-
Notifications
You must be signed in to change notification settings - Fork 816
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Space after unnormalized token is added when use_fast=True
for Llama tokenizer
#1613
Comments
Oh wait @ArthurZucker is that what you're fixing here in #1568 ? |
use_fast=True
for Llama tokenizeruse_fast=True
for Llama tokenizer
Same issue with unnormalized non-special tokens: from tokenizers import AddedToken
from transformers import AutoTokenizer
tok_name = "meta-llama/llama-2-7b-hf"
fast_tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=True)
slow_tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=False)
tok = "<special>"
t = AddedToken(
tok, normalized=False, special=False
)
fast_tokenizer.add_tokens([t])
slow_tokenizer.add_tokens([t])
s = f'hello:{tok}->'
print(f"fast: {fast_tokenizer.tokenize(s)}\nslow: {slow_tokenizer.tokenize(s)}")
>>> fast: ['▁hello', ':', '<special>', '▁->']
>>> slow: ['▁hello', ':', '<special>', '->'] |
And there is even more differences when you add from tokenizers import AddedToken
from transformers import AutoTokenizer
tok_name = "meta-llama/llama-2-7b-hf"
fast_tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=True)
slow_tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=False)
tok = "<special>"
t = AddedToken(
tok, normalized=True, special=True
)
fast_tokenizer.add_tokens([t], special_tokens=True)
slow_tokenizer.add_tokens([t], special_tokens=True)
s = f'hello:{tok}->'
print(f"fast: {fast_tokenizer.tokenize(s)}\nslow: {slow_tokenizer.tokenize(s)}")
>>> fast: ['▁hello', ':', '<', 'special', '>', '->']
>>> slow: ['▁hello', ':', '<special>', '->'] |
Also, if you specify the |
No this was fixed a LONG time ago! from tokenizers import AddedToken
from transformers import AutoTokenizer
tok_name = "meta-llama/llama-2-7b-hf"
fast_tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=True, legacy=False, from_slow=True)
slow_tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=False)
tok = "<special>"
t = AddedToken(
tok, normalized=True, special=True
)
fast_tokenizer.add_tokens([t], special_tokens=True)
slow_tokenizer.add_tokens([t], special_tokens=True)
s = f'hello:{tok}->'
print(f"fast: {fast_tokenizer.tokenize(s)}\nslow: {slow_tokenizer.tokenize(s)}")
>>> fast: ['▁hello', ':', '<', 'special', '>', '->']
>>> slow: ['▁hello', ':', '<special>', '->'] |
See #1357 |
Hey @ArthurZucker, thanks for your answer. I'm using 0.19.1 which should have the fix. from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model, ...) # magic kwargs
# magically add <special>
s = f'a:<special>->'
print(tokenizer.tokenize(s)}) will always prints |
Yes, what effects this is the
When you set legacy to |
Ok so I should do some unit test and choose different kwarg depending on the tokenizer to get the same behavior? |
No, sorry. Basically you can just check the tokenizer's pre_tokenizer. If it's metaspace, the |
Related to: huggingface/transformers#25073
In my current project, I'd like to add a special token that doesn't insert a space to the next token.
Currently, I need to specify
use_fast=False
in order for this to work. However:The text was updated successfully, but these errors were encountered: