diff --git a/tests/models/deta/test_image_processing_deta.py b/tests/models/deta/test_image_processing_deta.py new file mode 100644 index 00000000000000..c1d26b2fdf54fb --- /dev/null +++ b/tests/models/deta/test_image_processing_deta.py @@ -0,0 +1,356 @@ +# coding=utf-8 +# Copyright 2022 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import json +import pathlib +import unittest + +import numpy as np + +from transformers.testing_utils import require_torch, require_vision, slow +from transformers.utils import is_torch_available, is_vision_available + +from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs + + +if is_torch_available(): + import torch + +if is_vision_available(): + from PIL import Image + + from transformers import DetaImageProcessor + + +class DetaImageProcessingTester(unittest.TestCase): + def __init__( + self, + parent, + batch_size=7, + num_channels=3, + min_resolution=30, + max_resolution=400, + do_resize=True, + size=None, + do_normalize=True, + image_mean=[0.5, 0.5, 0.5], + image_std=[0.5, 0.5, 0.5], + do_rescale=True, + rescale_factor=1 / 255, + do_pad=True, + ): + # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p + size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} + self.parent = parent + self.batch_size = batch_size + self.num_channels = num_channels + self.min_resolution = min_resolution + self.max_resolution = max_resolution + self.do_resize = do_resize + self.size = size + self.do_normalize = do_normalize + self.image_mean = image_mean + self.image_std = image_std + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_pad = do_pad + + def prepare_image_processor_dict(self): + return { + "do_resize": self.do_resize, + "size": self.size, + "do_normalize": self.do_normalize, + "image_mean": self.image_mean, + "image_std": self.image_std, + "do_rescale": self.do_rescale, + "rescale_factor": self.rescale_factor, + "do_pad": self.do_pad, + } + + def get_expected_values(self, image_inputs, batched=False): + """ + This function computes the expected height and width when providing images to DetaImageProcessor, + assuming do_resize is set to True with a scalar size. + """ + if not batched: + image = image_inputs[0] + if isinstance(image, Image.Image): + w, h = image.size + else: + h, w = image.shape[1], image.shape[2] + if w < h: + expected_height = int(self.size["shortest_edge"] * h / w) + expected_width = self.size["shortest_edge"] + elif w > h: + expected_height = self.size["shortest_edge"] + expected_width = int(self.size["shortest_edge"] * w / h) + else: + expected_height = self.size["shortest_edge"] + expected_width = self.size["shortest_edge"] + + else: + expected_values = [] + for image in image_inputs: + expected_height, expected_width = self.get_expected_values([image]) + expected_values.append((expected_height, expected_width)) + expected_height = max(expected_values, key=lambda item: item[0])[0] + expected_width = max(expected_values, key=lambda item: item[1])[1] + + return expected_height, expected_width + + +@require_torch +@require_vision +class DetaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): + + image_processing_class = DetaImageProcessor if is_vision_available() else None + + def setUp(self): + self.image_processor_tester = DetaImageProcessingTester(self) + + @property + def image_processor_dict(self): + return self.image_processor_tester.prepare_image_processor_dict() + + def test_image_processor_properties(self): + image_processing = self.image_processing_class(**self.image_processor_dict) + self.assertTrue(hasattr(image_processing, "image_mean")) + self.assertTrue(hasattr(image_processing, "image_std")) + self.assertTrue(hasattr(image_processing, "do_normalize")) + self.assertTrue(hasattr(image_processing, "do_resize")) + self.assertTrue(hasattr(image_processing, "do_rescale")) + self.assertTrue(hasattr(image_processing, "do_pad")) + self.assertTrue(hasattr(image_processing, "size")) + + def test_image_processor_from_dict_with_kwargs(self): + image_processor = self.image_processing_class.from_dict(self.image_processor_dict) + self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) + self.assertEqual(image_processor.do_pad, True) + + def test_batch_feature(self): + pass + + def test_call_pil(self): + # Initialize image_processing + image_processing = self.image_processing_class(**self.image_processor_dict) + # create random PIL images + image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) + for image in image_inputs: + self.assertIsInstance(image, Image.Image) + + # Test not batched input + encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values + + expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) + + self.assertEqual( + encoded_images.shape, + (1, self.image_processor_tester.num_channels, expected_height, expected_width), + ) + + # Test batched + expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) + + encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values + self.assertEqual( + encoded_images.shape, + ( + self.image_processor_tester.batch_size, + self.image_processor_tester.num_channels, + expected_height, + expected_width, + ), + ) + + def test_call_numpy(self): + # Initialize image_processing + image_processing = self.image_processing_class(**self.image_processor_dict) + # create random numpy tensors + image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True) + for image in image_inputs: + self.assertIsInstance(image, np.ndarray) + + # Test not batched input + encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values + + expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) + + self.assertEqual( + encoded_images.shape, + (1, self.image_processor_tester.num_channels, expected_height, expected_width), + ) + + # Test batched + encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values + + expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) + + self.assertEqual( + encoded_images.shape, + ( + self.image_processor_tester.batch_size, + self.image_processor_tester.num_channels, + expected_height, + expected_width, + ), + ) + + def test_call_pytorch(self): + # Initialize image_processing + image_processing = self.image_processing_class(**self.image_processor_dict) + # create random PyTorch tensors + image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) + for image in image_inputs: + self.assertIsInstance(image, torch.Tensor) + + # Test not batched input + encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values + + expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) + + self.assertEqual( + encoded_images.shape, + (1, self.image_processor_tester.num_channels, expected_height, expected_width), + ) + + # Test batched + encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values + + expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) + + self.assertEqual( + encoded_images.shape, + ( + self.image_processor_tester.batch_size, + self.image_processor_tester.num_channels, + expected_height, + expected_width, + ), + ) + + def test_equivalence_pad_and_create_pixel_mask(self): + # Initialize image_processings + image_processing_1 = self.image_processing_class(**self.image_processor_dict) + image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False) + + # create random PyTorch tensors + image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) + for image in image_inputs: + self.assertIsInstance(image, torch.Tensor) + + # Test whether the method "pad_and_return_pixel_mask" and calling the image processor return the same tensors + encoded_images_with_method = image_processing_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt") + encoded_images = image_processing_2(image_inputs, return_tensors="pt") + + self.assertTrue( + torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4) + ) + self.assertTrue( + torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4) + ) + + @slow + def test_call_pytorch_with_coco_detection_annotations(self): + # prepare image and target + image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") + with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: + target = json.loads(f.read()) + + target = {"image_id": 39769, "annotations": target} + + # encode them + image_processing = DetaImageProcessor() + encoding = image_processing(images=image, annotations=target, return_tensors="pt") + + # verify pixel values + expected_shape = torch.Size([1, 3, 800, 1066]) + self.assertEqual(encoding["pixel_values"].shape, expected_shape) + + expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) + self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) + + # verify area + expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) + self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) + # verify boxes + expected_boxes_shape = torch.Size([6, 4]) + self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) + expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) + self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) + # verify image_id + expected_image_id = torch.tensor([39769]) + self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) + # verify is_crowd + expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) + self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) + # verify class_labels + expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17]) + self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) + # verify orig_size + expected_orig_size = torch.tensor([480, 640]) + self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) + # verify size + expected_size = torch.tensor([800, 1066]) + self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size)) + + @slow + def test_call_pytorch_with_coco_panoptic_annotations(self): + # prepare image, target and masks_path + image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") + with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: + target = json.loads(f.read()) + + target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} + + masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") + + # encode them + image_processing = DetaImageProcessor(format="coco_panoptic") + encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt") + + # verify pixel values + expected_shape = torch.Size([1, 3, 800, 1066]) + self.assertEqual(encoding["pixel_values"].shape, expected_shape) + + expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) + self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) + + # verify area + expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) + self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) + # verify boxes + expected_boxes_shape = torch.Size([6, 4]) + self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) + expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) + self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) + # verify image_id + expected_image_id = torch.tensor([39769]) + self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) + # verify is_crowd + expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) + self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) + # verify class_labels + expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93]) + self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) + # verify masks + expected_masks_sum = 822873 + self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum) + # verify orig_size + expected_orig_size = torch.tensor([480, 640]) + self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) + # verify size + expected_size = torch.tensor([800, 1066]) + self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))