaue/vj6tX/85W8eHx7evnfvkom2lQ9nV87aSzpIdFpIaKctGm09xOy1hNkLMwI02ZzpMzXSoWFRfAvIYiajAsP5EEo4/GGgqJuyCKmCyDkE0RTo42gcJz7HzS+OckWoKIQMa9i8lHdzEVGVCZiAJ4FJQ6Yzb0xSialfNfO6itOtVA56ow9uYXVvjYCGXu8kvjFVFx8u+uCGTonclHQNHTeSb8VqKcw9Dh9UmqbVWVisuwEdxaaVBfca7hNi71cdymS3ulaZuL+AftJcNVuftRjj4em8NRVOtcFcgKvDsgL0w3GbDbfeYB4X3bARmwXBL8XGuRmCgRrimJlpNsSaaNIFZ9wRWQowpFowApqeQRzrhF9QJWTxJpxV61kL6r++dfuh9P71NhW3roD3ePD48cwZC4k225tNrMokonebLKobiWS1l4OkF0oAoKnaDEIEi8VuHh8/ff7i9r37EiZQg9uD2UMrFfL239rKdn9v7/6Dh3apPiUdVX4x9ZPEdcIJjdRaEXn80gOubxgJllYUP9R/tPLxzZuffHLzq2+/own7UjLXtoBlJ1KsVwgNBC2tc3v12j4db+ECDbRGYWZuwB7uEu3GmNhv2gkOSkCiQawvEcEnW0rWu4g/2F3ktHPphqq+Kgpzxp1oYKfde5yOE5gRfgQ79asCxGK0mhFYyNuAm3dY0QAjeB5kod1FercF9lCQXdBxd5jaxGEBVn3BInbZcp+AicdeMeSVdO3SptzOC6zmqgdbWhS0Jzeiilfm05tqpbKVq/TAXp3oMBXMvQXVaGhrjpnHkAii9u5XMyiCZXmhmt0eXRzuhdBS8dIBzwsrTwVn1069fvUcu/nuwr66+nPijtSguHM6RtDMW0KfcUM0YFEeBTxRJpU8IUhfB6NIr/VscM/GSgBrXAAaaC2S6Yi//k//MFE+RSxWFoDZqt7cD6MGwY8MiuawQxgTIkmLaW+JXu/eFBGpy2yrokkkyLam9qCL1X5HXR7XV998++PPPnt/oZXfS2/AkdMXiRep9ua1q7/9w5fmYc5eluQn2E4c4NbLA3SI9I3e528M/RBVC9SRFkqF/9mPv/jDH78WFbbXgNSVK3u7Yk3A1ZmilgUMDlIwh/f42VPUgwDIQBcQi7UbBYj/C7ubIRb7mpZmlN4QfOjpFqhGgsJ81AJK+QDgQXqfmDPFRBQk3MeMLPGJvqEny6fsBPun6IJeuMKSVCmbBR4wId77/Z8K8M/C/N3dbemnSzwHuaCBEwcHz+zWd7JDxLwADzuqI5Go0eGLl873hqLJRj0kOyry2IBh+DQthFEXtUmYs3xQBQ9exvsZxEeUisScynknxerWAiUBzd8gnHhU2UWhshoMM1vrHTUOGf2Kj0tDikokgZc7oDJjkFQnzavWvujT5aeIizx/9gqnRErct0eo1qUVOlf38cETBMnnyab0GRr4FZcKi9cxFpMMwQWwIE7Ed/f28ZkwLKkiZo1F8EiHXTwcVkFMqSUcOUiLaSTlxiWgUzPjLyGIMpAqDas4K1OuRFK7iMtCB4/v3r1nU5IXr14vm/WDMTpaFNpGAUc3rl8Hj77ITEBgz4BWwO77EdlCuLZTP/Ximczh81ZWcQpjExWU97tyZG8M65hkut+6e+/x4bNbDx/rfQyinr/U77GVAt689PRY8OTM6mmtxME+caQnOE8rRp5ZYvzmM3oX9IOGNxKLJVIR/eb2DMePj94ogiToGmoqOmEDe7PW9oDLo+o5Xj189qJGxBqll13IF1R4cRv8JqnNKgbbvDQtjWqoNw3RIZgHoNmmgTYunX/55FAf/e7924sipG/erTmWb0CbRiMyQYEZU0loTOhgqinhtGzt9MsXTUtFgJGN/vj0NW/YfWigW1jrJlF52BqDE/r+EguXPZ4PMmoO5LrsursRuOyCGoN+OMBcGvjWkoJTpIaXCo42LmDs6WfPpL61wo5ReZvVyigwYYCRkPf0TQMDjpMB4KsXwsHLThwSMd9fmqVLXuydmOGi67gfORsyYHXPvv8MU45VgrVsPxlQmFY8efYEAdg1tMVP81neaMj57v3rDtOoToThb48lKf6Wqk/utWKa9RYtaV+joVzkXDu20sgGZ2zR0QUbLr4u0wwF27UtD0aYbmf7siPAf/DJxwQDoABYpEGNSSecSKeIGBDzIrxUW/0DvCQNG5c6ANTJ6M/fvJLy8K1TrlpgndGPDWlAFPHBqXyNEz4MK+cmfGCNWrFM/UWF4Z3w+eLuDL7FgjidiACmhZ1BEapViPK1kjCEN3+U8hKOkQ73VeM8v4vlQjM237MEMDY8e2eWAClNt4XuwsTaOPmvxqXFhblLz2PgSG5sE8WKCP8JPbWNwvRPhFiraTevfUyKbf3y4RHxzFkZDR6YClBPBTQ5n0Es8z/fBpBoHF4L49WX31d5AAUm6+3Z8vryRGHQ6tkLXynR+6g4/2Z4yg7ol70ymrY03W+iAxKcsqfqgAT+OW3WPCv0zuBO9st6BjXW85oh2SzR2n2vRrq56enA4IkRznDEVR/So6pEVnOVCe4epU4dB2P/oTGRa010ynASUN5Yu1AanU6hM6K5vERDd8RlWiZ/Q5qS+oPM8EViFucdT6guaOX0alN1tBRofFfTkByUvf19LiKPSmzY4LhoH+1xNu6lC1f3d+/csxTun4jSWt5A3kS4mR2YpAj9z3lPqlo+cvYcKfXohEuDudHG7776eubZ6k/ptxcqMBZBz54HhHvdWxQ6AZmv3YJkT6MrTZmzcJymiUzp9BjASiUlKUrdO+hUEJhDT6U84kdOq0HcTltE0+ORn1pXmvEQs2sm9RwzM++b8UWk9eYy7ZI5WA0cIy4qalQ6sGuIIeDF2pvx4YMDvfCrF5LBRyRnakUMbnfvMoO64MFo6fxV632DS2f1rR9J/XPUcYl+5y61ty7YYJYMDTRDHtADbGzAYF3zCzAhC5R+5km4L2/6Hg1Dtp4hb0HKCg87HBXRRp2J95gA9Sc7/nvS/z6+Lq0vbbkz73lNHR/4cr67w9NRSXZlkuG0MjY4/Zv7A466qjIJ876rRc00YoKgSLMVSNF+BhLHK/ZYkTZSAHeCpGDE9ufPXphYG11qhMcfK/UhU9yueKoeZBiHVCuDr7HGEo1n+KtIzA0WaOJTffrxzf3t3V/95jdmAvilkFeJUFRkjzAd00FnufTXr1//67/5hZ6ba2DxUwYlRLSV+tYNaaZB+urqbK7mJK8OM0FuFQEIoHvbl7mnEA2+bqqfgkdpN+gNQo11j3P+Rb55E9z1jF6aCDQaGmB7W0+CkXrrPP9Z39Mr4OhfCFSLGmoPX6ZNgCZX2vGx0sqmQ3lHw8GT8rYnEZFYJ4Xjoc17a3iAdlZ/I3GJOovSpJnL26mX1txXP01Abt1Ne+iaEjKjUh54p4FIJtX/sWd6W+0hN5WTqsnd3tq+tHXZ24ng/u72gP6/wmJEK6iTm5GpRCu00FHhQcG4eGFHxZLKoluJ9RQAHsRRp/McAAsM76YYQw6FFdC63xm4zOSMKaOcf5roYSD2AsU4CdCN1kXSobu/GUTwLi8U35wVgo2XUGHxIRbe4LIqpydxMUgQcfXbfTb/bcSwIlwT0VmM4aRAWSpKXee5c5fOb5I0CaRm5ZlgOENNYURGFG/mrB5LcFZD99FrwHpvXzq53Dd+9Pn+7t7nn31qFX6zlkdHv/3y97PhBcl92/r91MaerCQ9zE8dn7LJpCNxLJ86f0YWJx/E6e5De9BHFvSnvTk868ZGFkjSFRKAlABXEmwWalinePBUFhogjeujVdTvORmunhF+t1p6QtAxrWdGTJMvpUHQwKeOL6uQXL4vcV1IJPmIRUPOOKfwCGwNEQi3sgw+KoghaqMG5FXRJGyEQEnZDhSM+2n6at6tSvG0jY3Thtcp7EwiqWJaq3aIkGkypzwKXLpkY1o28qKSUki6vQi9OWFKwvXwQAfoM6qTNiWhwCBd3W3GccR2KVSTyVYNJYzeUj6qQkubGfuBYyqEyBh/5b+XWpf+eTV2qGBEGsUxwky3TqDY7EIoF2jrF0KpJokejZp2FFrp/PP3bdOLDU8ePzSD1owhFw6vhpLsiBVechb0t69fvOJV2hMWeKbhNK7rCNRh7UBVW6Oq9Cq/f5AzXugrGOAAbleS1dnxeLfGtSMUbyjG+wdtkdQ89Rjs+jq5j5SPJDvAJQM1vzSclVwzISD789OPb3z20cc7O5ft28VT0o7Xn68em1Z7bMvlZ895RCRL3Jygl3wtP7qWGzTaEIIVs3rxys5O8BsU4D26IC4RQwOwIKhuza7D/C49EqwyKk1kVNCarb2dPSe0wcv3cIZ05MNFtAnxxZxozx6ikWf81WqeLFGwuLlk5rjo9eFT2KLsSIOezlyeO0IxWqnK/lcH6MrDMchOkEBkCkzxSYBLMSoIna1Z7hhECUpWFIyT08K5SmdqOnvTjrVEiqlBhYqrEtMI/ayRDf6ow3dYpD5BGTmOKLQplDPZA8roQjVkzKNPFXpdLVVgeUppM3+6DR3/FFGoevp6AoLyQ/Bu4xEKJT095IFW/k8lI70OIjuSVx1bRyQrXaeBJq1Z6Z346y9IbEB09uUHiUyty7EfhyfSZs1eq4QkGFBZ1nflyv7BowNbhptKs3mmrTfg6ew5zrzxqBzE0DqBJD6quTuDbhQ2VXV8qiNj5OnR0nL7+DJN1dEFxd3RY5A2nSxBEjoiuQQjYvg3PdrYlpR+4CLGBWl/9uPPv/jBJ0JAFy9emszGNmhLBo7bTOmTjz6+euUP39z+zklRsqe00zT/EG2GM2qiyXZwPnP77m0ZSvWKPB9KBqwcHBxZEEm2miEWwJIla8hR3H7seoivHAue/up3v+0FRBvCDwcpvTj90WrC73JYNbK68Kw+boQn0XQr2cE05BtFEyQ+vWZpze7lLT2XHYuF7O/cf/CLX/1m5CDoR1CSG6MqYuECYQarDZ2mr3F6EeMaCNhuYOy0U4c6LnLPirtk/gM1i1kcfSqkUYPl9DasSDzr/YTZf41gxoi1un3NTVHhu1c29T+tf5eDbbicFKo1fL1uOJRxe/32VbnNOUYDEPWc0c4of2/0UtoYZaq6T+2GC0lAvxxp/3wAe8KtLulC4HslffFncEjlfNiOzFlwRiLujQsszgE5JQxmE741Jl+eCFoorJDC7Iu/4qFmh5hP9RiP8dDVyaIVpR2aROOgXrjj+uTTrUxFAyTVZhdK3zqzvb1z7+BhTQy3dAvYqTnDEp5alDkhAt9Mm5CNIv3UivZTClBdufbRxUuXxfBLyoIOG1MnYz+osxcvtufDL3/3qycvnl853q/1Xk8Y1IUfQXJq3bmPDx4eoAraMJHjQtGEpKEXRpZqCWkPXx6aW9WDSfaO0owTKtoCcfuyVTIvX1vzN9gMcTWU2op2RaqFOjUeOeCm4rIgcp6CKrxybS092dm8tL25ZdrO/kXX969saLKdRVqnYx3t777+9vAl0+U1JMWPFGCRAzgtxMa8Iv26LrLiIVHoUxtuTrF4P9wCwQldBoSIjAtEQWFvpvDLu159f/T40WMhVOv6ezS46F11lRrMhTUFrhUrQd4d2TdO7CKZcyS7LfxbcnCJ/LOsmMno5rDmFQAgEvks7OkCiIE8/+fLgFvCS75VgCNprwB1sQDuuL/gOBoR6xh+RcnEoOMFkqTStIdY++L1qSFKqME+LodPn57Z2mLg0U5PC4e3bb7dMFIikHI+okAG5ky1MAsQlXFzzGDUG0gW2DjSiz1KhJUBIGqnglWuLAbKVTmVFrWAO8xSK5/Es4HLMLR+f6DWmr68VpSA+NAGj94/PHiMKzw6T1WaUR8nkHwqDAzyyfQ8ffoEj0DgZY5WLZmoQJjmbU7v71/7m1/8Has6iz07/VN+9jgGMi/GvIGn8cz6Ok/r8ubldC1XM3EhBC6UF1GWLhIaJwY+pBL/kaShju/azFWBMoAbtS3bSA5aNGRzY/Of/vzHn968ZmsDpoI7hGEn9JE3v7q2t7176eKlw84fiCgJxhiKk4u+apHDZuwrewKHtCTKlirgnGUulilFx6XcEr8bfgA3zoyn7W/6r41BYQRortfXNuxCeL55xs4Df/eWM8rec6AZoA0ns9sFaGHT6uqzp4c2TlX+0cMnaCTibKhFCg0KKYO5BdbXjJt24z54opZPl4PdfOv7IkLzdaBIWJZhDZgHFUUWu64QKg3wUzGxK7TB3dPZLxUmPiNOutzT4hyJ5YjnCzNrkUuS0pHEyoS/zaXP3T94JCRweWtT+ppT2Fgl4wTwc40ub2+xnQ8fPMHUvV2EDVwAR7lgy54OXr4RICD1PRHmRSNI4V6w6ca92vO0gHBZSnpp01MbPGqo0UGDeO9BQ7WK1s0VfE+zevvugwfPDp8JUdAg/hTxGvcviChbM3c0f2XFOoT3P/+5+sz+piRzlnN1SSpbX9vduSybxEnKEtQB0tYPKh/Zwpy8BhpMKfWeErNmJwix2gYZo7JZSqTd29m560ANLSNnr/cnqZgf8GisF8ZZzj+g803D9ydAXK2uCEP94ObHu9uOtmqGmMMHoLoQn5LwTtFss4Df3b37pwqbGo6e0ak/04CTghFoyK/64YcZIgttXjuWPDaAo9fsdvHKGpq4xdKzHJACNmWuLwvgqTCVHVswPocCJgS4N3t7u6p6dP8AM7FKeoLoE5OTMQvDdS0itzW25k1ddfDC6nqnHWeXWqao9iIK4Kgp7flMj9nXEVk3uq0d9/s78DMvA6dfkW4p2S0kmNpOOl5ilmxWL4kZ8iy1NMQYiRml4hzxJc+coRfW0J1X3KCThtRhzd7xUYp9OVd6atK45ryi02evhL6qZZt7DgXfNO8zUI/NczuiueteRVQ4shsFyDKLG/sy+I3uSK0fndgmdjhPYyz6hfPSdliSEcxQ93MiFMMfGMraeHPn7j0GVD1knO/WHHmGI8UzxyB0juCPymiyarz9SNCEtA/YqaOhgyXHwLv/8JFlZ+7zjoqdgw6oYTe006SzLl68fi11gKkwkqG5lDLsuZLtZCiocMYqXN31sA0DhizDCjCNaKlMowjsLwrM1JJS+D40ogFSElCEPRgBzfsiU80iFSaWXnJKnxBB52cYXxevXp3dQuhc8GJkdESnAaNw8J8msxnajfBoOW9xAB49coqMc5N0gFM0GBXo1YF6RLMZqx6LYIzPtyLmzPrm/hEmBve0tTutdKmtnEM72522FPjx46e67IePDnQjIi1vXr1xPggCnDlrE8hnlAeMglH5/OlCzlhahCQ1r7bgcMO3IE8OCkgE4lKEGnCuJgQHZe9MNvrolTIjmrxOA1U8HS2acY4q0J/mC4Cmxh0MQzgMAlEGC52oUmtRqdUzXL/g6JzF7Ii7Hk6BRZAo1gD6JwIuwPZOBJnW1DZsSKcymPxass32kMsBJg3D0Dh7vCLV79SpctU8rUfQdUX/GK1MlQ4JvMHSuH775sM333338fWrFy9uWnFC6EX5zpx24larUyzvE2jxtu2ynzx7dvHSxQyU0a/UJyCStibmjy7xDi9s2CdF3TqiQg1Gc7AHMsBSh7wuR1Scb6Lu2TO79Mi51XdIn0I+iSmvxLfKxF4XG6InAyRw/dRdjBUOxQE/LRiioEdSTrjdx3vFDfZZfXvdpCTjyYGzihpa+4mmWxsXMbGBeGKIu+NsIwnS1mNGMggtkjKNVnNW3adBTaOTIOwuuXknisdPZTbg6FPZQRzcA2rVRuwSNq35eNGW4mfPSra5+/K+LehsmCydRV+chk/J6VBMMtj4wb4eOXgzFLUa0u7Qz53/ZX4NtPZHqdLkStMj6xnIkangzr7CWBkVusw9Hir1BQX76hNRUiHkGSgbfs3tqZYbPB1dMiRiKLJcNeKkasjk50Nm+5uJXQZISgxMsInkHdxYbrZPD04+SBoE087cSm08DQbcGZH1VYHlvV4MvCGkAumzMOm0aNX7iEhsqof0kAuyxrO/YAGnxFhQmPS1P+CCa23g0FQ4vn5dItDu3Ht478FDcmFagN8q04f63L3/4M6du19/Ky3u3sxVy4V7fO2a5SJBB8FejpSmqz8Yjzr4mKnShJF4YwODYeMsEOBLH/rQIpIyUu4+eOg8Q5i9PzZMeaL/l13Hu5Ki65qBGQJg6PQMBgajBzEnoxcLwZAtH/C7k9wlnyAzxNRoRskDjdJAxS110EeljxHBooipxgsaWYR1hoasdXVX2Iin9wf2uZkwyZ8jspLJhOnmWaN4CDvIY1l+iTHhOvRWU+xMLif85bYEhLNnrlzbL0a/uuKINEYVtL5YMQz+4WOAZ6Vbt8ZTks/TyQx8bjKnp+pMgPMd3gwqMGTeGjudTDIEvgd9Ukt/vida8ZlRkqFjUAJT6YioWMgu5AIZpRotAZgiaIZGi24zcfmKJXurbVZ8oGpcVl31swisxfQVtvJ+xaMgo4BJUpOWFRvScLiEOLXZCqcmH2yk+dbG4DarFDYI9kz+ogzho14CBdT5uDOwjk7gMxVk+1LPkZtwsjkAu/Kc8/E6xYnYieT4rt5IOkYs0S3UfNykWncf3P/l737/ze0WzBi5PRH8evnKLmav3sgGfWVfatkeVo3x4X9WmLCuFkbxAB/bDkcfvrG1tfnNrVu8X8arGBEH6RS5yr9oWhEQLYSz78iFc//pl7/7+v5tfQe+chgW2Q3cgYkmeK0m5jN/plvwFIcgnKh0u/+90gV7npFcWzGN7QhEcTDICYctw8AENmvTJBapNIcllPHi1QuDjHb/jI0nAYqqU0zPWyA561QjNafPWZNj5QjrRmmRt2J+NSCx5qt8m9HFuR1c826dIWzmv4pdAFSRCf72+pTMEvbRzuz5DFWsqQ4cdlGDI52FHRf72nsBgdUQc1HtVRHfe5SARqkseOX0dQAsVgGw5WUT8wYnr4Q3pjcEZMwKmOqqmmoYyKrDxdRZWx/WPiAZXmd8o69Tx9KZh/cPuHk7e5eFy1+/emnYIHc/zvauUQRfwRLjzgm38EU7pFVC5njeG7YB39m9XO1TvF9KxPaBKEaEyPJ7ylQgY9dgabFyri3fxT4BJUfAtvZLJwxzdgYAUPRiMxBLF+dN1GWYeBazk89vf/8HbZJMFSaFHlhpLeiSe9hbbukT5B3Vh59Eq3JlF4qj4P7+3m++/NKgWWCgnaSGj/GVkA7dqVDNXby4dfjqBdMKpokbZpXtopb0j/gH8olgjACEd8gnJaCfvoWUwweg/dSH5N7Saf79gT1Dnh+eNZK0GJ/X9DZ/iQuTTUtK9DARjVP/Mud52AzYheJydCm+/apXS4IAfRzUUp9goOU2BTKolfuSaiTHI2bJnZIVH3DBmub5Bd5+UbkTRzw9//7FeatiheTUr2QSH8urGQDTpTpQjBnRX76X/4grC7xekwXA5izrOaHmzkK60bzqAbffyfXqmpwZdTgVsq+YH0lrUn7KmRECBbm+9cnB7dWI3KspVUbdFSxZF8/bssxnrLVHegnCzRDOub3HALOb95Wr+/fvPOAHWsYZzJxDKxbMJr0/enEoSLhiQs3Um3Ccmhzn8ap1nG/tjVn7dVARE1RkspZEG4cy4UMigx2EvHxpcBr3FUezh160P4fIrOZCBymjr0VwAUEf3XE3hzOr1mcwnhqViD7mrQWHoMln7zOJ/iQeEij5VASY5hW9LHC/9ITkT/Onti9dAp6hwv7ebvMJmmq9X/DGn6jfNgKr25ubHI98dN8DMNPLFJFtb426UNtMVBRIvoDh7fyfNKPGAM+pSPQIdd65q2GdUNfLN6/vPXwkXu99/YRRrkasfIqRyIappW0cbZw/2zHyq8fnOnPDrrHnBWd2t7exAUjM5P72Nnqi29QcjRAIPNbd97eaapViVQvmLEVinP9TGqwN6DNCQ4XGyrYf1HPB8MJFmaf6pDB83UGDGTB2Q8kpHD+qNL2x4OuDo4vxTYegQZQh0+IjzBUHwxANYLaeovM8ckNYOFKdi5ttMahxQIqbSHU6e/acLhPhnzw+ULU9ZtDcRt9nz9oM74PdMc7auOH8WXHbYKj5xGvMB7xCzY2kb2AoJpJJQgw2FixHTl8+LcOSDBZGb0TBGxwTQKri3ZAmEdSRYKS66YlhnoN21I5T8XpajWYRfQgfLTxOZhKkoS5gFAaBALcIobawy9I7va1iSOwNVGVtqaXNaIcLq+eM3e11kHwFCzsSF2Nlbw1ivuYhANuUDigSwsmIqVzW79hyHAf4AhQH20imGQiimOOo/Jl2tVkzgfvTH/9YTtGHVuVb45Z/Uhv1DiFp+ct5uc1yM1STILVUalH6+iGrmNMHtqninlCS/J4KR3YsPjIuGVLIAYzN4O9/BEyqHIPCS7u2u72+0oYchghnzhYCc+qVIgwa9PHBEtunz59/NEec3Lx+ldly8gQAmV4L8PiydGMUYWEPvS9cawSldxfhGTqmJOMx5/WPvkKhJ4EXD9OQYBsVmlsntLu8fQnusrsThfOWUryVJSZVxpCAKVO/nscyHa8MFVZI5+bRFmKSm/v3HlXhh2MeiOhTASv7N74sVYGJaf+odVvivW5HpuQnICmkYQzaOal0ZrMEc2zgnqnhJYJzLJ8AFPtw/unh4cbov9dG1MD/pw/UkoUsQX/KWgWAx+gjiEj6LbSwIo3SKYqJfk6tn2+VyevXQnaKmXUCFp5iKmjFLq1O8d0BK6oULhvzt5DRb/BDwK+EATPg4qLvWUIgEFtuME3Lr5sPYVCKT3Ca0RZZEOdhGBT29ESsQK4y4ogKqpphTLWl3HhUP4Hf2easM32Jkp7UrtWXbz/YT/rq7s7btzbRkHZExRsG10nUiuuVu/fuc7Eizbxv08NQWgw/+KgNF93pzQ8PDgoghkeMUtjLqpqBeNLfx5TZBOlSC/3LTL4ieBalzh12UXq4lh60SVNfjo17Og2AoSjPvEVYtNuyQaWHqg7LkU4qfHX+i89+8Mm1a5l5R2KtnbZmgAvJsphepi1RbpgAFs1TRotkS3XhOAF3HhEsy9j4izpiAwbYLPLvVZfx6kQZuuFdAXXLbZRnTE0hS/3dONI5mKE67hy7oYKAkQ0GZ8Vm7kDEnXoQ4b2+03Kns+cOX0sF60QwxENAKT0MPLBt3VeotwDGBa5s/GOrIU/UpGTalf6Mo0ku2raECPKLdnd2tUl4VYKeK+eHKYnaQB9fExRPQ8BnYAnJ7sfkDpvFWM2sndrd2wWVfRE1gfwP7z+w7Bs81kkzohcuHDlGQydmZ1i7HaLqU0elmMKkz2dOSSphnsTICNA0FgBRvpaG2H4HFnzjywhnF0AgEc2ClyLlbx1OmklIeBfZURbQS4kZOkyFXjNKiTlTeejAMUWDYNJI6UTt9BjBkEkYIzpN5zLZVPizG9fZPdVLowPWqKjDZ18aRaiXQSFOZeBBgfRKcFXzJPuhonBbkm+uUYHIFzGjbbqmUpycdX3a1b8qc7Tyls7WO6elgaG8Rw6PjSvNW4cwjlAii5o4fewi0kgb3HG+WKc/YHCToJm9xZZEytXLTlI7c2CPmYxiFTc8Utnp1ZPNx0Hifq/MW2iKWNRHTQMFRPr4zX47tQUcvgw2bi/2o4qjYTUgL5qic+8BGJnyYsvFasDHe7ZZa71oawyRVe8cfSocHSxrzOOUvoMx7thM0t5h2VrHo50zpbAuJttKaIvgZImvWRUYx1WQ8RtOcspt0VuyQDt+6iI+XNy4JELCuT88dlzVzoB9bCQSxM05BCpi4l9StUCOetk8CHqY+bRlnr2X4hEzBGYx9U29mZ3FTl29vj9WLnE0DwMPMVihYSuzm7pxAGnbhtcEOKnBolnZ6QF9wFhoABaCEEEGjHFHvZnkaNdhNmftcU0IRpZ7ZfjmDd6SRTOENQUbdo1HxHzgV8pULVOt39lyqohTyd6MiYdvakv9/MRfb652sOccnq11K/jrcuzneOvOnV/8/d//5ne/a+cO2bjPnmR97bSZhzOaa5FpvYyDhproe2cJrkqz/3VBIz7ThElxcg6aWkXoJBb+Q5BGKmEI2jg0CLjwnp7R7vMSja5e2dNPEG5KKat0ohTtt2HBV8JjwGpz4zpsimSfQ2bzoqEcGE9JP17Gqfk21IGeN30bbbTwfVtxYUi8gKdown3KMS0Xnh++pN4DYEyN4r02mPjmKsVBX7z2Vh8AIin9cVcz7kCaGtiW7vmL5zOT3wZv+AH/oV6DJwZBXPLl4Ytzq+cAOyscVm29RpHaaqjz4jsZ24vDZI2eyK++KBU6PpJ2pbmbN6wUZa0w+viTT64NZYXUSrEknRr1mRpyIKaOkwrh7umUh4ia3B+8CaVnKIfjw7TBWyOJDzJy/DpKPbscUI3Ao1K08XSpcIwv5jQGrZDS6fFSIFxA4y6YQQUXtwAzo8rJDAXy7PVZncHbSknigRp4buWv2YCSqL2f5UwxgJaNrY30QIUiprgSSOiYlrmaumAdS4MVls9fvXxwcGAxkK7VEeWPHj+x88VX334r3spp96PAvQf3yxj7sG5moM4BZqpoetU+qO+4kW+bhTt//lCSAngWhNO5E7kJY5D1wMWQDfYRIegYvZBfX72yu3t9f/f61auSwq9fuWI3VbR+1aFj776+deu7u/eLHXx4b9Uz/A0DiJOADyrrHMTyzJt/dO0qGiWf7NNQFu1sIAhihKjFKKtthDgRCwvWwCQ7yNMeZvKPRJ4tIHx+eHjm3A4+e+VPVg0qS23D8kiu0jlCqqNAWsFXPNcx8y0tMsVCNcT98MiQoEjfvDadwPG5C4kyaC9tnt/evsTE2Ahqs+T+tIiB393fTq80Tybjdn8iW3/qZ7qLdMNeNWfZQiEK+/RiRvekpw7WuRUIy4snd0J93nBRZHYBgHDUBAaJPrf+NzlbKsE4PDOZmADOR03mItF9ap7WAbzEyU4AVvmJhqH/0lwsGfpqZ2nX/WSihJ9G53wQLfaiBjQmcWg5UZfQTKK2gD+BG2cD4oVmFUc8taCm64xgEHaTHIT61F9IwMicDA9HtM4D/w9/97ccXeMfvY2QraiXNnlfQZXRf3//0eNTev4UywDF/wYedTdsn9GSARWhtEV2iwQCfEDHYu1nAHwHF73rGV2CpIOzszVzkg+wUVBS0L/8iz//4Sc3thwefc7+uecpVawVov5w+ub+FZqtRRyZLT+1OA1AhsiYwbB97Nq61DeNIrQ7mGsFjGIKwKHbQTFUGWl2lQUXektwh3ZJPBiPLB0kXkdHpsbK11c8oYqInkZK8rfQ0xO6d7qsoUbtl3e2kk6VDbLh3QZ4HDRvT9MsQq0kHe70L2pNF1EbQRgjmzlMf2i+SqJ7VqPP8nvp1aEXcUeF1c5ZWAAMvPnMG6qfF+eOYuofCR/btDS3iNpSbniGqDjljZoYIE/wrWQSnVADygr2aKPW+TpSNzRas4e1dEMFtyx0TnfTw/jh1pQfMAKfgJ4I21C4ikZqkrB8coTSGIySyAFGTcZhs9UxOjYtMGOhEJ2AFwR1K9w8/CMK1Ck3fqQ+OUDLMIC6elMVu93PjL+oD0jxgGvKneHvRYTiBOQ4CdFXnDp8zjavbF4y8SZt1frGt/oFcikjwbhQpaVxPz5gULQcfgAXW0uxQ8TqdTDr2hgYcz68Z/gz5WhT7O2U00k2HLAg2iNrQXBwWAqe9bMCkVZzH21cu7L/OMpmL1knSKcqE+6iuPBEA1D5sb/XEC4rUjG8SvPhFxm6NYKSaK2umPfpZjQfTg3d2Ztoyr8/kSFu1Vz1Z7mAVV8oXJbzPz/UUm+NhI7Uzyuq9oKW/UeZ/uJxjrp3F8hyLOc59uTyjth4pnwmw9SVm3oVuovLvTgff9FbfaqtqnDue4/dWvCdksq4NRUOUwKBeE2fMwgshf1eKhxliGt1C0ftUtVgM+qFNiD6As+aTdQ1rNHRjShi/M6cAebJk8OdnS08OIEqMzTQAqB28xAXeNOXKNQ3Nsp13VHf3WS/RWswjYnPmRHYyFqtlN3DLQBWMh3dMM7gK5EgFMBTaQ5s7fYrCtWAVRBsIDuG2209Bk2QgAFdZrqwzAZNJ88+acjRgbj2c+GBV+/tm+uO2vUEIGBpHSlW8ZUVq3Y5cNk6SBD6YVrjDgpTp6FIczFmi21Mg5vxlSz01zRZ07R0k5pEWm2GNraVGYYgZ4/PSsgWKVFbIivOYOddSj+zJJD3bh0VFCDR7r/poYIMZWzRuGaQFVbwC4Wo7n7MGC2I2CNLyqonAvpRLO7EntD2dzA5eThSOOTuodqyNUP0/OoRF69o011chEmQ9LtaDp++UJsYdJww7OnNRs/xm8JP0s+IF9U/tvU8VohWtyL0+D1nWQ3oI9CwTCWpauCbBmK4RqbzAWRNBrga/oTFfA3a/oe7vwsAVZNxKWER+lGgEKlYyZwCSDIS6+l1QiXC9AqYa4NB6jOk5DJJsprwRiTorhdUWZNYFCFy6qrCq55/j0WennALaUGcGvCSZOlZwyikaxyV+Vxb3LMcchUBL6wDSBJhRrbbPshXoyGSaCbUrmLIybXHNIMNF8oLh0I4yjtt4/jVi+bPk+KoePj82Snzbw8PHrUrplOrItn46EYtcqSljL92JHrWXYu5KOYUTB21kwDg0DoysD7aCwZ6mP0LHgQc4AMbZND2P4oQ3d5a5CtftRXdDt7WF+kKjopZjew3G6IXUxeZp0mCS7qaiDtDTCyOqyXG+iB9VhB5kuHYMFz5Xg5qbSGfq0DuxvIJ1BlmoWsPUCDwVx0B/OjhQ5egvry7CwB10m7SAlWoQWQAUBEYqkXb04qnuXaoZzs07i9SGWzJihlreqYZ8UxGH3JvJyT9nUH/Yam/1iQdb21fNs1kfzEMvH5tL5AGVmD5i5JBGSX9gELTEXWBX4GgXzqEcK0VZRKNAozcFRGw5KoikalY/vG7zorsyzBoKgw/zVQoxKN2eOvV2mP9bcvjg6KPu7V6Akov9m25SyqmYGI7hhKtxGoCQWfTH4X7qCpGkhOWDvkKlpyABBD1lfCzOA0DF3maxIdFrrw9KYZIQhsHmGqeKBrV0gYiY08ctBrVQMGucCSbBYkUa8YIp5xz/92LZ/cfPdizO58TX6LT0bMXL+7JhHjzyn52hy+eN1yWg/XqhYcBPTgvvHTf11pduhuPUT0K1Z8S29CYj2I+yzWy+njNWyyDHgloRP3UqmUxtmxY/BBa11ABQMYgtDqfjlqiaEyKAWSEYlVP3n++VaXZ3Q+dfiDfYaaZY6byQ1ANhoJi3ZuPWoNGJcOOvqmoXaJOXbmyp1r906F17HO4mIDPk4PHcHMYIY/zlbNl37+7emNPlq63a+Qo+U6vWZrDwzFOJgE/PH186KQmW6oZYMt4n0ZO6FY/Z5r/XfOAWnEyihgw8qKIYvUjQ3NAuQRnJm8MzQLzEBI6JyI1yELsPyPoUd8HZejgEJSkii/cOFFKNM2ecUvS56XB5H+xIJHGgygje9gkg9MkBANo18Dwp99VEjuyIDhStzDUj8Jg0EjzP+2h9j6/ukrTyD+psSvgmbToCWUYa64eby/wLw6H+rk/fiOFXz0efEmOf3wEH0qV9KgjMSrTO+PJ6dVR6wt6BVZB5QP1Uzdv3rB/0Vd37hF9MuL8CyeNyrgKiiDgZYxJCOrm3qeK4IRVYkcHfRnvAfr0a4S9Zmo/b8+RLWaTCpKCKcFPDbMz1juw94lO5xS2FntgdoBcibGJ+JAquS9ngUdW9qtqIZ/xKroSIPQjlRvj1DuaPZY243TKOf1Fa1Wh+IrMhQuXLtq4zNoUpABK0EQU/8iA2oYuGji1bm7uq+fPHcTEUbz73f2rN/YdUS7xhgx5g1cDlRRAg44Gc0pa5EoIhj3D5uPVze1LpbI7Bqq8mlZNBAvkazEp8ZIpHlEmd7imGMkeWUd//txF2OkGmy0ZqOa13hqRVo1BP+Dd6PkIE8lbpm8DJCFRaWj6rWS64Tqi1Xygdo/O9pYbCFfnTppBtbw7lbsccGtIze/NwdElIj0Vusm8j1cAsZEY9zNI/38WJ6eFFaYG5oU0oSLF4orq68oFSXROPO53VgkBiK+/d2XffOK3d+58+90tpPv/lfUnTXZl2YLf5x0c7nB4A0cbTUZk5svkK1apRIkyTTnXQANN9RU1oUaiyYxmlESpGiuWRFb78mWfkRGB3jvA0bk7f/91LuKVjAeOe8/dZ++1V7/Xbs/wDe/0S1U9yIQwiohLJFEvPJqDHTwkquO9gUmaR/cSa2OSMKnSaA4D+ejVnOGzuWU9N8zJhSN0CQFlWfl2sBXL2JvpSJCuSZREJ+ldgVKqpDL0CI5zCctEGPba1/vx4X2vAVNIi6ZQeObsefEKQ8OuWcSYbhoL5gvTS/Jg2YbYSNXrmDRNktq1bWFIooVWUkVYd4YRhrTqvlmntYYOgPcgwkYyevbOsXNCThSNKsSN6hpHO8h4NHy80lLdf3QMmHj44GiP+DFYXd7/1cj39raj5C3P4iPpOv8VEnJ4zYXdwB8+GAwDb3lRmhUNXkgOFJsXYTckEAZ5BYmpple02Bre28s/7Ji7u3NHJO3whWFR3gcHhoZq4D+UUWREtEgjKcfQ+gCrdnhyIq2eKEzkx6slET+Udj8w0n3CCdBQPtnji4S4UVZ/ScRzmQbnurzztEzpVo1tfKSkA5mUk9BcbmYk1GDQolajbeMHGlHAT+ss1YPnuPnLb7/+27/5BW91fHTfIN9//P3v/y//1/8aV0fa6gxUgfhK7+OeWtTMiah81KbNmN6apfnKo2drYzPaQ0ziuVAHufR5xcUGdMx2ZUHoy1cFSROmKJ8ebQCl7PX6SbLHMSyWdpc2V89wQ3mmkcEVIM9rpeUwoPuLr782wLphJzftrK+MHqAzL6iQKwZri/TNPam3LFkVfYGpYn9LKYjHZ88WLo9KjSp50PjAMiaQRRkID7eR19SXm1zQB8GF6r7mSoUnUZFE7GhoJ7beJm/HN+deUkrUbWhtbHW/2j+09uHq8uyNlTT7On+ZW7REFYttpM9sxp63qELIcIQtbPyLdm8UP7mApmamYfW4MrPHsE2G0mlDhwuFWOOwkCc+P7FkkG0RQeLKV0RZyX1XIu7AoibO5Wb52XOPErFsiEqlJUKjDbvDXuEEjvRAGZk9zUqCWAoJEF6DJQWoK1IVxBqAQPMvDEag7gnN/YI/eGE38QU4FRmhYqr+6z/9x//Z3/7q14akHj26p3HXDrS7qclKb1X8+I9+9Tc//9k3f/f73zVkOTQCRKEhqPbW7d/2Mjv/qHXHOUu/cl57wzAxSHMAmenp9UKq1DaP0Q20VWdl1/sPHPHmlhOhIaeKz6xcaYgSOKEyrREmBAWDsykd2ZU2I8e9nFXwyfsk6i2CQ2O4f75Z/ucvXuovOgRgjGqCHMXxN3ayVEFXdvT85SurZJVNzLc2DftiFlLgVS3W5Gi9iz6b/qtCxWdxgdpr0V0lFfeSqAWhFg3v7t2eBmHmWz55y84HaodJMlZ/wu6aGxC7z4Pofnmb1r3DWpKYuGm3Q48t4vAG43nLE9S0Ld6/i1kLJvDEQaD0j6Fc5LdmIuJIqiyYcdv+wbIC2ceCri/6FiVo+qw9IMkZS7sWHcuLzwVH9YAfue7L4ZpPWE2RSEhV51plmIyssbMWG6/MqxbAJgGWMGcD1wkBIfjYAG3rO9Rn9TskXr08aYvhtnnGq5cvXh6LG3kuD6La38q2QmmxjTQ+GwMBzBALTQJSQq6QFgJJ8nIPKw+sv2IVPQ3ULGqiG7e29re2/vf/5X/5uz/+MQjB6AIWdyiOFN1f32aB9QxZhLUV4nERqSr0wKJ0xjIn3DA0AHjFqRbLNlIkGrcyPSOza57eWvEzKFouHZoqYNMoEWV58Sa2jk3kn52gjHIBQK1x7UK22eNk6gNvPOAM6hvwN96TaQfGJ8dINnyBEjFYglwkDCcV4bDD6M3lHe7tkzLkBRngD+nNp7gqWlsfV9WCztx032EbhulTcpDy8FEDPpWZsuMA1o4fHqHN8o0gexSqniTCEeSwLsVEeyycuoJvZegoFg3rWAT38tP1VrTLHS0zUjF45FVb6Jb4We/IrNZNMR0mG4VFSeM7MvL+yTv6FyFUMyIKIwap4ETusADyU28Z/ffk87VCCXvlXNqKKS9PVwVgOHbOkfll6TdxOCqONnvDp9jD9ms7mx2zHkIY3dtHPzglG4Ib+1uzRXjr7FSX5q7NOvv7h07EsIMiNxATY6Z/y49qrcpV1fPD/YLA2t6du9NvLtlfSpR77b1NZoLtmqBaFMozKAPj7te//IVtn09fPee448UCGEun968lk0+AaogiUx9maj8ImZhTQqIy4oI7c5GITrkJW32BNHbt5vjwfiPxXhBowb3T36duPjvVKF6aMJzqUymxE620ar8BNyc1DY5pvzytq8sNLJMLC5KiWolieFk+vPMagXPBcwfAedtnXGuGD0FYkCLCwZGDlqhdvj28u8/aFB5f2yeNDX418LKZbko8ovUBPfwHY1QZTKQ1kXHLNFysnMLypYqN5w532gwUj2lqsFuhW476MPicjtO4jBpPi4lyH2WoJfNk5DNiGMSCgwvKVro6NdOpr5/WLPlqmYaVfJZyGX+EBHg9lSUfPIpSLZmgRDPrjoO7fCdAUiMlSSkCXdWrgmPtSIWOEh6Vo9J8DcEt0MMF01KFzzl+gkP1BB4oVIRmzDG4HXTQyCN+oHF9wy4Ir2a0qiUNu7p+8PCBISP75Ynk7uFdy3W4XqukprLE0+hJRjv4jsjyE3E95Mav5aRVE9GT2Nf1jfW80FA0t23/pPn7W7mnIap0J8H9/Ntvf3RkmFSaNiNgngLjYNO7d61i7O3Uwn+sd45kPqYjhbQZMTBT6xTAuKBNS5+1eCrmymQyaSWt4NXrcQ72X54aFZEzzUYR9owSdVS3NQ+JLj73t3z4hfa8h44yTSCV7umVZOk3uxZ1a+/qKW5rs5jsTVtBRL3ZqAsrmt3MhbYdx7oMp/p+OjLVvWVsTXinslz31OuLiWKO5iKm+V8/ndXE+MA1gQ9yGI0Jh7/7KY8zMR5mlV323and5MnIaqkkXKaInEZI+Sf5NdmCQyUDyk22Gk+XdndJibV5o5uzV6eGiSYyLhYGCTMvzt7WaFKBT59svTl7fXbPCzltdSKthGOTwC0VYY6OgTEirXyu0Wrwj5/sFMOrw+ODcWmRG13VFvOq9/P94Jyp5ln6Hio/Zy7XYttT0s+lILmfn73Vf1e/AmY7eEOGmrNIA/Om7ai05zMv3CIlhsVUPr5dnUwMng5n/E5ZqnpMNcUdZCcu6qGMsVYuuVm73nFNLvuAbTrrfVDnBClqJdziAEcvdEpFV8AifePn33z93//Lf444BbOf1cMN8zXOHP7w8T3lLkLxJI+C67lYksVqyfTEaiAK7yENhMOcr9U81ZioYyutY/t0fe/wcP27H1SYEnsW4p9Vf0VGGJfU0fZojgGREal+yL9mk9GO/t/BoU0ktsM9cIjxk0ceOLHMClBbJZzHEZ3L4gM4xiEcccT6tQ14FridXFw8/vhu99auTipesR3TjbkIXFZrdJnRCY/h72g9GKOm0T8+O00xm9g6aowNQz/pHm5GnlziHj2/lNHcShPyHMNQjo8hFUVX614SYQBK0HnnbsMyhjhhaLWsCMdokojZoLhJUZjc3vHubq38zfvLt5ZWgVCVjl3gMlOmQlVdZ70U67G9v+z1i9PFlx/eu3d2eiF03d22N6PYqVknJXllVjoba9J7mI9KDWXRjvKIam3z1Nb4gSKL0LCqFm/kl1NM3+IcvtUEoWVspurs6aeUFmkal7QBw6pLXtHIlzMmdPdZr7C2bfy3tknBmyaR77hLTYGlR9hun1nVd2WcffexoJkyNrrdFS7jNpvIs92Hvdnbii20iiY6JsK84+3GE6w4NrDmdKYZPq41RijyP90/OOTLAZF/6ip8VRs48Am+6qZVqc2IQcOhRoK2HHiEsbUGM2+PfdRORR/f2jLQnhCZWYJKP3lNBv9EykPOKNpoeWLIhqIup1hz7JsokMcy/etDtscPH/0Xf/vrLx8+8JbPQs+7e3guErC83gLfP79TSU3HiKSJhcya4q55VU8epB6qd3v+8KNTw52PklB5CSiadpiCJMFN095GsUMCTi3bAGIghNDCa7zSoL988dorDjZ3e0dL2PYXq9yIwvT7xIjspJGNwakMGJ4QR4Kz0kuiHWp4YDCOSK6uL3TCBRU4CRM7Oc2P65vpetJDR2ls765W5MUipynf2XUktTvv7LCegoYd2QVvieUnR2zs7x3sedOCiFnH4+3FBS2g+pnnB5s5D+ilXQoowoqQHktwg29c3OhVyjckYUaXPFXrl6YfigoxqdbzRNUIceiTzAFsbDx6dF/l+nCN3B/f0w+2r580qZpgyTwglT09sWb+4/7hAcfJjA0GmBY0VnN2cqonRkLDMJWOfyxilBI+Y3iwqd1esMIlmf2gl4wAIYhNvW5MXHop2QnLY3LU0fg7HAzGR1E2T0IWYlrlcMtEfI3JQASN+tm2oVVoRe3NmvhoHHwdS/pMDzW2tzfbbD2sS19UmAlhN6AeQEkoIezm6ozV2BfiPBUnJQ2/Vj6+wCGSGruNv0PfqB7PUoIMeLr8eHz84Nc//5uHxx3aequN9JMsRL59pR+yvf2yGRPyyUGlsxMicc/JFR5ya5d++/s/GmXqrJSCjzLWFEDfzJqlsVrqxdQLqFLgKQqVCIqmynANzYrYBgC4GnEansqZLGyHsVFnG5GbTa8IHc7qVlXFr9GtaKWLQjo65ThHuitUeHt6xhKaLNu85TTCmEjS1h0iSENqjOVWu4qD0rP49ujxfWbp0GYHwFJ1svcM45z+gqww1HB7K8WD486ZdQ4A0e1MGL2+8eLZS31ZDhk0kogN/WlVl0u1KQV4K7wh/Q8MG5k3FJ6LjZ6qjZeyYFGJKrZVv9OiQoNjcCoZS+QitGyysjhHs5WvStYfPNQ/LtQj/XsWOOJgyHgCK/f1ozLV7FMMUwQzxFan27KV/VpbbcG/ASzW6FElb64dXvT4+P7OjmimUfzmZ+pcFWLFtCaV2wB7VpOQkVfQszs7jx89dJjil1880jv4b/7b/05M2zwb1qsxcXp3upY2LyMmEw6ozdV4TNWqfI5LdNRAo63W293acraeTf7ISDzTHruR0QVA9zBAERK73CWbMVueoEV2pkVEk0Qtz5Ce9KSwC0NDNQqqFpBgZnmSH7BY41Mbqd8u7HDkhtWvEjyllMMpWIja33sDnpWxYEzlQ6g8ox7hFkTIZvH+iwhBGJ2McKzT7Fh+YUeyjYvkXdGwDIll+t1YYn2+oUsR3DQGaseT6fsEs3bDC7qxC/nCW3m4NenO3JxT7B3yZS+RSNeJ08HkZ7zF+ZMo4jV6nSuDJxyUt7/lae3RSUmuTXkalbLoxdwF8m2pa2Bnva15Dic1L40oJA27l9Yf6K7ETNNicITjkkozE3ftgCGQ/NyU9Ww8xmSZeoOQr6nf2es8Rq9i9QLYl35wgk5X8trYFWjGPrE9SDXnSMiJDNzYVvYwGtvo6Qrz+OHqAbbOMcODfGUg4QmROVnrlz/7mZizSQOTpI3bhJH/Vpby3pa9GeT03jvnSetAP3nEexx/+/Nvn5iDOGyq9PTiHU/6H/7uNykPW1nkSHvB0whsbFn+/On9h/aO3xhptTE9oxjuRGQLy/wkYKtlOCSamnamZhGAndrRaPA9zF2Qi++TqHj2lwbNmH3OJolMuxdGWmcNFMhnb2z3maGsqp8GaXEgsmRQxgf2KOuL16+84YvrBUGczTFrOk/Ovb/9/ODu4ZMnDwEfV7goQUIPV2RnXTEu0RXUtprN+Q8ROPE0b9Jr1zoh/dxQIEZXM2gYleNpPdaow5gxVD9+Onl1cnjvrqGFVx9PL9+/PzDCt7ujm8C1OPpKtKanwGHi8z1zMqCAh5KxbwD3SGyvkXheCg57B7t315pUGWvBdsa2fnx/P7XIPXy659jduegH27jtbABchqH/cBvkgCeCaqCG/qTKRFmTQSaBfh84kkRGG7ifSWjueYGlwhxtvsCbeWZ0bDEJSDhmwlT/Rp2cuJooc1zBBJ3fZwxXVojUtSD5EbTagBoMU51hYw/yK3w4bDQ/8RuHRkjxrakh+tDWUG7q1PDixcU+N6E3mSfNC+NzEhoIop1f/Oxnv/7Ft3/7618eWPW1t5dWGdHvVYj6dVcmo/53/8X/9u9/93sCH3pTC2zV6FJv86Mook/kUihV+wh04bGFRbix9cPzV6/5vfM3ry/O2CwWlCEnOrwc+iMOxIiJJSlQUndlKWW/sqzgzNIaryTUyAq3li56utbkyKZRapsQ6BAnOLbOKCpaJS4t6caGCWbbER1a1vjC2npdTOvDtSSZVa28oEYPz31akAJDdZCEbNecxKS+FvB09Ce/4oFsDav2/HqfWsMZBgiJTRzqIrrwDJjk+GOo79YX33yBSNxQ9YNH90aE8qw9enxchWaFt+xN60RR5GsiDACqCQRsVNmowcIAfKtXJhG0MAopzmAxObRoJ4cEX6NzuQaBl0S/gURn5SZPKKagyw9pEAZ6ZOZmGjVZRw+Hxz0fLq+4Fg5BxC7BXyZhJYixvaff/8D87h3vJ09ch8vGmgjx0pt1vKxz57Ye85vT84PjA6Vfv3ilt7B/ZP3y4ijBW/CqrolNVGEoBD7RovXxu6w3tq3e4XRRVngw7QRaLbfhvFiIzWRmxcQYPJd4kjGkp40fbH756JH4ogOl97wB8OP2zS2DXbbIFuhr366v/9GvfqGhePbiudpGyJ/qZF955+dW3fRNc88Uyjky9h00xUYsRDxB08bWv/w3/7/RtsW1JIcVi+N2VEFICiqxWzGNfhRLlp6v1bJpcLYcK+Nsmbu7lmTap29ARmvTJbNCNomLfGBg0xoLT91GZcY0MwNMskjzycNHf/fHP3u/baKaJdtZ3PyDSjur6zQ7tBDwoAyLCJRxjAJPKXgzxydfPMwfLJUNJvC0Hyqq1no3VC1fyl9Px2jD3CW1dET+xb3CQ34lfEihHZih5zckyDfgU3Sh0vTwhmuKpLWB8VGRbror3IP6J0HjjPGb4coau/BDNX2nHLmkEWcOTmKq7iq9zg8gEqdYcbZLFo5XjlD3KQubHHQZHMcn3NCkDQEyV9q/l89f67GwhF6eSzTra149Zq9EADc6xcwLhp284qWufLUDj/fu3j15faYtdM6/N9mZXuCd4+jgF57dKzx8CHdwivXDuG4C7IihcSqaILB0kIZjrOyLdNiZrtfVp0ek5kS+nY09HtxAE1YM/dHqWFpeg1+jBQ5ZmJPLivLXtLgU9Xrt8O7ez7/++senP9663fI2LMRnDoe4T+0W/vRJ91pGjOGyACzmAdHKeWE8xwv3FWPAGw5hBIOJsBAAsOZYNlZBoVElNQPwf7ogkH798eTHZ08fHO7rj47sxwekUCTVmjL7oYUTA3h1mjMQqgE9vofcxtHRvaoT+9L+/EGVKh5e65vaHKofs8EekYe20lGDF2WOgNCr5a1cugAy/eoR/GGODsWxgUYoO/nT3MzSwyD0oH+KhH46RYyVddN3eTwoYxWtOY++0QtnDrRjqrW0PEZSBHWaOCji4tICWXfthZPA2tzsMJVIrOL+0wPIA2hoO8Yztp4FSmHpqoAXOS54rMpVusILQkstcoZmhXApXvIZEvxV4Zib3rnbfvCU3odiFPFuK/OXRL1PQ4vm/EUhPDYDODy698nxWVrAW1ssxyDd0Cg75leI3OIJtCCTdMY5Qz12IsjXtZjx7u6dRw+Pv3n82AnKD+7rKN/5Z//yX5ycvJ5lo5Z/itDs4ezlJsNJ+xmAX9fFunz3pljGqwav2pV+a0ff7NLJuPQw+KYdvv3mn/2rf0lLh52GSRymtXGw4/Wn158s9e3sFrf+sGsQGgZh1CxpGl7H5S7YZ02iiESioaR9ig7Lp0EgWgbXKgzAgVuEraPz7PmLdz/7mdZKGSGFKT597eF8J59xKk4TuL4+0vK2z7MVKYkPh8DAMnbV0T+3dy7entfeYdsonoltT6HEvMfJ69W0yiIFU5BO0A26Omocx7s+O+2qj/1LRfFLSkJZssWG0ZhJk3GBiQV2Ub37ZNTcMWSkNQajKB11ZhANZWkF30vF3Nzlx0+XF5dpSJunhyRfLebpHQ4dQD3dzZC+WecW3r37mG+4s2uqbk6205naNsXuzecq1Xtm9pyucxeBETgY0rA6y8jmIqAIp2QLYQj0VxAlQfZYssy6wC++xOAWGk2OeEnTiRQdTa22AL+5izmiiVwInJd0KP8wA3dSgBbPVos2hTz0IjrS9j1XNkriM752yTPsHdOLy6VVUsbF6d047f3//H/6PxpY9v5zzYJQDM7/m3/6T/7Fv/zXRjKvOqH0ihEiSVXJOBuPMDy4NHjiPDJRh41QcxoV72hGR4dFs6wqhyOqkfsna5xnIkqzFpG5hqgWwiKH1Ej7BMy4eDUJaxa/FZVQbXxYvZhgakssYt6hrbXkx/kv7Kt5tYy8TBlMDBr3grOvTk907e9+3DW/bwAkXW9JayMDwhIG7URk5gMZvTJPPWNjnFVOMO/ZTtGD/Ttnb07TaoFfUw4FI/Gxed8PDtrXV8r2zUNrUfAnJq2QHhjQ8c8I/XmrO732JnJkSCo4UNEkAjBiR5tHVENQLB/RgtRwGOfL85GzDqLYwOyvmbLvv3+GoU445dkCnApeUWsTZ4IHqBprJwnq8+DxIysS3l5c3rt/KLSNZP8Gm5iTHiUJUEUGG4cbqujVATo8HR7hkBinNVqK7D2o746PnyyEoJYpphfYN/9JhJrjhdSFU7FlYYk7ecq4XKllDzWJLKQd51Z2hCq5kIFZsw/v3l592v7xu+9Z3d3DZrhPjChueNHggUmGV7Y3HlsRd+vF8xc6zAdHhwAuHAM6LRo/A5H8VLFmpoLqZEzcZbgxPPTkwT1JTryESSdMXt18+eTJV19+IfzN/dMLx1nz3zN+Ey0kZrm/3QUteMATyzG89G3p62oSJlomMrNS+44X3bG9DJW9lTxGKT+d5o5dc6rFkhgqDEBZ49TchG82IpDK77OTFeemmRsjLqLQUssC5oqncROUlVDH8CnWje7/28s3XlaydMcHfURhSSPrllMo3sIbSyBvpYKGIhdTgkAuRHfi1q0vHj747kez3dP6F/XUvqTamfjWyfnZYwsWCrJrFnLSP10RPNd0hS9ODWveS+ilhaP1G87bu7N39/JNb52a4j1Cd7ZBVKkqQkoaTqx/7HTuPep4+vrUUkdqQa3ZEo6fn5037xErPtcLm1mMbUE6E/TCsraEf/gIc82FmbW69LIXdhqYbXnz2tVWx3u1LLqwTe0zz2n2cN0wl5gEj2yBMCFTby9lhVxhDSxDOzVMFsongOgEnNvyLWuVlaO/2PQ5Sxm7X3dc+VsOz6cxsTcvTrhkQzLWNzNC8sD+3bt7ZnJEfJya980ZVqp9W1szt6AyfBuYzdgAl6H7nXcMq/muqkhLAtJDE3frAMQuBuyxVQZXFqH+zS9+zsDIwNDVALC+xjCJ+CGqhk5dF56Uv5/ot9YrMMyGXyk8sVH2jr1Y+6cXZyNSI1fat/Xtrat7B/uaC83wb//4eydUwHzC++WddDFzS6tRHYOrCjjz0XpVMAGCXl0r5i0IpbiR7WLC/P6dnVsHXhYwQZuuGTvTp+ml0rpe4+3ldLovy2P0zldWMQbNo5FZQpJibcWm434BVnnCWusFRBoMzymQbtLzly+/+fKJOXnmn0LkHV0hCV5q3z8s3hJ41KzfzIo96TAfqRmz5wGoYrwe/4MNTbAlER8xRc5+JaACM5rBBu7dPwb55LUlaGYyvRG+SIlo5Rw2palO1HG8I7/mPUQmxbDC8iEnxi3il1NVEFRNtkaVTetostsi0hYTFu41Q2xYzABh/sqIpQqkLxSgcKVmhJT+QxWerUFYFE9qRMk0rmuVubz+k4fsrrGaCF7vOL2iPYdNbHzx5UODGpfahI+dXrrt2FPVbdjztDfBVGWNIMXlmU4JYtaY7Y2WE6XRs37Mz/JRqKk89P3E+LzN0jh7NBkAkaSie/cOnZ08ovcWUCMovPAn58vySvWLorVB24Kc5Y1pXEtvQnCmshlJPQcjYWsGS44PD394+r35h7t7lPKuw1N+8Y2Xlj8+PDzC2H/+r/7Vf/3f/N+KFUeH80GtyODcYJfH7dA7TaQL1gthah69Si3iW1yOIpnrKVtKvbOr2f/qwQPvzPReBjO4cjRVl6ANGCN+/NaAm57kppnmiKLEsw+zEZeqGy2OL2um/XUV7BomYVA0gLMsBI5pkKOCz7zSoqHauE+Fh3ETZaXM0Ms14GOErDV4Gqk2P9fOdgKSZcaOXSID8BIAp0skCE1XQuSzJNtYLBflZsPWoTx7+gIJJjqreK3TKDAFbgv+i5vPG69de3uVVhROdMiyJcQaAcQ67Bys28/uSDL+QmNggSdPbAlDI4bIwoFHR3DYvdte5zhPtxolsx6RQlCJ5BDCY90RUgCQng23hwy9bVdSo23ALFLA3k4h0aINn5Ior99AZ0P7hE84vE0KYGMdRRmtDnK4D3eqO4uqrQ56EOLb8KQSMn7OqeqeAhJqg0+48OIWvMyKLELRrYKHJhIUUaLLCCGR1a7e6pz2UPfMf2v154gJfRv7GOAroDEguu38temYAS0fHv+vf/2rwzu3vvzy63tH97549NgyeMNf6XmYrP+Tf/KP/z//6l+9OHXaL2nFJfjDxB6FOgPhOjyMqFxcqKMjwt1AY+TBipxcdP/43pOHD+8fHv7syy/2d43v3pGBXWKzuQk34LNd28+qwNEJUGz6yWjDrilkj8ZX51Gc7kiVU3JK6S2/nIqDBba3zi/zlzBQO0HFfTpgiObDe1Xcu7tX54gn6xBZV08XkeRcDP+9/+SVZ5tbx4YNwY3/QhHHU7+xJbJFdYIBSAIRebRvaAeotO67gZW+jSp4IO/UgSbdtVLg4YNDb3GyfScNgHhyioH35l3ohH10v6gMGiT6xRcPPA/m0o0e5fJbjLEkA7U3RzuCYDgfTyZ3Ml10CH8+FyrUTjfkgHrYx4QSSW8QjxXKDUOTO4rKisDKLP44dZxCLMsNGTGzem8tBCKpkXsRJlYqlNuqpml+CU6GuDQVrjAYdFRQfRQ9XRmRpXhT8cLNOFVWEhJr120N7eQqtEnOa1vWv528frlQVaHMJv4Ck6jq29QmgAtngzQyqEz0EsnVH/d++e3Pdm9tfP3NN1pLu6mgk+MEFGc21o8PDn7182+f/qunEkbeM+tBylxnhA03FwqrM7DT9A8TlY+f3mCwdes/+/m3v/jmZyzB2K0h4fjH90PUwLBlbZo/EPErAlt56pS4+OF/C35u31ydwd5bXgzB587lktXThs1xpu6gAaQXFghF/hgj8IQ7UCRZ0lfbNV7PEWnZHJclQ3KGCLuKnnbit3AFNWmD1VjYpP0lB/3CCByag1w9g6HUpO5X1dkt/eCRPo9y194oFfCYrnPs/Jt8mHvFF24pFfdomCZ21o/wYZ+bDHldvCPXS1bjodM38lsVkmOB7xt7wmDgSoyZfo25Ku42fOsXKKJB26wTNz9KCIVxowgoFTlld/mWNsl1/eC7WM3QPEFkTKZ5E5cm8lr2tFbZpQ0KYgR7pN6Fs7gApmoUiNtTm4TwDPs8AB8XBtUU/sqjfaTflxTKKidF0k1/8fIpKINp0W/lKxg8rZn9469OXxd7N2ASRUxC+amxgVQlhCpHB4cw0qeRAapZ32gyZmrX/+bbn/+Lf/2vRTU/CY0o861xME5lN0ORSkuMWf5HfU89NrP9lT7+40eMwBrXHi0tjIh+a9syPt12BeI03FJOAUZVpOoNSxfRGuvVwGEaxc/fpOcGpjJuFVHfgznjxH0Ci8hm+50sb2WUdy1a3aSUskSULi2OK27JNdKvsXWoxAGyk0V1J7xuEmpuaL6nTHYYR7F5BFkmuALkGyGjS3lTyHIckbFYnRzyZjghMhWPHGKmmu3ZA6dKVZaE1BozF/VQdfcyjMrFYcBkFv8EVO1TNoRjvKday7LP/ahAeWp2JrOMaonzDc2F0RBQcv9TJXC6ixDDh2FZjSEgTNBmaiH0njGdVB3kGslh1PMQk2febQeKwRazpDqJBhY7RycOLAJZqqt6ZQYnSPopQdLc18SVzYABxYYw7V7kBsEmXq+cRvHRbh6mgljzHMTJezgWDSnG6E+/a9uQNZ4Z6nheMSXfaES2auwvVHgcH1ZkoiRbepXGy43rn/3sa8s03nzwwmzaVfzmmvV5C8pglBHXo2wYCPWcQMAMYWy0n1V83OI2sAlHeMOJp2ecc4e1iIVseDCRLQcu4/NowqJdaTktYgn2MiSM2tBaRlnT2njnPNotrwe1UNkwZa/bsIL61jYL+PqLr+zfYxNnF2/Lmgw5LRMoFYenn/4Ro0/PsLjEEXht5zCiIu0OSrbj7VKxWtyIliujHGxC+Kd/Co86xOil1Gd4Sw19Vqr/U39qETN9DgaDEayKLQIFvWytPFNd5dMeX1U04pHijgYv7hLenoc3TQ21looFPx3tvXhNFPImNhuYKkVUtQjHe0eoMR+9Ix0eKBnvMn0RWvoqd+9qYGXTWJPw2/ML+Bjt1WO0Y87+qjZqvr3Uf1GdqWjDxA02VGd7G7gbVhv/ZnwQbQ2eJ3HP043hVahGqgcTX7mBt8xGySyTVFeLbfGtSvQ8edgd4evtQ+sAGhDi8hE42gHTDgcxx6ebsXvLudZsxFiqN+rWDdMT0IBzbKIm1oV1ZiWcDuR1yTDGB0CwRbBtvblT+M/eviEirMAAGG7tFrDG8sF4kV96gCkoyTBG0Lww1r+3CN874T4dpzXm1RpCAWXCwhGLQkbeDX6tbdciAKfgeO1Y4SmAbZKq5Z2BLwFqb6+ohYVNUlnfMAyl0/yLL798/ODY8l3Hqu5sWWh1Fwj9BMEDRiBNWIm2ZvcUjMg0bzW0mxIFLbFkyAksNfLl/8oyKFlyTR/ljU9xJXL6DOrCByT0Y1Y5eATzVSkIJeVF+0HIE6YM6l3anarspysPN7nzjV0e4TlRLD8BqeLBt9vJEfPh5X4cm23Hr/AQ2wWQp6cXeo18j9k3m+MSlyNn7hi5+kQ3uS5/C7RCar2a2SwPBUt3wK/Ho+t519AwlKmRkZZW0artjq3t945yUU4w2L8TvaMFMx0+/r9T/XqlC+InToVmWUgccbFhfkfg0iCsGJWa0gKlpJs7M5ugm85UybA+ED3a2rJs8YcfT0wrmc2ysAs5nHzsGL5ZOatFo2NmDRpdx1jDR9Ss5QvFB+OzW81qxM/6xzYEfvDeoPYm0j75mSim7d/Zgy0FlaJXO8yD7wgfC0ZRG1GClH9aHFfCGQ+qPt9OFb58+JBHFygAIwNGNrxfq5cO8UlNWyJSYJTRQVfBpkmaxNj0kgR7Xwp8tEhK3WoObrSZF4eVRam7dw5abbj/4N4DzZwV3UqBpntgJ7wD5madCLxoCdhsh8wWhVGeSox+r+SxUjU6mTJFZFopn5z9dOejb1zRD0uKpSE1HgAbCUjTs1nQU15Z8pjCDXDlMjJB77ozdFwVMWJlWyD5oZL5ygCq1TU88JD0wkG98WpBqfKlqmTQyUTg0+ruKYtGsSg4WfH1zeM9y3UKmXBSXzxSxj4NDHgqCMYhDrQ0x0k4kKJOWI5QKx69+YFCkRBHG6lVYWTO5yAVDf0LU6viMCF+TIFw6t6jUGoyuxnMCJ1/C2Q8KmUyuvFeAoJojA2Pow5Lg2Os849//qPWTFViGEGU+fnYFKVNM9N1b8ExYJN/wmWCGYFSReGrGpg4HbaerzHWttF7kdIyiWkwfFOPO/fhxSgxuwunb7FBdUO0K0o6SMdtvaDkLYB0Ff+kdp+cWvveu3r0E2zRvL3VBugrq/o0rbalcef43Wpei8CtKAwICNBUfXFBKLZH05bZZTJcyqJGI/M60KDo5jug0npDZTWFjky1LSYEposvXhIEvl+/BNYyvEE5AjxeSb+QAx1xLZzy0WxABmQNPmpVoCvSpaUGPZZVRt8Vn3ltlUht3i2NTBM87msxu6xkAc4PljM9mB47qHoJBTzIXqpSjkYCMFWnqbmoFCNhjDLUdqcngxeaPGmgL3QC60YoTG8IJrQZXr7JbQsC2NWCOZjTTg5VA3v6HQtQoqWqcaKKI4OGKUeX0mxd0pLHtQ/+ci/1l1O2mOBuotpgux+KstupAfKhXb4caxwa+n1Ua3XNoxyJ6e0rGshnc9lDBxtbm/C79Zr8X34W+cQQC5r40GgI0a3VExAa1gulzeWkQN0GsyJqbLyBngBrDbZwi9NVa+gURlr84j0sm4Y9//yXR/YbGWk93D+wTa1dwrBEewWqLZwbUptdfG2usZ0/iUWWefKTi9NnL581TLTRFtJao+vOezQa+/zFi9//+S8vT84cfw3UTIa3Gs8ugfhAlc0079x+fSK0u9pOUuCqV98/wWCmTpGKTRcc3LWRihpsyu9mQov8LslzY+Qlyrx102zUSJ2EuuACe2DnPs+U5LE8IXHekhddbNwjjZp0VU9xBRdTSZaDWVqrzsDR7KyNFQzeS3swxYbJqwd51jJTJ0AWHxfYICieCRXlG2wLcN6wcYIYoVB5lq+pv+qEgKkIn8jQs9iaCBROxWVfYBft0YnqGOWONrbxE8yyAValtXDlG+yCVTSOLhfpJOguUNAwsMgm9chuaUV1DofHKkij+MJTZYfOmpEpH9dWfJ3qBtz4C+ktrwC8AOb2HQOMn5yACWHS89ACGS89slJIfC8KKLw2seOJOgZ3g+x2xterdojoahr3gxEhECzgWAigJHggiuZY4eMsJOugG+MZj0bJ/+abr9+dX/zj/9U/clyNiYE2tcFIe9P5ilqrKAPQt0ZhYGKD73G43drh+v79D8+e7ty6fX7HphPvNvxw8fbyxPJce78dP2911sbG+Zs3fFQLgxbx+CyEs/ajhsmkicv0Fh9ZJ6EpEo3GeDoS6Dyl7f29/So1aLBcuOCmRkYabG931khzlg2ljYdbONCnlmxViryT3JD1U1LWlHkARWqRmXCLrxLzXBJdcd61rIyazDRX2ZjRFV8qAIL0sfWV9vNK4yNjnPTap0RJD+maG6XiyGhK5hgC5Rs2LZo3WYq5B8NVdX1JyVuor8phMo4sdxYWiMkMwlt1g45cAQ8OQ/VdXR4FLNyruD9AB8tJ9yvkPZ78NXeKTwXdVtCPJR4eVavCMF/BrairhKyIwc1svafSJqXKdWDkawazFxEvut5iTTvaT09eXt/doyF48vFqzvDaNEFV3GsRyolTab020is4end9Oxk4/DIPH1Rq74QK7Ju9uS0K61hsA0/1oIZ1TPr+sWF2r/VwlKcKqZkhTgqm2+Kvs1Dj2LCiO6xeCExZODLPGv+4/uHlq7M3HW1NoQ0UTQAdt3UDhFJE+8b+dyRoD9pgkXUucDFPvYI5rbkCWgZDT8CYOxxOZGlq1Ort7eycv72c6hMIIwbPWEVnGDRi23pPaGsdFABfw7kogdzdjgRWtAxBcZ/mJ+BEVIaChmZ0wvKTc9tVsoSF0mT7h2s03U/JcvRoMqwY5SfpqhcN9AkaUJq0qWwUNqWVPPpRhUxad7b8JYFAVDwIxNwQavWkPx7GEPVJWuENm5hQMpgyKRKIRTYVqzhSlS0jIFMiMMPm5pFF4bwIR7jVWneVzGCocafLbS8E1r1WlvybHWmplV6nV3Q6pMrUpCGTew+PoXXy8tRc793ZnyA74BxM3mUYhU3yIByGixkg0A8ZINXAV5YQtyjoUDBKMuZ9sG/BskVHDXxB3yLS5UU7hfsNMm0YCDs5Pbl/sE9009DkHwBPotFrlHLLkCP9pFBCJjcGXTREEz6Rw6ZlGCaHocMOIKbDsuGEHVgtGAfupwvEUv3Rs4wxr97StzX73F+enZ50csslhNGMWhdCK+OIAW9dGKc70mopudKLRFXs4HU4QXEqsHKp9qflaBPPxUGDs1smwrpi3SjBokkq8FvDArFMN5mHsZyp1KCR9hQb5KRyEz0iJ1mDMfSNU+fTWvlYTga8AOmxEvUxIIwwxYwZ5dULYlLhtDPsq5CqjQxk7Gf1+ANDBeqtbjnlmqf4UEJ+GZvwpEFsNYRpAXrEyNCmaocSLPwMhVaY2WXlNkArRAciXFFI0RZCPj8FMDx7Q9L182cv1RhroyBC3GlRXzx7QfAM5/z88uT1BcrEKg2e1m/ocNmFVxbnGeGwT+Dk5EQplYmprXh5c/7m8N4BRbMzu+paqfFusI8BEpCCnoXd2ZZhmASQbDygSDERR9KEvhRBSNRZknz3rg0t4u1lVbZ4f7yuhboqpK2tuO4495bR+omkOaqUKQq0RltkMHYscsYgzLZTXDtQ77SnoSeaMhTGR1AZ7MP5RSdSbhgkivoVXQwFusYZ2FaL48d/DDfVN7LsI9EptZSJ+6nxtVVDCBw1aIQ76U5WtXLnDomAEzLSjOwhTcn66+oWlGBf1dW/0XoyekLVM03NB8lQY1FGVNXVsxAvrOr55Cmb/2lGD8eaAisFvEUcPZRALhFNgxdLDKHS+wOVlLR5uKmqmvLII7eUtWx+RFoQmbQDE0SWqXhQSvdGEsLCWxxHWdyudOeKntgvdvryBI25mZDSyt08//ElkLwk7qAMUfCwlPjHH19gRLgFNuB8of7fZPQAJ1c2Of4rLoyrk4srjz6Ul00De2vTSOVe80Jecdlm5UaTbuyfdFlM/G6MVyXxkBE6bcPqIM2vTZVeo6eRZ300hCh9hv9yrZiWCox9Zs+rNGR3Rc+Ed0x/XmxZRjOGHbvv6bilOGmvxt7eXWt5HfhOLRgZONj+9t3bl+deRHGhlygYN9EnUXSNWjsIJkAarJPMhrG1iVdyJVZyRz/O58pIoRbRmnAv1cyNTC24FI6zLyfJU7LFTZVe18y/ZJrO1XzFHR89ldr/8nnqB9YjVV7vvQQfmSInV3kjxUc8w8E3bw0YX21vN9kheMbZMQSVm0PpngPhR6ohYw2B1GuqTDnMzO3cdg7s8EiO/LUK5EbvKByOKzw9uQjwXF823KEH08npswpAh37OQq6wxSvdnOzDLXyG2JHi5M6uZifMEF2SItzWyxevwLrb+zYPCFUp9Tk13tDx/tFdyKtBbq6h6tY2rNm2V8tA24e3H9VFyQw+89DX1y+Pjg+EmS+fnwgmHSlgZRrFg4mQihy0orF09CwLhg5iu8t2AB8a62HaUPHeifZq9SBWYovH7fHi6+xvd07HbPa+MZnlzzoFCK+t2yzvFQcCkUIAvnd7rR6tFdnpAMU1nH2zyZeNXNQr8gS6gYDYoaJ4jqZ+ljKiGRxGDyvWMLQy3IRBTwtyO0w/A0uO2gyzfn/8y5+ETR+v72ipNk7enl68fX7y+vunP3qrCxtxFsbf/vJvrD2gZ84CMYa5bnoadmB3OWnX+WLNOW5vt+ByeB7TGIGf8G0M6tROVKfCaFKaP5z/hQc5s6FisMdcJSLDxziYuQviYiFoRapKe16mLG6GpfHUdbC3S+p8xvhq7VoyYJaMT/Wua2tC7Wy7hQUGvJM0YFSvRQ25nOZTFBkzLlaBagjCa40stVPNLFQEEou9hkw0pzElDfOjIBSVVEVpGUJZOZRwG+XPxya94ofJFVDlBv6UHtZouzihrHI6iDKoUNfeEW52EXC0IsPXJxdeISW8Tp+u1xxb5NVEXv1dXAynm+Zr5eSLrL68uLg8O32DGlg5kVtN8SkHlvOhlxa28OLGT9N3e09o7lzgwG0ogvYKQ9ggz3PIgsMdiSIWMrVXNo1akTanfuRsaIklhuA59rRSV43fc0rqMfbx6sXLL756wpZOXxmyPONEHWTmsLP3p+9Nq1lYY88GVTPvA8+cQ1dhJauo+tjnXxebjHkZqoCCLrY4AnpuWlC9k23nKFKQvnm2QyurXzw//eMfJGoazBpKxVtmqQIhylv20YqPvdrqtU7Oo1vUZipKb+bkC1tAxV3JkaoQh0ph13IUpzRvb9t2Z2b9tuPhDPAUBi1Yh3zCT7pKVDyKIoXqQbFnK1uRE9qTZJJhVlyMtUzm9Yt3l89f8/rOlFo3BSHOaRgpMzCwxfE1AGWg6fDuQX4tN4aMZjbUQP6qDKciFnXUFsEDmqlGCOC6KdKmhIi5GoMRngvGYbvCrdSEkdJMJrzP4lVUxYvPilM56YEs86whVUuiItURcWRnWTSU/fuSuoILEv9mluP585dUiggv3ryr3Tt/6+WICh4/OCYG7kcxVAChuWtiC61tgv2oBRCsCNylW2NyeHR3c3vz5Ysz+910h9sd4fjUfIeR63iVsgxBQygk8XbVvhEb+uJQBNbB0PQ7OtcYiSJubu4ae9kJmfW1g6N9qi8jB00b9q/37SRu/+xtYzKmpHUl8WvT4V/WjfvEmeawbWnzNsqbtX1HrI8rLBZKKvhZWEhXJjkRQmMYpY3vEZc35rCJKPGMUzBH4EwWs0M75MG6cfjVXc7Ru7pTUL3GW16uYP1nvdu0UMfg6hMtojjVUKW9wKW3xBuGmSlU/tQok3YvjepVBB/EEclURDDS5IaCcHJ2fHP3Zqexo5gX7KLVdCZeBnz5l7l73jV+d1JJUxd4wpaZggqftCQlhg2xfff06aPje528bCnIbLZg9+eX53/+6w+/++Offnz+/J9u7z5+8ChN8Qe9cZfmTUBCq0pnILjlQ8Qx1RNt68BGH5HWHlyNjwa0Rh9CCxnBGnoiKxPyI5X/TFB+qR9qnbueg9ylZNSNXwN/0rORAFZmQKwKVcskiBWg1Skvjx4/IrVee85ltSinl71r2RYbpi5eSK60guTR+CF9tXb91i1ngujx+gVfMdKrl6/v7O+lAP5vNvwgmL04u7TIxNpYcWzoUqsBtWjbEBOaw6ghGt4boG08evwg9vBWmxtUgRrog3WCXZFwvhlV8xJEuyl27u53vIA8StibqqfoqV6Eef5gi6IVnr0W6tKNjK/a7OEE0lIfGMfH4VU+x8VKw63bteav5KeCWhdvKVLC8AlDMf4+Zjlm7MTInVsOx/53f/8bLk9Z+kCIVh7ozDAnDZTNzM5Hull/oio9Y7SI1lhMljBoo5fXf/P2olhue1sUuu5Vy4LnBqBitUbDxJkDSDc3Hjvvdjwx/yeamGYRZv0bLfExNh1Zn3mNpFyQK5I8AHQIHotJTXBRwRd2vJ68EpJp68jk9Ozixxcv/vr8h9enZ94TZcW4jQrFcHP8E/0WmBf8VFN1UwE9hSqQku6rtAfgIzXeetf6FotvAGFstXXecorgB4mFisq6iuZIqAZoZATSPPBzrikxVa8QoDvJM8uIM7m+QYt7mWwZp2dSAU/PrkWudnHrV7abx4luPzx1JF4cX7txnBRz/eLL+2MS03NSol28GmVvsnCyqrfRvd+/u6M+A2tsxmj09h1w8k41IOtrXz65ryKcGJ4MajEEWiuihj9+RrIGBwf98KFDMFEZJ0rXKXeDNtE/HOi+bEAHayjqkZGe/f0DSA77+vI8OIarGyhXW3/MLdkMH0Kgyhval7RYQyBliU+h27Ic6E2MZE7g4fE9hi3e2zSJ9vG9ThFbytR5w7Ut79Hh1KXEt3n1BKpy8Dl+G1w3MW3pZHOyls+xEH8CwjWTsXGer3TqOA35pBnUOHI6Nn9qriUikqnYWPDf/j/+3Z9+/A5KjH5ajERaYf/hPHT45NJjXOzIk9WK4U45hpML7+oj40HCjRVyeW/cq7PX/+53v/39X3WO7VO3J/C9JZAcp85fwejVGpcA6c2dBputKLT5CAeTxHANONJpFKygP0zCrXDCpZry8buoPHtzLvMgCAFCXEDIVf4Q8m/BbB55DMjQmLwixS+Mq80cMEUgNW44MpXN83KVZfRryRe4gaOGDQpd3S1c31adT55pVN8iNruCas0KbIIYNgJG2zvVh8fHdvbUpjWyTvsPDsW+ScVpvCv4URMGcRmqGV+3KczoWWD73ReA+YQoU6agPy44YWGWGE2N4Q9VSlJAQ/AjP4n4zXb0HZE+UqVShnR676kWGLx3BluuvTRaM7FtLYN07UzLVGjKSiykNgMVYRzSg1IfEMLY4eHN/v6e6N/QkJCHAmCd48djuEwRl6id4eVUkRcnJ6IMIqlnqBEq4Ok8OKBfO2zu/Xucdjb21h0vrWwVqoIy8yHYYcGaBgf8mINQrLtuboFcRFxeef3w0eOzy8u//OYZglvPhJnyhMPwG9YwhtecAhB3B8cI80Nb4Jsw52eEpWd+DO9rEBDkpZE3V989e6rgSEHntANS8VhOeVXpCFHDbMqaS9faRbyKammLJmGtxQAyO8kJ8QRTi8JTl/pgS6dfnZxMUVzsX411kDyOriErD6EUpJecC7bLs+HRIDTPhsQg93S80dSm4HQuKom+ouJ4FtjQcavIvmWbo1NCXcvoMRHIXLJRhGY2Guyby/AAafcjEkDpqq/UZ8Djv+qTAtRcEx8OlqunWQNeCj3TaeFkgAdv8aS0TMCH/7ng7Hey5EhqzRuevLJt30mV6zrlugH3H9zj8c+MdLWf+ECHMnlC5Wbj7PW54Uicvf/gwasXJ9qp3T11rDsbPLhXdv13onOg4QCJ4Z075IRWqMBhbn3MthNxDpes0+s1f7yd1KqItTSAnOReN/7w67/59bN/+S+8ZsD7a64unT8gmggsRccoZ/KZc/i4s9vkbVraZwKJgY05C6Jy3qVDa8M4jhRFWis0fD0+Onz84MHJxVmRXv48AD4RxcgNdjf8OjoZbaAAPzqNnNi+kCUVdJYgkUMwtsE6zV2L1cSXI+P0MAgJtCOh5a02rsw0oWMGrVqNfmf0hTldaZy+DKmh5iw6G0dLP0YtlocdRk+VVKE9NfhXDWGtkYzmkI6ewWyYAmQ/asddkE2dJ89kD6piPcMx6cO7BUrWBDkPAExpwyV5jcINptLGow/zgVpITL/DouaFYx6gpWVBkK0V958fQ3gTRL7wXqzH38kRwZJA89u74EO+yFBiFjaA4aC6cXUJO9ziwKoyWUahonUIioOxGAKONWhocn3dChlmaQ+65QvOY7TKC4+85msxYzntalDqwf1jn4qou5VtHz6evj5RvPPD7XBYKMVAyEQ0TFW6cNt9uku1FomU2avobu8c7O1TTZiFdFTFBw+xuhyD/M+++JJ+Nv6TkvfOX/1msJtFWbsy3316dhpwCsZf9C5jA7tFJUGbtaRsBv/kcTmdDXfi9U3n46tCgPqLn38DRSGf8LEQJBWYBiUeR0yodDNNp9/jgcYHjsLkpqxltQRIvOasekt+aedwINMajo8cE7wSVH+wScKLhjoP7207GSKD+0+bKEQdONZIFwJhcnHRi9HSCQlS1kEL5ZubTo4xRBCWxDLoZgaDRvwdjqbftQaxp6ejqRERKAlZ6Zh3VC9/SUHZ6ZPEjt54MLL0uCyu8JSOv34uwDrnc1bgheAQz6qM0z179uLF85cICcOR6JQNI2VXYmuKjAe6/vD2w5uLi5CPBTeW12OLbdmGDDkODQbYqVbaErKJOK+lxiib+wRXFUPMfExCmZTlCuyCuhvH1jc6TMAhu4Y0Ghq+2Xau7e5Ormfokp2E4Ql/VWrUHz669+SLR8PLVouhfHhbdQspYRVbs0+YwWLkUrVh3NP+U5ajw8P3ZmBnXwEHAMREa5YPmVXIH4mlH9w71q/FC8qgy3txcXF6dkIUMXzWEQmQmCVGibQMqy/ROyXzXBGUmj6jUyBwgIaP1KLbQL8SpzV/m5u/+ptf0ST+p7EaHClrfDSEA93sGMYoUaFb/+bDl2dpPFwLDHtcVoruBuFqCklfIxftR+mdY6VUxgY/oh0L/Gjt6qODA514/TNkkyVYKtXOsI0yQhBmDN5H1cTKeN/S+KL2elTN73isplHfyBlADSwmCt0PQgBksNIENY8Y0hQmckgKtvOrRDiA81mPaso1CN51JfPahhNZK7XwJIAA/CdUe1gQFekppnOnvMD8dHfPSjIO6YOVXm0oc27FbuumrI6kiJQSSJrx1hs9HLp46XzSDgOl+s5t5m68LNQ2PaLR3/r6y4f1s1Gm5jQqTEZgq1/JbozFZ4KAUANxEyqFXQzk9IiPissAWSaqgz1kdZ4N54Ntgun3F5fWI+hlQuD01QmNZDy2sC2vVvCzGaFCcOQuQ8tzaygDtPBQab2jYZeKlupDLtTXb7xF7rvv/0It6+/1Bp1tmHC4FLK+iqjSPiHTYzs75mqs3izAGbhYW+wyzv3s7ISjoNVNU+4aATJZudYgkvOaGl28JQLMs7CGa0c4G7el4IXcCHfB5Msvvrh3dPT81cvZvYFj8SQuUSlcYdHqNZtTDCdwA3U0r5tui0zKH0k0J477nEG3zFcR9MiAT+VcNv1MoyZxQrRGsswXfnn/eP3giBlkYyDM1CPeOeeMYdbtR8PUxNvFTTqCbony996ULdtXqzy+h1JIDYVh5b/P7MEnqn2VMbxrmTybzMpgPqQTUzWUrVoHWsWamJTdo/pFy6OwGdGAHcjoRSw+uwlCVl0bjfs13dtbJ69OZZogaNuEWq9cudVmqxPHPx7s6/w5tQoPvX5PlOLkLy8IEGwWG3385M0Pl1dGHi0Bai9i1GSyYbjIQn1hHgJqXln+cBTCKVFYG4yfPKPxVthcHezvn56e6Yve3bcyedOUM3KdXoVJp6fnGHfkOEoANm4s49HNNB9+dvZs/+jA9MLlxRvQrBtNZxSQy/+44XIzX/jVfHyIhsyMUvqJXV6GIJu1dDu3reO4NLrPNWS4c0yBCSNkW/ZvLeaLYh8+ft7vRvLeRSIUdx6MA4wF0L3vxYnw3pZ7ME1pkX1kUiYbB7ZvnXx0YCRLyAbSnDH+TJSefvro2MVf/Oybv/74QyOVrVEP1XTmjhXRd/e8rMH8DjP4u9//QUCPChTViUJKVMXXMY+F81EKwqzMIY/oTG/iB2MYN5yeJzPMyiXLcdPbtQyt3t7qoEgQOCrncVGezvtrqevVJd70svtGFUHjKuJTfFafKpDTQRiAhXqJ6R/Qg2n5UozwQUAYTDYgytm/yEli/Q4pIGrf3CyVwL9SwV65vZ5MRuklZwv9BgaQzwa2pAbr8N4RVydCvbxcBlVM4NT4EtL+gdfhGkbzUpKtt+e9YQQkRCW2mNRyhtFyEm3B6X5rIJqJ10stSaWqbP0ErGN2pTHZk7HcQWhBbtpv2VNGj+vHeY0adnK95tfoDd9JU8wcT1/e7Rp8GPDwNirqnV97H/ve4fHdyL5yrNPOUE5wwzxokOwMHvaVDAAbV7gyxJhZcw51c5Gd1Wl1/bs2UgKODt6u9W85bY0TGNp85wf/6fvvk9fy1p+9HYcgfvnFE4X/w29+Y65QmI0noiwsSgImtVQ74YwfTSniQUoTcC8mNCXSQYxOdM+vxrYvHz9O9e424Le9bBP7yvtJ7h8/PH5oOQCKXp+fe6n401cvp2HC+IrFTr+jOT7407pJBt2nn7UJiWg+EJB2sbYhBV8KAeXKJ1P4H1++vO9kMiEef0GovcXZtIv31tr28P7k7O39449HK4QDVP2pHtqrvGHZbV2otCv+JpFMdNQ/cchEHn7C4DNSP8FARrD8W13dKOIaIPCsRZSahZF999Hfr8KxIFVj1Q6QHlR6AGW3XlH1rnW/+mMOJmmVQW8WNOdwcZmBigoojDkEPVfu34IIFkOWHTe2e8dM8K3tD7bVi+O1jpu1IWKGIkMcyN5VVFXjAMYyhsrleaSE6oIvy1tpSa0aJabXqV67YTXSliGkGI10TKulFuvuDA0PnQXZzFpB2OZNs2VDpQhsi8LyujIPoBI+sU/lw/k8hH+ZgEudTBHymZpjWOd4ASGwIWdqAyC/QBUauXJ30/m6v/z6K7NpVgwe3b2jifjqyycapJ1dq84c9vDm73//B8oCedmFRoh1r+soYNLEkbrR3gGLXBWuOdZ4Z2+vuQCvcRssGNBdLyy2sfv/8F/9V46MtIHNwPD+7BSDNqY1antt9nHv5sWL5pGwItp8deHh6MDcow/a6MU2IIfpS0yTqPqrtIvwC7d6MYIOdtw1v/bq7NRqgnfm3tfs+/lol88Lp3Zd2P/T0u6vW4cYZBzP3qca4Lgc1INil7PHeboAS5/qsLvacucTuY8exP1Fa2krQS5rVEZ1VTGutRz+V07hfi1STLrpwSjfQmgkpevJfDKGYY+oVJwK1TbOW2nXKI2Da3H08p03/Ui2iYrHVTaPbhTccqAK6hU8OKiOAFgseT/t8bKzlq0MX/nz6lNh+LhNc+s3VHnpRDANsme55PnKNoc5dILgchtLmOSpmzEkYDgnAGjSqLhTg5hFEOg1oCqI1PF0MsSgRZ9zcXVhk4BaMtQwm754h6t25EWyC4NBqXrqu72/dqbL82fPzVbc3uAFvLPdWzQ5jjvLkL/VSGz0iwf3r99/axHK8b1DEr9/fB9MM3Qk/+XDh3/6y/eXlw79RZaF6/aBebc5r5/vM3uLVE5Wt1ivmmHjgvFjQwKyN6Y0nRwtNg4Q09avfvalmTbH1bMk0w1xLXbqVJn97izYNAXyeYTmb/sZ9xMITlkKAj9lskv/3fUvqaxYJ3tsUnxxUHHfn4W+dgzJ++fnz56envKOjrGw7JaHqDKcryYAaXnrFsOhOic1+GoIlEoTlj8ucERFGFXvmgA9TLOSSg4G3SV9Apw2NLyqaUwmUIPsUFCFspY96a4qrd4e9Mj9AprOTP1+9khWitIGK63WdEiN2Tm84LYFBmZLbu60ozVFa6oEOJYTVLdoV3bwcR/Xq6lqYsHQIMNwNaYiIXyHISHgURgNgvGhprZryqjCBF/iWuE6jFw3PEr4xGLM7o01f3u9rFERSAxSRsC85KaD296/ff/y9SsHg+/d2fPOI10dIYXGKhml7mKzerouvdXhKyj+8G9sFhpojBa51ygeRST6623LTz6u79yy8Ns5M2IjgZHqMUiXiR4yEu2DmSVgWvHhJdG3bj28//D+8bEVTNoTnQihtB6yxhMautQ6zFWFqq0N463b1jHOGUrLCu0ZaNI2tBhWaa1uSzpnwiv8KXNfuDRajioLy8ANa55utCEqhxoUgmTMv4ZnbCCZJYUlQ1/ySJreFDfUwgEs1iAIGHhsLyim9/WJx9sHttlKLONXajHkhtFY2kg3maaC1da59s0gKO5HOjQPYTuVVjFQoRbXacqgUsrcLdKJ0NgW5oHN6qAgS0+SZMVLXQhTB7kuCHQXY+I1nDPV9DfA00YO8Xlcl/I1oi0ndRRICEyFPaO8yjfI4FoeyOkfRMePug2x7CUk0F7OOF3rD3KXgmG7OAU3dRoByQzCGYlihhnTkdWGh0Yk38zxlV4CfnV64p2itw+O7l6cvzk7f2PND1da+65wkxrWPn3Y22q3LZ/tpGTKaxrn7Zv3hisw7O6cM6uWlRASRTwbVqtu2FsoRSJDWVvb0jLjQtXQdMGMpHNdM+IZiVEvzNYz9jpjTSvkHWTYqJrRWwrMVVvP+/jB/e++/6GRxi3LWgsf9C9TJ+aQWVI271nd++OPf2RKR0dHGG4dNEltfjRWpCnrmEYu3GaGXAFp+1ldqVgMhQYNxT9WG3kJwQPElmOYC8kepFcorS0Yzi/sGDoTT7zsEeDT5BRKksrVO8OC+doRb5zzv985N2qdfGVwXrn1Z3CNcSKr9mRUazMxUEFtdFvL1nOFYbdUGIZdVZC7ZIbTxrB+qYGoQPgB2+dK7XrotLWS/U8SbtJ3xrKUyk7DXLkBHuIEWD/Pn2uqWKBOgvQipYpD7zNelW8AAGPVHQfLbMj44vKNOqdN3/KKYl5DMO3nea8pWTs8cPqQvMlYqUx9bCN64lzkq8f/0SK2lxWhBetkjropj+3LT77GqwYyksidc3nTthFzApXcynBbr4x9OcMQnHdnZ7yr9vx4946BXS+c9lbFmBPzQgKDQmCIjU6pKF1GHMJFTiSGvD6e8RJhsAMc2ACcYdE4QQehNzEPAysmYAtIkGdRY3S2C0UXYPthlvCjSMxL+nSdm53gGeuppq9CGE3Ig4ePfvPbv3OOvN0X+OmpHJ823olw7AV8+er0L3/9nkNu3RF1UqR9BOGZG8YTeCmgf5+WEyW4YcYUoybbhXp0NrjpcSri6qGPYUBOMMcsYTrKI4YRVW60WFXeGW9Ot9IwMkiXelGpHIHsxfYfP4w/SzyGKUYTDLOahsqFNGCt5vSyD//r0kFt/vcIH3NLGe1KtsmnuisTz/wKeOo1szYe9SARBprppmM2RdCSbGkld8UGbsXJoOzdVkufi1rAqqJVOTX6KJM80lh8SjN2Bk/v1/FnCQCHfWu7wTSDlRy2VTpGC00TjcmI8qtpgILDxPNTqfgQY4xPDUH2Bb+ptumahKK2aLLbDAPTCZuEW7e89kaQfWvL1icIvN3QfS8wrqW7WbcTwFko5GhH2+G9Q1PR3NOmdZ3Xa15A+mzeZiliUWeEM71QQ020JV8gZm+F+mMDSU8LqXrS1CwYSC1Mbd1GL1syHmpjEjdPHMrSXQuyDfuu7Xq/Iy8YDZyIzBqTY7vyvXLq8tIQok73dDCShbGFJDVribyg3kuxvvvrd/a8WN297biJQokGhP767Icfnr7wajkps/4pndPFyOPy3A2GQrPJ5yuHcAmftDeowhrKl2QNeqE1VhN55CM5XZmbhdk+63DNVLRvdxVLfmlEekGNwGzcIQvx0+WpggOu5lHY+kzv2dDBTJRMNiFB4aNHLsxoH1cXBMCrDppb8wJYCgzh/HniGfAoc5c6+KrTzCtLqd7gTy4M7CYVA9zDenjmV0KzX5MJeD5jCMnxeoAZqotR5VqyTgY4DOnlWe7SkbAatRnsEa0tbwrRGLn1rOJSk0ZMQkY6SmPiVR39TH+KqGoBMwayAP5c7/JkZp9HdoLbsK4WjxYWz7czIe/wNu8vDWptmvc9uTltVHR93WthkHhoW0KUFs9I1plUtdFcjcnzF68bsbjjFIn6NrEb4L5RFjb+8jBkpEFaSM9iZ9xonkDD8NTr81M92q1dJxR9sGrAdKNlmoRofwLuodfUgdda8xe4XLBgXowtWYFweekFVY+ODm2GSROEPLO6mXFrwbQton9+ASt/9s3X/89//i9+/8NTWHDxeia8v+lni8MZlN5z4aBU9cnvnWBxafyilAneTLLUX2n0Aw+Zdoh0JgUdQ9N0JLwD1OBUry2sxdVbF8eNERTiDDuwKSYNq+Z2uUsu6Qa3lhszr4yYWOeD5gLl0fn56XNHIN47bgARrc3GClZsQdLVudYsIgMxElOPSixqOBXDIGAuPB9FnXEVv2GPxdkxt5d+dMmrNAhkVTelbCjoqa9IVkFCD8nlce68K/I87XPKdFedJVakRjPDWvIGYp4Nxp54MGhiaYtG52VtN20vvjftA/2TxZoLOuZfFCoU6gtuwIUDaP6LQ4cNnoZbBSZbOOBp/G0WlurYwmbFkSktcuOMnVlvqaNAJWm01NfLLjjHNeNayW/jxnwvPbZZx7GTAB8/OKKUZsTLvpCvoipEeQj5iNV5b2LzS9WJA6rAErtfy/GVmn0dFe2RN6rwvytuxPMAGmJ6+byVBDwfXbHs6fYdzaOY5JP29P7x4YvXpy2H2bpmRY4N1bBtX/m0hMdcTcHek0dPvJb8D9//NaHXXInvtg50IPb27N3207Vl/6oTrp2gQvWT3cfaHahMy/CpSb7dOxctw5IyCieK9Qb5vV39dutmvbXkLz/8+Ps//pH3x2LuZAwgXUF/Eq/vXgwGZgxeLpzIJlaMcc7v0ozjVjweZEPhxrr/dz/8+GzXQdyazK2kO2aTJfRmm1QpC0xJcW10O1nEcCkJo1vBf6pXck1ED4M+ze8Ko1hk9qghg9RlNBeI6aiOEXEmCQMdaXbeAHHg/ESQJ0Ak5r4jfZDqxuXBSjMGT1jUXnXOUkWCUrPZ7vjWsd7cXJpSvG5iwezbjBzYevbu0/u9Wztt1oO8MDbPFJU4Njc1sKQYA6aSIXqpNl6oZxjGu29tPHhwFBdmGYBtzdYb+UFTzXXw/QKCLdMXWy13M91BgagLHNHMxYLUDYMwSR632pU/ZPiKj3OfQ0E3IxLvklKFhkPlHa64EYaJPqy6knckop9NdaiSFr8GFrTbVm63EDFffuuOsUpgeao5LOv6070j24RvZ21ZSj66gIH6tpCrGnFDy/PrX/3SsXQ3ne+eZgFnEt3Rd48ePUS499xtaSDYQwXG3ao6VEZNoetEPm/Nefn6pTftMa97+wcPjg6+/uKJPrt3+PD+Krtze/uv339vqZgqFiKH4JH/jEGhDKjCFLmDHWvkdY9vEZuaVijlUGSENyjHcTtdXu8fEPaOecFpFrBxUVXWNmdLemtdddctq1hyScpUN7hEMDUliSmI2Bq/qWEcp/TUh2+0riApVbpcIQVPpIWVn1lAYhqT6KG0RckqNmXGPKrY/9wlQpt1KmU+phkKXaWrfSoJI220/vFMZllIsrV+dLhfw71toduVV1SReCz76M1rClZLr8ga8MwijFO3pca0gqebZsiDYUvYDaPd0F2gl1EyaHAloVa2LGxkoG3PvOrMkdnID4CaWSnydmYGhsUKnIT+VPOZYyFQDTkPlmJLXtsbSHhh6iTHDvGV2VQ9D6opMilManPzR2OaiOUduK/GRr1/ebbyjGhnpE2HW//h48eDw+MnTx7/8LRzGRsQxaK6bazBQYnCJL2L1on+o7/51X/33/8zHerREHy/dmrp+ds3Z28uBKJQ2zp/e2Ex1oJ00ZVoGxE+MbZe8sYDnaSLe//413/7wPr0oyMnKgu/7BFFEnWA4v2jI9mcchllNxrY+Nk/4ppRixknXRxkugguXsaWxZPhstQ+x4fEagUTjbEzmPl5cn5hAbDs/nDI6kMLMezGtqdx55ZN6HBmaAFdbCuAfg3Xp4kjTO52UoYTIVydKWLVz9cYxbj+aNPApVWLGoDHTSofn9OYSKzQoA1wv4Zoqth3mE7SUEUd+iV1CipWxQvGk64IN8XxamxVCSr31IhOjMVRsUpKsQx+M8ZpeZVPTz0liPRGgr96JTBUsApKWS5OB1OTgwyD7fI9JGQbpebi/YMn3a8lHSdAmYaofFkV1SPf+DBvdIFmh2/DbhTGthO9CLUPtKml6CJWa8x5hIwh/5jDlQp/3xdvzSOxgW3zxmIQA52CYTUhmS5wEPYqMJJPdp45J85arCtn8raLNdLXNh49fOS4XhujsYxtgG8DhrDN4opP2x+Zo+W23379jffe/+67P8kDPV5AZ8FKdMEh/aQPW+Z093buioLysth9Y61Lksz8Pd7coP1U79uvvvLqwtuGZ29zBfUfy0BgN1t3Lc5qEaUlUEUnmujR8M+yjrsNEIWyJYWLR8XNkSF+jFziG05OtE8D7XYwZiBSZaEkeuOlD89PTzbObgyuqMW2BT0E7tmjQzyyjKTx73hLIl0JcvRtKBmGS/WsxPR8tH6yNvKSokJgpbA8QRn5/yVhvEyAwEmVy0kx3GTqPXClcJPUo6oqq4QhMPAKziOuHJ3sPRUuVk7RB2IwQE5jqzgG8vGj9FWSegM5OJSzzCGO0uG1NH9uJ3Mc8K9rqvaoFpMlABHg8F3wC0bCTDXHnGTIeSsa2oNu+d0KnO1kMN57fHxkuR4NsVOSri4sUaHZq6gEGSzdnrwJXohbAEyxF+wGYaOUAlzO9Np5hzou1jw12mv21/FHUTismGkB54aceZ3mqG+ble2h835hx9W0/rJXAHt14svXJ86T5q8ixZKFqw5Kqo3o/MT33Pd//utf//4vf4yRLtvQGrDVu/ZK5SqyTrizqdiHuWnjWlCkf/iBDKqGEifZv393WCwRfRrgJbSFaDbty04+fWTDqtMfoIvZyaxLjf56TDFi4c/wIZ6OGiWJwPYrs9LX692JyDNWLB0OcGNahoovbK1Q4chsBlVhqvBQRX6jPrjnGqRi9fxaPpL0Z8UYfZC8SKZc0JhSn78ogar9D74nVTtwICsxVlQs1AeBARZA6Z8/KglqKPc1St0w12QLpv8xUAFVxYdpjeTUVVGFJI4q/xEKqitFZ2w17WOOZasl+FUaATLpcwzQagg+QURWt/IsLj9AgfOV3ucVwiTyagUljB/0GC3Bnq5Y3Q8p9L4JXAFqY1x1Gv2w2qdVavhfLal9X1Or2VzTxhGvxjavqqflQGOLso2O2VuzdnPx5sJay+sbb8UL2VCLcWE1tu2c09vX59L0803daBsX6dcHpaYYJdy3MXrs6qMRB2oDi+ZttXX2TxaNb3z95VcqLQxrSgrjM80UJTd9bXjOckg59cpnl0I8jSOFmMMXvWx9uDRjCIQaMoeVc3dtEcG21SBWlc4DH8zc6SUj52lJK5gTStiLW4ht0ypgXG4vcCHUlIU5f+S+aZhUInBJIKzc+GdgpPZoDPJmq1FOcYvGIbnKTkK+lXA7eC7AK14N1cTjJtcIWVSmalZcl6yUKyUbNcUKTxcMFxhLPRGjVB49n1dXYkAqS3G4GtC5iNmOH95QxpjJk916qkA1jbKj5/TsjaONdMYM2/um83gOJJJlmli76ZQpkg9zEwnh5E7UgarkAq2RbjhVh4QwHdVPd7uVAqf5TgzgLwiVtPwAYxJl1tpf2jn88ZMFzGwWgynix9ufDg4PsMXqf8bg/WjA1PQvLI1cEUWv+UB7rPeJMex8cGp8Zd4zdmGBzTunVl84xk23eeYTjOd2Pg17o0lDpSNnJhrnyHPyYNAjHauUCi3s4fDg6PjwyJrfSNUkWMEB//JP5Fwza1vIbXPJ+gayLOLvLRCEEtVXXi6y24CkSbcNltQuHp+IWlQVvyZE0pURg7wXGI2qCXeGZcHoTDtrzSE46k5yw2KIJqtFCCOJkVp4j7ebDmvPY9rAWRQj8Se+RZuj10OfoMLJ7WSm5Th5Yzbrk+Z4oSt6wqrMwSpj+ZfUMg0yACyqsbCqLGEqdYwp/zHAZwa3PAuMwAJPQwI/gEceqWO/PI0Drg3h6fnFe0uu311c7t8V9+dqZm7LwwJuOovMuokfP9m0/ubyPe2Xoohza2wm3t05NsPlQBDRs2k154pbkciATckaQW/MjGYlBNTlqwcHuEE3VOLgjBIPatE7GcuwQiBcRwMymilSq53nTvTT1Yid1WPGwMuYVFeTI4Kwf9ORdSDbQQYLTT77rCFj0rPfuiCglTIqnTBvhjEMM+HxT1wSFVov9D/93d/97i9/8XZJYYypbjNgxpIYDx9vKm1jy6Bt+BGMrgLjoYIO/Sh+8QJfAVKHNY3xzetRvHzG4Zaw1jJ8oKa1rfUr0sjmi2l1S07ApNPDKjmidhBb2zL/ZjjWJNan2R5ubl/WMKYQyMUe7cOGM7bac3zjOJkRN57GvyTbwfP37x2KqZokiydTHI6qGRaVDyQCmRDFeHkWFcrlXEkrgdaa+5nDq+pFSN3QTe1ZVE+thOdumZOvARnWD9fCSQGgQ6WCExWk6LXF87Qe21yyDQ04FGMUmn+Vr3LMXFWXXyqwURwm0MvFDeJj9lNhaBJaOHtW5XSnVZBXFFonT0xsB5YFAjhn80Ue3ILNlmG/F3mzh8vLdJ3IcUZPj/EQGOkymM01R3cZMLCn7FLVSA9D51A0BUZBWTLSpMeY0PQ/T5Z1jiLFiHAOw3KGXgZfAcWzCpAKUGMDOBgiNwS0r8LViBvXbvhfgPDB2Y1OA3j/0STgzu1bdGZ8S+39yNR3VSeuqUx1dJ2nTwXVMKwzWvRvf/s77xuQCCMnwTF7A5788rZJzEZCQavb4Msn3jGP3W39YAeb29zTAZJq0nVFDSBiavNaGmGxOl9B9WkI7WDe6rTtS0Er+biSKKxVXDdqBPm7d3dtk9rS2/j07Pl7J1VZy2rkKPGbq57WETc1LrjlBd1OitHoeBlUYeK018m6gR3sOj5s08n5W/NrpABz/2tWLJk2dWNO3nH3zkRkCIkRWFTGpQTXf9pR65l8k8SoUrJb1EvGUufX1Agrea1bU5lTmjAo2ly+AjEfow7/8DMBS6pShRLVqA44rMC/YKYvqlHd4DWZB+gCJgGOLUfaILD6HNSCOAYD094af/32rdkiiFoPfO/ekbfPa1ZV2urd3uzi7IY7FlkaBjHGJ/Bog0czQXW6WmvgCNvWBti89g5K1iCEV9sOqwe6PmkzhV2koIXA3UgLd4hl+oiLG5XJDKDtNtnEjbBGWAu3JJeAuBGNTKOdlStFb6QIkDoNSwzP905exmCcHpSUJG6n5eAEtsjbD8VdksNZAv0pdKsRUyhFahqY65535+XR0r90AAe8mDsDS6drAjHElAry+D5LgN6/v7xzbbWSCZDmzjjkO7t7FghqoOz0UIU2jppiwLgvGtbOh/tGpvf3vbcTl+1BYEUW0jqU4OnLl7MWdXPDyg1HIiuks60dKhgbk/YJcT9tYL15wEjmVPsObcfWYvQIXL853DfafVcr7yevhjx7Hr55/NXXT77oFcjrN//Tb3736vWraYDr58XgmBXXMDmlHE4lsHhaqhYCGelpMq1o0hr15QAaVSpqxkRvmqgX1XMObwr3kVQUTRiypeVSBoQfEqQPdfm/qYYIyi1n4lsgjBZVLEj/6dfAglPUj5ol60FYVq351oYlMdZKcEgzm6u7n793JqljTThytkfEqDElzC2dOKoWFes7Z+KqXpJ5ZX+zgVQ6w+namOK0KPl3tmvM8agonjrpHgxa80HYfSMrc+DpETEWsUI97sVzReff8EP5Amk0oLEOOOAjg2HA0oAsNhV3Fg6M4JaKI7ZqYv0sgpgcUgIzfGMk0sKL7gdUbr2FtV4bKT1hh1IHe0KDLJSlIZJoXQhPMOCJaMrgTtMEILWgMHwLexTpsu+Hae5cdEKHM7U6DI/aaIvMEGoZklRXlq0p0HRwoDVE19dnrotzw6T2Te948T1JiPgbxjJ9Tiif7YE6AmfBoCEnfGnfZrAAAGErSURBVBzpt5LWHOToTHrlxFhnP4rwvn708BfffmPfz5PHD3fMC99uft6wwKuTM7Gd5onSDT4JI7wgxtRi5Yr1aX9Y5/zowTD0ZlqhxMdr4FurMsLFGzjXbEkSPmIKWQxHBmqqHbLMJY3BvRHGRAExvgomfxndLWXTm3m4ABoNoEwgVqDPEevwIJ4m43QABUu50SIPrBZzvHHv9hM9OpPZKkkboewU29h6h75xhGYM2MOUJPXbxscLrclDtyDnHlcKF/f3C9LFJKSglZACQvozOHUPyIw1dzd4DGbTfJUEQcTHYogO3MwJdwNRqDhUTxlC9yRujB4jR/4hO3In4zQajVS6UYZCZpVLxcvXiGzFkPBZmcQiALjI1Zhk0Yrz3nqzQfZc0MGY/NHR5hZ6JUIc1mJQ6ZsbU6hnF2/4dIo3a+xEnh/s4WQWTrJnPNIfP3rw97/5rRXM1hTZzmlNwoc1yzeL1Lj4l6dnzkkwsqpqCNMQMf9oNYUyQXGzeeC9vG/FrnMwJTPFiV7vFxYFdteOaLcDXatE/68Y7JyROVoQJ7QMpnjXf/7FY0e9/eNf/erbr79tg+rebvxkss0Kbd29c2e1GiaJxDGcTYi1536kxIu4agzEWxg2F5cfHwynFrYpm0Tm4hoVLtydcTGCWQUtA0eLNcIbxUH12Ica5Uqdh8NhHo/jSe55OoieRNqiHXBEQ/rSp2r7QFSPV/qfZngW1goOcdbP37Iwxvlfjii8uTk82MNGekhl7u7tiI9UCjAuDHvA6qWNsVqXTk0kN6bQUJ+CIdM7lFr2Nt0wKXKFaLo9t0NU+QCLtrHb5WHMAjDfrF738doXsBqPuitYFSsCBJUylZ9hDqiEFapT35JtKT1PlWoQ5R8glq8BJnmwo/8T4Exq8CHRE6SSaE59zjTZ6PXMjIFTM7TAKYt2LLHju0GuzzDvdH3+8tWjB/fENiYCrArRVZhDXIQ94CHZO6OOf7O+7lh554lcvbdScEcXHwon5+d/+uH73/75z3ZCxu6I7AsiTPqWRb66DCzSpKAFeE4U47by87PeEHvkB52BElLvwS2MqwOeikMtbscT3Rfx7fH+8dnJua1MdGL0bdQ9mv2va0Izaa2Kx13EmWHUdKNXjKz9jG4fEJ3LTbf+lBijaSRWgpRsK55q5iZHaalO+uG2pyOIktE98FKUWgO/Fo7UBndVKBEVKkxChRbbWKk+xuVGQy3xJ28/F0ADTPr8TskGFqCwrtEZU6ysovULkRA9sRGSVahka9GH7RIrmKAi2bN8b1m6KgdPX0kiV+txIXF307ks9GM0Q3IF/DV2Uiy11FRGiWquufCdGZQ0pAGCpXTZEhspPJGHilKDfrYOcBk2kLGCVAg6skTNwOvbf+zqge+xlsgYf4hUozttF3N9bPrpZtP7c6w/P9p1upeppGX93yzMZjlOpFTrzbU9vWajnXYBV3mM0SF90CaU6PX+kfWt27//7vtXF289MvZqcREkX3hr0LvL4Qp8RayGbPpXy5a8Y2MRfxO6G1tPT1861cLCq00LW4azKhs5xPJY0AF1Lq7ranNt1r4kUS24qY0tHZF6H02rITyGL0zHbL9s7PB2gdeXb3PjHozwQyIBjEeJZyuxj4IlmoGQHJMgOqLCXT9VA8lIsaFn2DSiyLdNBY13ybmgUamlXpniGdB0wL8VfYGXPl6z+ymnXg1rMD4nfbYRCA3/4RS1SVe1RRaVDL+psA8pQaY80x0a5VDBymVOu6tMYqxZGoVTbFAYKPA00yNFarUMb6ojXBLgvILbboJWCbUCklfyqJdkq9j9gn11JMT62a4wyrEBSZqO3nA6bzP6FimIHFqivLXlWDZj/Oiz4EU6PADXRTbMIoapDfSesXTx5t7xsX5+SGXH1J9h1T57FM61maGfZGaKYyRkSFSwbNMFETbXpmJnnTw4sphn15IdsY7mXo0Rme6FvYMsHKfLKqwYNADNBA0kILwq6rVqHAxO3Pt//w//+g/ff6/BIR564u2VLRCy0lsGcfZci2y4Xo6+zoeNEOrBGt3lVyfn3v55vH/3/fs1L42g7qiFO64gwFb0FnPH5iIV65oScHQmRTe6KUJhW/pgIDqatNJpgvECXT/GxhtfbcajRJEVLVaBSf1LWn0CuWhCd7JRATnL7q6Yp9/abjE4XughiNmSAgGoavFMflK+6q+sCySMmKKgVgM8p8KeqcZHhhlSJVdpeH0uHwK1NgqS9+p7DIIQhhwVKTzPKwScrktA5qqp4VIzCU/9YX7PxvcHbkXooCbLmPS43mHWZ/ZghiPD9Byn5TRq4ExN/Fw6o71HkF/z6nYu94Nen6GLW60h6JzFD4cHXu36Dl56L63w6Vzahjf4YAxE/IaBUTTUarfaxQsjkUzhtSTj9UcShrzu3pFJTjjt54zaFxdnh1njPNnDcHpSEYOohS/zHVPweUa/Gyjil8uzdm0xHK9vZbQTKT600Mq2tAw2U9Ew9PKNy4u3ZqOPhBis0bylkGpzy2okVtpkM6v92ddfCp/OL98W90SPN6d93Lpiw239Gyk0B8IIdYkRoZa7dzlxBCcuVd5+8/6d03YPZoH4zY75oPhAXfgKc92chC5LHGcNNl/3LgkExA9kYZfeNou0u7XeTA+kd8Ui3m7rlt4I26apGBtfUkzMXP51Vvg0J9pBLFrcIx4pn+GMPlVSscZTIDycYl8f65BbvJ4ix/5Rd/BpVxyvflV1D9MkQYjIgMgMTSxKKAc8ZC9nuHf5psxTuaJ+TyY5fAdzARx26Jc/hpSvOxWnzf3yfNSAqKfGOsYehU9Y0aJVjQsOlZg6wnksJC1ZuFRGSdyYvKXVtUiWCmAfGeHNcGZt28tI6oTLYjV7rZZH9eNjSlELka4U+mZtZ/tgwcGxqCFcQ7FePBvzFxIkRy9Nmgwk2Bi/enVYPdAqkz4bGj4OuuHfFaru4tdQHJiSFsfqvnU6bNPagk9aoU+O4+bovDolWnqDsprWDKidUq3ra4PR7x48FCDR5K1bXpT2wVoPjDcLUDXXa8cHR0Ys/+1v/x5AGKhJyNCOv5mo8Xa29s607NcZNk7f2TSWrb/hyIKsRIOBLxbhvXr9+snxvTls3l7txUgiFhPEP0I6aloTlxPIntK2xVfP8X28i60S0+zqcKulceLIn1Xvx0dH0421DKSkFFxnugPWbzuJ7d6BdnHXCpE//vWvDgofcQ0nE4CrrwpUa4xstJdJYqOlLw3AUQmoybLkyo6TW7pUEa0rVBPFTc5jJFrzsfwDFfjwmnfgLlWW+BkaQLP0RobyyAyCh4j1jxJQwlGbBWSoDLpL/dBeFWMENQbTbahZCLvPdEWaqOazMkVwgqzKLnaOIuw2EbGX651G587u/sAuHwKhpKYtEtP1M4B77aUB+R2kxjvBQrYUAvTYTQKSlPesMin+wIgbHoR+vhXkHIgc0xqgeuAAIhkVEwvJUI8oM4tFA9ZHRFaj28k6P5A5Jzt1fortMnSAOlJroRdLsAT5veGjrU0n5/ppm+Xv//KX5yen/NLZ27eNMlmG0eDfHNJZKFarAvM07fbtf/JP/vG//8NvCTnkW0Q8R8temfXvNFjHScDQqNH5m3ONydMZ7RA95UVgL8TXSfjxxx8sMNy5d5t16kYnImsHOomNw+kU1YYvgUdaglkkFZGyeYWGt8S97tBfRk5NPt1sOBcj746Ndpd8+eSxxQImLJ2uxOpub/UC6oO9HafWSHXWL6lYk+hAjpcOggdfybg20q3SWIm/vlIHytby/GzS3sPiyObOE8TIcUorkKRCFBKDcGY5ssGmUUOpSYgSlD7uc0VglFZr9XY3BoDUKZeqZAS1sC7tUUqB6dW1+qeuijW0NJpRmaXOftOVlXLMDMGACfdMKJxdy+eCQH3UyZ/GxxiKYAElwtPSUqjCmBHYdUKrFdU+02Bf6ftgC2yJKy33BE+Gp8DkLTJyWjEcqbkzzCPwMMg4Z7WrKkIWLIMNsooaAqqaYkJLLVqaAQ7H/NlahpryZng+KN8vv/3W8fGasjeXbzl7jfuJHWRbr26/faMWI0mCQKOaF0Lz9++L0rY2qVcHS5ucWb9lTjCem6b07qB1J6dqJZxBv/bLn//i4O7+K2fB4wxEk4xtelcX1+f6GOkkMoVDdYFgas/01an5hOjSGnl1z+HBX/7ynREkzlvcOOxKbmwLnerQKLvYl47MRE12EiEV11IXl07z6evX7GX61ptbloUAkxmJ8651QkRqh3f3/uk/+pUzkK3lZglwFFbVedPoX33c3bllRuJ3f/zzx8S9KER+KdanVo3Y+FtvBl1K0WFrLpJA/iwikxA5Gqzwm/pkPTTFV79lSYcW9R2ppHFh74dSo935y8k/sh3aKpkEh1kBS2cpVNbKGwGxamZS3zAvAF6uyeaWjufS6WsUVN2iwaOWS0NQ6gI86kMYpLlWT8CuNFqrcyDLlkongqU9obuVSrtjYnj7FTqhuVwe1KcqW8SXRytdndM/WajJuJfRJupRbdpgX+GADKUUHw6F9fiFZIJJ6cQEnz0ojlKpvNire0c3/GRbFPHhHOPlAHuqVeO+fnN+eXlukKdREH6mnoA1V/RJiK9GLTHlYjB2MnKmPLrDva3Pt11Gc4IQusc/isO/fPLk6b9/YSVGVk1d4ohpY0gUqqjKhieHpiyH1qcgnDUGUg2XhV4KXbxzuNM7y0rqoQvvWwQMSnMCQpBeaHDHgovknt4M4XgTczqaRl9ly5DwaIVS4+A8dRlhuHv3njPz7+weHx44KMDs224HOcbLhAHFutPr+5Zt1P7U9lVuCifl7gPoflEhrVnq7uxEs5XVNkIfu5Fcim5xoxzsB6pZy3JFbf3pRWel0biRU/mLd/SeEpssOcTJsMCWMmo3PAkVHFaXQj7hlZqkMYUNKlkEEN4hlyuq4RrElnsgTHbO8wgAECzxflD6OUkVWEYtpZKZqkQjaVhXrBnk8nLZSQihrY88tTKVnzp4hOxwQQueUTgmU0VepPuJsLWKZS6/jo1ldm8B00PVUW6N8WCkay7g1p9zaKkpPx667NXHFEJvcoVDG1jCpEdsAFf9QyPgOqU/PHsqiKdvec/hzyxNHHQ1ACbqvQTaoLNLcQNfxOOQ2dlLzL+ylju95ufS2gnjUFvbOzdt6Islj+4/wAfsWWSAVW6qtc5yLm+R61JTGVlmuoi9Bn+sjNvcZJQGqg4OdMs46k94IJ8lfpqCNyKnfSc0HlCvwgCqkkhwIIpxHL+M4KoezbWOKh4vgQt8twWxdrcpai2NYCwD7wwPA2YN7UHDI+0wDbqzs/3+zTvmmUwhnfq7TSWpBLhJWjumlB/zXgyNFbMIl7SxbpyCKcEguYi/9gKYyiyyCp4LqAFZNUmMEseU/i2Xpi9YMq1QrcDkpZU1L2lkg6klp3sUwl1tRU6y3ynwQAjFSmANwdSylTIK2neCwz1iLtdPmaeJoyx85SJCapwj6O3zggjTqMlBXWb1iTG5N3+3poU3ZGLYDsdqGOOnCzcHOnhVX0H9vxevzndvW43TYAn0MNjOlTdvDDdd2xc5Q6uVFRaYqMUljf7p2fnRxgFFxIBV81EWl4oAJkxG4sKKvgvJSsp0nJT+3fOnudqlRNnKw4m4fLVLhZ9Ya3GeXkQ41cR38A9yGprVFX5nUVZLKmqnxuWpiKYc7JnXohGZvRTUj4XKlCOtniqtOoFkwtC5WpKkGwQF69QRUw0wWfhqtXMvUEGy7ov2y/ycubon9x9GjMhxNC9gqV/ao0NuAS/NzuihlT/uoKVy9NKdzeOj+0+ffe8phGLJdNZ5dLcN6QKSyhhHojXgpbKpWjIMgqpGi3lDbUjObZ5cv3n/1ubtaT6rWcb+KSx31Yw9KDz3mX9jOMRPv5dqBjB2pHCp/0QKVfbTxZaWX9E6FSxl4jtE4J5k1FQhtadhczsJNTV+Z04DxVMAawXjsIfOlWoZRZBAF12E9BAMVJB0+9aevXhN8HwKGe/sbNnZrPipIFpiDq/Nu5rbB/cPUpRrZ7B6W9QlM9idXd6xYtwE1QjjlKFi/qHNG9F1LHfnNLuldhJ/9vzlzOnesovg5auzJw8P1ej8Zurh0A2K/vzlawuljr2NKokP1TkgVtQVBVVTDRJLViG/gss364KiKOxBo7RljkFxL1patW63AWUg5AbEwjRUP706P2OiBvXZPN3BLQ1CMs596K5U3IVRLA74KouvEFjgg6cp7l/6tWLEzKwxUsw1WOTQcL1VB/TeO7wHPcC9qUGs+PSVqbqL184JvH2mfdDXgRmKqBP8EKG4ANH4iVXH52deyzWG1PkINVtqHuVcf/Lw4V/+/EdHR93Z2fu00bbd29cGhrG3F+rY/oH4186uYSEgmm3RmA1VYYu1KJroNHDIGl1DCTOwzUO3RHCOMk4GOtUY4D7iwwKHYdUnKUVpngkOSWsu6TmMFK8s0tUSGA33WNOChjoGASBnZKwKAl9oMqDIQkcsu8pa5c3BepQFLyFlgJK2UP3E62Wvrr585AR2mSfX1BsG8XexwF7Ip8nUqG7vcKNknGnpshnafnT/MHatbXjr2Om5Y8KI8fb5m3dPn1+00AzQAKdz0axcXyEkIYwLs2zH8briHU30pFvZtQZC01G2R46X1PjY6GsNlSM8jw7v0jsORREHWZuQbj5WbAFySlcridLIR3pml570ED+7KdxHH28bLbVIo+VDK1LEeToGBwdHRiuFKLV6hgeHP8pbxagtMptkOSxB29wjWhO9c9fspGPyHAJk6lo72di82d6kQ5PUsvCAUKWI/1GBKbkkyEAvLLOSTauDOMynJ68//P53YjTFnJP5oTM4YqM852/e6gZUVaCv7ChFhLFc7NMoqNd6jYv1CzYvM+XeuZOXTTGx5+bKed+QtRDKOOCox82HzweNIcN6rJcvX55fnCe1go14lMIMQ/ERlxl6opJc+ejhCazjMijmiNeVdCW2E33aoiJsryRZNQIorQjkygNi3wiT2Gc1JDYfPesrsUrxG5y+5kqdKijkMbLnR8+wxF0OQh4smfnp8UfcvyQZRvNgX2UZl9PXTs7tULM2+2oZEAdJRngmorG5iFXS7yoqOPHSAEv7TPfmPWYYtHH3G0e/1wsHWTlK/PihtQZn4RtlU7/yQ0ZuRlooB3tW3Deh69hHGuJAHU/NK99xqhdNbq4Xb9cNaJo3Umn2OXJR3QIjzMKb3D1o9eT06VtyS3c/s0cvIFrUTNoO0ptheXmLEgWEzfgtWgulj5+eP39BrmBSRHlyfRW+Ie1nL17enncCzRFJzmt6L6SDE/Sgof/AaJsxzArpkf1cY6a0KmTiZKNbdCO0k7GvLAhm9ai9k+TunlOJLz58PPvxKYtSjmtLJFPaN9z1buRXgxk0a0QgKsPYEo2zFn87OrkvIX+r8HF+Ivuc+9q+M13v3P3rs2eH+3tH3ozo/MN35h/qEqFQUPv7P//Z7CCUYIbbgYUiKOWIF1CfOG+0GQnpOSm0XFHjPuq5WMjoMox1gmORuwwn1YZfYKfcMjMV9BAIVU/nUSmxKKHXbvQ7DqILHn3OBcokjvZXJI5xPpK5AABl4Ol4o4K3qVVFC0OVJC0LXIyZV/+CUhgy76kwZEIHze0f2doUoFIRPqvzRJcx6S070VNOGHFSHhEvXmv7d2+vn4otPaANgc8ggE+g1YU0x+47Y8FLKd96fHLGhdkvBumOxZYtAaDFAUKkYZFoxtolWeOKLcvRoKMOYwOqabxVlDt8agSt6iPA0mZ186E5/vEXVH/OPAVQn5tVmN4CWP5RN5mjXwuPIdot/1wsxadj8+zogI8ACTVDCC3UAm6IlP/w3fd/+Ot3yaBubM4fC2GV8ojDRpqZzViCBybUobcVYIGQBzdr3hlkpd0bk3wj7EViiTadiHcWomiC9RHQJ96WVLs25Do7LK3vWnfyhNXi0J75/xpEANCoC2SJ3m9+94f7B4fbmztFcldeDWSfzbWo8T/8/vffvXwp1LEnaCKYlignv1GSVHmuxTRx1820azGOLvjR+ENCCDtIKRvasUFiPFkglGH0O5Vt50dCjcdjeBkXZaWN2V0lVBBHpYKwksln1Q9m1Uh3jZhyK6rP8nq6LC2ueLkWFOQbUCZ9RTiaclVM5oBprYGaprzuVCY8U5APeplNEQV0rKL3Jo29/V29hfNzOz/f8QWiiAf3981VAVUQ6CSRWm7Uea9MXCL+wfInfGs3zVRpWe4d3V28oT0VDj61nUiI61wvj2q+UstmYLvp+AkEkKc3c7LhOrJ+jNXHiij1v+cLa9KmJYyQCk/+2DCoOYRLQ59xQj6Ex0Llh5dE0Z/7ZrBLTYVoPU0mXa3Tydkb7d72diw3+mQgVpfp9cWbZy9f6s16A3jBfZyk2YyaMPP1C/tT0uF0nWHK1tSbkVISHyS4HK+3qNW4eT9ZRz1aQw99fGRjMKu3DhzsxwTwIXL9wmb1aN8MH+nLsxbepS6//q8zDuispuvGyZv7lP67p09BN+5rXAMaz0+fv37z5o/ffR/NowewTjlWiqyWAMSQYXRiHgSGWXVWLeeKtAhNxVzgx81gdBOI8FwWomZpwtiYNYxeKBqVawIlKCqapiMuDL1gLum009PR9YQ3YszYqpkBTCsVEsNVSeoFYrGqwSE4MOLJPAGLDwal1HEZaVZsWCDmmGvJBcWtcqMbLuPqV++vPohe9ncNqXtRkncBemmnMwG8ayuwELr+WK9x5pVjTHpZwOllGvTfiiOabxJaD8Rg1ZWDeqiZUpTMYgLDgDa+NEi/ZrOEXsQlamzdJETo2uTlBFVGIggx1kTL8Kr5ier1L8Zzlhb/o9v5vihVb/xYrKrtqeIGLZKBenRuCIxnGZJCsSEgMTBvopQkuXRNJ3DZpLaKv7Dy+f1l7svKWYfGb+klRuO7D0aTBD91DxZ8BtzoxLQwEj0ANzNrKCjFVhHmqo1aN/vQu5Q7+AjSWfnQ86kgpgG7lMorHsxR11Iy7RaKfARu6ARtiSJ6X87l23PYWh9rDmQ5TBOvonBt7dHD+yYpfnz98vzyjcBUoGvU+K01Zd6wuyCOslCKkPiggimaN0F1rrqEelrZXmRpUM3Al3GxzkRe70K6VqXSUoajnZWQRnQev5ti+qXTJIt2G4CMpXgPa+pPU8EZOZ3GJ5bFbOuB7SFWr38ypAdJfpjmO3mr0+BcwWlxdiNjxm/i/1DlcZQ0JlG3EgP9ZXFLR6J21rh+8ZTyMPcTZhRr22KhxMx9KA5ZMI1SMN51e0Pprhkd8kiTmurqIr7h6IK79mft+x9ewujRAyFqW+bVq/4zp9LrdPaO0A5TU6/TfV6ffDh5bYvVLXg6kiym3azZnHjx9s33Pz7HCOcHb283WRbFORoePJENsxVyYRC+ypvzXbKplL6aKGiXWo8mIkpMZIi7ZQYHGJYMPaFh3d/CHKBSuY/XnxxpfHN5UYH022DPOmRYV/UQXIx3VaHAuRjPVVMmDT9TYVUXFIR4YFqVPVUnfWNCdtw6njplG5ISAbeRAgWdW7ZvyEvQvFk6IowObds0bUcFjzK4e1Orndc81rt3t/ZmC7ZFMpFGsZRYv3/vgXdmvTw/u/xkBXlNto7lrHHQ8OUypKFabcDLgIZu4NhHrlcGN9IR6xrl8i4ju+HyJ/5GDErKB4iCtIZfy5n5aa1YliZ2rq3PgYdW2eXmhaqnUhSXz6BiND5FfU/NApSSCf+cQnnJevb3vafVIXzhROf4V9vc9xqSB1Cr6LtKDfmpyfGBUoORoeVCqrepj2VN9Tyk8hubl5efnN7jJNj79w+iUTfx09WLlyfHh/ajm7Gxpb1FZGMo7Tyws95IiOMigVVvNIsWzi/F30b9Ntfvziqy+Oe/rQcL7XG22Zvds43LH5++bhFbr2PavHcgUsrGbUB/8fzVu3eWHSDU6rzcgBEmB6YIoRDRYYjYmO0VQgOeuqCa8jQ01MHaCASWrAQ6VDLboEXn55YY1aUoK46GCeRGmn1VwqdvykAAPK8Aa1LIvZqGljjJJUTUR8eCmKqy69VIE1aK7uwRx+4BO40RgeHO0qkibiXzM2a0TE2bT5hLAkp0He7t7zNZobNkAQ0jAojzXrgAHZuVjdwd7Oxip3Z02+GsBZSRUtTZlsVenCp43dvd53s8hT+GeKQ9vnNn7/7xEUtATLC1JLMkznhabJTTl2qazpxL9YtVLo9gyRcymVGpOjeNUd2Y/K4QMVDcWNpNReNE3x4h3C8535uJNNOxuWGI0B3AFeByDHRMf7Kmo2kv6mArfReolp2P2XUsmr0ioPDNlorMy0EFJHPYrZKtiLb50Fx7M7K6tZpZvk37mbRHhjPiEl5v3hFfu3O9WO5wbxciY1Tm8j9enL9b2+il3AQGeVol8nz24pWllzzf/XsH3t8RD4axohe05J617Umss9IcIqSVsChLW1ITiv7i7CYi9AVIhBpRM2tXju/duXdkFzvHENGGKBp+8NLBW5uPHhxJlkgZVwy9ubIoxl+lQRl2uwEcNq5yE91oVIkjlKmu5AUNlqud7CGtCN8CisUq9LInU7xqsInHS3CL++oJbuBJ1ORpcma5xIQh1uaZb1l/YfBAVjYjDzh6Yry5QKZaWjhB7b1cx4vgqYV9myhzyusQ48Nvo8n3Dvct9kgeEJNdz4BS0j1otzx2nS80A+/YJ5iCr6qmokfC+ZhGczBo/ezNm3vtxBMgcYcCGCR4zNg2vnryxW//8l18iFkNdOQOZga1GvPfHi0X+cVexJME4lWR6oZNXaCp1qeuvC5jkOIq1isTg/ohD55VybTFVnWBGBCnVqWGRiSdIuGEhQ0jM3hueMvpQyneMj1y/tYtlAI+wlY9F4vlaoE1LpvXpbIiX9NYtzdbwe6nejmyD2sMRmlSWfQAfUimXNq9Ju8haezcOjPvmDX2IZNaeJO9uzuNuhspn+6B6h1GoqswwvU2GptG0EGRaqtNqK3kBUk1mAHY3vnmy0cTHGreFkmCXYfEhAOvWk2ByGXsNFBUdFBC6hmzJAlMhMtyoiUGZjwpb+ZTWiAqNXfuUYkpg1KGBxwXvLCa/Ja6StTlNcsUmhnP6LhiyvnLFYWEBOBy3H6gMd2t9vK5KWSIwzVH68RgtNKmN2Nx2kxmr0vjqGxuRidIBjAbNCqiFk3YnPBetVLb7BX4Nqt0X2cn8I1rWn2ky2uPnCYnXxmGaK26sG4098Pp2dnVo0eQyNLoX6xjyfDMBhQwfGHJBkfFToyTtgkwMo3tsJz1Lx4/kUdjEaXB1oBqBoZ2jwuwY5c6sR77pvaFHMqfMKK/PdqWHsQu3DIOKOrJ/CEaiyKIxHy78nx+FzVUi6rrrtVMl7UtfzaMd0SN/sYnK64ApXYMXveSGVilqzMKxKJSMWStWU+D4sonzkFDlVyTplYiB4Q5KuP6TPIY6BRDFksY9ROFiXY/2Ifu4Ns7+/u10QgBfLFVSmOE9IBlvrmIbwhO2/SYN/VrIckHqCGFmurxHDKyFT/Ue4hX9G/R+ziaao8OyXG1dvL69P7xAbvzK9DKDNPmBrAEiWdRMcPZ7qtrBIxSkMNzwMo5aqto8k3XOULaNY9hEeKVLeNk6Cfe8KdTNOoS4ZLDLyUoTT4smFMJEEGZvyLdoWSei2ymPkB4E67eJgRdYCvn+BD11QJyGUp0ikw79fG2vofgki2JoHh5dDaw2bqj7tkMfsmjkbVITusZ6qjrWZL3jSKtrCOMCFVJ3FEHlVKKKvc5fl5mk9DXV2fFaQ77fucd1HUqwAjg+ob5Nec1vHt9Fn+GolF99SzxVVYef3oYYxSsqnqeE36F7RRMyLIBYdtHoWEZITtyLX3KoVnBRYQS4Uk7Bfe8BR/MnSsAOlw91TCKK1QnxSWwMVhpfopDqa5oqALPsX2msy3T3RQBpuOzV5sXNOfqqUHqIBRYAtxOMUh4ZZRErIM7aHVVhs3pTOwcNVw3h/XBIgoH83ubsBxDflAwvXIt5ySQcIxqQQTVCQ68Yo7PeNVwQFmqqU9ktmvk0GH0YvvpPgHTs7JR/ciebLWZVeDBPHcnPQcPln+Ny42XkUoX5fVswq1KDMzAhpuMGKv46HiBegrFS3oqbVrBIXzIT4UAg2moVHtVdxf5Km4AsTapy62PWhuvtOVseil4uxpsKLAHgQTMUL29aHpK5iLSIZPGssXAz/4+blqgeXx00KkA1RgZWG4BzIbukU4z+tQ3DzMj73d6fP/Bk/sPeGAGpYNCdTCcqW3v2oeguY32EG5R6o5RMaOlliHVt9VVQFJOKx0zp398sP/01esJfQjQE+UUriyR8nWJ3M8QCKz0vquiGgBJJNOu6oiLd6zKEqUQs5+1ZhWlIApOJRIq1wIBYc8dQya9s9qLnA2tFDjBS6uqid3dcKya19zp96w5bWVa1Bo062Nj0lQ/CtdruJwxReEaCrSrabROTrEWBqlg+9ZuLB0H6k2BdCuP1A7jpJnjILnmodKR8ZsLcVEq+trY3AU4RVqaokUp4sTCheFHv2JcelF7kMNGy7iPONC/CB9H3reyN3d2zYfmyNLPsWpfi3aVfSInT8NmJBrdsa8f4y/CGP8LR+mHCS0ERGkyKVe6O/kDlwj8CMPgILwJgaYpMGIKVueKt4Gp6AJqCkGSDiiiMsa2AlW9qqsif8SESToJQFkVoi+uBws9DwsDM/u0JHrsuVcQ9yF1c/PVkwe//PqbLx88oPM2pgUMKqFgz97mpq6CSQQb/WyFdiLmwZ2de0f7D+8dP7p/n6k8f/Xi7E2DEvGyNz17nw+F4GwUD0+16x7o3rF7zQJ86yp43F5Qh8ClpJbx/eZPfxmXEXYoTf3d1S2pASw1lqZ8U0KaH9L9j38jYw+7JwCd1AQDtlLRPoT2I71wuha+gzUC9kJsc/JZyLSCs4BenvY93l7p83BkaaN1Q9WBCsSqPjhuZrIifBO+C/HJa0K5AhH5y6yKjDZiCENStjD9PEDKXeAx5KOrEpErM0HtNITAlqWUtSvZL11qdQ57+qoVdIEDEkuQb5w3e1tqpBBonOZhpZGhGgK0KQbx2lVQv4uOdqZvo+Zp0ngclbBYY/ZkaISg/qiAb6NjGDWYCLTnxNBSkgnHYbIy8zOeVBckQ34lwuw7T+fh4J5GVwKdfstuTU7K3/1I2sPyxIcl71Djp8exnmF9Wo5CrKXjTF1AVKFSeUZ2ImqTLDqtNs5dGW3HwyNHC9sg0KtDrJDLTgZ1h7dtPvSeBO/TvrX5zRePnhw/9CaRo3tesGCbjW3gXtbrdQ/WIs3sWSe/4CiHdMWPhaghF2sBdhxK7DSyDrhVWe3GtniJ746/+vUaI2HY23cf0pnEgkJFoyztkJTMSowzfU1UMCTF7jLwbXcO795tOaB3VO7uKZhAh931W35i/Cg9DWRlo8WYBWoeMcwJqcgi3o2edIMbPRrhkBkElKAecstb3YvdZhMNtwIy6o6GApWIKMMShcsSif1LLsp+1mzEz9ag4v4lFlezfC7Rh+ams/TmR3g22ApNFEIpmaoNKc2jhZJ0I06sSzq/8+H9W05tOtadXwp5HR4158CcM7Zt9nN8zvUnB+zR7byEM/Z27lhDIOQW1MmAPmYrrmsjTchPVSrAM23iOiVpVCrzg1q+plx+h8/yP32O/Bgqrf8t+Kc+eVIAx0MtZQNCgccnRKf/yb9aAxDblA94T5NlKI1mBHoZsYoz4xHg5Zb+u5lCstda+kknp5v38c35G/1o94oY7BNUADotj2rX7JXZPdq/Q311wg+sjvCazx1voTNnYInXR4vnrNrW/uj+4uXWlfc+FGFn5Qla7bi0ib8vXr2wUHHr6GBGFW81tNKxHBquTztb24+PH/7x++9TL5o2LJrKC3vSpVgXwRE/zjj60b3SuOLLrx8++ubLJ4YLSKtQJUeTP0vlKpdGDNdGEhN71s8Ak2eO6VmcemRfuF9XPUNK8bFGZsjQOmYTWqHUymd6RnKyhl/gInvEWp1VjoRwDfseTSU9yAmPJaQcrZXyhqPUthGdQqeabUPj+BqIHPz5+Ryl2oKaDSMhoJEixM30U1bxcCZSGNDZREbCMFns6hwHa0uNfaHUdll9d+8mEgXGHC7hs5jSIhUu+GqqqtxXvUk3KU7xT9tOumHxVujUHXZItVfWuyiZiVTsgNewI2qRCXu/63P7Iha1pLK5PbA3HPElmo1HuAybeA6nGByYYVS/k/tn8ZQ+VSwS7adyubdhcjDwkbUbh4Bt1ul/UovhjN9DTJxgWD8LXUbGHRtjG4zMutb26Ts0L2hqUCbPgNeH3rP77Fmk87gNhxfaQhs/uRNN5MzJA2gIpvfYNm44h30PtmHpqPG3H947tMP4t0l9GfJH5MBudGs2Nx8c3/vL0x+JE8Ype04wut2hP4xWSq+Xh+CIgmGfwz+T6UK3gzt3Ym5PXDkJ5kmkZN7o0ihwa1qHQL9lLBSoqjx8gvA6zwSW2i2mnCDTzg40CJn1Vo+TEjLja7W0AnXBUtXFSkuUsWgARCSNl8OHqVo9MoVhTrznOTJpXEmiktYEaqd8cscT59R/cCORnZj4Mc9L7cLNv1nPHC153GpNh4PZanbiU9af5LQskWSoJFsQ52dIC+6NFGKx0fURwYBKk0pO30ke1FTYG+7uOAZiNPvm5qBB2JLZbu7WHZLq2qV/YVdM1daL0PW7Mbpw9j9+Go/rzWC9G0kajmQzmSdaBlcZfccSSSgo2RXHQJFShlJjeylL5NfSErrqfACuljFI90l1m2fYtPq1noM5hJlJQnVVS3x1evLVw4etjKCgw9DQhihSgDOj/vTHp/nZ5D5tcXFVDTEf3DCrAXDvu/340VCSislPRhgl1GSsWd8yp/Pq7JW18taf2mInUAMAjlZGOFGGFbUjyXDNLcO4hL1M74roF06Q4lC4RPnDD7gtbIjB0ltM74JgDKmXYJRIHtXMrzL1lxcfKciYwKAqw8JARySURaZOIMTrNCiD9RJSJoQhmMAhNp8Gz1SL2IoPKjXoSAczDZjgdySsICni6IArnpE9XRy5epC3hTb8FklnKGFWvwExyk+cabk1eZOx54ZWPTFFoByNpXb8MchDI+XbONg0xxxaYGnX3WU7DnS5wxmlVdC3irU8KWvGUqUU2q9BRR48zUASpm/ULjo5eKIfylldFu12DNXvhFDe0iomI9OIPDrV5yxloLgF05pVA+jDikEkpmZBqTUQYRfA1bfSw6HcWbT9wwVyWDcPBmEa72LHvoXxjuCfI8yQ2RRyXmad4tLQMBAIdTot8956bhL963eO4tIezDwjRa+ZaJE2kh7eu/+bjT+oJsdhDF8UFT7YU1RlRMhyP30Ab0W9/UEM1bYE2qBpjYhhOXyQ8Kfvf9Aaf/3FV05Uu31n5/WJMfq3P7549sJbP9968fWg9W42YUS6OtJ2SC9kf+ZtLg0y3DwkUoFyxhe88yi+t4pdkgM8EsJKiG4TRQ2FD2XKMhnAT3rpJ6oV8iRk0ojGdngpaeWishjwYQQjBWdlGXVEZ0D6H6LV7JoumbRamJLUmny595S93FXRhYgii/xrtQnHYeOPPCMxLbZtkpevxjyu7l4zCZE8PACjwVxwJA5AQDlgTIyQaUKqSApUUthRMqYcJ9LmrC4cBzGAIRNegA3AhaZSSHUUo5yjgSGqXBrcXw4I/DxpP4I6qdJjZnKoBRuAvSDHQOcbb/2oupinkIyJNeBFiYCz82VlkmcKlgfQySxnrTjmVXA8uLGE2ZmgwcFVXLOIHEUiENB0cXFtTo+EWOedIccgC29z9sYWkdPNtX25s+z29/WvFgq7veCNcmtPuPYYX5i42AJe2RxGavrBba55d8urF9qQgVUcVgzwb9qp/aP7/+Nvfv/67fs/PXtZGHZ9xX5AgzGvMJTFMdWOS8CJRJ7I8Ca2yRgjXfMd4LClNaOyVvZq7jIAv0sLVqXA8zOvD6mA0Q7z9hJHHhP+DgOHs8GUUd00bbn3cKBN7eNNYZLIasZzfg0CrmQfxiOpfGCYFv/Iknh6BNU1a5uT94RUBJj4OKCI5a9mIDUayw84zZ6Sbv3udvhQPyjM48Jo9ihrhQDE1cE1nyUujA8CuBhaJdBw5Uswuu9JCQGl+ynTSteo8kghdMEYaSqSfkpRy6QoBouYVgVVUfGBvMifhXiS0kn0HBFhEjGAWvJs7ZlTjGY6JWMYplK8ejimwO1tPD68Z8n17/783b/7ze8q6w8NEFqBWXFBNVM+GGrkQ2isfm3TC8VDGh9VO2u4crkYh3JPV3VwkWYv2uXTl68t4zIEizw0xmh0+g91/SFnEVkqAw7FbOyvkSGEpGtskU1bkWuKzpqcd73rpQ3UpCp7Yc28g9HB8XZ8nL39cPrmBXzrXo1DJV19RZz1s3YfzGTfv9EV3EpqskshmJSycCIJL5eSWCPKEk/Af5ie13RInwCXm0x3FgnJSgMztXgiUlQiu/V7stCdVGJEya5i7GdhJ+YQxv0wCc2K9WOsNfUIQwmxrjt2CGzaOjl7XlUxVxYQ4DH9DVap7QW8f8VWgIwXD6hrNFtJ/7RUoZogvPVDmfIucKt1royBnqR8ZV+AKZIh+QOmC5EDSHqgB2nqHj3KRMcAC1N/fvspKSS6ot5vdzjjBi3B7qss0PeM9VVjEOJ61jTQJeYAYuGariNNf3ny0pvtD/Z7casHTs492jfpeveLh/eNBDg7VO/f1rE//PkvF45nrfr41Rdch3PqgPNUHIfEQH1enS8buz2pI5SIJKfdDCIUPhOFaWzFEVt/+v5H2tXIWqbQrFsEpXZVtnG0f2iwQsloAxUIFbmNpbb/79r9r6hhfFPbXpKlwzCBWifZL1jfd57R3b0f3r6aMB1HgkRNhVPrW7s6TdzhovqZ0FQagcCPXBvu84/wcXSI9jTxDDHKWvRhPFv4kI3B7pM+kyi3Vi60B+dCpyDiRg4tlzQKUEL/KGkCZwDpHiASh8CFXAkoXuhf5JDP8JsqVQV1ymOPOWNiGKNA2YFaDbJM542WqCpdkZq1dQ+V1CMMGkXNIAppxGN6UDMbLfdySa5sVYx408WpSfYZsfBwhsQglwCzd7WvskxDpMDK4VfngF3wzBiCvaT23WOsW6QRm0ap5ZGzexl+yl3URCxpTtZaevDmZ/nBCdSUghVWW/X9+MHDP/z5u4dHx188vGeLhT4te3h4/FhRWlOI7nz1m42fPX7sYLi//8tfq8AFg3Q6SuEy/M22lqeJSY/EYFnDohvswbYHjxo1miV3Rm5N/1cyo8ITi8+FKp9e2vXz9t3WrOynEL0jEWz6QMpMhBZbMsRNIjtSKFrdKSMb2YxBhgKk2dMsVHDAArZXpfnmYHTZWf7g6N5fn76Ef9Er2RqmKHJheMb+4hXDUK0+uvaHkNWbbcTvhgIMa9NS6ZD3MMTcj6Bww/q5t+8NLFqlHJ+xGBxyKP9nDQIK7il8CICTuPz3rZIMaH7WVc2nLwqgYQn/VBK2RVtdMKu5U9VoSOUqXKFUMObJmaiqK6XASSjrO9HNvE3ZpzqYLJpcoZIrNbWnwNzo4Hsd03JEjSv8lGcIqa4FV8LhgDyFl8pzYwHr+ZT6ybD9XrR7sb1+DAxFS4m9ZgkgUSsB/rBmoCy1L7cDeWCmSVg0pI6ZJoOpO9BLUzjWkPSGdHD8CQPsEH7y6KHBWcz1slE3pvDNNskHSJnJosNIrWPf+tmXX/7mT9+N/KJNDSPeURI4ff6W2Q9RN+dlSIhehWoIaiUELlwIGDFZF8L6JDfoZTL6b1TOqXpOVnIGd8d2QxJzsCF1vL6yHF+8xRIYoDAkM8u9aTv47wIkA9gzPyKpKUebJ5x1nGaryPkZTqjc2vz6yZP/8T/+FokIaKtRU875O5nMQwdQL8fWgpl0IwBFb0/zigjc5E0ZXh27RbIpCHZjSCyz98/pUdsPH+DbuFxZuZwYMAJLF+CDs3LnkmNLOkTdPNPCJanJmwIUmyVNGUyQiLI4UFmlFctVpft5PG0zHkmsEcpAghpicoKFMAKT8lkvU+/S6rp4KjlpU8XgDedxIlSmptHYtCZbzZzydhXwF7qBorAVCF6mXuJyTb5V9tgQSHwYvqgJEUOsRJwJK3/xYVrsqUUlY1WKLTVU8/LEo8Vih4oyxlm6Wd6wwzJfYwFjaRADY5rc5bapW8Zw73DPrC4SuFQ+1UBnujDUTQDbYBO6aMrXX3whWOKSp4IahM9IwWpBPArCda7qyq1HuGtYFPrF4cxgy0aaJZI0prNBv3hbWZFhNkCnszcx80AL7Haiyb6xbkrNTfISAbPEtGXAK6nxsjrMTEGjtKbiGUOriwRU1snftrDeuNXaxuP79/V7HNNxRVsWNbLvjU6yXd+pllTw29WxCPV9y/viWvxDQZzvkjKamEa6q4HcWHt9dvLg3hH6FuGxSRMUw8+RTb2LlA9TFEHIiInc8rxVMLASwNgazo7QcVUFndo9SpqQ0w2yarmhpU1gLupb45ku+LmIorrcSwRDFb4z3dGPaKrcYOE8NybU2U4pUNWNXkbbELv6zcq2enFe2hvE4XwVVqx//XlUfZWVJQOeOsCcm9VHlgfcoDWoNHzsZqgLtUCNrIPaVS3LNT/mF7wkAo2mJdNS8wAfgMp5qlyqPHyL3Z/hWPtoemrD8t76tToAjbVxCOs7d9pmBHks5U4LPdrdcmVPGEu4vJgTjcI3Fi54RfKwJeiDjPTmrgU9tKNBNRTO/8LCcInPoZpHlTYrWBt8LX4CQcsYHILzWS1SSjWYTVuWWmp3QlSQ0LyFUclMa2SDYDsjYG9G500vse51KeYznNCDaqu837x+x5XMnovWnC1sQgZUFgiFYEVLsT7s4RGVRBMZGaFLyjKMojt+qxcnYqaXrNFObkVOaLjvLQ2j88qMJEDIj9EhSrykgJc25y0zBjka9kndpEUvBFZfK9Ujdc1uw6sYw7qogQzaWb8n//KhqRmdD5iSHmWDYwzKgTkTINHVv8gkleWXp2rvJ7QHp6EXIkFolAZ2slRm8YXLbQY6lHrIg6qXJqlrJJ+wg1+BKpJ32CtBlj7TiOUKDHYEf8F1qa98MWMe99nDfFTfQPQ3BAZYirrVNvmlxC48Vy4o5b0xCg8JB0Lbxf78xSsB9t52S9nXtrbTotsbOpAWKDgFBkJWhABrj9TJxZupPCiQGPYHtSr6mdtcPEAhbW4rhrlCdahWSmNE4Wm1IMhjMdKQIESPcDNrba8urhqNS3SFWmFQEWS1frPtOHCIxyNh7tIfXLFYKOXG6PDsYnPc/LYVWrvejDJjKXz2s1en4b5UixlpW1wZD7yYXmJQY9dkQ2Qyjpab7ToAmtCi9/07d72K3SbGe97Dt7n58vXrORR12BPqP8kxMPiQxhXeNEmyAE5Du1JSAJcMw7QWt7E1tU69C0KRXNQIP3qK2fGne9i5lRA/RqHczHC/5zEkONGpbZxrtGIRorIpzMprNuZCcFHurw6L+BPueMbSslalYFvEJt9gPxToz3CoU0sl4ZPs5m+Br+ldvPJkV9+8r9yPRWsUqXDYLMYXKVUUVaWnBmXIAyoF+ihen3OlgNE23Bjkl+RwoILRM+yJtoSdTBNEM9wbjx8++MNfvrc76s5qMps7/ii6kE3XoQV/hg3rG9JDupq+0nyQRi9WdkqlQ3DUHo4hA7vsYBF3vmA15SZriyoyjSULXCeY33BwgfvpqaCoVilXtxJrffDYAajBLNM1QqqEk/gzcSYAL63K2fs3NUct+u8lLvD0DmJrSqxXZH5aj4f3Dg3vtHOxUgspK4yJC0HxfBiaxWqwZi7JjfFgS/2MNn3z5MG3X31lU4Nl0nf1TupgGCnS7xBzrXmFFoVEtx47W86hxo5FOH32xOeCOdQpGgbTMLeDVe1FEw7zbAqToQIKwazUnsdmPbxFZ1IQf4EKuNu+YZMtLtRl+5nUSiSTaUX/aFSUr6RVxrgQU6e4yumDGEsqijiz0AWpRknG+FWG8kAo1i44dFMlsik3uPnpIqDBq1RPJ2iUU9aejpUPCmpOUXpQ76iaUjV1eKzWBb4ic7v6JTfe9OGrrir4xlfyrAO9Aw0iQGO+qxvY4J6I/eHxsQVR9qPuOQd7x4CiifCNYm2py47fILbYmQrrUiuo1dPLSAUDN1dGG7zqdpVWY1DulhF6GosYH0ZaOCc529jMR9h/6xoygbhmfO3HzQxiS1NH+JIMB65xISFbk2GeGdlP0jhco1HFGxuOqFh7az2zo9FmUtvm3fV1p48cHxw6cYTknNV67/DgxclZLi2RYC3jbDOpGkWDcV3L3iJkyQy4VXou9RCCtlSr8u3jJ87ns4VACphGjj+Wfd0rKC68X/GDYG10EOuN8ER+igJ0GlOY2s/PAhs/50eSi7RpGQALoNgHK6mQisIME41vykj2Pc39TF3ghZ7kseJRjfr3qcvAGu3BxuFTJpLbDVAYQU0d9fOCWSMQ+DrHcswF5QE0yYv5MTutbKJxVUkDCG6w1K/A9FlKRjDuNyUZmKV0pfhUYe5BqDVayFLKbQTnC3Ntg6ePJUsllK2C4UW1KiNlgHAtYaFNDEzauCpOLkhJOvjmZL4GRKpm7fr48FAPwGl2h966u7Znd9nu7Y7P8Goy8hXG0Lazt2fPXj43Um+Zf0AJw7FDnZSbh4+76aEHftQR50tplupSrAkUleCvKZx+ibiiV2qZbAai3nMrKvyz05vt+THMsuwHNG4gTkY83KNzg520T3y8kblkNWfgg0El0PTjs+dew2NxqoluiyksrmLc9oB+9fjhL796pDNyfHRodll0Y7igVys6X21DkwQBhZoFVFP9EJ0FI0nvE+S0ZHPUmwNbm9FuaViECtaXTlUG5bXHt5wy//HTBUyLKfNeqRfMwVyEvLongNzDHDTiNnnHMdJDzyL4ypabddbBxwpAVmYVK+Y8r3jjr1Jqy06I2Zd/HrBtGQKdxgSsG5dHntfVXlQlGKX1tTxbaXFpcilHxp/bgLIwudoKVffd1xAIUKJK0XPU46wHQEAWQEmpPAUHtIbXS3V6LDdjALv61FEB30yzbuvgNz8XLAOiisF5IFcB1PwDLoSG+W5Lk6NWxUDMtHSTISet+Z1g1SSa8zKen5w9e32elm/Y2KhN4LU39TVx9fnrF989e3r65q1Bx9ZVZHKdi70wrKqWV2mxjerLQyEtzFFZfhsGGZQV11FrDTQNGepYQm2PaWjDqyOjJOiIm+ICm/LLTi+WFQeFHxiVyTCdrcbxkupoSR6M/XweQqF8a53rrVFID/pTzfu3b05/d/H69atf/uLr0WKkarBCUidJ+6dt0kKlarFhjDul6KonLyRAOWks4pAj6fmbzWLtEHZEsjPtt+9s75xttp0f8pqKBornEKeMYtGVlLi2LvRlQvRIkJwylhH9GNDyPGVQTVn815me2C+lnhNKir5Ic9ZdKk0F08uxhzRgLo9Vo9r5rEq/lq//xb08Hv302d38n5YHWmn7gsgymKryUKs5ijWRuJjBlFvBGUqmRhRM8bDuYUT75slwPQ41RRLIuNvz8i9fQ2kTQQsGUCnPQC2lPwVjK9B+TPOePdAZ1cioFvCIJo71xPCGtIlDt26MCT18+Oj7l6+evn51fnnx3bNnwpZproza6S2065+jpJ+KRHMw0hXqDVaaAfeUzQtzCWEoGA0pU7BmPgZ2rU7vXQVmAAz00/4cOcypekBSZs5XXMSiCn+NuGLUhNP10ox8sqIdJ3pYbArBXFAN3DBTcRLw+reTp89fiOxazJRA2jyEveHFdDbWf3h9/vbj761eRQiqri59Owi12ihAbFdfICNz+FnZLk63BqoO/2Jf5RjpSyiU0sp1or2N13bqNCjEfDo+TMCXLmUEKkrOac0UHnZOWhmW3mCGM141zqgbEYu/L3N8rdbYkm3Ay89R/+6xAyMXr1oVrQSXUX2TWZYKV/X/8ir7T6kpXzV8ztzvqpU4dSYv+QM1aMmaBP2eUn2tikrCgSlWCpDRFxdLi+2ZroQ+PoNfUmLukOnnQsXoSZBzhLFiaqQbuaGAVILaldy9qtP+MHPRg7andsaPh7Jwz9mG3KmtSdbNRw8ffvg3//bj9cXZGxoQ0wZgQzV0BlB77pdKU/80e5FIwCnnNNiqUQx2qfVQRoTTOmBEtSvactS3by6EVEO4iux4ZqGN449FqWptK8PbumqMFxmppGrmcnSKUy/rOd1lmFpWwUXMrEGoo3j+9s3f/f4PtjjZ28S9Q8bEmQg/BiS1uErap2/eeXFc+jHxfYSlcHKUBU79DhNMZDuGXxKaz7YuxMSGBXOykS97PDQ7Ymaw7nQjqo7Cva1qFJAR1jd7InfiGQDdE8BSS2aBTFDH5FRazZAbQaTEoVJBoVQedLzUKo2LEzL4BFxli+aCXSyJU2VG1mgS6woByfPZB8g//ej+px8/PSt1csWhapFl2DhZp8Cq1DxfAMZu7PXxn1z9QqRsmq95CnDQFn1OrWsLivHKmga32V+dUuKGsvIghSdfsKmaRWT5/MXXVeOM2w9sXBsNwumpbGHFUJF/saUqpHI5kKqT8/DBfaMsjp1WyYo/ScwCtuvLT04W0z9uaVqYtINU80wD66SKR5qfrQPAgdavc8gLxe7pSLoYa2Knxj8JpVdKe3uh1qBTaGVSD8ihPdogZcvLDG29sS1DcJF4TCM40qtorNkNob8daoNoSsCa9Bl03FjTv/m7v7Ncg0oIjIwEAz0NQnVg7PB8CceLjgGej3EOExFhocQwh07ZkRRVLkwpcHKIC0/fuR0anQ/2nG583NAA4LcpSd4fE/HVZR3Lq08nYzw67m1EBKEKM4jssX9+DHk+ibnmYkFjDAILp8AMoS4oZXNLc9RvleYKlUrG/VYLUtVermp08RqJudZw5SknOTzcBGaKypAbzoIKbnwCX04fc5s6fsbZt7SeLuVVsKCATVMiZIANeAmrgiszmPpgswBMp1OCsXAYxvdhi4IkO101JfSlUr5G0sNNOONLZmlTy6T+1P6BiJzF8CZqCNE0m+audtFXqdRBUt3Zk6o3Gwu5d3Dw9sVL26WYXw/GM1GYUX8Go0KOsLJDHSUsNOJyPOF3pYOXWObiDafxGO0fk7lMdxzGk8J7KBex8uSVMoWFoCqt+JZhLH2X3U8m8grAFrh6s27kEbHZcOORmSijQvnBXPv1H7//4dXpBdDOKLZyqTXW0QHiSIMzgXx5sZivjFMLrhCodo88iL9oTstwU43ve4d2Y/8S9a1tkGONF5YXOX/y0+4V8tsEan5B0+roWYMMXgbhJAqUJ2Ttg/ZqVGfRHjXVkKWA6sVBaI7SqgEm3TfXGybwgxUS4nh30kfZug872uE2SiIr6lJn+I+mDoGjsdWsyGIbZa72ueAYF6b8JEjP/7qA63uFQzfDaTVyNUuxnOMybJBkBm6OY5Q8fcgIYivB5tH76tfI0S1aPF7gVTyhxJD+lmseetKFXk8CUq9XlpDwWdAQi6ZBCS8AB3OgQPzMyWZfq646qSxijI1+eP/Ows1GX3q7H/gbRhefPHrw3bPnjUYABbJJ2Wqqe5arkMbTLEwDLPOa46SCHTXUOq0djivGcupjOJm4JW3tOzXaMrvYYMQi6ItOQWUjjVQDmRFCf+vVySk8JPC/WhSsTRnnJcciO7eW6bVutlLrXoRrdOj7Z09/fPkcCujtLMOEHvikCvfRr9FA7JNSvVU46bIOXYOCQh1mQRE9TxzLl2Lw6EUNrPnq6tXWlm095ud7z2iLpBytp1lkxbwaFl87Pdzufq+vZRD4kvXP3MLAXJAbq0O6AlMzNJa7lWUsIk3CPUdE0ls5/XCHEcJGVhV1wVVm9KUbQ+VU59ZVeqkR7/98BrA0QhgNrgnFlGpairiJ/kGwFMVqTSs+WaBDZFJmeKAf3payFJ48Famq/38aA54TyDaEuvhGtUlZVcuFKWPxFU00MEyYaeDooBLqGsCf+SdlGDQA3IG2OPoSYhMRQDIjnAdEz7cSm+0H0vPKIuEOUtn4m2+//tf//j8qPRoE96X2z4YLdCGe6lYmODoGyaEzac2qhfCdlCjoGhvP2dF9qPhfMONGAyczAcB0uEZhWlHHEjQ33ukklLq6bha3wOPTRzG6d6t9cMbihw9zfoGjThshPe1VFu/evL3QfSGHN5cfLeILYnKBFZQhFH7zf6jzIxHHFQThLy7EMVf5XIav09RRyppItFuW1IP575j9l6cn953NlAPUSEx4N7RDw2yMWe29nd1extOgmZ7Ppw6+UWmqOyz6zN9qG8iD53gECSEWUiv2LKo4apsSxCUuSurQ0a/JEYkL/gvpfhTqRG0ZKrZkGV6slKenA1Btw48hIziBnUdLwRAdXjLB7itftWiaTqdfk7LknioCEbXydS2fg2Qspfyl8hU997cqXspwYEnxMDWKVNxbGpKF4ikWhv7HKuXlSEFrNrKsUoo48qr4SYLFVQRG+HyTxWnCEsK2W9SYPk+ut2BRqrWeZ5fvQZwa0okQrJqsBcnhVM8z/oxBxJgYUK35hx5MrBs35i9tE1xsNZAKmjU4d+7c/uKLh3D4j7/5fVWMP0IqhayEaYedXQGHE9fEdDqisWHpWLBojQMf+/Tls5enL53VHHESO7NI4WaRvYNxsIRpSA0lPYotfcXs+aym4RoeVXpEEQJlHKJwlWcJSKlD+oo3axoiB3Trr3ihUCwueORXiDAlaSX2+oY1SGsvQDOPyGjj3WdOuUlQSz0R7X5SauTS/5xlyI5jXGyHKCswVETUMGuATuLgLXmFKXgDFJTQ7391LAAmbzn9X4r4gpKay1bGkvu/ZOpxGHUFt2rLNqX/gZalXKnLv6XuAVSxyT4w+ghe1YAsekRqZr+qcRHLUuPUM2FDcwlK+KuvNGjmFFxppMIFV4N1FA9rcNLKeq5pGoOGPot5xyqcfCWCzSPXDF6ZLOag1c9qdG2dyXfq2I6lZarMT/hP+aG9SqN0mDQURU3eyiedHfwnE/siMMkLL2yOe3R8+KtffPPLn/3s3sHhd89ffP/jMy8NHAtoBcfg3q8to5ENKHlV4yz5AHLqB2zdnJxf7xzy/M7RubEOkmRoskIrMzttxoGEZTXH8i4/h5ElLSmlTpKEqp7kvqNt3EvqhqcxdwQfhShrRkFTIMTTP2h8AC8Heya6ZDSiynU49Uj74Nwek3DyE0mAVo1HtUxNHMjSJ05dw2S+p1IBVfoxFyKnxPwgfFY62A+dQZq/Je+KwEomqKpZRLDkK1MQhualujgp+/i4KfI555RO3aaeFfjP8AEApqxhOfD6WuD7nAoWLD+X/IfvqJ0LvavGIXBECWBm3nKOaa/l+xx1F7tTNduGaiNGOqpdWm/AwBygoZK11Fqrv6mEOqSS85tSxM8iic27+0YzhRvIszVQHkxuiOXTewcfjzmCEsQYgIs+lzZ7xuYWnnhc01ar45rM8z2NWJ7R2Ikj7+9b1HB3n4EZVLRO5+ju7aOjfVGWBuGrxw9+/Ytf/A//9t+KHUDIhBaXaufxu0uvvWl0MA9b/cnNN6wEe3ivwv4KmhvjVxjTNAjmh8teZswMrT7n/jPnF1xTt+DG8yFiIRm9/SpvpPdDBjdpkhSx2t29nS8fPfRGLai1/gJz6zCNEuW6GmytQmt621u9ffLiVCdsa7sGkRgSR1VophcEFi4rF0bDc/EWaeVGUgU0D+HKlGFMQDQHm5ZWeFR6D7uWm1HywX+hYsrHtKqIPQNIXWkL7zUlFycLu8nn4VI29KaPPPB9DNzhcY8kCNImxwoRX2UZTOb5QJ/Ez/gtoCo7KcuNe5j9ZJ86mqtTMSUvsY7MNb2yUzwVTABECxEgyyCjOJc+XsPdovs4OZsfFWsbis3vW1vfP3818bqjfZpUtTCHO8MLRpALvrpuVU4xSrUtjJtvTKquSU4YEkkkvP0IjUQPNV9szO+tjVuWpv3tL3/27eOHd27tPHryBDH3jo7kBz9BtH7p1j/521/9u7/7zfISE74VATPkOst/GFNcGXeJKKUgGhvidBioemqdFB1lU8icbjYw2PmQM3kMj6axSuz/oDnXDjFHftqcZkzvpC4/1jpiVZ+5TZWmy4ypWY9+946drtv2Njhs5sHRAyfEfPfjjzUJLbuuVTBLbm45EY2mG1bWEjAGSz3YvfUcGx2D7kgy+7C95MEwbG1EurxSm4wtSiPUP7jHKTnSqigfzkdRFfjhdswUytPyypfVJIAxaM+RolI/u9yl6NW4fPSDTTEoNUkKANjplLskXM6geuj/6qcvOZdMITs6sIJdrvJP9qltVWxS5+nnj8+5omfCIxCDnHIshagy/MFXHb3C2gWLEKwGf+rHDF6mJbd+ozEDqA65pgtXhrSC0tc4a6atgd6+5UwggtN3tcCHXMRoRnUM8tBmDYeBGqP+4E20OzIZCmqL0BvscK2dDuusq8HCjEdpRESHrJy5sTUzwQ4WEkgrqHYlrDsKwQKHRh6//erLo4MDr71kq4TZHk7fZqkMRKkDD8CMOANeKTEhh0UqIh3DQfpkRYcQwjxaEV/M8X+Q7Gv5OSiP5sS3ZDac8jmop0gsgGk6VZLWtt7C3IXCGzdeIPDzJ0+eeNGI1XY7t4w1t3bKyS3rN3rtBnPVOYZAte3bALkQX/1Rc2vTWLC+pCOmOx9yyw7BHX0m7oLoBXhn3op1ce6JWQhURs9Sq8dpZKqY1g8Zo5B+sIywl47tky2PvGSKU/ZGhcBwRw5JaVejcgtWQolgVNE0eWGKr3FaDmhM6aqQI7EEAYiSAx/7RsjBmLzzk3B4wRBpRLtVn56LFvUOg17mDDtkhk3Vv9haCbAdk6pIwpVWgerVeBYr8JQJHj4yWu7WoGeEBUaOQVShYURNxljRoJfEUxxy8ypnlzJ39u48ffGUgKw3a9XC2ra2gEDBrlOhF+3FKy2isXbZQI5ot7Ec9SNkhFNFU2cDo2CvmNjoVENhg/uiXrrg9dHNUO9sG6T6xKFWFjaOxoq6Io2jzc1f/fznPzx/rg5ulR9GCrSXWtWLecMt1DbolkQSUDrj3nBqO3X8KWlSuSchUbYMJl9Q5mHPsLbHflYYcDstLZKIt+mVU/jskX6fxZkIjLVq3LSJaW9n20iCOMcnSbQy/Hptd3vHQfZe84hOTGe2evc13vBM9FUNxE7n/nqP07vD/f1ODTAOZuF7K8C21z7cvNncUCn3s7dndo49+CMGZydueM38AG7DRfFgR2tF4Mg6ZVjoklbqGNBCYVVHXkzIZ0GNWCbKLAMUY8nKFBQsR6E5SHr8SmHOwrEV2IWhn1kZX8EGoiqmdjd+RBspqYAyBafXd5B1uxUqUab59KHKQCSGuB3KLnjKE0VdPQfWXcBK1T5QnUr48HMrS+mZYlMioP4ljUr65849FsrieLg9rJ7lFZ8088YhL9+/t/1GhpEsb6uVvvKO+qcvX7559+HgcF/TEZb5kXZt5SIpDpR1VgvoMwsevAqyPI/shzaOn0qQWk5Hwc436dBiEwlwBbMFFyTS4jE+0b3R0e0vvnhiNfaEfHFksW2tEuFh4TLPklFjgrrjX0bhxjpYoJqN12/VQ9DRiQ2rK+xXvyatj/kPoZjkYicjCrBKK3KvFZroLgs3faylUiirwn1aNYKCmIq1sgZJX2yc2gB0+8ZLzejtAoekZKZGDa9isWXbFxcXXpYU20QBs8E/rb/ZJhV0+mNmpiZ0rSyENFDsxbv3Ts4x3Iuyncz39MVrPTwDULnXOUzAI7OZMC8QaJakI6ORvxj50FjYn+Ao0PQ7ojDhxUCCgh42pGuLw14ccDPMcYcoAG9HH/WITyxxJhJM7KhjUtKxVK1gjH3pbNKDKZ/eDDZC/Tz9NEfDu9yaJz13hWcYL/CqN7OcWeT5AT/IJoHhbPSNxKEisQNUBLOjMeErRW29iStGj/aP8+C5eH2ZnaIoggmxjd5NIzx99uoEZY4/UUut7dn6j89f/PDixeuLC2dRHB0dWjNm7o27pNuExUlVBwZaiz78Q79GQOWUceHtjeUVmNIryil5a5khc/L61cerr9Urz7CqUjSKgo38oovPpRWWCQVnJFuzMfdDnbQZWvaDgg0zYg/+zuKL3lQ3hyozx5ihrqk78VXHqkVGaQ13XPWRC+luRNHn3GMRnefHY7SLgWox7dwDdzEJyOPobmIAb0PAIzJsFeHuLp6PH2jHVjaTvFvyYLH78dG9f//spQDJKX0OFQC5GltlpWne9puconIYWZSob9KbTfbo8I7WeXP9bPvNq9fnUGMIYjTtgcaa5QrkICIs5HLMV2hUoD5cQ2BaEJmoFY+FcK3cEkLX0LZFfDCZEsrFrBiURyfsQQeIuDqmFWhy62tMfUlPIYaBPmyDnhrbQRoCHFms9b/af7rtZhIrlw2FZOaSUPwf1As4xqGUY1qn7CARUhoFBqj8CQtRApgFDZNVUFbfUljIrEEGiq/JbmlYu3LbqGk93b//7Z+/f/4aV4VALU4by4FBBnN17cxqxzogcKaMZiog/KAVvtAYMiJiXJRKekRr6jheW39WgqlrMvRupPa3fHgHjfdv39J4izIaBZ14DxGfLt9tt7rotg4qNGgxXEQ6M5ZUmwAatGvLq3xhIM5n/TWWDMtgUVqPfyGUc6UVk9dHRaT3OXwaFS3Br9AcXOcZjPweqeZ29Esyfl5YFnQuearXlQF7tOVAPop+0WmqlNJ6QeOkH0yFyJXHJaVZieAlwXZHvD49t3d0c88qPYu7uZCOpPWyx/PzN45i/XR/Gt5F9mOJjARh4KB0/44jzF5KrqXSEd/2srNrVeO4plZQ/ups7Td/+KtBuju7+43XzntZIIp+XpluA1KQUNciiyPPEhbHkQL2KyPxCLsJomakPKlUbBK8Zro6gIrhVIVBISLFK1SueeTBqt3IAw5U9I4Sj//LpUpP4fl/UDzMCtKrRDA5Yx18MrMqiJDcfj9CMP0fNCq8wAv5ZCqflki6GOH0AnfPHIL9uEV1gojGFcvReZUbD+4fn/+b33jbJuBAMwZHHJFoFqgpnL4I57K4uOkEc+4qwxyXc7kJvP6eLfK0PL2ggbRi+5Z5JD0NIyj8poEpbDy59vrGM28RYGPCh9sbzme52l6zJQavrm2DhMHu9qYto9cWJ1iNsX3rYG/XdpoWKAxjxsUMIzRDKXX23k3f6xsdODeMwAXeVnShbRyeJtuoxrexBzcxsmsSAUnAEW1UhzkB6KoWUihKInSbgW4ceu4EsYdetDqvtMFNU3u14Wa/t+z723WqKpo1vRwTsxcNJVEIAaZDsLF+b/8A/T+8eIW99iihklbZ9uHgSy+iNDl4tXe3brpVevMyASs3cFW/wfZZJ6Fby+edvvp5JHDbWOz6hiGs99fviJZj0rpaH+t0bgcXMK07u3cjoN6/txXayLrNQanX4hOC8l6jH188lUGTMtJs8jt/pvPTGkkWn5iXRYTYhAY+zqFVsS2PyjiycLSjsHKaKV8LnytABWMd9SycTdfjqmzxvhO2sxaJPWUARmyWbgtLJYq41o6WKZScFFpJu5gEXaIvOIw6j0ZKlsGJ9eWTn+NuVc6Vt4b+5YenmvBdvdTbu3gM6gx2j8FNFU8ePtAZ1jNYFGKEUmGnvuom0wedZgVhOMTiTvvuUazxJ+hPbxwhVNcwDszI0fCycIb2O0OCVkB42MsIr5+9fHX/6Mioi8oJwzoPRzaSOjpqpm4272zf/s9//jXb+OLJ473tnUcPjhn1BHPDg7iS2ScVOh9z8me9lay1RTmGUe05whZKOjqJby43nmZMsT42+/Y5XmHYPB+7uwYTxBf1JMECEjsq0q0y66de13P8gf61vGiz99sacPCQ0mhkYcMgP3y8vXPV+AMQBYI1L8GgLHd0uHd3/vrsxbmTyOJ6SPAlPONoc6+O1c+hXkrQWH1zMqOuPKJGRRDrQNh7GpYPHa+g3eN18FJZtFEmxSSIwU7Oz7A4K2rxlQ3cOT/eheXudALszfn65veOVrt8C3OIpD+rUQ+41CkyTmDNI/1gugoyj+KKXszRafWaQUZiEIX6Kek231VIhmRxc+C4RnQU4vGr7S5JQ5kd8ChfbIYYdKQlsccRkAQCSl0gbGpG8RivJEbCYEZpgPM09rmZA/ZqtqpzOC2xtc26A0UXzh/1boA7e9uIhGejii23KyvEUr7r6/uHB0d37z47Pa1nQS2KdpK5+QQbcnA1Sx9r9w1BK/2975pw00QdXxaQF8gwqAQdgBi8Z4SwI/LVCxuxc7VeX784OXnz5uJg9w5pvd96y88aK6FgsQry2Lu59eTePY3Eg7s7jZ3EAx7qM4GhOOQzg0qMfiLMC3QYLDpl99xgizbFZmgKJWO8ASG6Yt3qJnNAc6DHhAJIb8jWiR2X786GQeP5liA1AKKLtRMjnW8vdWhbgC1o4dtuo1/lG8aJEaxWptDY9Kw+0lFKhxO1N8V7Jcz28b2jP37/zFK9CFANsefQreX7RP8+bZga7zwlRrq04CyKqOSSmSyom/NjPpx49Xei8XFn6oU5qffPyg5CffVSlyP9RaDRiWZLuJxe6YtuiuBNGSxVeSgMX7K9wkAtIuXW51u4g2UxbhkC0grAN14EJ6JrB9zM1dMJNyoDuWku1C+vM3VEwtijies1UMxICM3Veu3L148fO4yQzclAPFowXUjMUfz88vL7Zz9ShfsHhz53BA2tD92d0TydjbHC9Zvz8zPqTnDolY27Bhl/Bo3Nfe9h3+WtUjHYdJbhRDlkl8WOWvAvjx89+N5BvMXAWJGGQxUlyEWLW80LPzeJw4NxDY3yZzDXerc9ityuMe4WVzsSBgPiWXxOZWW5fHNpBuPDwXvp25+8e7BOczaWr/C898AjZ80L3gu6FG+UsgG4BTwxywRD2Um8ZNbpPVJ4SgLlU8bZwL3T5eP7sb8MoeqrIBxkWWVbEB7rHy5Ri4017+He3hFLyI0fCIPq4h+C4ZexNov8jg/32dvaHbtaIxJQCuJV8rBnKO9Fah93PlkoOCugPFpcPKXh1Y8O98EpBJhaFB9KUiGW126NXmeP/JoK2sCeWVXNAbcwqr+3c+fl+kmV1ut1mBL14H7s/QO1LqSXDGlivU+RA/emipiTbHVI1oDmLJ+fnPz16QshLRQ8g8BwZYSw8IcFufEBzW4ncAnHcS0jnMgWGvmrXJySbQqVyU+Eiw+yFe5ya4Nr/Wi9wFTaUkoSc37P9Q3XQGSz/j9e6hLy1EI/inV6eX769hw0U1F+apA0VeCaixGa1/BE1LU96Cyf/Y/lrz88vg/9vbt79qFD0kb5+0f3Ts9Pckh1sovoOBEARxB5D2ODXz959P/9D3/PXkZhItM1+ce/dJ8bjc4Qx/jG/9lU2WLVEKy+CtYwZnAxxeveHKG0JZp9cv/oyZPHr169fvHiGRURRwuvCiFu9RJy9jtiqIjWVd/PjmPm554K3NnZm1WbC3gZdV+Td+ISxF5aaupA1aSZlKTWrBt+Ki4ioQQkc7nTalXUGoZ0yWwdQxpvWemlzoZVdLsN0niM5sqOiQVKKR7l49XFxRseaLvjNtKQDKUaUlM6enp6PlMxn3avN22H7kTBqu+0i/GfW2ap+T/RXPgo2dgAvlK1gmbtbKpfo3Kl44bYYh6NjkMAE0TIt4SpgLJeJF+STjgq0FBUTtqO7nW9NGHV6dlrBmetAFYaHNJyEr3TKU/eXLw+O+NByBBTaBIE40lkhKtrUvweFpZrScGQck3qpEx4OWXJo0zNLGFuSfjXFigtGwYbL0EjXcw86gFrEET6WsYPHd5s/GBdnFm7x8pwMq3tV3pvObHXFHjzUQTqZjAJljS8invrvS6DKD3lamaMtIMGyZT7UDUBHh0dvH3/JkZnrGKjOjdUZ31HUt1Cuwa+eHRkdueDgf8hP37EiBiilohyh4Z+LJoUjZ4NS+aOlOqPce4cE1ve8vpxmNzZ3v72qy9+/XNvBXyg0fr7P/zp//7/esrl2bZPKYyU6o1g0ua1HrkVpThEU3Jn79+/hXyz3eZ2OxIDz/zPD6UxvkOxV9te83DKhUp4o2FT9YXawuEhxaPwnvyVwQz55n/+YcYNsCV6ysqOe0YOs5R7yJwWq4eWkW5tOYgDLxxyfHd7x+iQsaTF5OilUlwXIqDYKNlHq68/RKRTakR66UAMun/YbMHLk4uEiLc42yGnZmRCgRl4J3Zjtlpb/WQza5mlAWyjQ7JymSb4dkUAMqzdnnO/x5AAVwM4Ygw7P7yV9Lsfnmm+zGQnmc0WzApL7N1jZSqqMk514UafI+2YtrAr7Z/LV/VKDsGU3DVq4TuEJpfyWZQs6cwYrR8lwmqhMuYnrLyoQmIXPLFW0mEL+OlUaFsPZ4SgUZ1C/LWbt+/fXby5tAIe2iqlLnY9Ye+gO+BRMW92Y+11oBvcy0PRad0E7oALElnc2zw4PT+toFBna4O1sDoiMuQDAHAMc39nt67CyVldhQH7mUzUNL2kIp4gToyVT54mAfw2E0pfhz7A39+9s/3NF199+8VXB0d3LLajk82lmpy+taOiJw8fOYjbvC1OpL3DJcg4o9Rt4xCxmENfFmLkODhETdC8KET2sYW8sOzUZ83bCVpxnZzqsIYde3Ij4J7kHvnfZ+M/JJ1PcKm+ZmTkMwmBKS2T7iCn+ibWn5SYbrlxhP6Dwz3ng2Pm+dkbLRq2Eo8YiT1EoQcN/nfgJEBi9I8fdIMEgnuqADuUG+rOYVuE+OLkAvBQo/0tmpepvdt8ILoYQP875+PD3p36HpHcfE0+l67rKF9evqlBcuAZ1equ5q5WYf3GqpYHD+9/+vvfvvt0ffHxYpigz1dggG9RNaSl+8OWMHQ7l/uyJHHXoL5wZ7gZbYtJzNMogHdFEuHSSwja8DfuT+dThWUJJOn1XwtGh5hBYtZpuXy3c2vjttdlbTWg7J2GmoEXr17/+ekPb9++EziJc9KF6kJqITv/H16JsfGopro8cXjWrU76kS6Kvu04rk9Ki6a2nPn59uKdTgCMeYM7a7v4C6SfE8sAfqU7cfM6pMP0MwdiGZ815hFravwMDxjlvH1wd9ff/Xv3dBG98/LN5dsfnr78/ulTY4tfPDz++tGT27vrlthgGpMLfc3d5ubxvcOff/PVH//wx3EIosukW/iJR6lpHl9OfSp/LnUSKjX7nwEuLdxbX9webwAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "example = dataset['train'][0]\n", + "image = example['image']\n", + "# let's make the image a bit smaller when visualizing\n", + "width, height = image.size\n", + "display(image.resize((int(width*0.3), int(height*0.3))))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"gt_parse\": {\"menu\": [{\"nm\": \"Nasi Campur Bali\", \"cnt\": \"1 x\", \"price\": \"75,000\"}, {\"nm\": \"Bbk Bengil Nasi\", \"cnt\": \"1 x\", \"price\": \"125,000\"}, {\"nm\": \"MilkShake Starwb\", \"cnt\": \"1 x\", \"price\": \"37,000\"}, {\"nm\": \"Ice Lemon Tea\", \"cnt\": \"1 x\", \"price\": \"24,000\"}, {\"nm\": \"Nasi Ayam Dewata\", \"cnt\": \"1 x\", \"price\": \"70,000\"}, {\"nm\": \"Free Ice Tea\", \"cnt\": \"3 x\", \"price\": \"0\"}, {\"nm\": \"Organic Green Sa\", \"cnt\": \"1 x\", \"price\": \"65,000\"}, {\"nm\": \"Ice Tea\", \"cnt\": \"1 x\", \"price\": \"18,000\"}, {\"nm\": \"Ice Orange\", \"cnt\": \"1 x\", \"price\": \"29,000\"}, {\"nm\": \"Ayam Suir Bali\", \"cnt\": \"1 x\", \"price\": \"85,000\"}, {\"nm\": \"Tahu Goreng\", \"cnt\": \"2 x\", \"price\": \"36,000\"}, {\"nm\": \"Tempe Goreng\", \"cnt\": \"2 x\", \"price\": \"36,000\"}, {\"nm\": \"Tahu Telor Asin\", \"cnt\": \"1 x\", \"price\": \"40,000.\"}, {\"nm\": \"Nasi Goreng Samb\", \"cnt\": \"1 x\", \"price\": \"70,000\"}, {\"nm\": \"Bbk Panggang Sam\", \"cnt\": \"3 x\", \"price\": \"366,000\"}, {\"nm\": \"Ayam Sambal Hija\", \"cnt\": \"1 x\", \"price\": \"92,000\"}, {\"nm\": \"Hot Tea\", \"cnt\": \"2 x\", \"price\": \"44,000\"}, {\"nm\": \"Ice Kopi\", \"cnt\": \"1 x\", \"price\": \"32,000\"}, {\"nm\": \"Tahu Telor Asin\", \"cnt\": \"1 x\", \"price\": \"40,000\"}, {\"nm\": \"Free Ice Tea\", \"cnt\": \"1 x\", \"price\": \"0\"}, {\"nm\": \"Bebek Street\", \"cnt\": \"1 x\", \"price\": \"44,000\"}, {\"nm\": \"Ice Tea Tawar\", \"cnt\": \"1 x\", \"price\": \"18,000\"}], \"sub_total\": {\"subtotal_price\": \"1,346,000\", \"service_price\": \"100,950\", \"tax_price\": \"144,695\", \"etc\": \"-45\"}, \"total\": {\"total_price\": \"1,591,600\"}}, \"meta\": {\"version\": \"2.0.0\", \"split\": \"train\", \"image_id\": 0, \"image_size\": {\"width\": 864, \"height\": 1296}}, \"valid_line\": [{\"words\": [{\"quad\": {\"x2\": 244, \"y3\": 390, \"x3\": 244, \"y4\": 390, \"x1\": 232, \"y1\": 372, \"x4\": 232, \"y2\": 372}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"1\"}, {\"quad\": {\"x2\": 270, \"y3\": 390, \"x3\": 270, \"y4\": 390, \"x1\": 256, \"y1\": 374, \"x4\": 256, \"y2\": 374}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 3, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 354, \"y3\": 390, \"x3\": 354, \"y4\": 390, \"x1\": 302, \"y1\": 368, \"x4\": 302, \"y2\": 368}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"Nasi\"}, {\"quad\": {\"x2\": 440, \"y3\": 391, \"x3\": 439, \"y4\": 388, \"x1\": 364, \"y1\": 365, \"x4\": 363, \"y2\": 368}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"Campur\"}, {\"quad\": {\"x2\": 497, \"y3\": 385, \"x3\": 499, \"y4\": 388, \"x1\": 446, \"y1\": 365, \"x4\": 448, \"y2\": 362}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"Bali\"}], \"category\": \"menu.nm\", \"group_id\": 3, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 388, \"x3\": 618, \"y4\": 388, \"x1\": 542, \"y1\": 362, \"x4\": 542, \"y2\": 362}, \"is_key\": 0, \"row_id\": 2179893, \"text\": \"75,000\"}], \"category\": \"menu.price\", \"group_id\": 3, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 246, \"y3\": 418, \"x3\": 246, \"y4\": 418, \"x1\": 234, \"y1\": 400, \"x4\": 234, \"y2\": 400}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"1\"}, {\"quad\": {\"x2\": 270, \"y3\": 418, \"x3\": 270, \"y4\": 418, \"x1\": 258, \"y1\": 402, \"x4\": 258, \"y2\": 402}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 4, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 344, \"y3\": 418, \"x3\": 344, \"y4\": 418, \"x1\": 304, \"y1\": 394, \"x4\": 304, \"y2\": 394}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"Bbk\"}, {\"quad\": {\"x2\": 430, \"y3\": 418, \"x3\": 430, \"y4\": 418, \"x1\": 352, \"y1\": 394, \"x4\": 352, \"y2\": 394}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"Bengil\"}, {\"quad\": {\"x2\": 488, \"y3\": 414, \"x3\": 488, \"y4\": 414, \"x1\": 436, \"y1\": 392, \"x4\": 436, \"y2\": 392}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"Nasi\"}], \"category\": \"menu.nm\", \"group_id\": 4, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 414, \"x3\": 618, \"y4\": 414, \"x1\": 534, \"y1\": 388, \"x4\": 534, \"y2\": 388}, \"is_key\": 0, \"row_id\": 2179894, \"text\": \"125,000\"}], \"category\": \"menu.price\", \"group_id\": 4, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 246, \"y3\": 444, \"x3\": 246, \"y4\": 444, \"x1\": 234, \"y1\": 426, \"x4\": 234, \"y2\": 426}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"1\"}, {\"quad\": {\"x2\": 272, \"y3\": 444, \"x3\": 272, \"y4\": 444, \"x1\": 258, \"y1\": 428, \"x4\": 258, \"y2\": 428}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 5, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 417, \"y3\": 444, \"x3\": 417, \"y4\": 444, \"x1\": 303, \"y1\": 420, \"x4\": 303, \"y2\": 420}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"MilkShake\"}, {\"quad\": {\"x2\": 500, \"y3\": 440, \"x3\": 500, \"y4\": 440, \"x1\": 424, \"y1\": 418, \"x4\": 424, \"y2\": 418}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"Starwb\"}], \"category\": \"menu.nm\", \"group_id\": 5, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 440, \"x3\": 620, \"y4\": 440, \"x1\": 544, \"y1\": 414, \"x4\": 544, \"y2\": 414}, \"is_key\": 0, \"row_id\": 2179895, \"text\": \"37,000\"}], \"category\": \"menu.price\", \"group_id\": 5, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 248, \"y3\": 470, \"x3\": 248, \"y4\": 470, \"x1\": 236, \"y1\": 452, \"x4\": 236, \"y2\": 452}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"1\"}, {\"quad\": {\"x2\": 274, \"y3\": 470, \"x3\": 274, \"y4\": 470, \"x1\": 260, \"y1\": 456, \"x4\": 260, \"y2\": 456}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 6, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 348, \"y3\": 470, \"x3\": 348, \"y4\": 470, \"x1\": 306, \"y1\": 448, \"x4\": 306, \"y2\": 448}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 418, \"y3\": 468, \"x3\": 418, \"y4\": 468, \"x1\": 354, \"y1\": 446, \"x4\": 354, \"y2\": 446}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"Lemon\"}, {\"quad\": {\"x2\": 466, \"y3\": 466, \"x3\": 466, \"y4\": 466, \"x1\": 426, \"y1\": 446, \"x4\": 426, \"y2\": 446}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 6, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 466, \"x3\": 618, \"y4\": 466, \"x1\": 544, \"y1\": 440, \"x4\": 544, \"y2\": 440}, \"is_key\": 0, \"row_id\": 2179896, \"text\": \"24,000\"}], \"category\": \"menu.price\", \"group_id\": 6, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 496, \"x3\": 250, \"y4\": 496, \"x1\": 238, \"y1\": 480, \"x4\": 238, \"y2\": 480}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"1\"}, {\"quad\": {\"x2\": 274, \"y3\": 496, \"x3\": 274, \"y4\": 496, \"x1\": 258, \"y1\": 480, \"x4\": 258, \"y2\": 480}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 7, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 358, \"y3\": 496, \"x3\": 358, \"y4\": 496, \"x1\": 306, \"y1\": 474, \"x4\": 306, \"y2\": 474}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"Nasi\"}, {\"quad\": {\"x2\": 420, \"y3\": 496, \"x3\": 420, \"y4\": 496, \"x1\": 366, \"y1\": 474, \"x4\": 366, \"y2\": 474}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"Ayam\"}, {\"quad\": {\"x2\": 499, \"y3\": 491, \"x3\": 500, \"y4\": 494, \"x1\": 425, \"y1\": 471, \"x4\": 426, \"y2\": 469}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"Dewata\"}], \"category\": \"menu.nm\", \"group_id\": 7, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 492, \"x3\": 618, \"y4\": 492, \"x1\": 544, \"y1\": 466, \"x4\": 544, \"y2\": 466}, \"is_key\": 0, \"row_id\": 2179897, \"text\": \"70,000\"}], \"category\": \"menu.price\", \"group_id\": 7, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 252, \"y3\": 522, \"x3\": 252, \"y4\": 522, \"x1\": 240, \"y1\": 504, \"x4\": 240, \"y2\": 504}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"3\"}, {\"quad\": {\"x2\": 276, \"y3\": 522, \"x3\": 276, \"y4\": 522, \"x1\": 260, \"y1\": 506, \"x4\": 260, \"y2\": 506}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 8, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 360, \"y3\": 522, \"x3\": 360, \"y4\": 522, \"x1\": 306, \"y1\": 500, \"x4\": 306, \"y2\": 500}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"Free\"}, {\"quad\": {\"x2\": 408, \"y3\": 522, \"x3\": 408, \"y4\": 522, \"x1\": 368, \"y1\": 500, \"x4\": 368, \"y2\": 500}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 454, \"y3\": 520, \"x3\": 454, \"y4\": 520, \"x1\": 416, \"y1\": 498, \"x4\": 416, \"y2\": 498}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 8, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 514, \"x3\": 618, \"y4\": 514, \"x1\": 604, \"y1\": 494, \"x4\": 604, \"y2\": 494}, \"is_key\": 0, \"row_id\": 2179898, \"text\": \"0\"}], \"category\": \"menu.price\", \"group_id\": 8, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 546, \"x3\": 254, \"y4\": 546, \"x1\": 242, \"y1\": 530, \"x4\": 242, \"y2\": 530}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"1\"}, {\"quad\": {\"x2\": 278, \"y3\": 548, \"x3\": 278, \"y4\": 548, \"x1\": 262, \"y1\": 532, \"x4\": 262, \"y2\": 532}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 9, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 396, \"y3\": 548, \"x3\": 396, \"y4\": 548, \"x1\": 308, \"y1\": 526, \"x4\": 308, \"y2\": 526}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"Organic\"}, {\"quad\": {\"x2\": 466, \"y3\": 544, \"x3\": 466, \"y4\": 544, \"x1\": 404, \"y1\": 524, \"x4\": 404, \"y2\": 524}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"Green\"}, {\"quad\": {\"x2\": 502, \"y3\": 544, \"x3\": 502, \"y4\": 544, \"x1\": 474, \"y1\": 522, \"x4\": 474, \"y2\": 522}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"Sa\"}], \"category\": \"menu.nm\", \"group_id\": 9, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 542, \"x3\": 620, \"y4\": 542, \"x1\": 544, \"y1\": 518, \"x4\": 544, \"y2\": 518}, \"is_key\": 0, \"row_id\": 2179899, \"text\": \"65,000\"}], \"category\": \"menu.price\", \"group_id\": 9, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 572, \"x3\": 254, \"y4\": 572, \"x1\": 242, \"y1\": 556, \"x4\": 242, \"y2\": 556}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"1\"}, {\"quad\": {\"x2\": 280, \"y3\": 572, \"x3\": 280, \"y4\": 572, \"x1\": 266, \"y1\": 558, \"x4\": 266, \"y2\": 558}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 10, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 572, \"x3\": 352, \"y4\": 572, \"x1\": 312, \"y1\": 552, \"x4\": 312, \"y2\": 552}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 398, \"y3\": 572, \"x3\": 398, \"y4\": 572, \"x1\": 358, \"y1\": 550, \"x4\": 358, \"y2\": 550}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 10, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 568, \"x3\": 620, \"y4\": 568, \"x1\": 546, \"y1\": 544, \"x4\": 546, \"y2\": 544}, \"is_key\": 0, \"row_id\": 2179900, \"text\": \"18,000\"}], \"category\": \"menu.price\", \"group_id\": 10, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 256, \"y3\": 598, \"x3\": 256, \"y4\": 598, \"x1\": 244, \"y1\": 582, \"x4\": 244, \"y2\": 582}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"1\"}, {\"quad\": {\"x2\": 280, \"y3\": 598, \"x3\": 280, \"y4\": 598, \"x1\": 264, \"y1\": 582, \"x4\": 264, \"y2\": 582}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 11, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 596, \"x3\": 352, \"y4\": 596, \"x1\": 312, \"y1\": 576, \"x4\": 312, \"y2\": 576}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 434, \"y3\": 596, \"x3\": 434, \"y4\": 596, \"x1\": 358, \"y1\": 576, \"x4\": 358, \"y2\": 576}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"Orange\"}], \"category\": \"menu.nm\", \"group_id\": 11, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 594, \"x3\": 620, \"y4\": 594, \"x1\": 544, \"y1\": 570, \"x4\": 544, \"y2\": 570}, \"is_key\": 0, \"row_id\": 2179901, \"text\": \"29,000\"}], \"category\": \"menu.price\", \"group_id\": 11, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 258, \"y3\": 622, \"x3\": 258, \"y4\": 622, \"x1\": 246, \"y1\": 606, \"x4\": 246, \"y2\": 606}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"1\"}, {\"quad\": {\"x2\": 282, \"y3\": 622, \"x3\": 282, \"y4\": 622, \"x1\": 268, \"y1\": 608, \"x4\": 268, \"y2\": 608}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 12, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 624, \"x3\": 364, \"y4\": 624, \"x1\": 312, \"y1\": 602, \"x4\": 312, \"y2\": 602}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"Ayam\"}, {\"quad\": {\"x2\": 422, \"y3\": 620, \"x3\": 422, \"y4\": 620, \"x1\": 370, \"y1\": 600, \"x4\": 370, \"y2\": 600}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"Suir\"}, {\"quad\": {\"x2\": 478, \"y3\": 620, \"x3\": 478, \"y4\": 620, \"x1\": 428, \"y1\": 598, \"x4\": 428, \"y2\": 598}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"Bali\"}], \"category\": \"menu.nm\", \"group_id\": 12, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 618, \"y3\": 620, \"x3\": 618, \"y4\": 620, \"x1\": 544, \"y1\": 596, \"x4\": 544, \"y2\": 596}, \"is_key\": 0, \"row_id\": 2179902, \"text\": \"85,000\"}], \"category\": \"menu.price\", \"group_id\": 12, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 260, \"y3\": 650, \"x3\": 260, \"y4\": 650, \"x1\": 242, \"y1\": 628, \"x4\": 242, \"y2\": 628}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"2\"}, {\"quad\": {\"x2\": 282, \"y3\": 648, \"x3\": 282, \"y4\": 648, \"x1\": 266, \"y1\": 632, \"x4\": 266, \"y2\": 632}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 13, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 648, \"x3\": 364, \"y4\": 648, \"x1\": 312, \"y1\": 626, \"x4\": 312, \"y2\": 626}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"Tahu\"}, {\"quad\": {\"x2\": 444, \"y3\": 648, \"x3\": 443, \"y4\": 645, \"x1\": 370, \"y1\": 625, \"x4\": 369, \"y2\": 628}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"Goreng\"}], \"category\": \"menu.nm\", \"group_id\": 13, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 619, \"y3\": 644, \"x3\": 620, \"y4\": 647, \"x1\": 543, \"y1\": 622, \"x4\": 544, \"y2\": 619}, \"is_key\": 0, \"row_id\": 2179903, \"text\": \"36,000\"}], \"category\": \"menu.price\", \"group_id\": 13, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 260, \"y3\": 674, \"x3\": 260, \"y4\": 674, \"x1\": 242, \"y1\": 654, \"x4\": 242, \"y2\": 654}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"2\"}, {\"quad\": {\"x2\": 284, \"y3\": 674, \"x3\": 284, \"y4\": 674, \"x1\": 268, \"y1\": 660, \"x4\": 268, \"y2\": 660}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 14, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 376, \"y3\": 674, \"x3\": 376, \"y4\": 674, \"x1\": 314, \"y1\": 652, \"x4\": 314, \"y2\": 652}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"Tempe\"}, {\"quad\": {\"x2\": 458, \"y3\": 672, \"x3\": 458, \"y4\": 672, \"x1\": 384, \"y1\": 650, \"x4\": 384, \"y2\": 650}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"Goreng\"}], \"category\": \"menu.nm\", \"group_id\": 14, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 620, \"y3\": 668, \"x3\": 620, \"y4\": 668, \"x1\": 546, \"y1\": 644, \"x4\": 546, \"y2\": 644}, \"is_key\": 0, \"row_id\": 2179904, \"text\": \"36,000\"}], \"category\": \"menu.price\", \"group_id\": 14, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 258, \"y3\": 700, \"x3\": 258, \"y4\": 700, \"x1\": 244, \"y1\": 682, \"x4\": 244, \"y2\": 682}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"1\"}, {\"quad\": {\"x2\": 282, \"y3\": 700, \"x3\": 282, \"y4\": 700, \"x1\": 266, \"y1\": 686, \"x4\": 266, \"y2\": 686}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 15, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 698, \"x3\": 364, \"y4\": 698, \"x1\": 312, \"y1\": 676, \"x4\": 312, \"y2\": 676}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"Tahu\"}, {\"quad\": {\"x2\": 434, \"y3\": 696, \"x3\": 434, \"y4\": 696, \"x1\": 370, \"y1\": 674, \"x4\": 370, \"y2\": 674}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"Telor\"}, {\"quad\": {\"x2\": 494, \"y3\": 694, \"x3\": 494, \"y4\": 694, \"x1\": 440, \"y1\": 672, \"x4\": 440, \"y2\": 672}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"Asin\"}], \"category\": \"menu.nm\", \"group_id\": 15, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 630, \"y3\": 690, \"x3\": 630, \"y4\": 690, \"x1\": 548, \"y1\": 668, \"x4\": 548, \"y2\": 668}, \"is_key\": 0, \"row_id\": 2179905, \"text\": \"40,000.\"}], \"category\": \"menu.price\", \"group_id\": 15, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 256, \"y3\": 726, \"x3\": 256, \"y4\": 726, \"x1\": 244, \"y1\": 708, \"x4\": 244, \"y2\": 708}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"1\"}, {\"quad\": {\"x2\": 282, \"y3\": 726, \"x3\": 282, \"y4\": 726, \"x1\": 268, \"y1\": 710, \"x4\": 268, \"y2\": 710}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 16, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 724, \"x3\": 364, \"y4\": 724, \"x1\": 312, \"y1\": 702, \"x4\": 312, \"y2\": 702}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"Nasi\"}, {\"quad\": {\"x2\": 446, \"y3\": 722, \"x3\": 446, \"y4\": 722, \"x1\": 372, \"y1\": 700, \"x4\": 372, \"y2\": 700}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"Goreng\"}, {\"quad\": {\"x2\": 505, \"y3\": 715, \"x3\": 506, \"y4\": 718, \"x1\": 453, \"y1\": 696, \"x4\": 454, \"y2\": 693}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"Samb\"}], \"category\": \"menu.nm\", \"group_id\": 16, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 626, \"y3\": 716, \"x3\": 626, \"y4\": 716, \"x1\": 550, \"y1\": 692, \"x4\": 550, \"y2\": 692}, \"is_key\": 0, \"row_id\": 2179906, \"text\": \"70,000\"}], \"category\": \"menu.price\", \"group_id\": 16, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 256, \"y3\": 752, \"x3\": 256, \"y4\": 752, \"x1\": 242, \"y1\": 734, \"x4\": 242, \"y2\": 734}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"3\"}, {\"quad\": {\"x2\": 280, \"y3\": 752, \"x3\": 280, \"y4\": 752, \"x1\": 266, \"y1\": 738, \"x4\": 266, \"y2\": 738}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 17, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 750, \"x3\": 352, \"y4\": 750, \"x1\": 312, \"y1\": 728, \"x4\": 312, \"y2\": 728}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"Bbk\"}, {\"quad\": {\"x2\": 457, \"y3\": 747, \"x3\": 458, \"y4\": 749, \"x1\": 357, \"y1\": 726, \"x4\": 358, \"y2\": 723}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"Panggang\"}, {\"quad\": {\"x2\": 508, \"y3\": 742, \"x3\": 508, \"y4\": 742, \"x1\": 466, \"y1\": 722, \"x4\": 466, \"y2\": 722}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"Sam\"}], \"category\": \"menu.nm\", \"group_id\": 17, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 630, \"y3\": 742, \"x3\": 630, \"y4\": 742, \"x1\": 538, \"y1\": 716, \"x4\": 538, \"y2\": 716}, \"is_key\": 0, \"row_id\": 2179907, \"text\": \"366,000\"}], \"category\": \"menu.price\", \"group_id\": 17, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 778, \"x3\": 254, \"y4\": 778, \"x1\": 242, \"y1\": 762, \"x4\": 242, \"y2\": 762}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"1\"}, {\"quad\": {\"x2\": 280, \"y3\": 778, \"x3\": 280, \"y4\": 778, \"x1\": 266, \"y1\": 764, \"x4\": 266, \"y2\": 764}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 18, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 778, \"x3\": 364, \"y4\": 778, \"x1\": 312, \"y1\": 754, \"x4\": 312, \"y2\": 754}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"Ayam\"}, {\"quad\": {\"x2\": 447, \"y3\": 771, \"x3\": 448, \"y4\": 774, \"x1\": 371, \"y1\": 750, \"x4\": 372, \"y2\": 747}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"Sambal\"}, {\"quad\": {\"x2\": 508, \"y3\": 772, \"x3\": 508, \"y4\": 772, \"x1\": 454, \"y1\": 746, \"x4\": 454, \"y2\": 746}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"Hija\"}], \"category\": \"menu.nm\", \"group_id\": 18, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 632, \"y3\": 768, \"x3\": 632, \"y4\": 768, \"x1\": 554, \"y1\": 742, \"x4\": 554, \"y2\": 742}, \"is_key\": 0, \"row_id\": 2179908, \"text\": \"92,000\"}], \"category\": \"menu.price\", \"group_id\": 18, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 254, \"y3\": 806, \"x3\": 254, \"y4\": 806, \"x1\": 236, \"y1\": 784, \"x4\": 236, \"y2\": 784}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"2\"}, {\"quad\": {\"x2\": 278, \"y3\": 804, \"x3\": 278, \"y4\": 804, \"x1\": 262, \"y1\": 788, \"x4\": 262, \"y2\": 788}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 19, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 802, \"x3\": 352, \"y4\": 802, \"x1\": 310, \"y1\": 780, \"x4\": 310, \"y2\": 780}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"Hot\"}, {\"quad\": {\"x2\": 400, \"y3\": 800, \"x3\": 400, \"y4\": 800, \"x1\": 358, \"y1\": 778, \"x4\": 358, \"y2\": 778}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 19, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 634, \"y3\": 796, \"x3\": 634, \"y4\": 796, \"x1\": 554, \"y1\": 770, \"x4\": 554, \"y2\": 770}, \"is_key\": 0, \"row_id\": 2179909, \"text\": \"44,000\"}], \"category\": \"menu.price\", \"group_id\": 19, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 252, \"y3\": 834, \"x3\": 252, \"y4\": 834, \"x1\": 240, \"y1\": 816, \"x4\": 240, \"y2\": 816}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"1\"}, {\"quad\": {\"x2\": 278, \"y3\": 832, \"x3\": 278, \"y4\": 832, \"x1\": 262, \"y1\": 816, \"x4\": 262, \"y2\": 816}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 20, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 830, \"x3\": 352, \"y4\": 830, \"x1\": 312, \"y1\": 808, \"x4\": 312, \"y2\": 808}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 412, \"y3\": 830, \"x3\": 412, \"y4\": 830, \"x1\": 360, \"y1\": 804, \"x4\": 360, \"y2\": 804}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"Kopi\"}], \"category\": \"menu.nm\", \"group_id\": 20, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 636, \"y3\": 826, \"x3\": 636, \"y4\": 826, \"x1\": 556, \"y1\": 798, \"x4\": 556, \"y2\": 798}, \"is_key\": 0, \"row_id\": 2179910, \"text\": \"32,000\"}], \"category\": \"menu.price\", \"group_id\": 20, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 862, \"x3\": 250, \"y4\": 862, \"x1\": 238, \"y1\": 844, \"x4\": 238, \"y2\": 844}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 862, \"x3\": 276, \"y4\": 862, \"x1\": 260, \"y1\": 844, \"x4\": 260, \"y2\": 844}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 21, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 860, \"x3\": 364, \"y4\": 860, \"x1\": 310, \"y1\": 836, \"x4\": 310, \"y2\": 836}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"Tahu\"}, {\"quad\": {\"x2\": 438, \"y3\": 858, \"x3\": 438, \"y4\": 858, \"x1\": 372, \"y1\": 834, \"x4\": 372, \"y2\": 834}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"Telor\"}, {\"quad\": {\"x2\": 500, \"y3\": 854, \"x3\": 500, \"y4\": 854, \"x1\": 444, \"y1\": 832, \"x4\": 444, \"y2\": 832}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"Asin\"}], \"category\": \"menu.nm\", \"group_id\": 21, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 638, \"y3\": 854, \"x3\": 638, \"y4\": 854, \"x1\": 558, \"y1\": 826, \"x4\": 558, \"y2\": 826}, \"is_key\": 0, \"row_id\": 2179911, \"text\": \"40,000\"}], \"category\": \"menu.price\", \"group_id\": 21, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 892, \"x3\": 250, \"y4\": 892, \"x1\": 238, \"y1\": 872, \"x4\": 238, \"y2\": 872}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 890, \"x3\": 276, \"y4\": 890, \"x1\": 260, \"y1\": 872, \"x4\": 260, \"y2\": 872}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 22, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 364, \"y3\": 888, \"x3\": 364, \"y4\": 888, \"x1\": 310, \"y1\": 866, \"x4\": 310, \"y2\": 866}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"Free\"}, {\"quad\": {\"x2\": 414, \"y3\": 886, \"x3\": 414, \"y4\": 886, \"x1\": 374, \"y1\": 864, \"x4\": 374, \"y2\": 864}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 464, \"y3\": 884, \"x3\": 464, \"y4\": 884, \"x1\": 422, \"y1\": 862, \"x4\": 422, \"y2\": 862}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"Tea\"}], \"category\": \"menu.nm\", \"group_id\": 22, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 640, \"y3\": 878, \"x3\": 640, \"y4\": 878, \"x1\": 622, \"y1\": 856, \"x4\": 622, \"y2\": 856}, \"is_key\": 0, \"row_id\": 2179912, \"text\": \"0\"}], \"category\": \"menu.price\", \"group_id\": 22, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 920, \"x3\": 250, \"y4\": 920, \"x1\": 236, \"y1\": 900, \"x4\": 236, \"y2\": 900}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 920, \"x3\": 276, \"y4\": 920, \"x1\": 260, \"y1\": 902, \"x4\": 260, \"y2\": 902}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 23, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 376, \"y3\": 916, \"x3\": 376, \"y4\": 916, \"x1\": 308, \"y1\": 892, \"x4\": 308, \"y2\": 892}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"Bebek\"}, {\"quad\": {\"x2\": 464, \"y3\": 914, \"x3\": 464, \"y4\": 914, \"x1\": 384, \"y1\": 890, \"x4\": 384, \"y2\": 890}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"Street\"}], \"category\": \"menu.nm\", \"group_id\": 23, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 641, \"y3\": 908, \"x3\": 642, \"y4\": 911, \"x1\": 559, \"y1\": 884, \"x4\": 560, \"y2\": 881}, \"is_key\": 0, \"row_id\": 2179913, \"text\": \"44,000\"}], \"category\": \"menu.price\", \"group_id\": 23, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 250, \"y3\": 948, \"x3\": 250, \"y4\": 948, \"x1\": 238, \"y1\": 930, \"x4\": 238, \"y2\": 930}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"1\"}, {\"quad\": {\"x2\": 276, \"y3\": 946, \"x3\": 276, \"y4\": 946, \"x1\": 260, \"y1\": 930, \"x4\": 260, \"y2\": 930}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"x\"}], \"category\": \"menu.cnt\", \"group_id\": 24, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 352, \"y3\": 946, \"x3\": 352, \"y4\": 946, \"x1\": 312, \"y1\": 924, \"x4\": 312, \"y2\": 924}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"Ice\"}, {\"quad\": {\"x2\": 402, \"y3\": 944, \"x3\": 402, \"y4\": 944, \"x1\": 360, \"y1\": 922, \"x4\": 360, \"y2\": 922}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"Tea\"}, {\"quad\": {\"x2\": 480, \"y3\": 942, \"x3\": 480, \"y4\": 942, \"x1\": 412, \"y1\": 920, \"x4\": 412, \"y2\": 920}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"Tawar\"}], \"category\": \"menu.nm\", \"group_id\": 24, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 642, \"y3\": 938, \"x3\": 642, \"y4\": 938, \"x1\": 564, \"y1\": 912, \"x4\": 564, \"y2\": 912}, \"is_key\": 0, \"row_id\": 2179914, \"text\": \"18,000\"}], \"category\": \"menu.price\", \"group_id\": 24, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 479, \"y3\": 998, \"x3\": 481, \"y4\": 1005, \"x1\": 360, \"y1\": 979, \"x4\": 362, \"y2\": 973}, \"is_key\": 1, \"row_id\": 2179915, \"text\": \"Sub-Total\"}, {\"quad\": {\"x2\": 645, \"y3\": 995, \"x3\": 646, \"y4\": 998, \"x1\": 527, \"y1\": 970, \"x4\": 528, \"y2\": 967}, \"is_key\": 0, \"row_id\": 2179915, \"text\": \"1,346,000\"}], \"category\": \"sub_total.subtotal_price\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 481, \"y3\": 1027, \"x3\": 482, \"y4\": 1030, \"x1\": 387, \"y1\": 1007, \"x4\": 388, \"y2\": 1004}, \"is_key\": 1, \"row_id\": 2179916, \"text\": \"Service\"}, {\"quad\": {\"x2\": 646, \"y3\": 1026, \"x3\": 646, \"y4\": 1026, \"x1\": 554, \"y1\": 998, \"x4\": 554, \"y2\": 998}, \"is_key\": 0, \"row_id\": 2179916, \"text\": \"100,950\"}], \"category\": \"sub_total.service_price\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 482, \"y3\": 1056, \"x3\": 482, \"y4\": 1056, \"x1\": 438, \"y1\": 1032, \"x4\": 438, \"y2\": 1032}, \"is_key\": 1, \"row_id\": 2179917, \"text\": \"PB1\"}, {\"quad\": {\"x2\": 648, \"y3\": 1052, \"x3\": 648, \"y4\": 1052, \"x1\": 556, \"y1\": 1026, \"x4\": 556, \"y2\": 1026}, \"is_key\": 0, \"row_id\": 2179917, \"text\": \"144,695\"}], \"category\": \"sub_total.tax_price\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 481, \"y3\": 1085, \"x3\": 482, \"y4\": 1088, \"x1\": 375, \"y1\": 1063, \"x4\": 376, \"y2\": 1061}, \"is_key\": 1, \"row_id\": 2179918, \"text\": \"Rounding\"}, {\"quad\": {\"x2\": 648, \"y3\": 1078, \"x3\": 648, \"y4\": 1078, \"x1\": 606, \"y1\": 1054, \"x4\": 606, \"y2\": 1054}, \"is_key\": 0, \"row_id\": 2179918, \"text\": \"-45\"}], \"category\": \"sub_total.etc\", \"group_id\": 25, \"sub_group_id\": 0}, {\"words\": [{\"quad\": {\"x2\": 334, \"y3\": 1162, \"x3\": 334, \"y4\": 1162, \"x1\": 266, \"y1\": 1142, \"x4\": 266, \"y2\": 1142}, \"is_key\": 1, \"row_id\": 2179919, \"text\": \"Grand\"}, {\"quad\": {\"x2\": 408, \"y3\": 1160, \"x3\": 408, \"y4\": 1160, \"x1\": 340, \"y1\": 1138, \"x4\": 340, \"y2\": 1138}, \"is_key\": 1, \"row_id\": 2179919, \"text\": \"Total\"}, {\"quad\": {\"x2\": 647, \"y3\": 1153, \"x3\": 649, \"y4\": 1161, \"x1\": 418, \"y1\": 1117, \"x4\": 420, \"y2\": 1108}, \"is_key\": 0, \"row_id\": 2179919, \"text\": \"1,591,600\"}], \"category\": \"total.total_price\", \"group_id\": 26, \"sub_group_id\": 0}], \"roi\": {}, \"repeating_symbol\": [], \"dontcare\": []}\n" + ] + } + ], + "source": [ + "# let's load the corresponding JSON dictionary (as string representation)\n", + "ground_truth = example['ground_truth']\n", + "print(ground_truth)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load model" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`low_cpu_mem_usage` was None, now set to True since model is quantized.\n", + "Loading checkpoint shards: 100%|██████████| 7/7 [00:24<00:00, 3.45s/it]\n" + ] + } + ], + "source": [ + "from peft import LoraConfig\n", + "from transformers import BitsAndBytesConfig, Idefics2ForConditionalGeneration\n", + "import torch\n", + "\n", + "lora_config = LoraConfig(\n", + " r=8,\n", + " lora_alpha=8,\n", + " lora_dropout=0.1,\n", + " target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',\n", + " use_dora=False,\n", + " init_lora_weights=\"gaussian\"\n", + " )\n", + "bnb_config = BitsAndBytesConfig(\n", + " load_in_4bit=True,\n", + " bnb_4bit_quant_type=\"nf4\",\n", + " bnb_4bit_compute_dtype=torch.float16\n", + ")\n", + "\n", + "model = Idefics2ForConditionalGeneration.from_pretrained(\n", + " \"HuggingFaceM4/idefics2-8b\",\n", + " torch_dtype=torch.float16,\n", + " quantization_config=bnb_config,\n", + " )\n", + "model.add_adapter(lora_config)\n", + "model.enable_adapters()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create PyTorch dataset\n", + "\n", + "Here we create a regular PyTorch dataset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-30 12:39:37.461173: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2024-04-30 12:39:38.252248: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", + "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n" + ] + } + ], + "source": [ + "import json\n", + "import random\n", + "from typing import Any, List, Dict\n", + "\n", + "import torch\n", + "from torch.utils.data import Dataset\n", + "\n", + "from transformers import AutoProcessor\n", + "\n", + "processor = AutoProcessor.from_pretrained(\"HuggingFaceM4/idefics2-8b\", do_image_splitting=False)\n", + "\n", + "added_tokens = []\n", + "\n", + "\n", + "class Idefics2Dataset(Dataset):\n", + " \"\"\"\n", + " PyTorch Dataset for Idefics2. This class takes a HuggingFace Dataset as input.\n", + " \n", + " Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt).\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " dataset_name_or_path: str,\n", + " split: str = \"train\",\n", + " sort_json_key: bool = True,\n", + " ):\n", + " super().__init__()\n", + "\n", + " self.split = split\n", + " self.sort_json_key = sort_json_key\n", + "\n", + " self.dataset = load_dataset(dataset_name_or_path, split=self.split)\n", + " self.dataset_length = len(self.dataset)\n", + "\n", + " self.gt_token_sequences = []\n", + " for sample in self.dataset:\n", + " ground_truth = json.loads(sample[\"ground_truth\"])\n", + " if \"gt_parses\" in ground_truth: # when multiple ground truths are available, e.g., docvqa\n", + " assert isinstance(ground_truth[\"gt_parses\"], list)\n", + " gt_jsons = ground_truth[\"gt_parses\"]\n", + " else:\n", + " assert \"gt_parse\" in ground_truth and isinstance(ground_truth[\"gt_parse\"], dict)\n", + " gt_jsons = [ground_truth[\"gt_parse\"]]\n", + "\n", + " self.gt_token_sequences.append(\n", + " [\n", + " self.json2token(\n", + " gt_json,\n", + " update_special_tokens_for_json_key=self.split == \"train\",\n", + " sort_json_key=self.sort_json_key,\n", + " )\n", + " for gt_json in gt_jsons # load json from list of json\n", + " ]\n", + " )\n", + "\n", + " def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):\n", + " \"\"\"\n", + " Convert an ordered JSON object into a token sequence\n", + " \"\"\"\n", + " if type(obj) == dict:\n", + " if len(obj) == 1 and \"text_sequence\" in obj:\n", + " return obj[\"text_sequence\"]\n", + " else:\n", + " output = \"\"\n", + " if sort_json_key:\n", + " keys = sorted(obj.keys(), reverse=True)\n", + " else:\n", + " keys = obj.keys()\n", + " for k in keys:\n", + " if update_special_tokens_for_json_key:\n", + " self.add_tokens([fr\"\", fr\"\"])\n", + " output += (\n", + " fr\"\"\n", + " + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)\n", + " + fr\"\"\n", + " )\n", + " return output\n", + " elif type(obj) == list:\n", + " return r\"\".join(\n", + " [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]\n", + " )\n", + " else:\n", + " obj = str(obj)\n", + " if f\"<{obj}/>\" in added_tokens:\n", + " obj = f\"<{obj}/>\" # for categorical special tokens\n", + " return obj\n", + " \n", + " def add_tokens(self, list_of_tokens: List[str]):\n", + " \"\"\"\n", + " Add special tokens to tokenizer and resize the token embeddings of the decoder\n", + " \"\"\"\n", + " newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)\n", + " if newly_added_num > 0:\n", + " model.resize_token_embeddings(len(processor.tokenizer))\n", + " added_tokens.extend(list_of_tokens)\n", + " \n", + " def __len__(self) -> int:\n", + " return self.dataset_length\n", + "\n", + " def __getitem__(self, idx: int) -> Dict:\n", + " \"\"\"\n", + " Load image from image_path of given dataset_path and convert into input_tensor and labels\n", + " Convert gt data into input_ids (tokenized string)\n", + " Returns:\n", + " input_tensor : preprocessed image\n", + " input_ids : tokenized gt_data\n", + " labels : masked labels (model doesn't need to predict prompt and pad token)\n", + " \"\"\"\n", + " sample = self.dataset[idx]\n", + "\n", + " # inputs\n", + " image = sample[\"image\"]\n", + " target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1\n", + " \n", + " return image, target_sequence" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "train_dataset = Idefics2Dataset(\"naver-clova-ix/cord-v2\", split=\"train\", sort_json_key=False)\n", + "val_dataset = Idefics2Dataset(\"naver-clova-ix/cord-v2\", split=\"validation\", sort_json_key=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can verify that a token like `` was added to the vocabulary of the tokenizer (and the model):" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "processor.decode([57560])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As always, it's very important to verify whether our data is prepared correctly. Let's check the first training example:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(,\n", + " 'Nasi Campur Bali1 x75,000Bbk Bengil Nasi1 x125,000MilkShake Starwb1 x37,000Ice Lemon Tea1 x24,000Nasi Ayam Dewata1 x70,000Free Ice Tea3 x0Organic Green Sa1 x65,000Ice Tea1 x18,000Ice Orange1 x29,000Ayam Suir Bali1 x85,000Tahu Goreng2 x36,000Tempe Goreng2 x36,000Tahu Telor Asin1 x40,000.Nasi Goreng Samb1 x70,000Bbk Panggang Sam3 x366,000Ayam Sambal Hija1 x92,000Hot Tea2 x44,000Ice Kopi1 x32,000Tahu Telor Asin1 x40,000Free Ice Tea1 x0Bebek Street1 x44,000Ice Tea Tawar1 x18,0001,346,000100,950144,695-451,591,600')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_dataset[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create PyTorch DataLoaders\n", + "\n", + "Next, we create corresponding PyTorch DataLoaders, which allow us to loop over the dataset in batches:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader\n", + "\n", + "image_token_id = processor.tokenizer.additional_special_tokens_ids[processor.tokenizer.additional_special_tokens.index(\"\")]\n", + "\n", + "\n", + "def collate_fn(examples):\n", + " texts = []\n", + " images = []\n", + " answers = []\n", + " for example in examples:\n", + " image, ground_truth = example\n", + " messages = [\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\"type\": \"text\", \"text\": \"Extract JSON.\"},\n", + " {\"type\": \"image\"},\n", + " ]\n", + " },\n", + " {\n", + " \"role\": \"assistant\",\n", + " \"content\": [\n", + " {\"type\": \"text\", \"text\": ground_truth}\n", + " ]\n", + " }\n", + " ]\n", + " text = processor.apply_chat_template(messages, add_generation_prompt=False)\n", + " texts.append(text.strip())\n", + " images.append([image])\n", + " answers.append(ground_truth)\n", + "\n", + " batch = processor(text=texts, images=images, return_tensors=\"pt\", padding=True)\n", + "\n", + " labels = batch[\"input_ids\"].clone()\n", + " labels[labels == processor.tokenizer.pad_token_id] = image_token_id\n", + " batch[\"labels\"] = labels\n", + "\n", + " batch[\"images\"] = images\n", + " batch[\"answers\"] = answers\n", + "\n", + " input_ids = batch[\"input_ids\"]\n", + " attention_mask = batch[\"attention_mask\"]\n", + " pixel_values = batch[\"pixel_values\"]\n", + " pixel_attention_mask = batch[\"pixel_attention_mask\"]\n", + " labels = batch[\"labels\"]\n", + " \n", + " return input_ids, attention_mask, pixel_values, pixel_attention_mask, labels, images, answers\n", + "\n", + "# feel free to increase the batch size if you have a lot of memory\n", + "# I'm fine-tuning on Colab and given the large image size, batch size > 1 is not feasible\n", + "train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=2, shuffle=True, num_workers=4)\n", + "val_dataloader = DataLoader(val_dataset, collate_fn=collate_fn, batch_size=2, shuffle=False, num_workers=4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's verify a batch" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues.\n", + "No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues.\n", + "No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues.\n", + "No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues.\n" + ] + } + ], + "source": [ + "input_ids, attention_mask, pixel_values, pixel_attention_mask, labels, images, answers = next(iter(train_dataloader))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[' User: Extract JSON. \\nAssistant:MILK PASTRY ROLL19,000CARAMEL PASTRY112,00021,00050,00029,000', ' User: Extract JSON. \\nAssistant:Viet Milk Coffee125.000+Hot+M25.00025.00030.0005.000']\n" + ] + } + ], + "source": [ + "print(processor.batch_decode(input_ids))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define LightningModule\n", + "\n", + "Next, we define a [LightningModule](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html), which is the standard way to train a model in PyTorch Lightning. A LightningModule is an `nn.Module` with some additional functionality. \n", + "\n", + "Basically, PyTorch Lightning will take care of all device placements (`.to(device)`) for us, as well as the backward pass, putting the model in training mode, etc." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "from nltk import edit_distance\n", + "import numpy as np\n", + "\n", + "import lightning as L\n", + "\n", + "\n", + "class Idefics2ModelPLModule(L.LightningModule):\n", + " def __init__(self, config, processor, model):\n", + " super().__init__()\n", + " self.config = config\n", + " self.processor = processor\n", + " self.model = model\n", + "\n", + " def training_step(self, batch, batch_idx):\n", + "\n", + " input_ids, attention_mask, pixel_values, pixel_attention_mask, labels, images, answers = batch\n", + "\n", + " outputs = self.model(input_ids=input_ids,\n", + " attention_mask=attention_mask,\n", + " pixel_values=pixel_values,\n", + " pixel_attention_mask=pixel_attention_mask,\n", + " labels=labels)\n", + " loss = outputs.loss\n", + " \n", + " self.log(\"train_loss\", loss)\n", + " \n", + " return loss\n", + "\n", + " def validation_step(self, batch, batch_idx, dataset_idx=0):\n", + " \n", + " input_ids, attention_mask, pixel_values, pixel_attention_mask, labels, images, answers = batch\n", + " texts = []\n", + " \n", + " # we feed the prompt to the model\n", + " for _ in range(len(answers)):\n", + " messages = [\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\"type\": \"text\", \"text\": \"Extract JSON.\"},\n", + " {\"type\": \"image\"},\n", + " ]\n", + " }\n", + " ]\n", + " text = processor.apply_chat_template(messages, add_generation_prompt=True)\n", + " texts.append(text.strip())\n", + " inputs = processor(text=texts, images=images, padding=True, return_tensors=\"pt\")\n", + " generated_ids = model.generate(**inputs, max_new_tokens=64)\n", + " generated_texts = processor.batch_decode(generated_ids[:, inputs[\"input_ids\"].size(1):], skip_special_tokens=True)\n", + " \n", + " predictions = []\n", + " for seq in generated_texts:\n", + " seq = seq.replace(self.processor.tokenizer.eos_token, \"\").replace(self.processor.tokenizer.pad_token, \"\")\n", + " seq = re.sub(r\"<.*?>\", \"\", seq, count=1).strip() # remove first task start token\n", + " predictions.append(seq)\n", + "\n", + " scores = []\n", + " for pred, answer in zip(predictions, answers):\n", + " pred = re.sub(r\"(?:(?<=>) | (?=" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in ./wandb/run-20240430_124040-t3hdwi09" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run demo-run-cord to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/nielsrogge/Idefics2" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/nielsrogge/Idefics2/runs/t3hdwi09" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2,3,4]\n", + "\n", + " | Name | Type | Params\n", + "-----------------------------------------------------------\n", + "0 | model | Idefics2ForConditionalGeneration | 4.4 B \n", + "-----------------------------------------------------------\n", + "23.3 M Trainable params\n", + "4.3 B Non-trainable params\n", + "4.4 B Total params\n", + "17,439.532Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 0%| | 0/400 [00:00REAL GANACHE116,500EGG TART1REAL GANACHE116,500EGG TART113,000PIZZA TOAST116,000
45,50050,0004,500\n", + " Normed ED: 0.7002881844380403\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/niels/python_projects/transformers/env/lib/python3.8/site-packages/lightning/pytorch/utilities/data.py:77: Trying to infer the `batch_size` from an ambiguous collection. The batch size we found is 2. To avoid any miscalculations, use `self.log(..., batch_size=batch_size)`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction: S-Ovaltine120,000,000PB1S-Ovaltine 50%20,000120,00010% Tax Included
18,1811,81820,000100,00080,000\n", + " Normed ED: 0.7617801047120419\n", + "Prediction: BBQ Chicken141,000- Sedang1BBQ Chicken141,000Sedang10
41,00041,00050.000:9,0001\n", + " Normed ED: 0.7342105263157894\n", + "Prediction: POTATO SAUSAGE BREAD119,000OREO GREEN TEA SPADPOTATO SAUSAGE BREAD119,000OREO GREEN TEA SPREAD152,000WHITE CHOCO BANANA SPREAD152,000123,000123,000\n", + " Normed ED: 0.6833333333333333\n", + "Prediction: TALAM UNGU319,500-40,000%TALAM UNGU@65003X-7,80019,500MIKA KECIL@01X011,70011,70020,0008,3004.00xITEMs\n", + " Normed ED: 0.8148148148148148\n", + "Prediction: Serbu 1240,000Choco Peanut Bread2\n", + " Answer: Serbu 1240.000Choco Peanut Bread220.00060.00060.0000\n", + " Normed ED: 0.6209386281588448\n", + "Prediction: ES KOPI SUSU472.00072.0\n", + " Answer: ES KOPI SUSU472.00072.000072.000\n", + " Normed ED: 0.5144230769230769\n", + "Prediction: Arem Arem@12.0002x24.000Arem Arem@ 12.0002 x24.000Kroket@ 12.0001 x12.000Rp 36.000Rp 3.600Rp 39.600Rp 39.600\n", + " Normed ED: 0.747072599531616\n", + "Prediction: TOTAL CASH CHANGE20,000,0003220,000,00\n", + " Answer: TT20,000120,00020,000100,00080,000\n", + " Normed ED: 0.703862660944206\n", + "Prediction: BEEF C ROLL 3PCS110,000KAYA BRED<\n", + " Answer: beef C roll 3pcs10,000110,000kaya bred15,000115,00025,000100,00075,0002\n", + " Normed ED: 0.7900262467191601\n", + "Prediction: JAMUR210,000TAHU1<\n", + " Answer: JAMUR210,000TAHU15,00015,0001,50016,50020,0003,500\n", + " Normed ED: 0.7295081967213115\n", + "Prediction: RedVelvet Nutella1280,0005 Free Mini Candle5\n", + " Answer: RedVelvet Nutella1280,000Free Mini Candle.5Large Box1280,00028,000308,000308,000\n", + " Normed ED: 0.7256857855361596\n", + "Prediction: PAIN AU CHOCOLATE111,000CHOCO CUSTARD PASTRY<\n", + " Answer: PAIN AU CHOCOLATE111,000CHOCO CUSTARD PASTRY112,000MILK PASTRY ROLL19,000REAL CHEESE INSIDE BREAD113,500SAUSAGE BREAD115,000HAM CHEESE FLAT BREAD120,00080,500100,00019,500\n", + " Normed ED: 0.8174342105263158\n", + "Prediction: NASI MERAH/PUTIH5,0001x5,000NASI MERAH/PUTIH5.0001x5.000SAYUR4.0002x8.000KERUPUK/SAMBEL2.0001x2.000AYAM14.0001x14.000MINUMAN KEMASAN/REFILL6.0001x6.000Rp. 35.000\n", + " Normed ED: 0.8249158249158249\n", + "Prediction: ELEPHANT READ BEAN112,000CHAPSAL TWISTER DONUTELEPHANT READ BEAN12,000112,000chapsal twister donnut10,000110,00022,00022,00002\n", + " Normed ED: 0.764102564102564\n", + "Prediction: REDBEAN BREAD19,000FRANKFUT S/USAGE ROLLREDBEAN BRE/D19,000FRANKFRUT S/USAGE ROLL112,00021,00050,00029,000\n", + " Normed ED: 0.6426116838487973\n", + "Prediction: Nasi (MLY)16.0006.000Nasi (MLY)16.0006.0006.0006.000\n", + " Normed ED: 0.5375\n", + "Prediction: GRILLED BABY POTATO ( R150,500TRUFFLE CREAMGRILLED BABY POTATO (R150,500TRUFFLE CREAM176,000CARBONARA170,500ORIGINAL BREWED TEA246,000243,00014,58025,758283,338283,3385962\n", + " Normed ED: 0.8181818181818182\n", + "Prediction: Soft Gri 3 Tap117,272Top Dro1\n", + " Answer: Soft Ori 3 Top117,272Top Oreo0Top Oreo0Top Banana017,2721,72718,99918,999\n", + " Normed ED: 0.7336448598130841\n", + "Prediction: TOTAL CASH CHANGE20,000,0003320,000,00\n", + " Answer: TT20,000120,00020,000100,00080,000\n", + " Normed ED: 0.703862660944206\n", + "Prediction: Gojek Chicken195,000Chili Sauce H1Gojek Chicken Chilli Sauce H195,000Gojek Chicken Soy Sauce F1180,000Gojek French Fries170,000345,0000034,500379,500\n", + " Normed ED: 0.785140562248996\n", + "Prediction: STIX CINNAMON119,000CINNAMONSUGARSTIX CINNAMON19,000119,000CINNAMON SUGAR17,000117,000TRIPPLE CHEESE17,000117,00053,00053,000053,000\n", + " Normed ED: 0.8108614232209738\n", + "Prediction: THAI ICED TEA (L)116,36316,\n", + " Answer: THAI ICED TEA (L)16,363116.36316.3631,63617,9991\n", + " Normed ED: 0.6366559485530546\n", + "Prediction: MARBLE CASTELA122,00022,000\n", + " Answer: MARBLE CASTELA22,000122,00022,00022,00001\n", + " Normed ED: 0.6051660516605166\n", + "Prediction: SB 1 OR128,636Chokocha Fit1SB 1 OR128,636Chokocha Flt113,636Bbq Bento113,63655,9085,59261,50070,0008,5003\n", + " Normed ED: 0.7866108786610879\n", + "Prediction: CHOCOLATE ECLAIR226,00026,000\n", + " Answer: CHOCOLATE ECLAIR226,00026,00026,0000\n", + " Normed ED: 0.47596153846153844\n", + "Prediction: KENTHIR 2242.000KOL GORENG2\n", + " Answer: KENTHIR 2242.000KOL GORENG26.000TEH MANIS28.00056.00056.00056.0000\n", + " Normed ED: 0.7549019607843137\n", + "Prediction: 4003-Blueberry Fujji40.00040.0006001-Pl\n", + " Answer: 4003-Blueberry Fuji40.000x140.0006001-Plastic Bag Small0x1040.00050.00010.0002\n", + " Normed ED: 0.7551546391752577\n", + "Prediction: Thai Iced T.x1120.00020.\n", + " Answer: Thai Iced T. .x120.00020.00020.00020.0000\n", + " Normed ED: 0.6412213740458015\n", + "Prediction: Viet Milk Coffee125.000+M0Viet Milk Coffee125.000+Hot+M25.00025.00025.0000\n", + " Normed ED: 0.6797583081570997\n", + "Prediction: VANILLA CHOCOL HEART CAKE1180,000VANILLA CHOCO HEART CAKE1180,000180,000180,000\n", + " Normed ED: 0.45226130653266333\n", + "Prediction: French Fries110,909Cheese Burger2French Fries110,909Cheese Burger236,364Milo19.09156,3645,63662,000100,00038,000\n", + " Normed ED: 0.7544642857142857\n", + "Prediction: WHOLE WHEAT PAN BREAD120,00020,00\n", + " Answer: WHOLE WHEAT PAN BREAD120,00020,000100,00080,000\n", + " Normed ED: 0.4840182648401826\n", + "Prediction: AIR MINERAL7,00077,000AIR MINERAL7,0007,0007,000\n", + " Normed ED: 0.47368421052631576\n", + "Prediction: Honey Mandarin2X13,00026,000Honey Mandarin13,0002 X26,00026,00030,0004,000\n", + " Normed ED: 0.5510204081632653\n", + "Prediction: KarageCurryTeishoku169,000Benton PlateKaraageCurryTeishoku169,000Lemon Plate119,000Ocha Hot115,000103,0007,72511,073121,79833\n", + " Normed ED: 0.7847082494969819\n" + ] + } + ], + "source": [ + "from lightning.pytorch.callbacks import Callback\n", + "from lightning.pytorch.loggers import WandbLogger\n", + "from lightning.pytorch.callbacks.early_stopping import EarlyStopping\n", + "\n", + "wandb_logger = WandbLogger(project=\"Idefics2\", name=\"demo-run-cord\")\n", + "\n", + "class PushToHubCallback(Callback):\n", + " def on_train_epoch_end(self, trainer, pl_module):\n", + " print(f\"Pushing model to the hub, epoch {trainer.current_epoch}\")\n", + " pl_module.model.push_to_hub(\"nielsr/idefics2-cord-demo\",\n", + " commit_message=f\"Training in progress, epoch {trainer.current_epoch}\")\n", + "\n", + " def on_train_end(self, trainer, pl_module):\n", + " print(f\"Pushing model to the hub after training\")\n", + " pl_module.processor.push_to_hub(\"nielsr/idefics2-cord)demo\",\n", + " commit_message=f\"Training done\")\n", + " pl_module.model.push_to_hub(\"nielsr/donut-demo\",\n", + " commit_message=f\"Training done\")\n", + "\n", + "early_stop_callback = EarlyStopping(monitor=\"val_edit_distance\", patience=3, verbose=False, mode=\"min\")\n", + "\n", + "trainer = L.Trainer(\n", + " accelerator=\"gpu\",\n", + " devices=1,\n", + " max_epochs=config.get(\"max_epochs\"),\n", + " val_check_interval=config.get(\"val_check_interval\"),\n", + " check_val_every_n_epoch=config.get(\"check_val_every_n_epoch\"),\n", + " gradient_clip_val=config.get(\"gradient_clip_val\"),\n", + " precision=16, # we'll use mixed precision\n", + " num_sanity_val_steps=0,\n", + " logger=wandb_logger,\n", + " callbacks=[PushToHubCallback(), early_stop_callback],\n", + ")\n", + "\n", + "trainer.fit(model_module)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/src/transformers/models/idefics2/modeling_idefics2.py b/src/transformers/models/idefics2/modeling_idefics2.py index 28cd6155548ac7..58f4eb0aab2891 100644 --- a/src/transformers/models/idefics2/modeling_idefics2.py +++ b/src/transformers/models/idefics2/modeling_idefics2.py @@ -1348,9 +1348,6 @@ class Idefics2PreTrainedModel(PreTrainedModel): _supports_flash_attn_2 = True def _init_weights(self, module): - # important: this ported version of Idefics2 isn't meant for training from scratch - only - # inference and fine-tuning - so the proper init weights code has been removed - the original codebase - # https://github.com/haotian-liu/LLaVA/tree/main/idefics2 should serve for that purpose std = ( self.config.text_config.initializer_range if hasattr(self.config, "initializer_range") @@ -1442,13 +1439,13 @@ def _autoset_attn_implementation( Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. - pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, num_channels, height, width)): The tensors corresponding to the input images. Pixel values can be obtained using - [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses - [`CLIPImageProcessor`] for processing images). - pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): + [`AutoImageProcessor`]. See [`Idefics2ImageProcessor.__call__`] for details ([]`Idefics2Processor`] uses + [`Idefics2ImageProcessor`] for processing images). + pixel_attention_mask (`torch.Tensor` of shape `(batch_size, num_patches, height, width)`, *optional*): Mask to avoid performing attention on padding pixel indices. - image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): + image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_latents, hidden_size)`): The hidden states of the image encoder after modality projection and perceiver resampling. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see diff --git a/src/transformers/models/idefics2/processing_idefics2.py b/src/transformers/models/idefics2/processing_idefics2.py index 7b98519928f55e..bb08ee3ff0825e 100644 --- a/src/transformers/models/idefics2/processing_idefics2.py +++ b/src/transformers/models/idefics2/processing_idefics2.py @@ -118,8 +118,8 @@ def __call__( >>> from transformers import Idefics2Processor >>> from transformers.image_utils import load_image - >>> processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2) - >>> processor.image_processor.do_image_splitting = False # Force as False to simplify the example + >>> # We specify `do_image_splitting=False` to reduce memory usage + >>> processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2, do_image_splitting=False) >>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" >>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg" diff --git a/src/transformers/models/idefics2/test.py b/src/transformers/models/idefics2/test.py new file mode 100644 index 00000000000000..f71d79ce5e673f --- /dev/null +++ b/src/transformers/models/idefics2/test.py @@ -0,0 +1,38 @@ +import requests +from PIL import Image + +from transformers import Idefics2ForConditionalGeneration, Idefics2Processor + + +url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg" +url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg" + +image_1 = Image.open(requests.get(url_1, stream=True).raw) +image_2 = Image.open(requests.get(url_2, stream=True).raw) +images = [image_1, image_2] + +messages = [ + { + "role": "user", + "content": [ + {"type": "text", "text": "What’s the difference between these two images?"}, + {"type": "image"}, + {"type": "image"}, + ], + } +] + +processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", do_image_splitting=False) +model = Idefics2ForConditionalGeneration.from_pretrained("HuggingFaceM4/idefics2-8b", device_map="auto") + +# at inference time, one needs to pass `add_generation_prompt=True` in order to make sure the model completes the prompt +text = processor.apply_chat_template(messages, add_generation_prompt=True) + +inputs = processor(images=images, text=text, return_tensors="pt").to("cuda") + +for k, v in inputs.items(): + print(k, v.shape) + +generated_text = model.generate(**inputs, max_new_tokens=500) +generated_text = processor.batch_decode(generated_text, skip_special_tokens=True)[0] +print("Generated text:", generated_text) diff --git a/src/transformers/models/idefics2/test_bis.py b/src/transformers/models/idefics2/test_bis.py new file mode 100644 index 00000000000000..1928922a0ec8d1 --- /dev/null +++ b/src/transformers/models/idefics2/test_bis.py @@ -0,0 +1,27 @@ +import requests +from PIL import Image + +from transformers import AutoProcessor + + +processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b", do_image_splitting=False) + +url = "https://upload.wikimedia.org/wikipedia/commons/f/f3/Zinedine_Zidane_by_Tasnim_03.jpg" +test_image = Image.open(requests.get(url, stream=True).raw) + +# prepare image and prompt for the model +messages = [ + { + "role": "user", + "content": [ + {"type": "text", "text": "Extract JSON."}, + {"type": "image"}, + ], + }, +] +prompt = processor.apply_chat_template(messages, add_generation_prompt=True) +inputs = processor(text=prompt, images=[test_image], return_tensors="pt") +for k, v in inputs.items(): + print(k, v.shape) + +print(processor.batch_decode(inputs.input_ids)) diff --git a/src/transformers/models/idefics2/wandb/latest-run b/src/transformers/models/idefics2/wandb/latest-run new file mode 120000 index 00000000000000..84f3d11f573af4 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/latest-run @@ -0,0 +1 @@ +run-20240430_124040-t3hdwi09 \ No newline at end of file diff --git a/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/config.yaml b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/config.yaml new file mode 100644 index 00000000000000..f388adc0a6b2e1 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/config.yaml @@ -0,0 +1,58 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + python_version: 3.8.10 + cli_version: 0.16.6 + framework: huggingface + huggingface_version: 4.41.0.dev0 + is_jupyter_run: true + is_kaggle_kernel: false + start_time: 1714461535.0 + t: + 1: + - 1 + - 2 + - 3 + - 5 + - 9 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + - 103 + 2: + - 1 + - 2 + - 3 + - 5 + - 9 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + - 103 + 3: + - 7 + - 13 + - 23 + 4: 3.8.10 + 5: 0.16.6 + 6: 4.41.0.dev0 + 8: + - 1 + - 5 + 13: linux-x86_64 + m: + - 1: trainer/global_step + 6: + - 3 diff --git a/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/requirements.txt b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/requirements.txt new file mode 100644 index 00000000000000..9c0500b508e809 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/requirements.txt @@ -0,0 +1,306 @@ +APScheduler==3.10.4 +Babel==2.14.0 +Flask==3.0.2 +GitPython==3.1.18 +Jinja2==3.1.3 +Levenshtein==0.25.1 +Mako==1.3.2 +Markdown==3.6 +MarkupSafe==2.1.5 +PyYAML==6.0.1 +Pygments==2.17.2 +SQLAlchemy==2.0.28 +SudachiDict-core==20240109 +SudachiPy==0.6.8 +Werkzeug==3.0.1 +absl-py==2.1.0 +accelerate==0.28.0 +aiohttp==3.9.3 +aiosignal==1.3.1 +alembic==1.13.1 +annotated-types==0.6.0 +appdirs==1.4.4 +arrow==1.3.0 +asttokens==2.4.1 +astunparse==1.6.3 +async-timeout==4.0.3 +attrs==23.2.0 +audioread==3.0.1 +av==9.2.0 +backcall==0.2.0 +backoff==1.11.1 +backports.zoneinfo==0.2.1 +beautifulsoup4==4.12.3 +bibtexparser==2.0.0b7 +binaryornot==0.4.4 +bitsandbytes==0.42.0 +black==24.3.0 +blinker==1.7.0 +cached-property==1.5.2 +cachetools==5.3.3 +certifi==2024.2.2 +cffi==1.16.0 +chardet==5.2.0 +charset-normalizer==3.3.2 +chex==0.1.7 +click==8.1.7 +clldutils==3.22.2 +cmake==3.28.3 +codecarbon==1.2.0 +colorama==0.4.6 +coloredlogs==15.0.1 +colorlog==6.8.2 +comm==0.2.2 +cookiecutter==1.7.3 +csvw==3.3.0 +dash-bootstrap-components==1.5.0 +dash-core-components==2.0.0 +dash-html-components==2.0.0 +dash-table==5.0.0 +dash==2.16.1 +datasets==2.18.0 +debugpy==1.8.1 +decorator==5.1.1 +decord==0.6.0 +dill==0.3.4 +dlinfo==1.2.1 +dm-tree==0.1.8 +docker-pycreds==0.4.0 +einops==0.7.0 +etils==1.3.0 +evaluate==0.4.1 +exceptiongroup==1.2.0 +execnet==2.0.2 +executing==2.0.1 +faiss-cpu==1.8.0 +fastjsonschema==2.19.1 +filelock==3.13.1 +fire==0.6.0 +flatbuffers==24.3.7 +flax==0.7.0 +frozenlist==1.4.1 +fsspec==2024.3.0 +fugashi==1.3.1 +gast==0.4.0 +gitdb==4.0.11 +google-auth-oauthlib==1.0.0 +google-auth==2.28.2 +google-pasta==0.2.0 +greenlet==3.0.3 +grpcio==1.62.1 +h5py==3.11.0 +hf-doc-builder==0.5.0 +huggingface-hub==0.21.4 +humanfriendly==10.0 +hypothesis==6.99.8 +idna==3.6 +importlib_metadata==7.0.2 +importlib_resources==6.3.1 +iniconfig==2.0.0 +ipadic==1.0.0 +ipykernel==6.29.4 +ipython==8.12.3 +isodate==0.6.1 +isort==5.13.2 +itsdangerous==2.1.2 +jax==0.4.13 +jaxlib==0.4.13 +jedi==0.19.1 +jinja2-time==0.2.0 +joblib==1.3.2 +jsonschema-specifications==2023.12.1 +jsonschema==4.21.1 +jupyter_client==8.6.1 +jupyter_core==5.7.2 +kenlm==0.2.0 +keras-core==0.1.5 +keras-nlp==0.6.1 +keras==2.13.1 +language-tags==1.2.0 +lazy_loader==0.3 +libclang==18.1.1 +librosa==0.10.1 +lightning-utilities==0.11.2 +lit==18.1.1 +llvmlite==0.41.1 +lxml==5.1.0 +markdown-it-py==3.0.0 +matplotlib-inline==0.1.7 +mdurl==0.1.2 +ml-dtypes==0.2.0 +mpmath==1.3.0 +msgpack==1.0.8 +multidict==6.0.5 +multiprocess==0.70.16 +mypy-extensions==1.0.0 +namex==0.0.8 +nbformat==5.10.3 +nest-asyncio==1.6.0 +networkx==3.1 +nltk==3.8.1 +numba==0.58.1 +numpy==1.24.4 +nvidia-cublas-cu11==11.10.3.66 +nvidia-cublas-cu12==12.1.3.1 +nvidia-cuda-cupti-cu11==11.7.101 +nvidia-cuda-cupti-cu12==12.1.105 +nvidia-cuda-nvrtc-cu11==11.7.99 +nvidia-cuda-nvrtc-cu12==12.1.105 +nvidia-cuda-runtime-cu11==11.7.99 +nvidia-cuda-runtime-cu12==12.1.105 +nvidia-cudnn-cu11==8.5.0.96 +nvidia-cudnn-cu12==8.9.2.26 +nvidia-cufft-cu11==10.9.0.58 +nvidia-cufft-cu12==11.0.2.54 +nvidia-curand-cu11==10.2.10.91 +nvidia-curand-cu12==10.3.2.106 +nvidia-cusolver-cu11==11.4.0.1 +nvidia-cusolver-cu12==11.4.5.107 +nvidia-cusparse-cu11==11.7.4.91 +nvidia-cusparse-cu12==12.1.0.106 +nvidia-nccl-cu11==2.14.3 +nvidia-nccl-cu12==2.20.5 +nvidia-nvjitlink-cu12==12.4.99 +nvidia-nvtx-cu11==11.7.91 +nvidia-nvtx-cu12==12.1.105 +oauthlib==3.2.2 +onnx==1.15.0 +onnxconverter-common==1.14.0 +onnxruntime-tools==1.7.0 +onnxruntime==1.16.3 +opt-einsum==3.3.0 +optax==0.1.4 +optuna==3.6.0 +orbax-checkpoint==0.2.3 +packaging==24.0 +pandas==2.0.3 +parameterized==0.9.0 +parso==0.8.4 +pathspec==0.12.1 +peft==0.10.0 +pexpect==4.9.0 +phonemizer==3.2.1 +pickleshare==0.7.5 +pillow==10.2.0 +pip==20.0.2 +pkg_resources==0.0.0 +pkgutil_resolve_name==1.3.10 +plac==1.4.3 +platformdirs==4.2.0 +plotly==5.20.0 +pluggy==1.4.0 +pooch==1.8.1 +portalocker==2.0.0 +poyo==0.5.0 +prompt-toolkit==3.0.43 +protobuf==4.25.3 +psutil==5.9.8 +ptyprocess==0.7.0 +pure-eval==0.2.2 +py-cpuinfo==9.0.0 +py3nvml==0.2.7 +pyarrow-hotfix==0.6 +pyarrow==15.0.1 +pyasn1-modules==0.3.0 +pyasn1==0.5.1 +pycparser==2.21 +pyctcdecode==0.5.0 +pydantic==2.6.4 +pydantic_core==2.16.3 +pygtrie==2.5.0 +pylatexenc==2.10 +pynvml==11.5.0 +pyparsing==3.1.2 +pypng==0.20220715.0 +pytest-timeout==2.3.1 +pytest-xdist==3.5.0 +pytest==7.4.4 +python-dateutil==2.9.0.post0 +python-slugify==8.0.4 +pytorch-lightning==2.2.3 +pytz==2024.1 +pyzmq==26.0.2 +rapidfuzz==3.8.1 +ray==2.9.3 +rdflib==7.0.0 +referencing==0.34.0 +regex==2023.12.25 +requests-oauthlib==1.4.0 +requests==2.31.0 +responses==0.18.0 +retrying==1.3.4 +rfc3986==1.5.0 +rhoknp==1.3.0 +rich==13.7.1 +rjieba==0.1.11 +rouge-score==0.1.2 +rpds-py==0.18.0 +rsa==4.9 +ruff==0.1.5 +sacrebleu==1.5.1 +sacremoses==0.1.1 +safetensors==0.4.2 +scikit-learn==1.3.2 +scipy==1.10.1 +segments==2.2.1 +sentencepiece==0.1.99 +sentry-sdk==2.0.1 +setproctitle==1.3.3 +setuptools==44.0.0 +sigopt==8.8.2 +six==1.16.0 +smmap==5.0.1 +sortedcontainers==2.4.0 +soundfile==0.12.1 +soupsieve==2.5 +soxr==0.3.7 +stack-data==0.6.3 +sympy==1.12 +tabulate==0.9.0 +tenacity==8.2.3 +tensorboard-data-server==0.7.2 +tensorboard==2.14.0 +tensorboardX==2.6.2.2 +tensorflow-estimator==2.13.0 +tensorflow-hub==0.16.1 +tensorflow-io-gcs-filesystem==0.34.0 +tensorflow-text==2.13.0 +tensorflow==2.13.1 +tensorstore==0.1.45 +termcolor==2.4.0 +text-unidecode==1.3 +tf2onnx==1.16.1 +tf_keras==2.15.1 +threadpoolctl==3.3.0 +timeout-decorator==0.5.0 +timm==0.9.16 +tokenizers==0.19.1 +tomli==2.0.1 +toolz==0.12.1 +torch==2.3.0 +torchaudio==2.1.2 +torchmetrics==1.3.2 +torchvision==0.18.0 +tornado==6.4 +tqdm==4.66.2 +traitlets==5.14.2 +transformers==4.41.0.dev0 +triton==2.3.0 +types-python-dateutil==2.9.0.20240316 +typing_extensions==4.10.0 +tzdata==2024.1 +tzlocal==5.2 +unidic-lite==1.0.8 +unidic==1.1.0 +uritemplate==4.1.1 +urllib3==1.26.18 +wandb==0.16.6 +wasabi==0.10.1 +wcwidth==0.2.13 +wheel==0.43.0 +wrapt==1.16.0 +xformers==0.0.22.post7 +xmltodict==0.13.0 +xxhash==3.4.1 +yarl==1.9.4 +zipp==3.18.1 \ No newline at end of file diff --git a/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/wandb-metadata.json b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/wandb-metadata.json new file mode 100644 index 00000000000000..e28b4875f16d91 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/files/wandb-metadata.json @@ -0,0 +1,703 @@ +{ + "os": "Linux-5.4.0-166-generic-x86_64-with-glibc2.29", + "python": "3.8.10", + "heartbeatAt": "2024-04-30T07:18:55.849340", + "startedAt": "2024-04-30T07:18:55.163285", + "docker": null, + "cuda": null, + "args": [], + "state": "running", + "program": "", + "codePathLocal": null, + "git": { + "remote": "git@github.com:NielsRogge/transformers.git", + "commit": "b794532fef67ad2ece05cfb504983ef76cd24f08" + }, + "email": "niels.rogge1@gmail.com", + "root": "/home/niels/python_projects/transformers", + "host": "hf-dgx-01", + "username": "niels", + "executable": "/home/niels/python_projects/transformers/env/bin/python", + "cpu_count": 64, + "cpu_count_logical": 128, + "cpu_freq": { + "current": 2486.0019218750003, + "min": 1500.0, + "max": 2250.0 + }, + "cpu_freq_per_core": [ + { + "current": 3267.516, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3270.823, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3265.242, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3281.016, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3264.948, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3273.113, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.62, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1689.157, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2399.842, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2354.78, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3237.882, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3291.941, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1636.381, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3266.2, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1635.641, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1638.544, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3279.859, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1889.79, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1636.975, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3264.014, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3265.078, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3275.907, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3126.734, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3264.993, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3272.368, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.656, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1635.79, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1638.488, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3280.23, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2428.724, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2364.214, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1635.998, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3267.796, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2281.893, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1989.929, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2305.238, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1640.678, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2183.398, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2241.726, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3278.783, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2142.262, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1638.711, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1638.456, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3264.444, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3270.976, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.525, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1636.91, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1636.756, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3262.078, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1676.115, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1639.357, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1622.436, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3266.68, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2245.016, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3266.47, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3268.124, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1546.657, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1553.958, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.219, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3263.907, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.134, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3266.913, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1549.011, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1556.62, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3275.794, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3274.676, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3270.156, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3275.157, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3266.754, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3275.375, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2123.271, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2186.738, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.842, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1991.91, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1629.332, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3263.79, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.686, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3255.912, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.448, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.242, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3262.619, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2201.728, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.348, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3257.616, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3258.482, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3254.205, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3257.062, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3262.794, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3261.239, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.854, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.718, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.122, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3263.092, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2218.45, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1994.986, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1630.486, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3271.66, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.976, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.762, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3255.157, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1688.142, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.897, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1752.091, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3262.871, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2194.616, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.369, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1629.919, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3255.245, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3256.658, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.372, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.91, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.473, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3267.894, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1836.147, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.211, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.449, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3286.487, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1664.18, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3265.422, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3124.3, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.847, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.459, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.187, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3258.696, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.723, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3265.47, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1673.331, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1573.322, + "min": 1500.0, + "max": 2250.0 + } + ], + "disk": { + "/": { + "total": 1757.8785285949707, + "used": 1643.9329261779785 + } + }, + "gpu": "NVIDIA A100-SXM4-80GB", + "gpu_count": 5, + "gpu_devices": [ + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA DGX Display", + "memory_total": 4294967296 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + } + ], + "memory": { + "total": 503.5396919250488 + } +} diff --git a/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/run-0w9d9xlt.wandb b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/run-0w9d9xlt.wandb new file mode 100644 index 00000000000000..efa39717d90d23 Binary files /dev/null and b/src/transformers/models/idefics2/wandb/run-20240430_091855-0w9d9xlt/run-0w9d9xlt.wandb differ diff --git a/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/config.yaml b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/config.yaml new file mode 100644 index 00000000000000..504c98560a679c --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/config.yaml @@ -0,0 +1,58 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + python_version: 3.8.10 + cli_version: 0.16.6 + framework: huggingface + huggingface_version: 4.41.0.dev0 + is_jupyter_run: true + is_kaggle_kernel: false + start_time: 1714462726.0 + t: + 1: + - 1 + - 2 + - 3 + - 5 + - 9 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + - 103 + 2: + - 1 + - 2 + - 3 + - 5 + - 9 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + - 103 + 3: + - 7 + - 13 + - 23 + 4: 3.8.10 + 5: 0.16.6 + 6: 4.41.0.dev0 + 8: + - 1 + - 5 + 13: linux-x86_64 + m: + - 1: trainer/global_step + 6: + - 3 diff --git a/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/requirements.txt b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/requirements.txt new file mode 100644 index 00000000000000..f79e27fbf99175 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/requirements.txt @@ -0,0 +1,307 @@ +APScheduler==3.10.4 +Babel==2.14.0 +Flask==3.0.2 +GitPython==3.1.18 +Jinja2==3.1.3 +Levenshtein==0.25.1 +Mako==1.3.2 +Markdown==3.6 +MarkupSafe==2.1.5 +PyYAML==6.0.1 +Pygments==2.17.2 +SQLAlchemy==2.0.28 +SudachiDict-core==20240109 +SudachiPy==0.6.8 +Werkzeug==3.0.1 +absl-py==2.1.0 +accelerate==0.28.0 +aiohttp==3.9.3 +aiosignal==1.3.1 +alembic==1.13.1 +annotated-types==0.6.0 +appdirs==1.4.4 +arrow==1.3.0 +asttokens==2.4.1 +astunparse==1.6.3 +async-timeout==4.0.3 +attrs==23.2.0 +audioread==3.0.1 +av==9.2.0 +backcall==0.2.0 +backoff==1.11.1 +backports.zoneinfo==0.2.1 +beautifulsoup4==4.12.3 +bibtexparser==2.0.0b7 +binaryornot==0.4.4 +bitsandbytes==0.42.0 +black==24.3.0 +blinker==1.7.0 +cached-property==1.5.2 +cachetools==5.3.3 +certifi==2024.2.2 +cffi==1.16.0 +chardet==5.2.0 +charset-normalizer==3.3.2 +chex==0.1.7 +click==8.1.7 +clldutils==3.22.2 +cmake==3.28.3 +codecarbon==1.2.0 +colorama==0.4.6 +coloredlogs==15.0.1 +colorlog==6.8.2 +comm==0.2.2 +cookiecutter==1.7.3 +csvw==3.3.0 +dash-bootstrap-components==1.5.0 +dash-core-components==2.0.0 +dash-html-components==2.0.0 +dash-table==5.0.0 +dash==2.16.1 +datasets==2.18.0 +debugpy==1.8.1 +decorator==5.1.1 +decord==0.6.0 +dill==0.3.4 +dlinfo==1.2.1 +dm-tree==0.1.8 +docker-pycreds==0.4.0 +einops==0.7.0 +etils==1.3.0 +evaluate==0.4.1 +exceptiongroup==1.2.0 +execnet==2.0.2 +executing==2.0.1 +faiss-cpu==1.8.0 +fastjsonschema==2.19.1 +filelock==3.13.1 +fire==0.6.0 +flatbuffers==24.3.7 +flax==0.7.0 +frozenlist==1.4.1 +fsspec==2024.3.0 +fugashi==1.3.1 +gast==0.4.0 +gitdb==4.0.11 +google-auth-oauthlib==1.0.0 +google-auth==2.28.2 +google-pasta==0.2.0 +greenlet==3.0.3 +grpcio==1.62.1 +h5py==3.11.0 +hf-doc-builder==0.5.0 +huggingface-hub==0.21.4 +humanfriendly==10.0 +hypothesis==6.99.8 +idna==3.6 +importlib_metadata==7.0.2 +importlib_resources==6.3.1 +iniconfig==2.0.0 +ipadic==1.0.0 +ipykernel==6.29.4 +ipython==8.12.3 +isodate==0.6.1 +isort==5.13.2 +itsdangerous==2.1.2 +jax==0.4.13 +jaxlib==0.4.13 +jedi==0.19.1 +jinja2-time==0.2.0 +joblib==1.3.2 +jsonschema-specifications==2023.12.1 +jsonschema==4.21.1 +jupyter_client==8.6.1 +jupyter_core==5.7.2 +kenlm==0.2.0 +keras-core==0.1.5 +keras-nlp==0.6.1 +keras==2.13.1 +language-tags==1.2.0 +lazy_loader==0.3 +libclang==18.1.1 +librosa==0.10.1 +lightning-utilities==0.11.2 +lightning==2.2.3 +lit==18.1.1 +llvmlite==0.41.1 +lxml==5.1.0 +markdown-it-py==3.0.0 +matplotlib-inline==0.1.7 +mdurl==0.1.2 +ml-dtypes==0.2.0 +mpmath==1.3.0 +msgpack==1.0.8 +multidict==6.0.5 +multiprocess==0.70.16 +mypy-extensions==1.0.0 +namex==0.0.8 +nbformat==5.10.3 +nest-asyncio==1.6.0 +networkx==3.1 +nltk==3.8.1 +numba==0.58.1 +numpy==1.24.4 +nvidia-cublas-cu11==11.10.3.66 +nvidia-cublas-cu12==12.1.3.1 +nvidia-cuda-cupti-cu11==11.7.101 +nvidia-cuda-cupti-cu12==12.1.105 +nvidia-cuda-nvrtc-cu11==11.7.99 +nvidia-cuda-nvrtc-cu12==12.1.105 +nvidia-cuda-runtime-cu11==11.7.99 +nvidia-cuda-runtime-cu12==12.1.105 +nvidia-cudnn-cu11==8.5.0.96 +nvidia-cudnn-cu12==8.9.2.26 +nvidia-cufft-cu11==10.9.0.58 +nvidia-cufft-cu12==11.0.2.54 +nvidia-curand-cu11==10.2.10.91 +nvidia-curand-cu12==10.3.2.106 +nvidia-cusolver-cu11==11.4.0.1 +nvidia-cusolver-cu12==11.4.5.107 +nvidia-cusparse-cu11==11.7.4.91 +nvidia-cusparse-cu12==12.1.0.106 +nvidia-nccl-cu11==2.14.3 +nvidia-nccl-cu12==2.20.5 +nvidia-nvjitlink-cu12==12.4.99 +nvidia-nvtx-cu11==11.7.91 +nvidia-nvtx-cu12==12.1.105 +oauthlib==3.2.2 +onnx==1.15.0 +onnxconverter-common==1.14.0 +onnxruntime-tools==1.7.0 +onnxruntime==1.16.3 +opt-einsum==3.3.0 +optax==0.1.4 +optuna==3.6.0 +orbax-checkpoint==0.2.3 +packaging==24.0 +pandas==2.0.3 +parameterized==0.9.0 +parso==0.8.4 +pathspec==0.12.1 +peft==0.10.0 +pexpect==4.9.0 +phonemizer==3.2.1 +pickleshare==0.7.5 +pillow==10.2.0 +pip==20.0.2 +pkg_resources==0.0.0 +pkgutil_resolve_name==1.3.10 +plac==1.4.3 +platformdirs==4.2.0 +plotly==5.20.0 +pluggy==1.4.0 +pooch==1.8.1 +portalocker==2.0.0 +poyo==0.5.0 +prompt-toolkit==3.0.43 +protobuf==4.25.3 +psutil==5.9.8 +ptyprocess==0.7.0 +pure-eval==0.2.2 +py-cpuinfo==9.0.0 +py3nvml==0.2.7 +pyarrow-hotfix==0.6 +pyarrow==15.0.1 +pyasn1-modules==0.3.0 +pyasn1==0.5.1 +pycparser==2.21 +pyctcdecode==0.5.0 +pydantic==2.6.4 +pydantic_core==2.16.3 +pygtrie==2.5.0 +pylatexenc==2.10 +pynvml==11.5.0 +pyparsing==3.1.2 +pypng==0.20220715.0 +pytest-timeout==2.3.1 +pytest-xdist==3.5.0 +pytest==7.4.4 +python-dateutil==2.9.0.post0 +python-slugify==8.0.4 +pytorch-lightning==2.2.3 +pytz==2024.1 +pyzmq==26.0.2 +rapidfuzz==3.8.1 +ray==2.9.3 +rdflib==7.0.0 +referencing==0.34.0 +regex==2023.12.25 +requests-oauthlib==1.4.0 +requests==2.31.0 +responses==0.18.0 +retrying==1.3.4 +rfc3986==1.5.0 +rhoknp==1.3.0 +rich==13.7.1 +rjieba==0.1.11 +rouge-score==0.1.2 +rpds-py==0.18.0 +rsa==4.9 +ruff==0.1.5 +sacrebleu==1.5.1 +sacremoses==0.1.1 +safetensors==0.4.2 +scikit-learn==1.3.2 +scipy==1.10.1 +segments==2.2.1 +sentencepiece==0.1.99 +sentry-sdk==2.0.1 +setproctitle==1.3.3 +setuptools==44.0.0 +sigopt==8.8.2 +six==1.16.0 +smmap==5.0.1 +sortedcontainers==2.4.0 +soundfile==0.12.1 +soupsieve==2.5 +soxr==0.3.7 +stack-data==0.6.3 +sympy==1.12 +tabulate==0.9.0 +tenacity==8.2.3 +tensorboard-data-server==0.7.2 +tensorboard==2.14.0 +tensorboardX==2.6.2.2 +tensorflow-estimator==2.13.0 +tensorflow-hub==0.16.1 +tensorflow-io-gcs-filesystem==0.34.0 +tensorflow-text==2.13.0 +tensorflow==2.13.1 +tensorstore==0.1.45 +termcolor==2.4.0 +text-unidecode==1.3 +tf2onnx==1.16.1 +tf_keras==2.15.1 +threadpoolctl==3.3.0 +timeout-decorator==0.5.0 +timm==0.9.16 +tokenizers==0.19.1 +tomli==2.0.1 +toolz==0.12.1 +torch==2.3.0 +torchaudio==2.1.2 +torchmetrics==1.3.2 +torchvision==0.18.0 +tornado==6.4 +tqdm==4.66.2 +traitlets==5.14.2 +transformers==4.41.0.dev0 +triton==2.3.0 +types-python-dateutil==2.9.0.20240316 +typing_extensions==4.10.0 +tzdata==2024.1 +tzlocal==5.2 +unidic-lite==1.0.8 +unidic==1.1.0 +uritemplate==4.1.1 +urllib3==1.26.18 +wandb==0.16.6 +wasabi==0.10.1 +wcwidth==0.2.13 +wheel==0.43.0 +wrapt==1.16.0 +xformers==0.0.22.post7 +xmltodict==0.13.0 +xxhash==3.4.1 +yarl==1.9.4 +zipp==3.18.1 \ No newline at end of file diff --git a/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/wandb-metadata.json b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/wandb-metadata.json new file mode 100644 index 00000000000000..b68095fcbac751 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/files/wandb-metadata.json @@ -0,0 +1,703 @@ +{ + "os": "Linux-5.4.0-166-generic-x86_64-with-glibc2.29", + "python": "3.8.10", + "heartbeatAt": "2024-04-30T07:38:46.874230", + "startedAt": "2024-04-30T07:38:46.128256", + "docker": null, + "cuda": null, + "args": [], + "state": "running", + "program": "", + "codePathLocal": null, + "git": { + "remote": "git@github.com:NielsRogge/transformers.git", + "commit": "b794532fef67ad2ece05cfb504983ef76cd24f08" + }, + "email": "niels.rogge1@gmail.com", + "root": "/home/niels/python_projects/transformers", + "host": "hf-dgx-01", + "username": "niels", + "executable": "/home/niels/python_projects/transformers/env/bin/python", + "cpu_count": 64, + "cpu_count_logical": 128, + "cpu_freq": { + "current": 2260.5603593749997, + "min": 1500.0, + "max": 2250.0 + }, + "cpu_freq_per_core": [ + { + "current": 3293.257, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.619, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1642.696, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.381, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3281.737, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1641.368, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.824, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.25, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3280.069, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.083, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3276.561, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.977, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.131, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3293.061, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3283.703, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.933, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3285.291, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.851, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3199.14, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.366, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.891, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3291.193, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.212, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.806, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.507, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.98, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.962, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3282.619, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.745, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.243, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3284.222, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.968, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.193, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3283.865, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2156.243, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.067, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1647.016, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3279.841, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3292.037, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2176.502, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.441, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.717, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.098, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3285.099, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1703.344, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.387, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.687, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3290.489, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3281.652, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3288.547, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.362, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2159.969, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3284.02, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1929.8, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.039, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1642.621, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2301.431, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1731.327, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1774.1, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2640.429, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3297.246, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.784, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.272, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.799, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3283.651, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.61, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1647.573, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.665, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3299.517, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.785, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.848, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1757.714, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3289.268, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.474, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2779.172, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.714, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1647.329, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3283.964, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3296.812, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.877, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3293.616, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.179, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2233.211, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.247, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.402, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3284.078, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.068, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.267, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2163.916, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.032, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.853, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3296.469, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.044, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1642.211, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3286.49, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.061, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1642.78, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3298.218, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1665.988, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.226, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.321, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3285.514, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3297.003, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1713.823, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.321, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1695.646, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.141, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3295.811, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.42, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.313, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.436, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2196.683, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3279.45, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2053.204, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1984.948, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1718.551, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3289.541, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3155.855, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2161.777, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2027.994, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1693.131, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2280.921, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2285.889, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2739.695, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3280.425, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2144.284, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1661.353, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1720.485, + "min": 1500.0, + "max": 2250.0 + } + ], + "disk": { + "/": { + "total": 1757.8785285949707, + "used": 1643.9480934143066 + } + }, + "gpu": "NVIDIA A100-SXM4-80GB", + "gpu_count": 5, + "gpu_devices": [ + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA DGX Display", + "memory_total": 4294967296 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + } + ], + "memory": { + "total": 503.5396919250488 + } +} diff --git a/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/run-prlaj2s9.wandb b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/run-prlaj2s9.wandb new file mode 100644 index 00000000000000..6c359a2aa953cf Binary files /dev/null and b/src/transformers/models/idefics2/wandb/run-20240430_093846-prlaj2s9/run-prlaj2s9.wandb differ diff --git a/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/config.yaml b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/config.yaml new file mode 100644 index 00000000000000..78e14ebc9d0fe2 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/config.yaml @@ -0,0 +1,62 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + python_version: 3.8.10 + cli_version: 0.16.6 + framework: huggingface + huggingface_version: 4.41.0.dev0 + is_jupyter_run: true + is_kaggle_kernel: false + start_time: 1714471660.0 + t: + 1: + - 1 + - 2 + - 3 + - 5 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + 2: + - 1 + - 2 + - 3 + - 5 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + 3: + - 7 + - 13 + - 23 + 4: 3.8.10 + 5: 0.16.6 + 6: 4.41.0.dev0 + 8: + - 1 + - 5 + 13: linux-x86_64 + m: + - 1: trainer/global_step + 6: + - 3 + - 1: train_loss + 5: 1 + 6: + - 1 + - 1: epoch + 5: 1 + 6: + - 1 diff --git a/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/requirements.txt b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/requirements.txt new file mode 100644 index 00000000000000..f79e27fbf99175 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/requirements.txt @@ -0,0 +1,307 @@ +APScheduler==3.10.4 +Babel==2.14.0 +Flask==3.0.2 +GitPython==3.1.18 +Jinja2==3.1.3 +Levenshtein==0.25.1 +Mako==1.3.2 +Markdown==3.6 +MarkupSafe==2.1.5 +PyYAML==6.0.1 +Pygments==2.17.2 +SQLAlchemy==2.0.28 +SudachiDict-core==20240109 +SudachiPy==0.6.8 +Werkzeug==3.0.1 +absl-py==2.1.0 +accelerate==0.28.0 +aiohttp==3.9.3 +aiosignal==1.3.1 +alembic==1.13.1 +annotated-types==0.6.0 +appdirs==1.4.4 +arrow==1.3.0 +asttokens==2.4.1 +astunparse==1.6.3 +async-timeout==4.0.3 +attrs==23.2.0 +audioread==3.0.1 +av==9.2.0 +backcall==0.2.0 +backoff==1.11.1 +backports.zoneinfo==0.2.1 +beautifulsoup4==4.12.3 +bibtexparser==2.0.0b7 +binaryornot==0.4.4 +bitsandbytes==0.42.0 +black==24.3.0 +blinker==1.7.0 +cached-property==1.5.2 +cachetools==5.3.3 +certifi==2024.2.2 +cffi==1.16.0 +chardet==5.2.0 +charset-normalizer==3.3.2 +chex==0.1.7 +click==8.1.7 +clldutils==3.22.2 +cmake==3.28.3 +codecarbon==1.2.0 +colorama==0.4.6 +coloredlogs==15.0.1 +colorlog==6.8.2 +comm==0.2.2 +cookiecutter==1.7.3 +csvw==3.3.0 +dash-bootstrap-components==1.5.0 +dash-core-components==2.0.0 +dash-html-components==2.0.0 +dash-table==5.0.0 +dash==2.16.1 +datasets==2.18.0 +debugpy==1.8.1 +decorator==5.1.1 +decord==0.6.0 +dill==0.3.4 +dlinfo==1.2.1 +dm-tree==0.1.8 +docker-pycreds==0.4.0 +einops==0.7.0 +etils==1.3.0 +evaluate==0.4.1 +exceptiongroup==1.2.0 +execnet==2.0.2 +executing==2.0.1 +faiss-cpu==1.8.0 +fastjsonschema==2.19.1 +filelock==3.13.1 +fire==0.6.0 +flatbuffers==24.3.7 +flax==0.7.0 +frozenlist==1.4.1 +fsspec==2024.3.0 +fugashi==1.3.1 +gast==0.4.0 +gitdb==4.0.11 +google-auth-oauthlib==1.0.0 +google-auth==2.28.2 +google-pasta==0.2.0 +greenlet==3.0.3 +grpcio==1.62.1 +h5py==3.11.0 +hf-doc-builder==0.5.0 +huggingface-hub==0.21.4 +humanfriendly==10.0 +hypothesis==6.99.8 +idna==3.6 +importlib_metadata==7.0.2 +importlib_resources==6.3.1 +iniconfig==2.0.0 +ipadic==1.0.0 +ipykernel==6.29.4 +ipython==8.12.3 +isodate==0.6.1 +isort==5.13.2 +itsdangerous==2.1.2 +jax==0.4.13 +jaxlib==0.4.13 +jedi==0.19.1 +jinja2-time==0.2.0 +joblib==1.3.2 +jsonschema-specifications==2023.12.1 +jsonschema==4.21.1 +jupyter_client==8.6.1 +jupyter_core==5.7.2 +kenlm==0.2.0 +keras-core==0.1.5 +keras-nlp==0.6.1 +keras==2.13.1 +language-tags==1.2.0 +lazy_loader==0.3 +libclang==18.1.1 +librosa==0.10.1 +lightning-utilities==0.11.2 +lightning==2.2.3 +lit==18.1.1 +llvmlite==0.41.1 +lxml==5.1.0 +markdown-it-py==3.0.0 +matplotlib-inline==0.1.7 +mdurl==0.1.2 +ml-dtypes==0.2.0 +mpmath==1.3.0 +msgpack==1.0.8 +multidict==6.0.5 +multiprocess==0.70.16 +mypy-extensions==1.0.0 +namex==0.0.8 +nbformat==5.10.3 +nest-asyncio==1.6.0 +networkx==3.1 +nltk==3.8.1 +numba==0.58.1 +numpy==1.24.4 +nvidia-cublas-cu11==11.10.3.66 +nvidia-cublas-cu12==12.1.3.1 +nvidia-cuda-cupti-cu11==11.7.101 +nvidia-cuda-cupti-cu12==12.1.105 +nvidia-cuda-nvrtc-cu11==11.7.99 +nvidia-cuda-nvrtc-cu12==12.1.105 +nvidia-cuda-runtime-cu11==11.7.99 +nvidia-cuda-runtime-cu12==12.1.105 +nvidia-cudnn-cu11==8.5.0.96 +nvidia-cudnn-cu12==8.9.2.26 +nvidia-cufft-cu11==10.9.0.58 +nvidia-cufft-cu12==11.0.2.54 +nvidia-curand-cu11==10.2.10.91 +nvidia-curand-cu12==10.3.2.106 +nvidia-cusolver-cu11==11.4.0.1 +nvidia-cusolver-cu12==11.4.5.107 +nvidia-cusparse-cu11==11.7.4.91 +nvidia-cusparse-cu12==12.1.0.106 +nvidia-nccl-cu11==2.14.3 +nvidia-nccl-cu12==2.20.5 +nvidia-nvjitlink-cu12==12.4.99 +nvidia-nvtx-cu11==11.7.91 +nvidia-nvtx-cu12==12.1.105 +oauthlib==3.2.2 +onnx==1.15.0 +onnxconverter-common==1.14.0 +onnxruntime-tools==1.7.0 +onnxruntime==1.16.3 +opt-einsum==3.3.0 +optax==0.1.4 +optuna==3.6.0 +orbax-checkpoint==0.2.3 +packaging==24.0 +pandas==2.0.3 +parameterized==0.9.0 +parso==0.8.4 +pathspec==0.12.1 +peft==0.10.0 +pexpect==4.9.0 +phonemizer==3.2.1 +pickleshare==0.7.5 +pillow==10.2.0 +pip==20.0.2 +pkg_resources==0.0.0 +pkgutil_resolve_name==1.3.10 +plac==1.4.3 +platformdirs==4.2.0 +plotly==5.20.0 +pluggy==1.4.0 +pooch==1.8.1 +portalocker==2.0.0 +poyo==0.5.0 +prompt-toolkit==3.0.43 +protobuf==4.25.3 +psutil==5.9.8 +ptyprocess==0.7.0 +pure-eval==0.2.2 +py-cpuinfo==9.0.0 +py3nvml==0.2.7 +pyarrow-hotfix==0.6 +pyarrow==15.0.1 +pyasn1-modules==0.3.0 +pyasn1==0.5.1 +pycparser==2.21 +pyctcdecode==0.5.0 +pydantic==2.6.4 +pydantic_core==2.16.3 +pygtrie==2.5.0 +pylatexenc==2.10 +pynvml==11.5.0 +pyparsing==3.1.2 +pypng==0.20220715.0 +pytest-timeout==2.3.1 +pytest-xdist==3.5.0 +pytest==7.4.4 +python-dateutil==2.9.0.post0 +python-slugify==8.0.4 +pytorch-lightning==2.2.3 +pytz==2024.1 +pyzmq==26.0.2 +rapidfuzz==3.8.1 +ray==2.9.3 +rdflib==7.0.0 +referencing==0.34.0 +regex==2023.12.25 +requests-oauthlib==1.4.0 +requests==2.31.0 +responses==0.18.0 +retrying==1.3.4 +rfc3986==1.5.0 +rhoknp==1.3.0 +rich==13.7.1 +rjieba==0.1.11 +rouge-score==0.1.2 +rpds-py==0.18.0 +rsa==4.9 +ruff==0.1.5 +sacrebleu==1.5.1 +sacremoses==0.1.1 +safetensors==0.4.2 +scikit-learn==1.3.2 +scipy==1.10.1 +segments==2.2.1 +sentencepiece==0.1.99 +sentry-sdk==2.0.1 +setproctitle==1.3.3 +setuptools==44.0.0 +sigopt==8.8.2 +six==1.16.0 +smmap==5.0.1 +sortedcontainers==2.4.0 +soundfile==0.12.1 +soupsieve==2.5 +soxr==0.3.7 +stack-data==0.6.3 +sympy==1.12 +tabulate==0.9.0 +tenacity==8.2.3 +tensorboard-data-server==0.7.2 +tensorboard==2.14.0 +tensorboardX==2.6.2.2 +tensorflow-estimator==2.13.0 +tensorflow-hub==0.16.1 +tensorflow-io-gcs-filesystem==0.34.0 +tensorflow-text==2.13.0 +tensorflow==2.13.1 +tensorstore==0.1.45 +termcolor==2.4.0 +text-unidecode==1.3 +tf2onnx==1.16.1 +tf_keras==2.15.1 +threadpoolctl==3.3.0 +timeout-decorator==0.5.0 +timm==0.9.16 +tokenizers==0.19.1 +tomli==2.0.1 +toolz==0.12.1 +torch==2.3.0 +torchaudio==2.1.2 +torchmetrics==1.3.2 +torchvision==0.18.0 +tornado==6.4 +tqdm==4.66.2 +traitlets==5.14.2 +transformers==4.41.0.dev0 +triton==2.3.0 +types-python-dateutil==2.9.0.20240316 +typing_extensions==4.10.0 +tzdata==2024.1 +tzlocal==5.2 +unidic-lite==1.0.8 +unidic==1.1.0 +uritemplate==4.1.1 +urllib3==1.26.18 +wandb==0.16.6 +wasabi==0.10.1 +wcwidth==0.2.13 +wheel==0.43.0 +wrapt==1.16.0 +xformers==0.0.22.post7 +xmltodict==0.13.0 +xxhash==3.4.1 +yarl==1.9.4 +zipp==3.18.1 \ No newline at end of file diff --git a/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/wandb-metadata.json b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/wandb-metadata.json new file mode 100644 index 00000000000000..1feaeedaf99c25 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/wandb-metadata.json @@ -0,0 +1,703 @@ +{ + "os": "Linux-5.4.0-166-generic-x86_64-with-glibc2.29", + "python": "3.8.10", + "heartbeatAt": "2024-04-30T10:07:41.645094", + "startedAt": "2024-04-30T10:07:40.970500", + "docker": null, + "cuda": null, + "args": [], + "state": "running", + "program": "", + "codePathLocal": null, + "git": { + "remote": "git@github.com:NielsRogge/transformers.git", + "commit": "20a1cfa3db5bb5d96725d619a293500a81de0bc6" + }, + "email": "niels.rogge1@gmail.com", + "root": "/home/niels/python_projects/transformers", + "host": "hf-dgx-01", + "username": "niels", + "executable": "/home/niels/python_projects/transformers/env/bin/python", + "cpu_count": 64, + "cpu_count_logical": 128, + "cpu_freq": { + "current": 2296.4624374999994, + "min": 1500.0, + "max": 2250.0 + }, + "cpu_freq_per_core": [ + { + "current": 3270.243, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2258.021, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.702, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3308.325, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.339, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3279.169, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2185.469, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1664.269, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3285.146, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.745, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.974, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3289.931, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.382, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3292.799, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.079, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.234, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2148.386, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.93, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3279.711, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.775, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1673.221, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1642.602, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3292.191, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.519, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3278.846, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.492, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.984, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.704, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1708.665, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1707.002, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1949.356, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2351.421, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2432.55, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.791, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3286.429, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1642.533, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3288.869, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.2, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2292.926, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.728, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3271.923, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.024, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1647.888, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2895.577, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3272.423, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.855, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.518, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.6, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1954.402, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.611, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.29, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3269.275, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3273.733, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.38, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.342, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1643.159, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2291.926, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1711.177, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2435.85, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1704.652, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1646.497, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3273.645, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.366, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1837.308, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3272.962, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2325.155, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.783, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3284.115, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.512, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3295.013, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2273.35, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2150.698, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3273.126, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.959, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1635.358, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3272.046, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.641, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3277.674, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.243, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.267, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2862.147, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2828.998, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3272.298, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2945.001, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3047.366, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1715.297, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3272.452, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2070.978, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3266.589, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2120.919, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3247.007, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3271.258, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1819.614, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1728.017, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3257.389, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2173.478, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1678.57, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.148, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3278.917, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1676.822, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3276.474, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.715, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.016, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1630.956, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3261.95, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3076.884, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1630.801, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.077, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3259.796, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.969, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.441, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1630.95, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2141.263, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.148, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1679.228, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3264.692, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3271.754, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.456, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.525, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.224, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3281.607, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1777.97, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1650.754, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1781.772, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.825, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3264.092, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.408, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3253.546, + "min": 1500.0, + "max": 2250.0 + } + ], + "disk": { + "/": { + "total": 1757.8785285949707, + "used": 1616.2449836730957 + } + }, + "gpu": "NVIDIA A100-SXM4-80GB", + "gpu_count": 5, + "gpu_devices": [ + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA DGX Display", + "memory_total": 4294967296 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + } + ], + "memory": { + "total": 503.5396919250488 + } +} diff --git a/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/wandb-summary.json b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/wandb-summary.json new file mode 100644 index 00000000000000..2b996351d772a6 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/files/wandb-summary.json @@ -0,0 +1 @@ +{"train_loss": 7.635411020601168e-05, "epoch": 0, "trainer/global_step": 49, "_timestamp": 1714471726.2381043, "_runtime": 65.26272630691528, "_step": 0} \ No newline at end of file diff --git a/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/run-z6z7tlgg.wandb b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/run-z6z7tlgg.wandb new file mode 100644 index 00000000000000..23220915c1f132 Binary files /dev/null and b/src/transformers/models/idefics2/wandb/run-20240430_120740-z6z7tlgg/run-z6z7tlgg.wandb differ diff --git a/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/config.yaml b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/config.yaml new file mode 100644 index 00000000000000..f4b99fb4a5cb19 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/config.yaml @@ -0,0 +1,62 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + python_version: 3.8.10 + cli_version: 0.16.6 + framework: huggingface + huggingface_version: 4.41.0.dev0 + is_jupyter_run: true + is_kaggle_kernel: false + start_time: 1714473640.0 + t: + 1: + - 1 + - 2 + - 3 + - 5 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + 2: + - 1 + - 2 + - 3 + - 5 + - 11 + - 12 + - 49 + - 51 + - 53 + - 55 + - 71 + - 98 + 3: + - 7 + - 13 + - 23 + 4: 3.8.10 + 5: 0.16.6 + 6: 4.41.0.dev0 + 8: + - 1 + - 5 + 13: linux-x86_64 + m: + - 1: trainer/global_step + 6: + - 3 + - 1: train_loss + 5: 1 + 6: + - 1 + - 1: epoch + 5: 1 + 6: + - 1 diff --git a/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/requirements.txt b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/requirements.txt new file mode 100644 index 00000000000000..f79e27fbf99175 --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/requirements.txt @@ -0,0 +1,307 @@ +APScheduler==3.10.4 +Babel==2.14.0 +Flask==3.0.2 +GitPython==3.1.18 +Jinja2==3.1.3 +Levenshtein==0.25.1 +Mako==1.3.2 +Markdown==3.6 +MarkupSafe==2.1.5 +PyYAML==6.0.1 +Pygments==2.17.2 +SQLAlchemy==2.0.28 +SudachiDict-core==20240109 +SudachiPy==0.6.8 +Werkzeug==3.0.1 +absl-py==2.1.0 +accelerate==0.28.0 +aiohttp==3.9.3 +aiosignal==1.3.1 +alembic==1.13.1 +annotated-types==0.6.0 +appdirs==1.4.4 +arrow==1.3.0 +asttokens==2.4.1 +astunparse==1.6.3 +async-timeout==4.0.3 +attrs==23.2.0 +audioread==3.0.1 +av==9.2.0 +backcall==0.2.0 +backoff==1.11.1 +backports.zoneinfo==0.2.1 +beautifulsoup4==4.12.3 +bibtexparser==2.0.0b7 +binaryornot==0.4.4 +bitsandbytes==0.42.0 +black==24.3.0 +blinker==1.7.0 +cached-property==1.5.2 +cachetools==5.3.3 +certifi==2024.2.2 +cffi==1.16.0 +chardet==5.2.0 +charset-normalizer==3.3.2 +chex==0.1.7 +click==8.1.7 +clldutils==3.22.2 +cmake==3.28.3 +codecarbon==1.2.0 +colorama==0.4.6 +coloredlogs==15.0.1 +colorlog==6.8.2 +comm==0.2.2 +cookiecutter==1.7.3 +csvw==3.3.0 +dash-bootstrap-components==1.5.0 +dash-core-components==2.0.0 +dash-html-components==2.0.0 +dash-table==5.0.0 +dash==2.16.1 +datasets==2.18.0 +debugpy==1.8.1 +decorator==5.1.1 +decord==0.6.0 +dill==0.3.4 +dlinfo==1.2.1 +dm-tree==0.1.8 +docker-pycreds==0.4.0 +einops==0.7.0 +etils==1.3.0 +evaluate==0.4.1 +exceptiongroup==1.2.0 +execnet==2.0.2 +executing==2.0.1 +faiss-cpu==1.8.0 +fastjsonschema==2.19.1 +filelock==3.13.1 +fire==0.6.0 +flatbuffers==24.3.7 +flax==0.7.0 +frozenlist==1.4.1 +fsspec==2024.3.0 +fugashi==1.3.1 +gast==0.4.0 +gitdb==4.0.11 +google-auth-oauthlib==1.0.0 +google-auth==2.28.2 +google-pasta==0.2.0 +greenlet==3.0.3 +grpcio==1.62.1 +h5py==3.11.0 +hf-doc-builder==0.5.0 +huggingface-hub==0.21.4 +humanfriendly==10.0 +hypothesis==6.99.8 +idna==3.6 +importlib_metadata==7.0.2 +importlib_resources==6.3.1 +iniconfig==2.0.0 +ipadic==1.0.0 +ipykernel==6.29.4 +ipython==8.12.3 +isodate==0.6.1 +isort==5.13.2 +itsdangerous==2.1.2 +jax==0.4.13 +jaxlib==0.4.13 +jedi==0.19.1 +jinja2-time==0.2.0 +joblib==1.3.2 +jsonschema-specifications==2023.12.1 +jsonschema==4.21.1 +jupyter_client==8.6.1 +jupyter_core==5.7.2 +kenlm==0.2.0 +keras-core==0.1.5 +keras-nlp==0.6.1 +keras==2.13.1 +language-tags==1.2.0 +lazy_loader==0.3 +libclang==18.1.1 +librosa==0.10.1 +lightning-utilities==0.11.2 +lightning==2.2.3 +lit==18.1.1 +llvmlite==0.41.1 +lxml==5.1.0 +markdown-it-py==3.0.0 +matplotlib-inline==0.1.7 +mdurl==0.1.2 +ml-dtypes==0.2.0 +mpmath==1.3.0 +msgpack==1.0.8 +multidict==6.0.5 +multiprocess==0.70.16 +mypy-extensions==1.0.0 +namex==0.0.8 +nbformat==5.10.3 +nest-asyncio==1.6.0 +networkx==3.1 +nltk==3.8.1 +numba==0.58.1 +numpy==1.24.4 +nvidia-cublas-cu11==11.10.3.66 +nvidia-cublas-cu12==12.1.3.1 +nvidia-cuda-cupti-cu11==11.7.101 +nvidia-cuda-cupti-cu12==12.1.105 +nvidia-cuda-nvrtc-cu11==11.7.99 +nvidia-cuda-nvrtc-cu12==12.1.105 +nvidia-cuda-runtime-cu11==11.7.99 +nvidia-cuda-runtime-cu12==12.1.105 +nvidia-cudnn-cu11==8.5.0.96 +nvidia-cudnn-cu12==8.9.2.26 +nvidia-cufft-cu11==10.9.0.58 +nvidia-cufft-cu12==11.0.2.54 +nvidia-curand-cu11==10.2.10.91 +nvidia-curand-cu12==10.3.2.106 +nvidia-cusolver-cu11==11.4.0.1 +nvidia-cusolver-cu12==11.4.5.107 +nvidia-cusparse-cu11==11.7.4.91 +nvidia-cusparse-cu12==12.1.0.106 +nvidia-nccl-cu11==2.14.3 +nvidia-nccl-cu12==2.20.5 +nvidia-nvjitlink-cu12==12.4.99 +nvidia-nvtx-cu11==11.7.91 +nvidia-nvtx-cu12==12.1.105 +oauthlib==3.2.2 +onnx==1.15.0 +onnxconverter-common==1.14.0 +onnxruntime-tools==1.7.0 +onnxruntime==1.16.3 +opt-einsum==3.3.0 +optax==0.1.4 +optuna==3.6.0 +orbax-checkpoint==0.2.3 +packaging==24.0 +pandas==2.0.3 +parameterized==0.9.0 +parso==0.8.4 +pathspec==0.12.1 +peft==0.10.0 +pexpect==4.9.0 +phonemizer==3.2.1 +pickleshare==0.7.5 +pillow==10.2.0 +pip==20.0.2 +pkg_resources==0.0.0 +pkgutil_resolve_name==1.3.10 +plac==1.4.3 +platformdirs==4.2.0 +plotly==5.20.0 +pluggy==1.4.0 +pooch==1.8.1 +portalocker==2.0.0 +poyo==0.5.0 +prompt-toolkit==3.0.43 +protobuf==4.25.3 +psutil==5.9.8 +ptyprocess==0.7.0 +pure-eval==0.2.2 +py-cpuinfo==9.0.0 +py3nvml==0.2.7 +pyarrow-hotfix==0.6 +pyarrow==15.0.1 +pyasn1-modules==0.3.0 +pyasn1==0.5.1 +pycparser==2.21 +pyctcdecode==0.5.0 +pydantic==2.6.4 +pydantic_core==2.16.3 +pygtrie==2.5.0 +pylatexenc==2.10 +pynvml==11.5.0 +pyparsing==3.1.2 +pypng==0.20220715.0 +pytest-timeout==2.3.1 +pytest-xdist==3.5.0 +pytest==7.4.4 +python-dateutil==2.9.0.post0 +python-slugify==8.0.4 +pytorch-lightning==2.2.3 +pytz==2024.1 +pyzmq==26.0.2 +rapidfuzz==3.8.1 +ray==2.9.3 +rdflib==7.0.0 +referencing==0.34.0 +regex==2023.12.25 +requests-oauthlib==1.4.0 +requests==2.31.0 +responses==0.18.0 +retrying==1.3.4 +rfc3986==1.5.0 +rhoknp==1.3.0 +rich==13.7.1 +rjieba==0.1.11 +rouge-score==0.1.2 +rpds-py==0.18.0 +rsa==4.9 +ruff==0.1.5 +sacrebleu==1.5.1 +sacremoses==0.1.1 +safetensors==0.4.2 +scikit-learn==1.3.2 +scipy==1.10.1 +segments==2.2.1 +sentencepiece==0.1.99 +sentry-sdk==2.0.1 +setproctitle==1.3.3 +setuptools==44.0.0 +sigopt==8.8.2 +six==1.16.0 +smmap==5.0.1 +sortedcontainers==2.4.0 +soundfile==0.12.1 +soupsieve==2.5 +soxr==0.3.7 +stack-data==0.6.3 +sympy==1.12 +tabulate==0.9.0 +tenacity==8.2.3 +tensorboard-data-server==0.7.2 +tensorboard==2.14.0 +tensorboardX==2.6.2.2 +tensorflow-estimator==2.13.0 +tensorflow-hub==0.16.1 +tensorflow-io-gcs-filesystem==0.34.0 +tensorflow-text==2.13.0 +tensorflow==2.13.1 +tensorstore==0.1.45 +termcolor==2.4.0 +text-unidecode==1.3 +tf2onnx==1.16.1 +tf_keras==2.15.1 +threadpoolctl==3.3.0 +timeout-decorator==0.5.0 +timm==0.9.16 +tokenizers==0.19.1 +tomli==2.0.1 +toolz==0.12.1 +torch==2.3.0 +torchaudio==2.1.2 +torchmetrics==1.3.2 +torchvision==0.18.0 +tornado==6.4 +tqdm==4.66.2 +traitlets==5.14.2 +transformers==4.41.0.dev0 +triton==2.3.0 +types-python-dateutil==2.9.0.20240316 +typing_extensions==4.10.0 +tzdata==2024.1 +tzlocal==5.2 +unidic-lite==1.0.8 +unidic==1.1.0 +uritemplate==4.1.1 +urllib3==1.26.18 +wandb==0.16.6 +wasabi==0.10.1 +wcwidth==0.2.13 +wheel==0.43.0 +wrapt==1.16.0 +xformers==0.0.22.post7 +xmltodict==0.13.0 +xxhash==3.4.1 +yarl==1.9.4 +zipp==3.18.1 \ No newline at end of file diff --git a/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/wandb-metadata.json b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/wandb-metadata.json new file mode 100644 index 00000000000000..becaf07f3ee16c --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/wandb-metadata.json @@ -0,0 +1,703 @@ +{ + "os": "Linux-5.4.0-166-generic-x86_64-with-glibc2.29", + "python": "3.8.10", + "heartbeatAt": "2024-04-30T10:40:41.318015", + "startedAt": "2024-04-30T10:40:40.643154", + "docker": null, + "cuda": null, + "args": [], + "state": "running", + "program": "", + "codePathLocal": null, + "git": { + "remote": "git@github.com:NielsRogge/transformers.git", + "commit": "20a1cfa3db5bb5d96725d619a293500a81de0bc6" + }, + "email": "niels.rogge1@gmail.com", + "root": "/home/niels/python_projects/transformers", + "host": "hf-dgx-01", + "username": "niels", + "executable": "/home/niels/python_projects/transformers/env/bin/python", + "cpu_count": 64, + "cpu_count_logical": 128, + "cpu_freq": { + "current": 2330.1935546875, + "min": 1500.0, + "max": 2250.0 + }, + "cpu_freq_per_core": [ + { + "current": 3248.85, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1924.257, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1629.468, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.62, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3274.28, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.533, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.18, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.321, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.904, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3249.889, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1708.02, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.981, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.376, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.985, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3248.543, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3265.69, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3252.183, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.691, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1628.627, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.867, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3249.246, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.647, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1941.286, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.409, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1896.11, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3268.393, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.806, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2371.076, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3251.734, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.484, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.126, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.685, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1727.381, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2830.271, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1724.947, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1727.167, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3269.844, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1644.068, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2753.869, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1879.467, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3257.789, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1682.423, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2615.127, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1945.778, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.652, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2389.953, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3292.077, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.961, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3248.955, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3268.35, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3274.615, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.603, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3282.733, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.717, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3248.365, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3248.873, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3254.632, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1630.768, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1635.285, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.22, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3258.564, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.295, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.154, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.584, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3246.807, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1735.124, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1630.531, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.712, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3258.726, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.182, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.696, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.25, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.698, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3269.765, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.8, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.917, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.78, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1634.442, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2082.525, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3247.42, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3266.862, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.968, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2649.266, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1622.986, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3278.679, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1629.874, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3268.616, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1633.309, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2159.964, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3251.674, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1630.454, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1649.097, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3272.428, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1645.107, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1631.531, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1629.763, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2025.869, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2278.369, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1720.438, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1726.798, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3248.801, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1632.929, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3260.68, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2990.887, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2832.635, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1704.089, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2693.407, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2088.429, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1597.782, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2902.498, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3248.374, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1697.111, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3028.075, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1852.767, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1832.301, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3235.716, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3285.426, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 2197.554, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3245.66, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3282.193, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3279.416, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1639.283, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1638.016, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1638.133, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 3246.508, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1636.997, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1623.936, + "min": 1500.0, + "max": 2250.0 + }, + { + "current": 1639.282, + "min": 1500.0, + "max": 2250.0 + } + ], + "disk": { + "/": { + "total": 1757.8785285949707, + "used": 1640.9605255126953 + } + }, + "gpu": "NVIDIA A100-SXM4-80GB", + "gpu_count": 5, + "gpu_devices": [ + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + }, + { + "name": "NVIDIA DGX Display", + "memory_total": 4294967296 + }, + { + "name": "NVIDIA A100-SXM4-80GB", + "memory_total": 85899345920 + } + ], + "memory": { + "total": 503.5396919250488 + } +} diff --git a/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/wandb-summary.json b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/wandb-summary.json new file mode 100644 index 00000000000000..badd13293b538a --- /dev/null +++ b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/files/wandb-summary.json @@ -0,0 +1 @@ +{"train_loss": 0.04636861011385918, "epoch": 0, "trainer/global_step": 49, "_timestamp": 1714473681.9160814, "_runtime": 41.268248319625854, "_step": 0} \ No newline at end of file diff --git a/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/run-t3hdwi09.wandb b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/run-t3hdwi09.wandb new file mode 100644 index 00000000000000..6f9d7a44ea13a6 Binary files /dev/null and b/src/transformers/models/idefics2/wandb/run-20240430_124040-t3hdwi09/run-t3hdwi09.wandb differ diff --git a/src/transformers/trainer_seq2seq.py b/src/transformers/trainer_seq2seq.py index b6bce1b57d5e2a..20f6a6e4740762 100644 --- a/src/transformers/trainer_seq2seq.py +++ b/src/transformers/trainer_seq2seq.py @@ -307,6 +307,12 @@ def prediction_step( generation_inputs = { k: v for k, v in inputs.items() if k not in ("decoder_input_ids", "decoder_attention_mask") } + + print("Generation inputs:") + for k, v in generation_inputs.items(): + if isinstance(v, torch.Tensor): + print(k, v.shape) + generated_tokens = self.model.generate(**generation_inputs, **gen_kwargs) # Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop