diff --git a/src/transformers/data/data_collator.py b/src/transformers/data/data_collator.py index 9e75e6fd3c38df..e84c9d0ef3ce2e 100644 --- a/src/transformers/data/data_collator.py +++ b/src/transformers/data/data_collator.py @@ -256,7 +256,7 @@ class DataCollatorWithPadding: If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= - 7.5 (Volta). + 7.0 (Volta). return_tensors (`str`, *optional*, defaults to `"pt"`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ @@ -308,7 +308,7 @@ class DataCollatorForTokenClassification(DataCollatorMixin): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= - 7.5 (Volta). + 7.0 (Volta). label_pad_token_id (`int`, *optional*, defaults to -100): The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). return_tensors (`str`, *optional*, defaults to `"pt"`): @@ -568,7 +568,7 @@ class DataCollatorForSeq2Seq: If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= - 7.5 (Volta). + 7.0 (Volta). label_pad_token_id (`int`, *optional*, defaults to -100): The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions). return_tensors (`str`, *optional*, defaults to `"pt"`): @@ -693,6 +693,9 @@ class DataCollatorForLanguageModeling(DataCollatorMixin): The probability with which to (randomly) mask tokens in the input, when `mlm` is set to `True`. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. + + This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= + 7.0 (Volta). return_tensors (`str`): The type of Tensor to return. Allowable values are "np", "pt" and "tf".