2.13.4
What's new?
-
Add support for cross-encoder models (+fix token type ids) (#501)
Example: Information Retrieval w/
Xenova/ms-marco-TinyBERT-L-2-v2
.import { AutoTokenizer, AutoModelForSequenceClassification } from '@xenova/transformers'; const model = await AutoModelForSequenceClassification.from_pretrained('Xenova/ms-marco-TinyBERT-L-2-v2'); const tokenizer = await AutoTokenizer.from_pretrained('Xenova/ms-marco-TinyBERT-L-2-v2'); const features = tokenizer( ['How many people live in Berlin?', 'How many people live in Berlin?'], { text_pair: [ 'Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.', ], padding: true, truncation: true, } ) const { logits } = await model(features) console.log(logits.data); // quantized: [ 7.210887908935547, -11.559350967407227 ] // unquantized: [ 7.235750675201416, -11.562294006347656 ]
Check out the list of pre-converted models here. We also put out a demo for you to try out.
Full Changelog: 2.13.3...2.13.4