}\n",
+ " \"\"\"\n",
+ "\n",
+ " predictions, targets = evaluation_results.predictions, evaluation_results.label_ids\n",
+ "\n",
+ " # For metric computation we need to provide:\n",
+ " # - targets in a form of list of dictionaries with keys \"boxes\", \"labels\"\n",
+ " # - predictions in a form of list of dictionaries with keys \"boxes\", \"scores\", \"labels\"\n",
+ "\n",
+ " image_sizes = []\n",
+ " post_processed_targets = []\n",
+ " post_processed_predictions = []\n",
+ "\n",
+ " # Collect targets in the required format for metric computation\n",
+ " for batch in targets:\n",
+ " # collect image sizes, we will need them for predictions post processing\n",
+ " batch_image_sizes = torch.tensor(np.array([x[\"orig_size\"] for x in batch]))\n",
+ " image_sizes.append(batch_image_sizes)\n",
+ " # collect targets in the required format for metric computation\n",
+ " # boxes were converted to YOLO format needed for model training\n",
+ " # here we will convert them to Pascal VOC format (x_min, y_min, x_max, y_max)\n",
+ " for image_target in batch:\n",
+ " boxes = torch.tensor(image_target[\"boxes\"])\n",
+ " boxes = convert_bbox_yolo_to_pascal(boxes, image_target[\"orig_size\"])\n",
+ " labels = torch.tensor(image_target[\"class_labels\"])\n",
+ " post_processed_targets.append({\"boxes\": boxes, \"labels\": labels})\n",
+ "\n",
+ " # Collect predictions in the required format for metric computation,\n",
+ " # model produce boxes in YOLO format, then image_processor convert them to Pascal VOC format\n",
+ " for batch, target_sizes in zip(predictions, image_sizes):\n",
+ " batch_logits, batch_boxes = batch[1], batch[2]\n",
+ " output = ModelOutput(logits=torch.tensor(batch_logits), pred_boxes=torch.tensor(batch_boxes))\n",
+ " post_processed_output = image_processor.post_process_object_detection(\n",
+ " output, threshold=threshold, target_sizes=target_sizes\n",
+ " )\n",
+ " post_processed_predictions.extend(post_processed_output)\n",
+ "\n",
+ " # Compute metrics\n",
+ " metric = MeanAveragePrecision(box_format=\"xyxy\", class_metrics=True)\n",
+ " metric.update(post_processed_predictions, post_processed_targets)\n",
+ " metrics = metric.compute()\n",
+ "\n",
+ " # Replace list of per class metrics with separate metric for each class\n",
+ " classes = metrics.pop(\"classes\")\n",
+ " map_per_class = metrics.pop(\"map_per_class\")\n",
+ " mar_100_per_class = metrics.pop(\"mar_100_per_class\")\n",
+ " for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):\n",
+ " class_name = id2label[class_id.item()] if id2label is not None else class_id.item()\n",
+ " metrics[f\"map_{class_name}\"] = class_map\n",
+ " metrics[f\"mar_100_{class_name}\"] = class_mar\n",
+ "\n",
+ " metrics = {k: round(v.item(), 4) for k, v in metrics.items()}\n",
+ "\n",
+ " return metrics\n",
+ "\n",
+ "\n",
+ "eval_compute_metrics_fn = partial(\n",
+ " compute_metrics, image_processor=image_processor, id2label=id2label, threshold=0.0\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training the detection model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You have done most of the heavy lifting in the previous sections, so now you are ready to train your model!\n",
+ "The images in this dataset are still quite large, even after resizing. This means that finetuning this model will\n",
+ "require at least one GPU.\n",
+ "\n",
+ "Training involves the following steps:\n",
+ "1. Load the model with [AutoModelForObjectDetection](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForObjectDetection) using the same checkpoint as in the preprocessing.\n",
+ "2. Define your training hyperparameters in [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments).\n",
+ "3. Pass the training arguments to [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) along with the model, dataset, image processor, and data collator.\n",
+ "4. Call [train()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.train) to finetune your model.\n",
+ "\n",
+ "When loading the model from the same checkpoint that you used for the preprocessing, remember to pass the `label2id`\n",
+ "and `id2label` maps that you created earlier from the dataset's metadata. Additionally, we specify `ignore_mismatched_sizes=True` to replace the existing classification head with a new one."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Some weights of ConditionalDetrForObjectDetection were not initialized from the model checkpoint at microsoft/conditional-detr-resnet-50 and are newly initialized because the shapes did not match:\n",
+ "- class_labels_classifier.bias: found shape torch.Size([91]) in the checkpoint and torch.Size([5]) in the model instantiated\n",
+ "- class_labels_classifier.weight: found shape torch.Size([91, 256]) in the checkpoint and torch.Size([5, 256]) in the model instantiated\n",
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import AutoModelForObjectDetection\n",
+ "\n",
+ "model = AutoModelForObjectDetection.from_pretrained(\n",
+ " MODEL_NAME,\n",
+ " id2label=id2label,\n",
+ " label2id=label2id,\n",
+ " ignore_mismatched_sizes=True,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In the [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments) use `output_dir` to specify where to save your model, then configure hyperparameters as you see fit. For `num_train_epochs=30` training will take about 35 minutes in Google Colab T4 GPU, increase the number of epoch to get better results.\n",
+ "\n",
+ "Important notes:\n",
+ " - Do not remove unused columns because this will drop the image column. Without the image column, you\n",
+ "can't create `pixel_values`. For this reason, set `remove_unused_columns` to `False`.\n",
+ " - Set `eval_do_concat_batches=False` to get proper evaluation results. Images have different number of target boxes, if batches are concatenated we will not be able to determine which boxes belongs to particular image.\n",
+ "\n",
+ "If you wish to share your model by pushing to the Hub, set `push_to_hub` to `True` (you must be signed in to Hugging\n",
+ "Face to upload your model)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from transformers import TrainingArguments\n",
+ "\n",
+ "training_args = TrainingArguments(\n",
+ " output_dir=\"detr_finetuned_cppe5\",\n",
+ " num_train_epochs=30,\n",
+ " fp16=False,\n",
+ " per_device_train_batch_size=8,\n",
+ " dataloader_num_workers=4,\n",
+ " learning_rate=5e-5,\n",
+ " lr_scheduler_type=\"cosine\",\n",
+ " weight_decay=1e-4,\n",
+ " max_grad_norm=0.01,\n",
+ " metric_for_best_model=\"eval_map\",\n",
+ " greater_is_better=True,\n",
+ " load_best_model_at_end=True,\n",
+ " eval_strategy=\"epoch\",\n",
+ " save_strategy=\"epoch\",\n",
+ " save_total_limit=2,\n",
+ " remove_unused_columns=False,\n",
+ " eval_do_concat_batches=False,\n",
+ " push_to_hub=True,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Finally, bring everything together, and call [train()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.train):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [3210/3210 26:07, Epoch 30/30]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Epoch | \n",
+ " Training Loss | \n",
+ " Validation Loss | \n",
+ " Map | \n",
+ " Map 50 | \n",
+ " Map 75 | \n",
+ " Map Small | \n",
+ " Map Medium | \n",
+ " Map Large | \n",
+ " Mar 1 | \n",
+ " Mar 10 | \n",
+ " Mar 100 | \n",
+ " Mar Small | \n",
+ " Mar Medium | \n",
+ " Mar Large | \n",
+ " Map Coverall | \n",
+ " Mar 100 Coverall | \n",
+ " Map Face Shield | \n",
+ " Mar 100 Face Shield | \n",
+ " Map Gloves | \n",
+ " Mar 100 Gloves | \n",
+ " Map Goggles | \n",
+ " Mar 100 Goggles | \n",
+ " Map Mask | \n",
+ " Mar 100 Mask | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " No log | \n",
+ " 2.629903 | \n",
+ " 0.008900 | \n",
+ " 0.023200 | \n",
+ " 0.006500 | \n",
+ " 0.001300 | \n",
+ " 0.002800 | \n",
+ " 0.020500 | \n",
+ " 0.021500 | \n",
+ " 0.070400 | \n",
+ " 0.101400 | \n",
+ " 0.007600 | \n",
+ " 0.106200 | \n",
+ " 0.096100 | \n",
+ " 0.036700 | \n",
+ " 0.232000 | \n",
+ " 0.000300 | \n",
+ " 0.019000 | \n",
+ " 0.003900 | \n",
+ " 0.125400 | \n",
+ " 0.000100 | \n",
+ " 0.003100 | \n",
+ " 0.003500 | \n",
+ " 0.127600 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " No log | \n",
+ " 3.479864 | \n",
+ " 0.014800 | \n",
+ " 0.034600 | \n",
+ " 0.010800 | \n",
+ " 0.008600 | \n",
+ " 0.011700 | \n",
+ " 0.012500 | \n",
+ " 0.041100 | \n",
+ " 0.098700 | \n",
+ " 0.130000 | \n",
+ " 0.056000 | \n",
+ " 0.062200 | \n",
+ " 0.111900 | \n",
+ " 0.053500 | \n",
+ " 0.447300 | \n",
+ " 0.010600 | \n",
+ " 0.100000 | \n",
+ " 0.000200 | \n",
+ " 0.022800 | \n",
+ " 0.000100 | \n",
+ " 0.015400 | \n",
+ " 0.009700 | \n",
+ " 0.064400 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " No log | \n",
+ " 2.107622 | \n",
+ " 0.041700 | \n",
+ " 0.094000 | \n",
+ " 0.034300 | \n",
+ " 0.024100 | \n",
+ " 0.026400 | \n",
+ " 0.047400 | \n",
+ " 0.091500 | \n",
+ " 0.182800 | \n",
+ " 0.225800 | \n",
+ " 0.087200 | \n",
+ " 0.199400 | \n",
+ " 0.210600 | \n",
+ " 0.150900 | \n",
+ " 0.571200 | \n",
+ " 0.017300 | \n",
+ " 0.101300 | \n",
+ " 0.007300 | \n",
+ " 0.180400 | \n",
+ " 0.002100 | \n",
+ " 0.026200 | \n",
+ " 0.031000 | \n",
+ " 0.250200 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " No log | \n",
+ " 2.031242 | \n",
+ " 0.055900 | \n",
+ " 0.120600 | \n",
+ " 0.046900 | \n",
+ " 0.013800 | \n",
+ " 0.038100 | \n",
+ " 0.090300 | \n",
+ " 0.105900 | \n",
+ " 0.225600 | \n",
+ " 0.266100 | \n",
+ " 0.130200 | \n",
+ " 0.228100 | \n",
+ " 0.330000 | \n",
+ " 0.191000 | \n",
+ " 0.572100 | \n",
+ " 0.010600 | \n",
+ " 0.157000 | \n",
+ " 0.014600 | \n",
+ " 0.235300 | \n",
+ " 0.001700 | \n",
+ " 0.052300 | \n",
+ " 0.061800 | \n",
+ " 0.313800 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 3.889400 | \n",
+ " 1.883433 | \n",
+ " 0.089700 | \n",
+ " 0.201800 | \n",
+ " 0.067300 | \n",
+ " 0.022800 | \n",
+ " 0.065300 | \n",
+ " 0.129500 | \n",
+ " 0.136000 | \n",
+ " 0.272200 | \n",
+ " 0.303700 | \n",
+ " 0.112900 | \n",
+ " 0.312500 | \n",
+ " 0.424600 | \n",
+ " 0.300200 | \n",
+ " 0.585100 | \n",
+ " 0.032700 | \n",
+ " 0.202500 | \n",
+ " 0.031300 | \n",
+ " 0.271000 | \n",
+ " 0.008700 | \n",
+ " 0.126200 | \n",
+ " 0.075500 | \n",
+ " 0.333800 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 3.889400 | \n",
+ " 1.807503 | \n",
+ " 0.118500 | \n",
+ " 0.270900 | \n",
+ " 0.090200 | \n",
+ " 0.034900 | \n",
+ " 0.076700 | \n",
+ " 0.152500 | \n",
+ " 0.146100 | \n",
+ " 0.297800 | \n",
+ " 0.325400 | \n",
+ " 0.171700 | \n",
+ " 0.283700 | \n",
+ " 0.545900 | \n",
+ " 0.396900 | \n",
+ " 0.554500 | \n",
+ " 0.043000 | \n",
+ " 0.262000 | \n",
+ " 0.054500 | \n",
+ " 0.271900 | \n",
+ " 0.020300 | \n",
+ " 0.230800 | \n",
+ " 0.077600 | \n",
+ " 0.308000 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 3.889400 | \n",
+ " 1.716169 | \n",
+ " 0.143500 | \n",
+ " 0.307700 | \n",
+ " 0.123200 | \n",
+ " 0.045800 | \n",
+ " 0.097800 | \n",
+ " 0.258300 | \n",
+ " 0.165300 | \n",
+ " 0.327700 | \n",
+ " 0.352600 | \n",
+ " 0.140900 | \n",
+ " 0.336700 | \n",
+ " 0.599400 | \n",
+ " 0.442900 | \n",
+ " 0.620700 | \n",
+ " 0.069400 | \n",
+ " 0.301300 | \n",
+ " 0.081600 | \n",
+ " 0.292000 | \n",
+ " 0.011000 | \n",
+ " 0.230800 | \n",
+ " 0.112700 | \n",
+ " 0.318200 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 3.889400 | \n",
+ " 1.679014 | \n",
+ " 0.153000 | \n",
+ " 0.355800 | \n",
+ " 0.127900 | \n",
+ " 0.038700 | \n",
+ " 0.115600 | \n",
+ " 0.291600 | \n",
+ " 0.176000 | \n",
+ " 0.322500 | \n",
+ " 0.349700 | \n",
+ " 0.135600 | \n",
+ " 0.326100 | \n",
+ " 0.643700 | \n",
+ " 0.431700 | \n",
+ " 0.582900 | \n",
+ " 0.069800 | \n",
+ " 0.265800 | \n",
+ " 0.088600 | \n",
+ " 0.274600 | \n",
+ " 0.028300 | \n",
+ " 0.280000 | \n",
+ " 0.146700 | \n",
+ " 0.345300 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 3.889400 | \n",
+ " 1.618239 | \n",
+ " 0.172100 | \n",
+ " 0.375300 | \n",
+ " 0.137600 | \n",
+ " 0.046100 | \n",
+ " 0.141700 | \n",
+ " 0.308500 | \n",
+ " 0.194000 | \n",
+ " 0.356200 | \n",
+ " 0.386200 | \n",
+ " 0.162400 | \n",
+ " 0.359200 | \n",
+ " 0.677700 | \n",
+ " 0.469800 | \n",
+ " 0.623900 | \n",
+ " 0.102100 | \n",
+ " 0.317700 | \n",
+ " 0.099100 | \n",
+ " 0.290200 | \n",
+ " 0.029300 | \n",
+ " 0.335400 | \n",
+ " 0.160200 | \n",
+ " 0.364000 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 1.599700 | \n",
+ " 1.572512 | \n",
+ " 0.179500 | \n",
+ " 0.400400 | \n",
+ " 0.147200 | \n",
+ " 0.056500 | \n",
+ " 0.141700 | \n",
+ " 0.316700 | \n",
+ " 0.213100 | \n",
+ " 0.357600 | \n",
+ " 0.381300 | \n",
+ " 0.197900 | \n",
+ " 0.344300 | \n",
+ " 0.638500 | \n",
+ " 0.466900 | \n",
+ " 0.623900 | \n",
+ " 0.101300 | \n",
+ " 0.311400 | \n",
+ " 0.104700 | \n",
+ " 0.279500 | \n",
+ " 0.051600 | \n",
+ " 0.338500 | \n",
+ " 0.173000 | \n",
+ " 0.353300 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 1.599700 | \n",
+ " 1.528889 | \n",
+ " 0.192200 | \n",
+ " 0.415000 | \n",
+ " 0.160800 | \n",
+ " 0.053700 | \n",
+ " 0.150500 | \n",
+ " 0.378000 | \n",
+ " 0.211500 | \n",
+ " 0.371700 | \n",
+ " 0.397800 | \n",
+ " 0.204900 | \n",
+ " 0.374600 | \n",
+ " 0.684800 | \n",
+ " 0.491900 | \n",
+ " 0.632400 | \n",
+ " 0.131200 | \n",
+ " 0.346800 | \n",
+ " 0.122000 | \n",
+ " 0.300900 | \n",
+ " 0.038400 | \n",
+ " 0.344600 | \n",
+ " 0.177500 | \n",
+ " 0.364400 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 1.599700 | \n",
+ " 1.517532 | \n",
+ " 0.198300 | \n",
+ " 0.429800 | \n",
+ " 0.159800 | \n",
+ " 0.066400 | \n",
+ " 0.162900 | \n",
+ " 0.383300 | \n",
+ " 0.220700 | \n",
+ " 0.382100 | \n",
+ " 0.405400 | \n",
+ " 0.214800 | \n",
+ " 0.383200 | \n",
+ " 0.672900 | \n",
+ " 0.469000 | \n",
+ " 0.610400 | \n",
+ " 0.167800 | \n",
+ " 0.379700 | \n",
+ " 0.119700 | \n",
+ " 0.307100 | \n",
+ " 0.038100 | \n",
+ " 0.335400 | \n",
+ " 0.196800 | \n",
+ " 0.394200 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 1.599700 | \n",
+ " 1.488849 | \n",
+ " 0.209800 | \n",
+ " 0.452300 | \n",
+ " 0.172300 | \n",
+ " 0.094900 | \n",
+ " 0.171100 | \n",
+ " 0.437800 | \n",
+ " 0.222000 | \n",
+ " 0.379800 | \n",
+ " 0.411500 | \n",
+ " 0.203800 | \n",
+ " 0.397300 | \n",
+ " 0.707500 | \n",
+ " 0.470700 | \n",
+ " 0.620700 | \n",
+ " 0.186900 | \n",
+ " 0.407600 | \n",
+ " 0.124200 | \n",
+ " 0.306700 | \n",
+ " 0.059300 | \n",
+ " 0.355400 | \n",
+ " 0.207700 | \n",
+ " 0.367100 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 1.599700 | \n",
+ " 1.482210 | \n",
+ " 0.228900 | \n",
+ " 0.482600 | \n",
+ " 0.187800 | \n",
+ " 0.083600 | \n",
+ " 0.191800 | \n",
+ " 0.444100 | \n",
+ " 0.225900 | \n",
+ " 0.376900 | \n",
+ " 0.407400 | \n",
+ " 0.182500 | \n",
+ " 0.384800 | \n",
+ " 0.700600 | \n",
+ " 0.512100 | \n",
+ " 0.640100 | \n",
+ " 0.175000 | \n",
+ " 0.363300 | \n",
+ " 0.144300 | \n",
+ " 0.300000 | \n",
+ " 0.083100 | \n",
+ " 0.363100 | \n",
+ " 0.229900 | \n",
+ " 0.370700 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 1.326800 | \n",
+ " 1.475198 | \n",
+ " 0.216300 | \n",
+ " 0.455600 | \n",
+ " 0.174900 | \n",
+ " 0.088500 | \n",
+ " 0.183500 | \n",
+ " 0.424400 | \n",
+ " 0.226900 | \n",
+ " 0.373400 | \n",
+ " 0.404300 | \n",
+ " 0.199200 | \n",
+ " 0.396400 | \n",
+ " 0.677800 | \n",
+ " 0.496300 | \n",
+ " 0.633800 | \n",
+ " 0.166300 | \n",
+ " 0.392400 | \n",
+ " 0.128900 | \n",
+ " 0.312900 | \n",
+ " 0.085200 | \n",
+ " 0.312300 | \n",
+ " 0.205000 | \n",
+ " 0.370200 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 1.326800 | \n",
+ " 1.459697 | \n",
+ " 0.233200 | \n",
+ " 0.504200 | \n",
+ " 0.192200 | \n",
+ " 0.096000 | \n",
+ " 0.202000 | \n",
+ " 0.430800 | \n",
+ " 0.239100 | \n",
+ " 0.382400 | \n",
+ " 0.412600 | \n",
+ " 0.219500 | \n",
+ " 0.403100 | \n",
+ " 0.670400 | \n",
+ " 0.485200 | \n",
+ " 0.625200 | \n",
+ " 0.196500 | \n",
+ " 0.410100 | \n",
+ " 0.135700 | \n",
+ " 0.299600 | \n",
+ " 0.123100 | \n",
+ " 0.356900 | \n",
+ " 0.225300 | \n",
+ " 0.371100 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 1.326800 | \n",
+ " 1.407340 | \n",
+ " 0.243400 | \n",
+ " 0.511900 | \n",
+ " 0.204500 | \n",
+ " 0.121000 | \n",
+ " 0.215700 | \n",
+ " 0.468000 | \n",
+ " 0.246200 | \n",
+ " 0.394600 | \n",
+ " 0.424200 | \n",
+ " 0.225900 | \n",
+ " 0.416100 | \n",
+ " 0.705200 | \n",
+ " 0.494900 | \n",
+ " 0.638300 | \n",
+ " 0.224900 | \n",
+ " 0.430400 | \n",
+ " 0.157200 | \n",
+ " 0.317900 | \n",
+ " 0.115700 | \n",
+ " 0.369200 | \n",
+ " 0.224200 | \n",
+ " 0.365300 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 1.326800 | \n",
+ " 1.419522 | \n",
+ " 0.245100 | \n",
+ " 0.521500 | \n",
+ " 0.210000 | \n",
+ " 0.116100 | \n",
+ " 0.211500 | \n",
+ " 0.489900 | \n",
+ " 0.255400 | \n",
+ " 0.391600 | \n",
+ " 0.419700 | \n",
+ " 0.198800 | \n",
+ " 0.421200 | \n",
+ " 0.701400 | \n",
+ " 0.501800 | \n",
+ " 0.634200 | \n",
+ " 0.226700 | \n",
+ " 0.410100 | \n",
+ " 0.154400 | \n",
+ " 0.321400 | \n",
+ " 0.105900 | \n",
+ " 0.352300 | \n",
+ " 0.236700 | \n",
+ " 0.380400 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 1.158600 | \n",
+ " 1.398764 | \n",
+ " 0.253600 | \n",
+ " 0.519200 | \n",
+ " 0.213600 | \n",
+ " 0.135200 | \n",
+ " 0.207700 | \n",
+ " 0.491900 | \n",
+ " 0.257300 | \n",
+ " 0.397300 | \n",
+ " 0.428000 | \n",
+ " 0.241400 | \n",
+ " 0.401800 | \n",
+ " 0.703500 | \n",
+ " 0.509700 | \n",
+ " 0.631100 | \n",
+ " 0.236700 | \n",
+ " 0.441800 | \n",
+ " 0.155900 | \n",
+ " 0.330800 | \n",
+ " 0.128100 | \n",
+ " 0.352300 | \n",
+ " 0.237500 | \n",
+ " 0.384000 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 1.158600 | \n",
+ " 1.390591 | \n",
+ " 0.248800 | \n",
+ " 0.520200 | \n",
+ " 0.216600 | \n",
+ " 0.127500 | \n",
+ " 0.211400 | \n",
+ " 0.471900 | \n",
+ " 0.258300 | \n",
+ " 0.407000 | \n",
+ " 0.429100 | \n",
+ " 0.240300 | \n",
+ " 0.407600 | \n",
+ " 0.708500 | \n",
+ " 0.505800 | \n",
+ " 0.623400 | \n",
+ " 0.235500 | \n",
+ " 0.431600 | \n",
+ " 0.150000 | \n",
+ " 0.325000 | \n",
+ " 0.125700 | \n",
+ " 0.375400 | \n",
+ " 0.227200 | \n",
+ " 0.390200 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 1.158600 | \n",
+ " 1.360608 | \n",
+ " 0.262700 | \n",
+ " 0.544800 | \n",
+ " 0.222100 | \n",
+ " 0.134700 | \n",
+ " 0.230000 | \n",
+ " 0.487500 | \n",
+ " 0.269500 | \n",
+ " 0.413300 | \n",
+ " 0.436300 | \n",
+ " 0.236200 | \n",
+ " 0.419100 | \n",
+ " 0.709300 | \n",
+ " 0.514100 | \n",
+ " 0.637400 | \n",
+ " 0.257200 | \n",
+ " 0.450600 | \n",
+ " 0.165100 | \n",
+ " 0.338400 | \n",
+ " 0.139400 | \n",
+ " 0.372300 | \n",
+ " 0.237700 | \n",
+ " 0.382700 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 1.158600 | \n",
+ " 1.368296 | \n",
+ " 0.262800 | \n",
+ " 0.542400 | \n",
+ " 0.236400 | \n",
+ " 0.137400 | \n",
+ " 0.228100 | \n",
+ " 0.498500 | \n",
+ " 0.266500 | \n",
+ " 0.409000 | \n",
+ " 0.433000 | \n",
+ " 0.239900 | \n",
+ " 0.418500 | \n",
+ " 0.697500 | \n",
+ " 0.520500 | \n",
+ " 0.641000 | \n",
+ " 0.257500 | \n",
+ " 0.455700 | \n",
+ " 0.162600 | \n",
+ " 0.334800 | \n",
+ " 0.140200 | \n",
+ " 0.353800 | \n",
+ " 0.233200 | \n",
+ " 0.379600 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 1.158600 | \n",
+ " 1.368176 | \n",
+ " 0.264800 | \n",
+ " 0.541100 | \n",
+ " 0.233100 | \n",
+ " 0.138200 | \n",
+ " 0.223900 | \n",
+ " 0.498700 | \n",
+ " 0.272300 | \n",
+ " 0.407400 | \n",
+ " 0.434400 | \n",
+ " 0.233100 | \n",
+ " 0.418300 | \n",
+ " 0.702000 | \n",
+ " 0.524400 | \n",
+ " 0.642300 | \n",
+ " 0.262300 | \n",
+ " 0.444300 | \n",
+ " 0.159700 | \n",
+ " 0.335300 | \n",
+ " 0.140500 | \n",
+ " 0.366200 | \n",
+ " 0.236900 | \n",
+ " 0.384000 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 1.049700 | \n",
+ " 1.355271 | \n",
+ " 0.269700 | \n",
+ " 0.549200 | \n",
+ " 0.239100 | \n",
+ " 0.134700 | \n",
+ " 0.229900 | \n",
+ " 0.519200 | \n",
+ " 0.274800 | \n",
+ " 0.412700 | \n",
+ " 0.437600 | \n",
+ " 0.245400 | \n",
+ " 0.417200 | \n",
+ " 0.711200 | \n",
+ " 0.523200 | \n",
+ " 0.644100 | \n",
+ " 0.272100 | \n",
+ " 0.440500 | \n",
+ " 0.166700 | \n",
+ " 0.341500 | \n",
+ " 0.137700 | \n",
+ " 0.373800 | \n",
+ " 0.249000 | \n",
+ " 0.388000 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 1.049700 | \n",
+ " 1.355180 | \n",
+ " 0.272500 | \n",
+ " 0.547900 | \n",
+ " 0.243800 | \n",
+ " 0.149700 | \n",
+ " 0.229900 | \n",
+ " 0.523100 | \n",
+ " 0.272500 | \n",
+ " 0.415700 | \n",
+ " 0.442200 | \n",
+ " 0.256200 | \n",
+ " 0.420200 | \n",
+ " 0.705800 | \n",
+ " 0.523900 | \n",
+ " 0.639600 | \n",
+ " 0.271700 | \n",
+ " 0.451900 | \n",
+ " 0.166300 | \n",
+ " 0.346900 | \n",
+ " 0.153700 | \n",
+ " 0.383100 | \n",
+ " 0.247000 | \n",
+ " 0.389300 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 1.049700 | \n",
+ " 1.349337 | \n",
+ " 0.275600 | \n",
+ " 0.556300 | \n",
+ " 0.246400 | \n",
+ " 0.146700 | \n",
+ " 0.234800 | \n",
+ " 0.516300 | \n",
+ " 0.274200 | \n",
+ " 0.418300 | \n",
+ " 0.440900 | \n",
+ " 0.248700 | \n",
+ " 0.418900 | \n",
+ " 0.705800 | \n",
+ " 0.523200 | \n",
+ " 0.636500 | \n",
+ " 0.274700 | \n",
+ " 0.440500 | \n",
+ " 0.172400 | \n",
+ " 0.349100 | \n",
+ " 0.155600 | \n",
+ " 0.384600 | \n",
+ " 0.252300 | \n",
+ " 0.393800 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 1.049700 | \n",
+ " 1.350782 | \n",
+ " 0.275200 | \n",
+ " 0.548700 | \n",
+ " 0.246800 | \n",
+ " 0.147300 | \n",
+ " 0.236400 | \n",
+ " 0.527200 | \n",
+ " 0.280100 | \n",
+ " 0.416200 | \n",
+ " 0.442600 | \n",
+ " 0.253400 | \n",
+ " 0.424000 | \n",
+ " 0.710300 | \n",
+ " 0.526600 | \n",
+ " 0.640100 | \n",
+ " 0.273200 | \n",
+ " 0.445600 | \n",
+ " 0.167000 | \n",
+ " 0.346900 | \n",
+ " 0.160100 | \n",
+ " 0.387700 | \n",
+ " 0.249200 | \n",
+ " 0.392900 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 1.049700 | \n",
+ " 1.346533 | \n",
+ " 0.277000 | \n",
+ " 0.552800 | \n",
+ " 0.252900 | \n",
+ " 0.147400 | \n",
+ " 0.240000 | \n",
+ " 0.527600 | \n",
+ " 0.280900 | \n",
+ " 0.420900 | \n",
+ " 0.444100 | \n",
+ " 0.255500 | \n",
+ " 0.424500 | \n",
+ " 0.711200 | \n",
+ " 0.530200 | \n",
+ " 0.646800 | \n",
+ " 0.277400 | \n",
+ " 0.441800 | \n",
+ " 0.170900 | \n",
+ " 0.346900 | \n",
+ " 0.156600 | \n",
+ " 0.389200 | \n",
+ " 0.249600 | \n",
+ " 0.396000 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 0.993700 | \n",
+ " 1.346575 | \n",
+ " 0.277100 | \n",
+ " 0.554800 | \n",
+ " 0.252900 | \n",
+ " 0.148400 | \n",
+ " 0.239700 | \n",
+ " 0.523600 | \n",
+ " 0.278400 | \n",
+ " 0.420000 | \n",
+ " 0.443300 | \n",
+ " 0.256300 | \n",
+ " 0.424000 | \n",
+ " 0.705600 | \n",
+ " 0.529600 | \n",
+ " 0.647300 | \n",
+ " 0.273900 | \n",
+ " 0.439200 | \n",
+ " 0.174300 | \n",
+ " 0.348700 | \n",
+ " 0.157600 | \n",
+ " 0.386200 | \n",
+ " 0.250100 | \n",
+ " 0.395100 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 0.993700 | \n",
+ " 1.346446 | \n",
+ " 0.277400 | \n",
+ " 0.554700 | \n",
+ " 0.252700 | \n",
+ " 0.147900 | \n",
+ " 0.240800 | \n",
+ " 0.523600 | \n",
+ " 0.278800 | \n",
+ " 0.420400 | \n",
+ " 0.443300 | \n",
+ " 0.256100 | \n",
+ " 0.424200 | \n",
+ " 0.705500 | \n",
+ " 0.530100 | \n",
+ " 0.646800 | \n",
+ " 0.275600 | \n",
+ " 0.440500 | \n",
+ " 0.174500 | \n",
+ " 0.348700 | \n",
+ " 0.157300 | \n",
+ " 0.386200 | \n",
+ " 0.249200 | \n",
+ " 0.394200 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from transformers import Trainer\n",
+ "\n",
+ "trainer = Trainer(\n",
+ " model=model,\n",
+ " args=training_args,\n",
+ " train_dataset=cppe5[\"train\"],\n",
+ " eval_dataset=cppe5[\"validation\"],\n",
+ " tokenizer=image_processor,\n",
+ " data_collator=collate_fn,\n",
+ " compute_metrics=eval_compute_metrics_fn,\n",
+ ")\n",
+ "\n",
+ "trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If you have set `push_to_hub` to `True` in the `training_args`, the training checkpoints are pushed to the\n",
+ "Hugging Face Hub. Upon training completion, push the final model to the Hub as well by calling the [push_to_hub()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.push_to_hub) method."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.push_to_hub()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Evaluate"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [4/4 00:00]\n",
+ "
\n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'epoch': 30.0,\n",
+ " 'test_loss': 1.0877351760864258,\n",
+ " 'test_map': 0.4116,\n",
+ " 'test_map_50': 0.741,\n",
+ " 'test_map_75': 0.3663,\n",
+ " 'test_map_Coverall': 0.5937,\n",
+ " 'test_map_Face_Shield': 0.5863,\n",
+ " 'test_map_Gloves': 0.3416,\n",
+ " 'test_map_Goggles': 0.1468,\n",
+ " 'test_map_Mask': 0.3894,\n",
+ " 'test_map_large': 0.5637,\n",
+ " 'test_map_medium': 0.3257,\n",
+ " 'test_map_small': 0.3589,\n",
+ " 'test_mar_1': 0.323,\n",
+ " 'test_mar_10': 0.5237,\n",
+ " 'test_mar_100': 0.5587,\n",
+ " 'test_mar_100_Coverall': 0.6756,\n",
+ " 'test_mar_100_Face_Shield': 0.7294,\n",
+ " 'test_mar_100_Gloves': 0.4721,\n",
+ " 'test_mar_100_Goggles': 0.4125,\n",
+ " 'test_mar_100_Mask': 0.5038,\n",
+ " 'test_mar_large': 0.7283,\n",
+ " 'test_mar_medium': 0.4901,\n",
+ " 'test_mar_small': 0.4469,\n",
+ " 'test_runtime': 1.6526,\n",
+ " 'test_samples_per_second': 17.548,\n",
+ " 'test_steps_per_second': 2.42}\n"
+ ]
+ }
+ ],
+ "source": [
+ "from pprint import pprint\n",
+ "\n",
+ "metrics = trainer.evaluate(eval_dataset=cppe5[\"test\"], metric_key_prefix=\"test\")\n",
+ "pprint(metrics)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "These results can be further improved by adjusting the hyperparameters in [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments). Give it a go!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Inference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now that you have finetuned a model, evaluated it, and uploaded it to the Hugging Face Hub, you can use it for inference."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import requests\n",
+ "import numpy as np\n",
+ "import albumentations as A\n",
+ "\n",
+ "from PIL import Image\n",
+ "from transformers import AutoImageProcessor, AutoModelForObjectDetection\n",
+ "\n",
+ "url = \"https://images.pexels.com/photos/8413299/pexels-photo-8413299.jpeg?auto=compress&cs=tinysrgb&w=630&h=375&dpr=2\"\n",
+ "image = Image.open(requests.get(url, stream=True).raw)\n",
+ "\n",
+ "# Define transformations for inference\n",
+ "resize_and_pad = A.Compose([\n",
+ " A.LongestMaxSize(max_size=max_size),\n",
+ " A.PadIfNeeded(max_size, max_size, border_mode=0, value=(128, 128, 128), position=\"top_left\"),\n",
+ "])\n",
+ "\n",
+ "# This one is for visualization with no padding\n",
+ "resize_only = A.Compose([\n",
+ " A.LongestMaxSize(max_size=max_size),\n",
+ "])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Load model and image processor from the Hugging Face Hub (skip to use already trained in this session):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "device = \"cuda\"\n",
+ "model_repo = \"qubvel-hf/detr_finetuned_cppe5\"\n",
+ "\n",
+ "image_processor = AutoImageProcessor.from_pretrained(model_repo)\n",
+ "model = AutoModelForObjectDetection.from_pretrained(model_repo)\n",
+ "model = model.to(device)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And detect bounding boxes:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Detected Gloves with confidence 0.683 at location [244.58, 124.33, 300.35, 185.13]\n",
+ "Detected Mask with confidence 0.517 at location [143.73, 64.58, 219.57, 125.89]\n",
+ "Detected Gloves with confidence 0.425 at location [179.15, 155.57, 262.4, 226.35]\n",
+ "Detected Coverall with confidence 0.407 at location [307.13, -1.18, 477.82, 318.06]\n",
+ "Detected Coverall with confidence 0.391 at location [68.61, 126.66, 309.03, 318.89]\n"
+ ]
+ }
+ ],
+ "source": [
+ "np_preprocessed_image = resize_and_pad(image=np.array(image))[\"image\"]\n",
+ "\n",
+ "with torch.no_grad():\n",
+ " inputs = image_processor(images=[np_preprocessed_image], return_tensors=\"pt\")\n",
+ " outputs = model(inputs[\"pixel_values\"].to(device))\n",
+ " target_sizes = torch.tensor([np_preprocessed_image.shape[:2]])\n",
+ " results = image_processor.post_process_object_detection(outputs, threshold=0.3, target_sizes=target_sizes)[0]\n",
+ "\n",
+ "for score, label, box in zip(results[\"scores\"], results[\"labels\"], results[\"boxes\"]):\n",
+ " box = [round(i, 2) for i in box.tolist()]\n",
+ " print(\n",
+ " f\"Detected {model.config.id2label[label.item()]} with confidence \"\n",
+ " f\"{round(score.item(), 3)} at location {box}\"\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's plot the result:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFAAeADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD23StVtdYshc2kqyLuKNjsynBH5ir1eQfDHRvEWjX08l7BJBZTpnY7jJfIwcduM166hytJMSdxScAk1Elwsibh64qU9DXKyTzC9kijYqgJPSk3YZtHy3lYHBNVL7T1KF1GDVeOQRTIWbINX7i8QwgDqaRSt1OVnjKsy9hVW1uJLG882MZ7EVv3ESPG2QMnvWHcxeWScVqjBrUtapqUl7AI8BVIzx61k2kksLnbgg9RWjaQLMMMAfrTrmx8qUNEOPSnG2wSTepHJHNMfM252jgAdK0L24MulkkYJQZqSyu4kgEbsFcdQe9R6jtNlIV6Hp+dUtxWMKMdK9E0of8AErtv9wV57GOleh6YMabb/wC4KKmwU9y1RS0VkbCUYqpqep2mkWMl5eSiOGMZJPf2HvXiWq+OvEXjPU3tdGLWVjGNzmORQyoDy7HIzjPQH/GqjG5MpWPeCQoyTgVA97bRoWaaMe24ZrzeEnQtJgufObVLxsyM8krFGHX5FJwDjODj1riPEXi+e8tgLyEOWdmTccNGh5XaR7Hj6U+VC5nbY9c1TxZp2mq0z75EH3tuBj65PFZ9v8RfDty2x7p7dicYmjK4/wA+vSvn++164u8RyHDIxwVJ9eO9Z8N/NC2Fc47iq0IbZ9b2F7b3cCz2lxFPC3R4nDKfxFaanKg18taB4xv9CuzJaTtGsgG9OqsfcdM+/vXufg3x7ZeIYlt5iIL3GQnRXHt7+1S49ioy6M7OimrIrHAp9QaCVymu/wDH+a6yuU1sZ1BqqG5M9jLA5rpfDoxay/7/APSucA5rpPDwxay/7/8AQVctiI7mxRRRWRqRTRlxkHpVN48jJXkd60aMD0p3E43M9MKRVkyqENQ3cII+Xg1URmxgmgi9jUikDqMdaJIt/PSoLdCOc1Z3gDk4oKWq1MxYIodUuJwczvDFG69cKrSFTj3LN+VTlFZxuBGcng9MdqzPO/4qzUCpI/0K1HB/256t+YwGMnB7ZpRehddcs0m76L8kW0hCDJPINSsAVxz1I/KqiXHH3jnp1qSNi3OcYPFUZJlZokEu0gMDLH1GeCCcVxV1/rkFdffGSMMQ7cjOc+nSuTucm6Qk5OeprSBE9jVsPluod3A3CuyUggEVxtsokniVhwWANdckKKgUDgVMy4EtI/3D9KYIgG3An86c5wjH2qCzIX/ljUbf6iX/AK6f1p69IfqaY3+pm/3/AOtUZkg/4/z/ANch/Oqh/wCQbH/13H/odWs/6ef+udVGP/EtX2mH/oVAMluIPN1KN/7ifzqO6nUSbAelX5Bt3SY/hFcVfar5d7KGOOeKJPQqCvIsXc3zkg1CV+0xlWPBrCl1QPMFzxmt+wYNBvrKLuzokrI5LX7BYs7QB26Vwl7a4nwq/pXomszebelB0HFYVzpxeQNtqaj1Lpw0uYllYkoPlp11b7GUY7/0rqLTTjHDkrT4NEabUbJ5V+SScoAe/wC7dv6Vi05fgddFpSfpL/0lntrBQAABT4m4qJhmpolwua6UeaOdSy4zjNZUukfOXVzWvVaa4aPOUOPWhiM1NMEinzG5HFVRabJijMTj3q9FNI7yYbjPSqk6Sx3G4twe9CAsPp48rKk596x5rbzJChHPSugjuB5Iyeax5JP9KZvenF3YSWhCLIwKGUHFTLA0/Bq0ZFkjApEJjfI6VSIZQOnGO5DsNy0uqKFsD68fzq+10jHBwDVHV8fZGxx0/nVrcgwkFehafxp9v/uD+VcAg4r0Cw/48IP9wfypT2HAsUEgAk0VyfxH11tA8FXtzG22eQCGI98tx/LJ/CszU8p+IPia78Z+K10HSn3WkUnlqVzh27sfYc1qPoUOgaBp+nWTeU+pt5V3c5LbgVKkgHpnOcD0rE+E+lSSXOoaxMCAqC3iJ7s3LH2wAv51va/4hjtpdLUsn7qfy23jlBwFbHb1/wD11blZaEKN9WZWu68LbTUSLDvLCigK/MYDEkH35K55/wAeE1PUDqD7ZIQrooVCBhgAAMHsRgfqaNWlmOu3kDHPkzug9MbqntrRLrar5OO+OlTcdrmIYGY8ZJNWrLSLm8cLHGxzxkCu90jwrDdIrSDAHfHWux03RrbTwfKjUE+1R7Q0VJnlo8G6ibcnyW3KRxVu30HWbFkmiicFO8fX6160AuelSIqq3CikqrRToJkngvxPPf2otdROLqPjeRguPU+/au2jlywB6GuI+yQuwdBskHRl6iut0h2mtQZceYnyn39615lJXMuVxdjRrldZ51B66uuV1fm/kohuKRnYro/D/wDx6Sf7/wDQVz2K2dEnMaSLjK5zVy2IjozepahFwpOCMU/zE/vCsrGl0Ooo60UDI5VDIaz2jO7itJ/uGoIk3MT2prYlq7JIFwgz1qRkDDkVHIxiXIpqXGRzRqPRaGOsKjxXqPHAsbU/+Pz1YkTniqyyFvFWo4/58bX/ANDnq4Dlhmpg9Pv/ADNMVbnXpH/0lDI4yTirQGwcA1LFECuelKyZ4Jq0YKJj3shfcD0ANc1cIfPQjtXTagmzdjoQa5+Qfv1rSJDL1pn7RF67hXXr90fSuUshm7hH+0K6wdKiZpAKa/8Aq2+lOpsn+rb6VBZjL0h+tMb/AFM3+/8A1p69IfrTG/1M3+//AFqzIf8A8v3/AGzqBQDYKG6ed/7NU4/4/h/1zqsf+QcP+uo/9CoEXZpTKWiUfU1y2q6DDeyljlWAxkGusUKjsx/uisyZwd7Cnuhp2ZxlvoMNtIS53MD1Na6skMOxRjikl5uSKhuztXirUUJzfU5rVcRXauehbmtCC3WZVbGapa5EXtxIOoq7oEhuLZV7jg1hWjqdVCd4mrbWSvgEcVau4Fiu9HAH/L23/oiWrcMYjUCo9Q/4/NH/AOvtv/REtDjyx+78y6U+ao/SX/pLOr80Z61ZikUr1qj5Z9qUKwpKLOfmNLrUNy6LEwYjpVcPIo/+vWdqFxJtNNphdEFrdBLpxn5T0rYljSaHnriuVAKknrV+K7mMW3ccCpcX0Ki0WfIcIcNxVGL97cSIeqVM2oiJCrISax1uZPtzyrxu6iqje+opONtDYnItxuB6ikS6Vl6jNZ7NLcyhZGO0dhUk1qUTcmapGb1GzTbZSQak1CTfZZPfFZkjsp5Bq7ctush+FUtySilegWXFlD/uD+VefrXd6fOkllFgjIUCiZUNy5Xknx1vRDpukWzgtE87SuoIBYLjjkEdz1B+letbl9RXh/x6uAbjRlwGVPMOCev3eKgtljSpLWz+FgvdLldo3leV2kjCOw3lWBC5GQBjjj5RXmmvai1/smdgXb5ZSvRsdG/EflxXZeGbtz8MVtQwARp4mxgncT5g+nBI/GvNbz5ZnQ5ADHj+7/8AW/z2pX1B7BJPJNfPK+S7H5uOp711fh6PzpFGBgVyMAbeGDYbPJIzXd+GvMLxqB+JFTPYqG53unReXEgI49cVpgDtWfbFsY9BV1GO3oKxR1DypBzUgBOMVGHFSJxzigpkyZByK6PRpQWx3IxXNoRmtfSZCt1GB0LVrB62OeotDpq5fVR/p8ldTXL6nzfSfWtY7mEjPIrY0WBnR26DNZJFdDoYxYt/vmqk9CErssPasQSHNUyk0bc5K1r011BXmouW4opR3iovNOW7LtwOKjntQ5GM5zSm2CR5B5FOxOpO8u5eDRbMMkZqkZW6cCkjmKHIxQHNqaNxjZUCQs4yKiFwZGAIq9CRsAo2Q92YsEWPFWojv9htf/Q7irJ4ao42C+K9SPH/AB4Wv/oy4qRyN3FRDb7/AMzbFWU16R/9JRaim2jBpsk+DnHFVlkwakI3CrRz3Zn3kplDE+hrDk/161s3KlQ4PpWPJ/x8LWkRMv2o/wBKi5x8wrpvP2xjjmuVQkOpHUGtuOV5IxnmpkNOxoQziQc9adMf3LVSgJEwFXpuYG+lQWndGMvSL6mmP/qpv9/+tAbiL/epjP8Au5/96qMyYH/Tf+2dVj/yDv8Atr/7NU28fbV946rM/wDxL29pf/ZqAZPdyESlAeqioCPkxTNRm8u5h/2kqQEFAaroC3Mq4jCzZ71nX33a1bv7+6su/wAbOK0juSzNkhN1btEBknpWjpGmf2dAQep5NSaTZMoMkg5PStRwDxRKzZUG0htu5kkx2FGqYF3o/wD19t/6IlpyFYunFZ2qXW680sDtdMf/ACDJWVTb7vzOnDfG/SX/AKSzuKKXFGKRiB6Vl3dvLNKBnC961ahnYKOOtAGW9kEjz1NUVco23FajT8ENVNwhYkYpAQSgFcmqaAByRWhIoaM1mr99h2oEW4cNKKv3EkawfhWUBtPBpsjNJwSTQBDKQwqe4P8AowH0qEQselTXAKxAGmtxFYV1mnKDarx2rlBXW6d/x6r9KuQIsbRXinxoaGW8sY25ZCT16D/65xXtprwH4zS51RFH3gcdOg6/0FYz6GsFuUvA0T32i6/pzXJUEI8BAyNy5ztHp9z9K4m/Z/tDCRSGBweMEV1Hw1WS+1ia3S6FssNk7u+3OQJFxxkZOX/Ktvx/4YjZhqdkjFFX/SolX7pz99cdQSefSovZlcrcbnCaXbm6kVCzcH5eM16j4f0Wa2hVpCR3Fef6DG0GowHb91hn6/5/lXtMG026duKUncdNdSuzrDwSB+NLDe2zsyC5i3em4Zqtf6P9ql3XN0/lH7sSfKPx9azLvwzpcykAyg4xlJDxWR0p6HVRorAHIx7VOGCjmvORp19pEgFtq1wsQ6LJkDH+fauu0u8e4gUTOrOSclT2p7BzXNgSJxzSt4gstIliE8gaV3CpEpyxOfSsrWs29gQtysDycK5GcfQVneGdGsoroXIJubtuksz7mH0HarjoyJ6qx66bhjFuUDkZFc7dEtOxPUmt2NDHaIjdVUA1hXH+tb610RONlY1saPcGONkIJBOayDWlpXQ/WqZKNn7Sv91qhlnLj5QRRSYqbFjC7mh5XZNoFPopisU/KYj3pBAwq7S4pCsUfKcHrUySSp1NWMCjAoCxhK0j+KL855+xW3/oc9XgJBUMAH/CVahx/wAuNr/6HPWmVHpUw2+/8zfEr316R/8ASUVE3BuRVqFvmGaXaPSm7RVHOZ+okeY30rEf/j4Fal399ue1Zjf8fAq0JluIbpFHqa6W3ijWIYFc0v3hiteOWVYwA1TIaLjhVl6jip5HHkt9Kxyz79xbJqbzGKEE9qVhp2KWflj/AN+mOf3dz9aAflj/AN+mv/q7j60yCXP+nRf9cz/SqzH/AIl03/XU/wDoVT5/02L/AK5n+lQYLWEqjqZT/wChUCZW14keUR1CH+lR6XqKXdnGc/NjBHvVvUrcXDRg54XFV7WxitYlVFAxVK1hWlz36E0sW9aqm0QkbhnFWnnCjGeagMpai5pYl3LGmBVdpCelKeetNJoAjIJ6mqN8uLzTP+vlv/RMlaBNZ9+f9M0z/r5b/wBEyVM9vmvzN8N8b9Jf+ks9A8xfWjevrWLG9wV5NSh5R1NIyL8lyqHqKpTXJY9eKqTyMGyapvcNuwDSuBfkYMKjMYx1qCNyRkmmSXDA45AoAnMgClSazxtEpx0pZJCah56jrQItrGXbil8rY4zSWrFetSTk9aAJ4oVfmq+opsx7mmQ3EkWfSku5jMBn1px3EyqOlddp4xar9K5IdK37K/AgAGcjtVSBGvXgnxhtm/tiV8nBjDH044/rXuAuJXGRExFeSfGWMpaLdFcFlEfI65P/AOr/ACaxqdDam9zgfhddR23jSKKbHl3MDwnP4OP1QV6HrWoLDb3USbmWSJ13A9CVI6fjXjmn3smn3dlNAVEkFws4YjuCOD7cfqa9kkFvrPhS71axdWjeIu0TfejOPmB9x/ga58Qna6O/LpR9rGMu6/M3W8D6VLqVjNFbgWM6r54GCYnYAgDI6fMv51IvhWykjjZLKx2scZ8kHHBPpzwp4Gau6TrEyy7QseAY+OuNqqMdf9kZ+laiIHUo0cbQKExydw2qVwfwPBGPzqlTjLZEPFV47zf3s4TxD4c8vSmudPtrFZInk3MYhsIVUKjhc5JYjH8sGuAt/ElrEpW+0jbKvGIokIP5ivfJTHJE0Txq0bZ3KxJB4UZPPX5Rz1/M1Wg0/T4JPMitIY3xgskagn8etWqEeqRm8dW6Tf3s8Zt7bVPEV1CbDQJLe0PWUxfeHrnaAPpmuz0TwZdxnF5Y2e0d5QrE/lmu/wAog+6Px5pPO7Bj+AqvYQ7CWOxH87+9nF+I/h5JqsUbaXJZWMqLgqINqufcgf0NYOnfDrxHFcCC/urEwHhpIYo2bHtuQEGvWomJHU/nSsTnvQqUF0E8XiH9t/eyODw1oBs1J0bTnYKAWNpHyf8AvmsK2s7Wy8RahFaW0NvGbaBikSBBndNzgfQV2ETKtoATyea5TP8AxU19/wBesH/oc1PkipJpf1ZlRr1Z06ilJtW7v+aJaNaelfdb61mmtLSvun61szhRpGilNJUlCUUtJQAU4U2nCmAUhpaSkBlW/wDyNWof9eNr/wChz1qE1lwHHirUP+vG2/8AQ560M81ENvv/ADNsS/fXpH/0lD8000pPFNPQ1ZgY90f3jVnt/wAfArQuf9Y30qg3/HwKqImWk+8K1l/1YrKT74rUX/VikwI260oJKn6Uh604dD9KBFMfcj/3qRhlbgD1qREyI/8AezUoQANnuc0xWIgn+kqx/hTFMICw7Tx82TT5plXJzis+W5yeM0DsWJJdzZFQMS3eoTKaYZjTsUS+WBTSAKiMxphkJp2FcmYgVEWphamk07CuP3VQvj/pmmf9fJ/9FSVbzVK+/wCPvTf+vk/+ipKia0+a/M3w3xv0l/6SztVUYFO28UqjpTsVBBnXe3BzWU6HcTWveoMZ71QYgAikJhDxjNTyohSqqHnipdxxgjimBWlUbcioI2y2Kszj5M1UQgEUCZeVtvNOeYOMUwsPKqtzndzQFy8kAZc1XuV2nA9aVLoquKSVt/PvTjuD2IlFdFo8CG3Q45J5rAArpNJ4t0+tOQRNlY1UYwK8t+OFgr+DxcL96KZfyPFeqVwXxdiE3gLUBgkqEb/x4VlLY0R8uwlR1yWY7VUVqaPrt/p87W0FyywXJ8qWM8hg3ByPX37VjB2SQlTgjODUln/yELb/AK6L/MVM17rNsL/Hh6r8z6E8HXa65aJqUKiISEpJD6YPBB+uPzrrbZ9moiFv4wQPwH/1q8u+E+qE6DLCMZtpQ2M9Q3X+Vek3RPnW9xF8w3Ag+oJ/yKS02FdyWpfuYdjbgeDVfeM9c/jV2Zgi5OCO9R7kPOxSPpXQc9yvv5pfMA5FTExf3FB/3RTR5eclUx7CgCS2k3NVjBZjgcepquvbbgD6VMh46/jSGMnebzMBvkAArFT/AJGO9/69Lf8A9DmrfkXKk1gR/wDIx3v/AF6W/wD6HNUvdf10ZvS+Cp6f+3RLlamlfdP1rLrU0v7h+taM5UaVJS0lSUFNNKetNIyKBDlOaWmLT6BgTTTzSt0pAaAMqAf8VVqH/Xlbf+hz1onis+H/AJGrUP8Arxtv/Q560CeaiG33/mbYn416R/8ASUIG5pznCGmY5pJD8hqznMmU5dqpsP34q2/LtVU/68VSBlpPvCr/AJu1KoDqKtbN6ikwDzdx4qVckH6UiQhRTZJAowKaAGcIB7VSnu9vANQXN2c7VqkXyck807BcmeVpDkmo91NLU3NOwrji1NJppOKM0wFJpKTNGaYhDRmgkVGW9KAJMiqV8f8AS9N/6+T/AOipKsAk1WvR/pWm/wDXyf8A0VJU1NvmvzN8N8b9Jf8ApLO8XoKR2AXrUSzjFVLucgfKayIIbyQ84NZbSMzdaS5uyuQaoHUFVuaRLZrwg55qwRxmsyC+WQZXBq4LkYAOKY7iz8r7VQbAYe1XZRvjyKy1DPPszzmgTNFHDrinu6KpFVXU2yhuoqKWUnB7UhXAy/vMCrvVBWXKwwCOtacWTEuacdwQ8Diui0ziFK58dK6HTSPITmqkUjZHIrhvivKqeBdQDHGVA/UV3Kkba80+M83/ABRskan78yL+ZrKWxqtz5mIwTU1lze2/r5q/zqJ+p+tTWP8Ax/Qf9dV/nSn8LNcL/Hh6r8zvfhHcEalqNrnh4A/5ED+tezaNfxSx/ZfuTRfw/wB4eorxr4RWrHU9RvDnYkIiHuWOf/Za7u4eWG6E8DFJozlWH9faspVOSdwhDmhY72QFnWQMSoGGU9CPWovI5JhlwPQ8is/SNZj1KIjHl3KD5489Pce1W2RwxkhPX70Z6fUV1RaaujmkmnqSbiDtkXHuOlL5OeVOKYsu4Yb8j/jUyuAP6VQh69h1NTJknGOlEUZcjAyT0q28YjAUfnUjI5F/d1zaf8jHe/8AXpB/6HNXUSD9zXMR/wDIx3v/AF6Qf+hzVL3X9dGb0vgqen/t0S5Wrpf+rrKrV0z/AFf41bOc0aSlppNIYZprHimscGgtkUCEU81MDmqobBqdXoAcelN6UpNIelAMy4DnxVqH/Xlbf+hz1oMOazIDjxVf/wDXlbf+hz1pk1MNvv8AzNsT8a9I/wDpKEqOU5Q0pbmkblDVGBlH7zVXP+vFWW++9QpGZLjgcVSBlqJNxBNW8hajA8tajZ6AsPln2g1l3FyzkgGi7nPIFUw+etUkDA0zNPPNNIqhCUZxQaaRQIC1IDSFeKYTigRKTUbPTSSaAhJpgG4mpETNCoKnRaVxpDPLwKz9QOLvTf8Ar4P/AKKkrWYYFY+pf8fmnf8AXwf/AEVJUT2+a/M6MP8AG/SX/pLPQGtFx0rJ1C3KKSoreJ4rJ1KZVQjGTUMyOVu1ZVZmHFcxeXStLtDGuuvXVoGHciuVfSJJJ2dT17VNjKT1NHS2GwHmtyFFfFRaFpQWEluXPX2rRNiI7lQCcZ6VVi4rQvxWim36dq5yTdDfyhSPlbqa64L5Vt+FcxDCLi+uWJyu/FFhsrzXL3EojI6elXYrFpQCVwKryfZLC5UTea0soZkWKF5DhcZOFBx1HX1qZPEFrGcCG9wP+nKb/wCJqHOK0bNYYatJKSg2n5Mdc2AQDAFSKmxADVc65aznmO9x7WUx/wDZKSTVrUHiK+x/14zf/EUKcL7l/VK/8j+5l0DPFbNrA6xDBrmV1e24/dXv/gDN/wDEV0Fvr1msIHk6j/4Lbg/+yVTqQ7oFha/8j+5miJZ0GOK8r+NF0U0iyiZjuafdgeoBx/n2r0V/EFltOYdSH/cNuP8A4ivHPihqCa/qtrDbeayRZyrxtG2TgDhgD+lZTqQtuawwtf8Akf3M8jlUrgkfe5FS2YxfW5/6ar/OvQx8OptVu/30l1plpBBGiSNpc8zytjk4UAYznkn8DW3pngXRtFsb2Zvt2qam1u6W5OmTRohKkAhSp+b3J4qZzjyuzNcNhqyrQbg910fc1vB+gHw34cgt7hdt3MDNOD1Vj/D+AwPrU0mTKQeuePekuvELyTlpdH1ZXz0Ntj+tUZ9XDtuXS9TB97f/AOvXFOomzshl+IS+H8V/mWGjlimFxbuY5U6MP5e49q3LDxJFIoW8b7NKOpOSh+h7fjXOf2zhMNpepZ/69/8A69RtqgLZ/svUv/Af/wCvV08RybEzyuvP7P4r/M9BS9tJU3meBl/vCQYqzaGO5lRY2JDdMg/1rz221VImDDR9UJB/htf/AK9dHpPioQXAb/hH9elAUgCOzyf510RxcWzCWU4iK+H8V/mdzHEYhwOemajlSRjxWL/wmw/6FbxL/wCC/wD+ypP+E2H/AEK3iX/wX/8A2Vae3p9zP+zMV/L+K/zNaXzFjOa52P8A5GO9/wCvS3/9DmqefxmGjI/4RjxIPc2H/wBlWLZ6ys2rXd1Lp2qWyPBFGolspCSVaQn7oP8AeFHtYNqz/qxccBiIU5uUenk/tLsb5rV0z/V1zZ1m1/55X3/gBP8A/EVpafrtokfMOofhp1wf5JWrqQ7nH9Vr/wAj+5nRGm5rnb7xWYruC3stOuZ3kjeRvPtrmLaFKjgCFifvdcYGOTyKgfxNqeB/xJyO/CXnT/wFrP21O9rm8ctxTipcm/ojqGGajxiubPijUR10gD/gN5/8i1GPFl4/3dLRvoLs/wDttR7en3H/AGZiv5PxX+Z0xGaBla5v/hJtR/6A/wD45ef/ACNS/wDCS6if+YP/AOOXn/yLR7en3F/ZmK/l/Ff5nTBuKaZMVzJ8Saj/ANAf/wAcvP8A5FpbfxRI1+tte6bPCrxPIrQwXMh+UqMbTCpx83UZxjnGRR7en3E8txSV+T8V/maELZ8UX5/6crb/ANDnrUBBrm7TVbSXxZcRgXKNPbQRxiW1lj3MpnYj5lGOASM9cHGcGugwRVU2mtO7/MzxlOcKiU1b3Y7+iHlajc4Q08MabJgqa0OUy+rNVmCPbk45qGNcyN6ZqyzhENMBkjFmwKr3DiNCSakDdTWZqE3KoDyTQtR7DOZAT61G6batQx/ux9Khl6kVSYmQhsdaceaifg0qtVCFNISBSseKgd6BDnkFR9TTVBY1OseKYgRBin4ApRxS9akYKKmUYpqCpcUFIjc8Vjaj/wAfmn/9fB/9FSVryHisa/5vNP8A+vg/+ipKme3zX5m1D436S/8ASWeg3NyIlOTisC8uvMYkdPWtTU2V42ANc1KjB8E1mzFlaaRWlVT0q9B5SxgYXPrVC5iVQG9KrG72ELnJoIvY6GxulilKnoTwauyOJJFYHoe1czbXixtvY8Hua0bXUoXcAMMUylI6OV91qRnnFcxpaOGnweBIRWvc3SLaEhh04IrH0a8RopASA28lvqafQfUsQRn/AISOJmwzLZXDKCMj78Pb6En8K15IIni8ySMjhRiPA3ZJ56e1cvd3jw+I7aRHKkW82CDjq0f+FXk1OVZPOM7bj1O45NZx+J/10RvWa5Kfp/7dI6ODR4YgwBOMY3epGc/yP5iqs1rCjyHLlVi3gA99wXqR059Kht9dhKBN7A9R9akCzX0pZGO08M5Jxj3/AErQwTRKLSOJ1wCTtlVlbBwVTP8AM+/StmMbY14AG1f5CqEcYhId5ZJnXoWJwPoKRrkyfec4HYUDLUzqVI3c+3NZFtounWl697FaIbt+txIAz/h/dHParJmUdCajkmL8AkClZBdiyy7mPOee9QFNxznB7EUuacKYFeRUkHl3UQcdmxVC50NZRutZgefuN/jWzsV1ww4qu8DRnKkketRKEZblxnKOxzVxbTW58uaMoexxwfxqJV3gdSRXXI4kTZModT2YVBJpFmxJjzET2HT8q55UGtjeNddTn4ZNn9a3NNkICEMUL5wR1HFULvRruInyU8xfVD/SrUQe3FuXUgr1yKmCcXqXNxlHRnS2964RBM4fI5YDBq+GDKCpBB6EVy+lXZuJb+3b71vPgfQqCD+prZtX8vp0PautanI1YsXX+pNYDdTXQTjzYj5Yz7VhSQSp96Nh9RVIlkJrV03/AFVZRrV03/VUMEQXcqQ+JrJ5G2oLC6y3p+8gqRtbsvI8wODjAIAPUMCRyPSquqW4u9ftLcsVD2F0Nw6j54K5bVIpdNtBbhw5R8M4/i6k/wBKyV7yf9bI6arXJTv2/wDbpGvP4htFYw3d75i5Z2kAOByML0/3h6fNU1vrkcyod8ZLbNyFWYhsgscZ29ieOeawdO1Gwij+e1iZjyxaMHP1yOaq6pfw3N55iRKhI5AGBx7f56VHMQ0du+rxQLkuZV28HP8AF6ZPOPrU+n6gL1GO0Ar6dCK84j1pbgPaOcNwU98V13hufY6oVADDbn37VUZXZMoo6bNZk/8AyNOn/wDXlc/+hwVqVl3I/wCKpsP+vK5/9Dgq57fd+ZeH+N+kv/SWZN9j/hOrP/th/wCir2ulNc1ff8j1af8AbD/0Ve10h4qKX2vVm+P/AOXX+BfqJUcgO00+kPINbHAVoY8Jn1qOX5mxVsjZGBVR25JoGRSsI0rCZjPd7uwNXdQuNqEA8niq9pH8uataK4nq7GigwlUpfvGr38NUJjhzSQMgeoWJBqZhTCmatEsi8xjxT0jLU5YuanVQBTbFYYqAUpNONMNSUAOaeFpqCplWgEKoqQ9KaBTj0oGVpjxWTdjN7p3/AF8n/wBFSVqTc5FULlP9M0z/AK+T/wCipKmfw/NfmbYf+I/SX/pLNxFvXH71oj9M0yWxkck7lrPF7c/89T+Qp63tyf8Alp+gocDn5h8umysCCVP41k3mkzjLIFz9a1xdTnq/6Uea7dTmlyIVkzkZLLUvuBeM9jT4LK/h9a6vGeoH5UoAPYUcqEonOOdQMRQbsVDpkd7bTszISG611QRfQU4Io/hFO1gUTmLxLmTV7dsHd5EuAPTdHU4huWIypxWpKo/t204H/HrP/wChRVoLGpOAvNZxirv+uiOmtH3Kfp/7dIpaVpEl5NlyUiTBZu/0HvXXDbFEsaLhF6CiCFba3WLjgZYjue9RzSgcCqSsYpWGSzADpVWRm4zx7Uu4lix/DNRNknOeaYxQ1OqOnKaAH04U0UuaQyQNipAc9agFPB4oAHiB5XihORsb8DTg1Iy55oAVS6EjNPWYng1mM2qXeqTWtpLawxxQxvvmgZy7MzjAO9R0QevWmSWuuRjc19YgZI/48n6j/tr71nzdkdPsEkuaaX39fRG3Hjfu2rz1OKc7GKTp8prDiXWx01Cw/Gyf/wCO1OYtbkXB1HT/APwBf/49Vcz7fl/mS6MP+fi/8m/+RN2KVWHyk5+tRvK6N1JHvWCYtbU5/tCwB/68X/8AjtP3673v9OP/AG4v/wDHaOZ9vy/zF7GH/Pxf+Tf/ACJrtKkn30VvqKI5Fi+4uB6Cscrrbdb/AE7/AMAX/wDjtHla3/0ENP8A/AF//jtPmfb8v8xexh/z8X/k3/yJLe3oh8S2Lt0Flc49/nhP9Ky/EMQeOJXzlsvt9yfpUF9a6pPr2nwy3di7tBPtP2NsABos8ebyencdD68JrNtqpVXe9siUO3C2jLgf9/TWXM/e0/LsvM6alKHLT99bf3v5n5GILfZ06U14CPmxyKJzfW4SR57Z1MsaMqwMpwzBeu8+vpWhsBFY3voROHKlJNNPtf8AVLuZP2BUvEufvKfu/wCya39GulF1HhTlSDnPHFVPLVVK4yp7ehqW2aO1JaNWDk4I3cevbr9aqLsZbnefaBms24n/AOKnsD6WVz/6HBWK+sTMPvBf92s1Zrq71+12BpD9nm5Y8Y3R55NazndaeX5l4eHvu76S/wDSWa95KD43tD/1w/8ARd5XSmUVxrqY/FtmsjhmHk5I6D93d8V1O5PX9aKK+L1Zpj/+XX+BfqTiQGpF+6TVQFM8H9aslwE4rWxwojnkxwKpTPhTUkj7nqjey7I25oRRk3Uhln9hV62+4KzEGTmtS2HyVpLYhFoHIqlcL8+atg4NRzKGFSimUguacEp4AFOJGKq5NiMgCkBpWNR96AHMabinqM04LTAEWpQKaop9IaFFI3SlFNbpQMgcZNVbtcXml/8AX03/AKJkq8FyarXoxe6V/wBfTf8AomWont81+Zthl779Jf8ApLH/ANl3Y/5ZfrThp9yP+WRrs/LT0FHlL6U+ZnPynGiyuB/yyNO+yz/88mrr/KT0o8lPSjmCxyP2eYf8sm/Kl8iX/nm1dZ5Kego8hP7tFwOU8qQf8s2/KlEb/wBxvyrqfIj9KT7PH6UrgcVKjf29aDa3/HrP2/2oq2LGItdx7lO0Hcc+1Wp4E/4SmwGOPsVyf/H4KvXCxwp8o+Y/pUx3f9dEdFb4Kfp/7dIgYnBYNyfXoarSOSTmpXbI44FV3PaqOcaT3puaa3HSjOBk0DHUCmb6XzB3oESA0+ogQeQaepoGLShsGkNJ3pASn1oDU0NSGgYsN1FJfzWjAK0Mccu4g4YOXGOPTZ+taBljdZFSTa259jc5AOMH8gRXOwn/AIqK9/69Lf8A9DmrSDYORUx1X3m1dKMkl2X4pF4TxBgx+Yrhen3gcZP/AKF+dOF0u8fvFzg/MN3qO/WqWQ4yOvemHINVYxuWJSrOxU5GTioTxQhJ+g71DNdRqCFkGfUDOKTaQKLZNuC/eIH1OKRriJesg/Dmsp7iJXyxY5HVmoWcXEbrBGHbadqjucepqfaMvkXUoa7eXya7psukpaTTJDNvW5ZlG0tHnaQDg9OcHvxWjLI09qRKEEzLllViwDdcAkAkVhNa31x4itoAY0kFvKTluAN0eeg+ldImk/Z7V2ed55sdAMKv09TULmfN/XRG1blUKfp/7czlNTGLdeMEXEOR/wBtFq4BxVLVZd0e1sB0uIc/9/FqWS5CqcVitZMuWlCPq/yiWN6r71PaabLqLERgIgPMhHA/x/8Armq2m2j6hdKjNsi7n1rs4UjtoFhjACKOldEKd9zknOxmw6HHaEMYzK4/iPP6VWlwPENkOmLS4/8AQ4a6AsSC2celZrwi58S2CtnP2O5Of+BwVc1Zfd+Zphneb9Jf+kswrv8A5HC1/wC2P/ou7roazL2wA8b2keTz5H/ou8/wrpf7NUdSail9r1Z047/l1/gRThT+I0lxOEG3vVi42QLgHmsksZZK1OFEu87Sayr+bc+zNakuEjrDkPmTM3vVRFJhGOlX4GwKqKtWI8imxInZ8HNKXytR4zTlHFSUU5pCj0sbFhTriPdT7aElelVfQnqNwaTFWJI9oqMLkUJgIlSYpoXFPxxTGIOtOpAOaUjikAZpOtFKBQMVVqjqJxeaX/19N/6JkrQHSs3Uz/pemf8AXy3/AKJkqJ7fNfmb4f436S/9JZ3tJRSZoOcWikooAWkzRSZoAWikzRQBmz/8jVp//Xlc/wDocFOmcvIx6jPWq96+PE9h7WVz/wChwVOh2OVY4BFRHd/10RtW+Cn6f+3SIZD7Gq7MfQVbbv7GqcmMY71ZgRlvWnHpxUXANG8jjtTsIa2QabmpCQRzxTGTjg5piHI+KsK4NZ4k2vU6vnkUNApF3OaQ1EklSA5qSwB5p2c0wik3GgCjF/yMV7/16W//AKHNWhms6En/AISG8/69Lf8A9Dmq9nBqIbff+ZvifjXpH/0lEgYg5qQYYg1XzmnGURpuNE3YyirkWq3ogt/JQgM3XHYVy9xqk6kIgyx7A1qXDrcuzOoOT3z/AEplnZpNfqxBKRDJGeM9v8+1ZayZq3yoz10fWruBp3kRVKjZCeCfx/xpttNc2MnkXcckLgZBYcHnsfx7V2YNVb+CKe0kSaNZFxwCOh9R71o4IyU2ZVrcxt4gtXJzutbjJ68lov8ACtpLllUgn8K54+GCJIpRdP8ALlRiR42UHGRlSMjgVYfSLdWwZb3I4/4/pv8A4uimppvQ3qSoThC7aaVtk+rfddzE1uzJTjcCbiIJJjI5kXj8M9D+FM/s6VnCtPM7dCY4No/Mkj+dWNY0y3iRAj3XzTQcG6lbrKo7tV+LRoD1e8H/AG+zf/FVHsZKTt+fr5GjlR9hH3nu/srtH+8aWjxFAMwtEFyACQS3vx+NbSgcs3PoK5+PR7YDmW+/C+m/+Lqb+zLTtLf/APgwn/8Ai61ipRVrfj/wDnkqDfxP/wABX/yRtux6HGT2FVFOPFOm4/59Lj/0OCqK6Pbuf9bf/wDgwn/+LrR07SrW1vI7mP7Q0wXYGmuZJcKSCQAzEDJUflRJTe6/r7i6cqFNtptuzWy6pr+Ygvv+R+sv+2H/AKKvq6K4lCIea5y/OPHtn/2w/wDRV9WtePuO3NZ0fterN8f/AMuv8CMy7maVyBRBFgZNSeWAaeSFStjhKN/IEjPqayo0q3ev5kgWmxJVrREvViKlTKnFOC1JjipuUkMVak20AZNTKvFICv5W41ZjhCrT0TBqRuFoAo3IAFQIKfcNlsUijiqQgYYpAaV6aOtUMdSk0lFIBO9OApKcOlACmsrUz/pemf8AXy3/AKKkrTY4FY+pt/penf8AXyf/AEVJUz2+a/M2w/xv0l/6Sz0OkoopGAUUlFAC0lITSUCHUZpM0UAYd+f+Kps/+vO4H/j8FWpBuZAT05qrqP8AyNNh72dx/wChw1Zdx5oXPOKmO79f0RvW+Cn6f+3SGyHaeeM1Vkq1NFJgE7fY5qq4/vEZ9qowISaaQT0p5ZQcCjefUUxDNh7nH1pQp7FT+NLnv3qKRRnKHB9O1NCehFeIyx+YgHuP602CbeoFVZ5buOVzJHmEDhlIP1zTbFskkHK5wK15fdMOf37GoGIqdJKqqe1SKCTgVk0bploP2pciotrDgjPuKUMRwetTYq5Sh48Q3v8A16Qf+hzVfbpWfCf+KhvP+vWD/wBDmqxczbMxg/N39qzi0o39fzOnEK816R/9JQ8yZOAapXlzk7QeBTXn2g84rNllOSeprJyuSlYn8wsc9cVSh1qW0ad0UPEWGOO3rSzOy2chzh3G1fx4qKK3U22wjgrilfsNWe5Y/wCEnvHyI4Yl9yD/AI1XmvLvUOLm4bYCDtX5Rn8KS0025unzGmIyqku3A75/pWtBocMXM0rOfQDAq4xnLcTnCOxXguJjsQ3E0hHCguSf51sSBxGpcENjPNSW0UMGRDEq4GOOp/GmX8xWJScZzXRCHKznqT5kZWq4NtGxUbvtFuM98eclaitWLqMqyWcZU5/0mD/0alaiGqt779F+pbf+zx9ZflEtBsipIwWNMjXKircKAChmViSMYHFW7UZljFV1xkgVYtDiVDSY1uY+ptt8dWn/AGw/9FXtacmXcmsbVG3eObT/ALYf+i72ug2jFc9L7Xqz08d/y7/wL9SiyHNRzHalXmTvWfdAtwK2RwGdtLuW9amRMdqmSDA6VKIqbYJEISnBKsCI08RUgIFjqZU4qVUpxGKQEWMVFM2FNPdwKpzy9RmmBWJ3PUyjioI+WNWlHFWIiccVGOtSuODUVMY+kpaTvQAtOptI7ACkBHK4UGsLVJh9qsPac/8Aop6uXl0FzzWBezF7m0P/AE2P/oD05LT5r8y6EvffpL/0lnr9JRmkrMzFoJpKSgQuaSikzQAtLSZopgYup/8AIyafj/nzuf8A0OGnN80rn0I/lTNQ58T6f/153H/ocNSLgB3I4yfxqI7y/rojet8FP0/9ukRuSQATz1/Cq0j44FTSP8xx19arspzzVGAClzQOlNNMALUw0pYKOajacL0WqRL8yUDJz2rnruY6bq4hiz9nlTfj+62ece3StOS9OcVQvIGvLu1dFJIyrH0HH/161grPXY5azuvd3RsQZlVXPCkZHvVoEAU0kAcDAxxSbuayZ0rQsK3FO3A8dR6GoA1L5gAosO5Xt9i+Ib3HH+iW/wD6HNTb8eXIXA+Vqht33+Ibw9vs0H/oUtX50WSMxuMrXO4Xj83+Z11pWmvSP/pKOdnutpIIyp6ioEkSVhh2+hX/AOvUOpRSWs2xwSh+43YiprCBnYbVJH97PANZqLZDkPuQrLGic8n8x/k1bt7Vs/vhhf7vrU9vZpAMli8n94/0FOuW2qG/CumnRV9TCdXTQtJcKqKuMbRgYHGKbJcjBrMM3vUE12EGSeB1rpVM5pVbLU2knwhOe9Vr+beqj61VtZy1lvOQWbPNR3E2WXNLlswU7q5Su8iFCp5+0QZ9/wB6tdHEdwz0PpWBeAC3jP8A08Qf+jVroIsYFZP436L9Tr/5h4+svyiW4zwKsq/bNUwewqzF0pEFqIgcmrMcqqe1UjnHFRKzA8mkykjOv33+N7Q/9cP/AEXeV0itjvXI3Un/ABWVqf8Arj/6Lu66Tzqxpfa9Wehjl/C/wItE5FVmhy2aBMPWn+etanCIIfaneVSeeo71G1yvrSAmwAKjJGahNxmmiQE8miwFsEAVXmmC96jkuAq9azZ7osxwaaVwuTzXNU2lLGoyxY0qirSsTcsRVbXpVRKtIeKGMRxUBHNWWFQEc0IYdqO9A6UlMBc45qheXIRTzU88wRTXOahdl3Kg1UVcicrEU9wZXPNUrg/v7T/rqf8A0BqkFV7lv31r/wBdT/6A1VU+H5r8wwz99+kv/SWe05ozTc0ZrnGLRSUlMBaSikoAWlzTM0ooEY+pHHiTTz/053P/AKHDUjjbCi+pqHUufEVh/wBelz/6HDU9xwqfjUR3fr+iOmr8FP0/9ukRMqgcHmomFOHegiqMCIio3qYjAqNhTQmVnIAyTWdcXSrkCrd0TtIXrVCPTWlO+4cgf3F/qa1iktWc9RyekSBJgxLMcAdSafZ6kkt7HBC2QD8x9auNaw7doiTHuM1FHFFFOrkAAfhitOaLRj7Oaa1Nk8rxUJc7qmjYPGGU5B6EUx0+cEVgdYkkhU4qJpCxCjqaq6hdC3nwxwMA1Nat+78xu4zWiWlzJybdhX08tdm4ivbi3do1jYRCMhgpYj7yn+8aJrC6VN41i9OOvyQ//G6d5xLZFSLO49MelZOkt/1OuOKmlbT7k/zRTbR5Zlz/AGreE4zgrFj8f3dVjZXMZKHU7xccY2RDH/jlbm/IHGPaob1omjBZh5g6Y6ke9Cpq/X72EsVPy/8AAY/5GX9lnxzq15n/AHIf/jdRTWk7xsP7Uuzx3WL/AOIq3nPPQDvSA5GO1WqUV3+9mbxc30X/AIDH/IxJLecD/kIXJ/4DH/8AEVmSRzXF4LcXk7IvzOSE/wDia27z90knGCOlUNIt2/fSv1Y/pXXClFRctfvf+Z51XGVHNQSj/wCAx/yNC2s52hwNSuh7bYv/AIiq0lrMWwdQuT/wGP8A+IrTtTgY9DTZ7ZkkMi8of0rndON+v3s7Fiqllov/AAGP+RWt7F5gizX1y6q6vsIjAJUhhnC56gd66CM7VrNgUqwrRxwKjkS2LdadRJS6dkl+RZjf2qwpFU46socVLQ0yznIqKUEcinqGNSbcrtPekykzlLl/+Kttj/1y/wDRd1W+ZcVz1+QniyD28r/0C6rTeYetY0V8Xqz0Me7ey/wL9S2bjHeo2u8d6otLmoy+a3UTz+Yvfaye9J9qOeTVHdTSxp8ouY0PtfvSG8x0NZxY0uaOUOZlp7hn70wZJqJalWnawrkiingc0xakFBRKlWENV0p/mbakZZPIqBhzTklDd6RqEMb2pkh2ipB0qleTBEPNNCbsZuo3WAQDWIAWYsamuZTLKeeBTQuBW6Vkc8ndjG6VTuf9dbf9dT/6A1XXqlcf6+2/66n/ANAapqfD81+aNcN8b9Jf+ks9pzSUUlc5QuaM0maTNAC5ozTc0ZoAWjNNzSg0CMq+58R2PtZ3J/8AH4KmmGUBqK558SWXf/Qrn/0OCrCgspAGeM1Ed3/XRHRV+Cn6f+3SKmMUuOKcRu57VG8qrx3qzAQjvUMjelDyZqMtmhCZAy5fJ6DoKaTzU+A1MaPA6VVybFdycVUlVmUjBOavMhPAFL5WBzgfWhMTRV0UNbSSQNwjnco9D3rZxjkVneUAwcH5lPWrF7eraWD3BGSB8q+rHgD86b1Yo6LUxL8i810ov+rgUBvduuP1q20vRVPyj9azbRGgtzubMjks7HuTyTViENIck4Ud61tYxTvr3L0JLn2FW1IU+pFVd4Rdq8etPEhVcAc+9Sy1oE9zsBC/ePX2qmWySSck9zUkik5x1qvgg81SSJk3clByMn7o7etSocryKhJ4HPFSr0UeopiIZbP7RJg/dHJPtSW1uB8qrhccVfRT5cu0ZJSo4ojs3AHgc/Sr5ny2MvZrnuRpEJHOB7fSpEJX5HGR0qVo9sglTv1p72+7nFZNm6RB5QzuU5HpU5OGx6VFtePtkehqVPnPII/GkWiaMcZ9asoQKhjTB9qmTrUMtFhCTxjFS7crUa89KswJuyOoHWpGjjtSh3eL4FPfyv8A0C6/wqxdQmHkdKdqKf8AFZ2w/wCuP/ou7p2rMyKeKyoby9WejmG1P/AjL+0ruxu5qQSZ71zd3cOkpzkU6DU2XAJrt5DyefU6QNmlzWZDqCP1NW1mVuQahplpk9LUYfJqQGgY4GpU5qDvViIZpMaJlFSqtCLUgGKkuwg4FUL65ESnmrVzMIoyc1x+q6jvl2Ka0hG7InKyOj067Mx61rZytc1oJJQE10YPy0pqzHB3QjNhawtUn4IBrUuZtiHmuauphJMeacETNkaJnk0rEAVG86oOtVJLrJ4NapGLZNJIM1VkBee295T/AOgNT41aU5PSrRg23Flx1mP/AKLepq6R+a/NG2F1qP0l/wCks9cpKTNGa5SxaaaACzYUEn2ozhtiqZH/ALo6D6mgAxmhVLnCjcfap0tu87D/AHB0FSNMsYwgAFAiNbQ4zIwUegpsnlRg4Un6moZr9F5Zq53VvE0NsrZdcj3qoQcnZETnGCu3Yfe6jJ/wlOnxwKvmG2nQDHTLRHP/AI7W5kRLtQc9zXl9r4yt7XxLDeTKXi8p4iw52bip3f8Ajtejw38MsaSKQyOoZXU5BB5BonTcJNNf1ZGnto1KdNxfT/26RHc5SMtgDJwBWcSdxyav3ciyFQDkAdBWa8m1j8hqUJinlTUSvgc0NMcEbarO5zzVWE2WvMUHlhn0pv2gehqmWYgjPHtUL9Mkk07IlyZeeZv76IPbmmiSPu5Y1QyDzmlBx3p2JuzQFwo4C/nVHUJ/PlSNiFih+ZvTcRx+Q/n7U5n8qIysMnoin+JuwrFncyTeW7nYh+Ynje3c/nVwj1M6k+hcWT7Q4xkRjv61eQbUwOB2qjAyKQAfyGavCSJV3PIqqOpbj+dUxRHltib269qkibcvJqjNcxyybY3UqvcHgmp7eTBAP50rOw1JXLRAqJkzVgDrSFKm5bRSYHI4q0i5pfJB6ipY124BqrkWLFtEWYqDgkdasR2/2eTaR8p6UlouJAa0WjEyYI5HQ1LZSRmGDypMD7nUVKEVx0wasBMjYw5HSgICTke1S2Wim8G7pyPWmrBtORmtDbQIsnNFxlXYR2qRIzU2zmrUNo8g3Ywvqe9S2CRDFCznHNaEcaxR4H40+OPYmAAPxpsnC9R+dTctI5DVcDxpbfSH/wBF3lQ6pMrOUNGqMT4yt/pD/wCi7umX9uXkLVnh95erPQzDan/gX6nPXVqsmTisx7IhsiujeErVdoge1dykeS4mKkUietWo5nXjJq6YQegpPsoPandMVmhsd6R1q7DdK461TeybHFVJRJAc4NDinsO7R0CsG71et1yK5S21UI4Vz+ddRYXCTIMEVlKLRpFpl4DFDnauakI4rN1O6FvAzE4wKlK7NG7Ixte1QQxsu7muQhla4nLk9TVLWNUa8vzGpyM1o6XbkhSRXZGKSOOUuZnZ6GuIhW6zbY81k6UnlxCp7+5EUR+bFc0tZHRHSJnare7EIzXMvdnJJPNO1K7M0hAbiqsMJlPArZRsjCUrsHuHkOBmrVrbNIwLCrNtpvQkVsW9qEA4ockhKLZDbWoGOKkuUC3NgB/z3P8A6LeroTA4FVrtcXWn/wDXc/8Aop656ruvmvzO7Cq036S/9JZ6Jmud8X+K7bwnpH2qVRLPIdsMO7BY9z9Bx+Y9a6CvE/jbdSHWtOtc/ult/MA9yxB/kKzW5jN2RlXnxN8Xaj5jDUktbdv+WNvEiKPoSC35k0eG/iBrNlqkZudSuJYS3zI77gR+NcCZCB1NLHKVZTnkGt4SSdrHJOM5a3PqaLxPDNbJKvRhnNZuoeLYIAdzge3evPvC+r77FYHYnAyKydYuHe/cZJweOa6YYWLlrsc1THTUVy7nQ6p4xubksIjsX171y91qE07ZkcsfemJbzyg4Rj9BUy6LcyKSV2getdaUIL3TznKdR3m7ma0pIJz3rv8A4e+I+f7Fun+VstbMT0PUr/Mj8fUVws9oYCUbk5q74asn1DxNp1rHuBM6sxXqFX5ifyBrlmlJTT7/AKI9PncFRcf5f/bpHtrgoajdQ4q7dW5Tgjg9DVEEqSprzT1Soy8kVBIOauOOc1Wl56VSJZXPFRk7ee1SHkEnoKhbO70qkQxhp8Sk8scKO57U1RuYCq87PfObW3yI84kYHr7VaRm5WD7b54kuQMQRfLCP7x/vf57VUhgU/MVwaszxL8lvGQI4/XoT/n+tMkmjhjKIwafPQcgfWrXkZPTVkpZIEHG5uyjvVORJ7qQGTGB0UdBSwI7sS2WJ6k1fjjqvhJs5ECWKirMdqQeM1KCo75+lSIxPCrz6k1Lky1BIciOg4c/jVuPJX5utVAJj/EB9BTlhc9WY/jUM1Whd2j1pQo9RUEduoxn9anWMA8UitS5aMElUMcDPWtON0b7jBh7VjKvOc1sabPFCjBlGe571EnYcVcWVQxz3qLAq28iyqxRRu7ZpLO289GMoZGBxhT1qOdDtrYq05VJ6DNaaWkUbBgm7HYmpfKjXLFF5ocx8pjKsxP8AqgPqakQ3DkgkDH+0TWmTHGCcDOKZZBd7kqDuqFLuNdil5MxOC60/yzGPmbJrSe3Q8jiqFyrJ9KrToVZrc47UiP8AhMrb/tj/AOi7urlwA3SqV+N3jG2/7Y/+i7utlolFZUfterPRx/8Ay6/wI56eJy5wOKrtCa35VQZ6VnTAFsCuuMjzHEzTGQakQdM1Y8vPanLEM9Kq5NhEiDDpRJYrIuCKtogAqTAxS5irHK6hou0F0FZ1jrBsLkRSnAz3rqNTuViibNeZ6zOZZyy9Qa1TutTKWj0PWLPUo7iIMGFc74rvsWzqp61x+meIJLVNrOaku9U+3sFLZzRGKTuEqjasZ2l2Lz3LSMM5Ndxp9lsVRis3To4YIwQRWsNQiiXORVyl0REUt2bSSLDHjNc/rGoBjsVqq3mtggqjZPbFZ8KSXMm9+c1MY21ZUp9EEUTTPnHWtyytAAOKbaWqjBIrVi2IMUSkTGI+KEAdKsrHxUayqKDcqBWWpsrInCgVSvcfatP/AOvg/wDoqSnG696o3k5a5sT6Tn/0W9RUWnzX5nRhmud+kv8A0lnpOa8H+M8m7xbbL/dtVH6k/wBa93NeC/GZSPF8LEcG1Uj8yKmJzz2POGNCnmkakB5pp6k20Ot0K6aNEIPSuy03T7OZzdXPzHqAelcT4ft5LllSNckmvV9G8OGS3QSAnIr0HU5YI8mFDnrN2KWVlPlWsIx6gVcGiyFcEFmPYCuvsNDgtFBK8itNIo0HyoBXLKv2PQhhl9o8ufwZPeapDAyiLzYpJAX9FKD/ANmrpfDfgeLw/qa363bvKFKFQoCkH/Ircn/5GWx/687j/wBDhrS7GsVWm3Jef6I66mHpqNN21S/9ukSSIsyFW/8A1Vh3CGOZhjkcVuq2VFV7q2jmG9iQw7ipEmYL8Cqj89TgDqa0p7ZiPl5+lZlxG6HaRjFNCkyGWT5cKMCqbzsCcgGpnyM5qBgCcBSWrRGUmNEkk4MUCMWbgnsKlZ47C0aONwAozLMe3/16ZNe29hB5bOBKRkqgyT/hXN3N9JqEux42WJT8oTov1960jG5hOaj6iXutSTt5FkGSMnG8/eb/AA/nW1YaexiXPQDFZ9hpsSzCViG29B71vxkr0qpO2iJhG7vIetuF4UYqX7N6nP1p8bZAJqcYNZNs6VFECw47VKseO1SgVIo4qXIpRGhOOaOlSDOPWjAPapKsItSqKaF5qUcNigB6LzVS+0Z3uo7+0vJLaZHDyc5R1xjBX6d6vxjmrk0ayQrGuORhvcUmwsnuY6+L9C/tCz0+PUIprq5yEWI7unqRwPxrp7V22kAYIrm7HwrotjqEV/HbK11EhRHI+4PYV0MVykIOFOTWTj2DV7l4SNjlKY0gI+aohfOR8sWaY087/wDLMAUuVlMe2GU45p1sQrBec5qsZZgOgFMWSVG3BgDTUWJJpm1Ve5i3occVQ8+dus1IzttO64P0zVJGjlc43VWaDxhb7u3k/wDoF1VifUWycCqWr4bxbDgk8Rdf9y6rH1jUfsUrZPFZ4eUbyT7s78wTtSa/kRt/ankPNPU561wf/CZQRtgvg1dt/GNvKMBxXXp0Z5l31OyGDT1WuYj8TQlsZFaMGuwSDhxSsUjUklEQ5qlNqqIDzWZqep71/dMDWE7ySAlmrRQM5TtoixrGqedlVNcnc8kmtWcAEnvWXORk81Rk3cyLklMkVnjVHt34Nal0AyECueubdmk4FZ1G1saU0nubUXiaXGMmrsOp3N2QATisXTdIeVgWBrtdL0lI1G4UQcnuKfKtiTTrN5CC+TXRQwpEvSkt4UjUBRUjqTwK0uQkBuNvSlFy1MW3LdqnS1x2pFaiCdz608M561KtvjtUohx2pXHYgCk9ahuFxcWX/XY/+i3q+I6rXSf6TY/9dz/6Les6m3zX5nRhl779Jf8ApLPSa8r+MHhm71FLTVrO3kmaFDFKEBJVckg4HblufYV6nvT+8KTen94VmiGrnyI1vMr7GicOP4SpzSPbTx4LQSDcdoypGSew96+tbqCyvbdre7hhnhb70cqB1P1B4qlZaHoOm3H2ix0nT7WbGPMgtkRsemQM0E8pyHgDwNJpukR3GpR7LmcBzGesa9lPofWvQo4Y4VCooAFJ50Y/io8+L+9VSk5bhGKitCSiovtEX96j7TD/AHv1qSilP/yMtj/153H/AKHDWl2rFv7+G11yyuXSdohbTxlooXkwxaIgHaDjhT+VS/8ACS6f/cvf/AGf/wCIrNSim7v+rI7J0KtSnTcItq3Rf3maqN8tRTycbazV120Ck+Xfj0/0Cf8A+IqE61bFiTFf/wDgBP8A/EU/aQ7oy+qYj+R/czQGM5qlcKH3AgGozrVrx+6vv/ACf/4ioG1e1+Zmjvcdv9Bm5/8AHKftId0H1Sv/ACP7mUbjyoWOVPpxVKaZoxshQAnvUtxfW0m7dHd8/wDTnL/8TVdr+3Jz5d0D/wBesv8A8TWiqw7owlg8R/I/uZQa0+ctISWPUnnNKLRR0AxVpruBv+Wdz/4Cy/8AxNQtNCOiXWP+vWX/AOJrVV4fzIxeAxH/AD7f3MEgCHIYA/WrkUgX7zr9ciqYnh7xXP8A4Cyf/E1Kk1v3iuv/AAEl/wDiaTrU/wCZDjgsStqb+5l8Txjo4qVbhf71VFuLML/qbrP/AF5y/wDxNSLd2g/5ZXf/AIBy/wDxNQ6tPujVYPE/yP7mXVn96sJMO4rN+3Ww6R3n/gHL/wDE0o1K3B/1d3/4By//ABNJ1KfdFrCYlfYf3M1wysKUEH61lrq1uP8Alnef+Acv/wATT/7Xts58u8H/AG5zf/E1PPDui/quI/kf3M015NOxliazU1i13cpef+AU3/xNSf2va4+WO9P/AG4zf/EUvaQ7oPqtf+R/czbs4/NmCZx71dkSW2+YqGXsRzWFaa7aROrFL4HPP+gz8D/vitAeILNZjmG/KN2On3H/AMRQ5w7oFhsQv+Xb+5krOzPu6fhQGcjByahl1exC7ki1HHodNuP/AIiof7ctP+eN/wD+C+f/AOIqPaQ7l/VK/wDI/uZorNMowOlG+c/xYrO/ty0/55X/AP4L5/8A4il/ty0/546h/wCC+f8A+Io9pDug+qV/5H9zL5WU9Wpuxv71UTrtp/zyv/8AwXz/APxFJ/btp/zyv/8AwXz/APxFHtId0H1Sv/I/uZoiL1Y0kkaqueaoDXbX/nlf/wDgvn/+IqG41212HEV9+NhOP/ZKHUj3QLCV/wCR/czE1Eg+K4Mf9Mv/AEC6rF8SWqTq2RVy9vBJrkV0sF4Yl8vLG0lHRZwf4f8AbX8/rWfqmoxSAgJP/wACgcfzFcKmk3r1PXxWHqyVO0XpFdDgbrRVMjEd6jg0co4xnHtW7NKpc8P+KH/ClhlQHo+P9w/4VftV3OT6nV/kf3MqjTJAoO9vzpwimthlWJ9q1o54yPuy/hE3+FJL5bKfkm/78v8A4Ue1Xcr6nV/kf3MyDqRQ4cnIpJNaVVwGqO+hUkkK34qR/OseWA5/h/FhW8cVbS5zzy+q38D+5k1xq7MetUZNTJPJqOW2bnlP++1/xqsbKR26x/8Afxf8atYi/UyeAqr7D+5kz3+VNLaSxyyjdUJ06Tb1T/vtf8ajjtJYZMho/wDv6v8AjWvtl1aM/qdbpB/cztLTyo1G0CtSGeuWspnAAYr+DA1swzjAzu/75JrZVaf8yMfqmI/59v7mdJbTgnGa0YgrVzEN0EIOJP8Avhv8K0IdTRR0l/79N/hR7SH8yGsLiP8An2/uZvqiipVC1hjVo/Sb/vy/+FSLqqZ+7N/35f8Awpe0h/MvvK+q1/8An2/uZuALS7RWXHqkXdLj/wAB5P8A4mrA1OHH3Ln/AMBZP/iaXtId0UsLX/kf3Mt4FU7wf6TYf9dz/wCi3p39own/AJZ3X/gLL/8AE1G0y3V5ZLFHcfJMWYvA6gDy3HUgDqRUTqRasn1X5m1DD1oScpQaVpdH/Kz/2Q==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFACAIAAADrqjgsAAEAAElEQVR4Aez9eZClWXbQCfrztz9fw8Njz32tqszaN1VpBbVYSlIhIYEBPTQ9ox4bYJie7hnGZmx6/mBs6FFb07Q1BoYZjA00CHoaUDeLJBBCVaXaV2VWVS6VVZVLLBmre4Tvb3/u8/ud+33fe75EZERmFjQYNzy+d7+7nHvuueeee+65y1fqDfrTU6W9vb3p0vTU3t5UuL1S+n3DJ+lTluk8KZ7d3L8L2MGw3+12+v3ecDjc3d2d2jU95XW63SGxg0G/1xvtjkbTpf5uqdsfTu2WBqPRCAym96ZMP9wb7Q12+Rv1+qNdXvamZmfnn374geX5Rq1SBYFSaXp3anq0N90ddF97/eLr11c3293hcG+6XCmV9hrlxqnl5fL0dLNW3x2OSqVSrVwZ7u2ub2+ud3f6w/7U7ujsiZPnTp9ptFrTe+XBYDgY9vZK069fXrlyfUXokIb/hZsqTZenG7Xy+59+4uyxmUa1AvFyOuRV/9f4C16HS9vb2yV4CN0k7tR2tyvZK8NSqczP3u5UaWqvbFuU9sr1Pag6NRrujnZ3B7ulXYhQ3q1Wa7VmrQZPTE/vlqf3KtMQUz6hEaHG4RLvNQQEaLrd0nSJJi/tDnendgZ7r1+5vLXdXtvo7O5R1sC23QPhxGOWMC4aLPf4P/X44w/dtzDXmK4M5ODRPaMR1IPjRnuVbn8XFgLCbgmC8JzidzCCQ3uj0bBWqwYL7FXKjSnwioyV6XKjUoU0VUq3JeSNRChAgq90rpRLMLP9gr9yaaqSkISr6RTdHkwffWYXjsUHwUvlcnl5bubGehuCQybpVCoNd4fDAfxvEyQIgQ8FwH+WSjNWq1VIVKvVKnvgWCqbGVaYGo5Ggz2IvNvtdeh04LY72gNBGIE2397i3/ZuqQxKO93eJigNh/VKuVWrzTbqtfJ0tVIp2ZkQFeXWbOOhB84uNSt1mAM+erNutLe70+tfvrFSrzda9RZo7nTh0/7iwkKtVEYgXFu5QWWWFo81qrWdQe/qjWtzrdlj8wvQs9Prvfr6pZnZhfsWj1VqFejy+o2V1a2tpx56sFWrgOfl9fUXX3v1vU8+caI1D7nbvcH5W7eev3RpaW7+kaWlZr1Rqdfq1TISZrfXg+1HfUQCvWOq3+8PEE08+/29IRxIpwgZQJ+Av8LtDoadXnd9a3N9cxs3GO6Sa3tne9jvTUFNBN7OTntrs9ftSup+b3cPuTWCoSHf9N5uq9FEMlWr1MNGg4V4BbC9kZ5AkaPR3/j1z//ST/8obVehOXHD/oAe8eaJLYMl7DPWSTUJXqKGu6CQQuhrlIK4bDQaWzvtsgJjagA7TE2NdoewQh8GRR5WpuWhwJgMMr7/kaX21V63t7W9M1svl6cr/KdKdoRdmqE7RIbvIpJINy1vT9HBYGr4e7o3GlZNXrYT705BPDK2ZmcGvS7SHx5MGPKUIA4uSOkjJG9CRnz+LXDIB+kW2NLCEJs/6gcTM6hBX/o6tLKuUHuXWAcbWMGmoxOT0ShFgnKZV55vS71lxwKQrXrYES/yt3V3iLptnoMR1jyaEhEGxyn6YBy1A10FmWyloQCSUSkZziDYlAT8BwJdLMSykZFv/IDfLUKaEhik02eyyFOR0WwBfuFHKC+LIxRI0KiWW/VIMDW10e3QPAm+pUe7Wp5S0sQ4XwOBXYeGFJYCjQspYSVxKe7pR+7/9quv4//hD77zNz/79SzDxI9oZ47QrJRQV4QO4kRPJH/r3jE0x++DLi/scMzBlMV7UN03Bqm9cmmvVkWlswNkbCxnIz0lfvwpsfXwRDXEFzzBqBtlOtThjKXRYyCcnZ1FgHd7velKpdfp9Ls7yORKpcqgkwrq0/5DtEcElDCmRw7hND1yGXEkVrgQ0EIO6Knq0ZR7FWR/o1FXwOUtMCYSQffgkmimiMQaUaO8eSW33RvRDJVkzxJj8lRp2K/2Kyqt7R4K9C7DxVRl1HeAZwRFiZ62VqoPBaPI7qjdN9fXGxV6UQktWuYr7e50+jdv3mzvdBTs6FYhdSinNxqsbqzPzcygOO/VG4qh4ajd7aAoA5YuCX3a3S5j4fLSUiJNFDEYMWoo4oGxjwpBuIxz90X8L+mFqkVDODJB/MCZoD7/JeieHhslOrq1LGYBpoXcSAvopBBHg4XCCg+EUkhn6PN21FUUkxv7sgDgJzRs2tsWp9x7q5gk4DyVXwEt0zvBBK4KoYxaiiqDFgE2BEMEkKOvSg379p5cXRpJ5+CVeIocQt2qQXF/IWvCNuOqafo5Guk0vT8EAtHOTpTI9uWf+ilmaavbbXBo1KqLzeaNrS11OPIkmDaLZOItuYSYdcHRpSFdRkeSkc2Uk+nzfId+C5A2Qnopgqw1BAASaE4UfgjIvQQkuky2ZhBuHwiqlCebDB8jNhkaNMoC6PJC25uqTVfmmmivqmkV7QZJHDspQRIjmk0VEnnXibuym5mT4TSJEiVqDc33GFwrTFNmSuV6vY4GTRGodCMEy84283wMAIhh5qBMTEcjmndvl0ZGa9zdrVSRyw7oFaR4lWEdULIPuFI7ygpcxdygqenK2ubaseljcIkNGPQO9olYU9zZkYF/sBCZAA1eKPGp4/NKTXZjqFUqwiLM9ECJsqAGSNfKpWqDCUoDjZi8EKM/hcpmTQZ9jRw4kQEmcEPToTLUGOGxvr5JbVCKmYJVK1Wk6frG5s31W2jL0QC7EJZkYECv22xvD0dD5jVQkr7l/AV7i9UtObipmeyt3ro5PzPbqDUJpCsOGCUgVhCEEDAxdTgw590/XLDqUXxzZ7q9nbHgk9ArnmJYKtPYsMEQKYvHbg/rDSG3LFOtOgSWp5iNVcpVGxEijHaZxZJY5pVlYCd4E/MGPGNvzIfeaI6oQSr6zVYmmjbBCWLa2lGXRFppHEypJ3dRNQmv8DE5qMkfkTZPdI+/AFHkTKMf0POckAnR6jIfdQ6BKIZDVFalROai5S2J90Ak45YELUWoKkC36QrUrahxKBNIEJ2Rt2nIzYwmhEVpVMZUgf4s35bI8uf//Fa3T73gMfi8PirTfOVS+fjsLCXSMitbW2cWF69vbpp8qnR2cfHmdnu+2XD0KJV6Q4cbimo1yrAAwwccf2p+bmpqdm1ra3VzM9CQhCQuaoGHTABPJCc2EiCcCDasaAkrExmt6ZtyUiPBLbJHR7JEBhfHqijNRDpL4wc84pcmI00WliDsw0ciWH/oCZkdIffmG40m9ihlkLFRT6gUomc0NHWkZ54emNEUkNwpeYapVWaKSWHmRzRXaiWMGF3MxIiM0d6w2kPq0o7IZsTLEB7a7Y/KUB7FGQmuMKyhNWMQq4TdS4/DHYMpmSg8DE8OCVHGNEVXVldXFxcXHSEgCvxH8ZIlSJOqffsnia1nDBMIVcabShXOsnZk4omgIwEIoPajiJW1j0FWY8EV3pQl+atXwWk0QpcudXZHmPNQs5HQ0VEgM8ICGjm5BiYAqU93tLuyvtHt9+ZnmQWWu12oBJGoB42rUpIa14KoGOoNFq72Tr/ba7Va0ATiSgPkc1j18AJqa2trVAcRxs5oldtRImhjHZKTR/Yxa6p+Hn1vv9Yu3CSQIvDOsMgymYtWpubUpVarb7c32u0OBvedzmatOcOo3Ww2IXm9WnfEZPyXdrvMqQe7AxgWcSVHqxNYO6fjCOr98O+MzBvGHsFh8F9wTiqygDBZ/TwBDBr/jEski2Yo8ty1pwCuEblS7kOwvak+xACswjUeQpMZ7SB5AxkEt8XT0S7kL2mc/kbpoym4FMum9otSDSEMT8LTMr55aZzwALDGW6WCqKDU4V6pjyWYkp96CrUDyUIk2VbbW0j75VZru9fZ6nRm6vXjc7Ptfq9Vq24NaLgaqy7zzXq7T1dDJpSXZho7fTARQ+yr7f7uTL220e0ydzx37NjKxkbgOH5YL1KbI3uKJHjwP5zkFm1fomfQ0VDNxhDu2Sc8IcYzlZq8QWQtv4FSoBGFppTxBAMjUxfNgCR4KbrwkwYpbuNN7c3Vm03WVlBc4WYqQg+heyC4hgM4PfERlg0C1aDDjoEckhWURhTIP2b2TtlDwk8j7QCFYMMGMEL+VKoNJlv8AZyGQ0IjiWL9QZrZyMrlMoppGfUZq2q55voFwld4VmfErEvVES/zNviqsrK6ipXjPe95DyAITmyYKnkXz2BiVNrhoNPZGQ2xltSmWTuQrYGn/kAnV8NGUqM4w24ypwMQhYEhQZAPYzlYKVCwPPfbg7LreBijxTgR35q6ggK4yAGVWOIadfqDEobs+bn+aMiUIZkRoZfjWBRkfiwnlQqzGwY/5xYQl+ZxXinser3cQ2wzUEJiCu/3GQhCQBuN31rsd6A+dvuj/k29JbJQOvXC2diwx7DXa3fbne52ZwUl7saN1QuvX0Yj/sJXvwa7zcwwVDWffMfjEArh8eTjj5w8cWxr0Edes8LE7IRWggShZTD800waOCiIUhIDvf2VDRYNsHn/ynrhuCgqF+VHZ4lu93YhU4E5djVWyDkM3EmVpcZ2CxyMQ91t+UQEZRORwZD0aWx2YqY8dPEVLqXTd0cD1DFYuzTEdjdVpbNmAkmIwLE2DAxqjPaMEe0EladYyhsyJiqnyU5C+k2USv9f2dqg5J1eb3lu4UZ3Y7E1w+IUq3mswi+y+tSg9wFanGHj6IJllshAdLM7YgBenJmBQ0xzJ5cRNcOObqAs1qFYUTWkmnqM2hCd8i06OQrKQVrpmbuxLw/h92Bg8W51j3YKSoEbO99ssVOgHFKAmcxwl4XA/pAV0UEv2gW6IANQSjRvUstoE2SyNnvqzqYDpCugJCACpIzap9aIQ6SwjsqqIxROEzHNIjDU1DTzUxKjS9cbdUqGzRghqjUmsXgV1rT+dK0OirQXdE9CU3RhI1au19ZX//u/87f+y//XXzx58qRFWec3bD+zJwdXCQfR1uux/AmX1mqwhcVQKeBROcZ0qESbYj2mniCWibgkLGkXBorqsNJju4CTcWaZaNDyrCOJIxl4y9tOVVBV6DR2EubmTAuYgtCZAIhNGZQg65REmB5AE5sFyY8tBZiADHt8udKo1aOfU08xNBMLrTGEk11VUWa0AwaArKaTP9IcnKLLps4wGfu2+AU+wa8B0+pkTIo3jRx7bF9R9Youw2CHbR+y0oylra2dtc2ty5cv1xrNdrffbM1Aime++ezJ0ydYfX75tZcvXLzwmc/PP/nO9yLMP/U7n2OC/5EPv/8973n69IlFRLQ9j1JSK7iUCz1lU/q+TKoLfML3ph4JyMGssAp/0a9SEQcSBN19kCZDQFYT08DoQPK7fkVWameMolnYwAoG6w4xuGVoRoQSVexsGf7CQXvmsDHPy5HSIslyPnypAW16b7rHZiElOG0DCCHauuGBFZ3cRmuzqwDOqrmJZm/que9V3v/+jnqK2svJ2fmVnY1UIvmtf5RCv2CDDVm2e+gWU2vbHfHam2ZzEV0BqLwoa0pTx2bqaNlo33ONRjBtXoEEtAAdHuJSKYgebbZOxZTyAGTIwPzXt8/t1d4GAW1F8jJzL79FcISl+k5Ep9As3VE1GadNgp8ugWBUNwMyKiNKMiKDnQJYP/sDLA9sH7N7MfQoU/hhUUGnKGB2U9WshCABMZsumgCFmBzlIYKFVrCBbV8Z0+GWJSwkHdYnBl0kWqPKVJ/m2lOP1gCNIEJWgw/Dun9kQOjQ+PRlylU3x/z13AvfvnD+1X/0D//BH/uP/uTszPxstUUBaXQM5OwKyaELEzLpQBOk6fYosHBkZ9CvjCq7oz4cSRZSwrmIbQQ0LeokemrUbDYao1GrVgc1FXv6RInJxR7KRaPKokypPV0HW2KQFxrqoUUkASaFQeVaqUqJAV5c9kqyppWU7CjWVYhJFaCXugfSWnqpA0CzerXaYHLh6x42fgwdkGiuP4OFZHNzE+aDWjQdNhLHGFoGgtEjw40rzpYPoEJDtX/7aUxX43ecSB/59gfse4tenocwAIUETM/IawPTujwYnjT4uF7HD0vGI1QlFjg73U691mz3R+urtzDgMI+ul6sbt9Y2u+1qtYXVh71C0+X6pQuv7+zsgF+lOfPIIw//1qd+e21j/f7773/P0++6eOnid5//BtWEKvVm46Xvvbr39351aWnmT/zRn//Rj/8Q86/hqEfxtBwVprVgN+rMUAlWGkEcygH8plzK51DOH4CgFV2CEZ0KKwpCAgCZ3U1jjaEgmqYE6KE1jLQAQEd5U2jkmWJAdprGH7xaYylkalSfril7ZbM9NxrJEXTcSKsSiXPlUDtjnwlstkOAGDoZ7DNNR99jUxbaRIWZJF21qkEplG3ImmGM/KUryiwR4pwNe8vUX//r87/y93oDtleVZmsNkRhNdQa9Zr2GlWOmVscPhp1hf6HeohiYl+UpGLo7QFMuzVTLm+1eojHildyYXtc69DUFVAkj6YAKqWcM7TpyWbCy/kppmq6Hhz6COkVXIpTZODZRJlNozhsMA+V5VukXRgNEU3SRxAdKcEVavg2G+Sul4xwp9jukmbuJ6Ipkkq3s1FI0nBjnzh4AAtEQYAxJFbMkB6ZNIenAWR0ud8rNMsZ3ZV6lVmfPFrssyuzAc8MoOnSp10FiTWHgRLMssdFRlKkfu76GJdorLPiuEA57DLb0PfIB25F4eo9mhu1Y9wMjsHCEZM1wukJ/qwyGzbLzKfjCqSjMMqoP1CltYgpmiEbsINARP9U6AxxKtBynbEMUAp+FxFCTYRSU8sq3v/lcrVr/tV//jeXTZ//AJ3561BnM1BFi2h7st0pxBflt+qGkJw2jLKkZj9jdzI5lCpUc02W06h4rcu47KcP0zCkcwfZ2mWbAstEhab7YYAiNqTodtOxezgZ8DGX3MDwg3/uBBhwDKRBVU3RG2ztvQ7db2E1zdViVUnZ0DkJj0o4Q3oHLkSshTEdZWlpiEKNHoinNzMyw7c9pLWD5n0Pml4DkrGpyY4mdpzPFZNosy738ZOU4h4wyYT5GZpca9vZQfLZ7vUvXbmxu95gOoRQvnzi2tDS/tbXx8vdefeDk8gOnTi8eW6zPzuxsbLc7g9/+1GfPX1uxVarVE8sn5ubmO502FvabN67dWFnZ6XTmF+Z/93e/AZ2Pn1ieaTaQgK2ZGZZFZ2dmmAxtbG3/pb/6N7/+rRf+d//rP3VspjkaDMpIGfgXDlMdoI+okcHREP1e6ngvaZVW8sQkic1/KOBegN5tWkjH1EquC9FJNuqLksVaEOzIMKWcRo5ogIBgbgdyTGfkVh+ip4XohpOiFwXWrNLxN7LrORHkwb8Cn0ky5lz2D/5B/7//O6cXFhT3e3s3tzdJvbq9eXJucb7BruE9FGqw2Op1zy20brXZvr271e3NN+ottvdOTa23O8HNFpEUK5YgaOwuew7oKVQBIdUfnj42//rqRqfbf+z+My+dv2pqewD4ZJP3RHBxkgawgFvKbt26xfGGpYU5VpUkUqBvr4v2gQKSBXmDY4GpMt0IURaw7/wYdz1yH0h68J3onGwyy0GXQuQgq6P917EmJIliAUs9hmNkEwK6jOiiEuo8u/0edqmkcCqe2QIM9QFPI1gbvPwh4NWFbUzEF4YRBz0SswiHVG1y3qKMTXbgIiFCfsjiA7wBguqdGEO0bvjEHK505q9Ut5Xt66jBbHRw7GzMLDVn5ytrtzbZGtJqzfzdv/f3Z+YXPv6hj8KbVTc7gEASzWgmlD/mpglSRBuUnFYz1o62dts77WHNqQHZGZRhXqoHIk4lGCNABWQcJHahDq0dSrTg8aALR3VJzwjPO9X3PAsqCywDTDUXqBgGfKWohYsL3YEBDXxdoXRIBrDCBLV9e2dnGEMf5dbSxj5IUJqanZulqZDIDkDqNxUENENJjOJsgmZEnahleCkApzfz5K9ZwkMZsvC7+ikknbzgnyM6TABvXF9bf+3q9c988Yvfe/lVTBYf/vDHvvXNb9E9bt289uGPfPAP/ewfPrM4X9sr7XSH37vw0lyjxVLsR3/o452vfv38+fM3blxArl6+do0GWru1tr5yjYa4cePGcNjnEEq73X7lpe+eOHGCBcPNjbWTJ0+v3bzRbLROnjg1uL73pa98Y/3mrZ//2Z958Nx9p0+c6k71waq2p76EVoJyqNb7lip9R8pACPUmKT5ZiNSJiDtmfquR0cJKqCR6AAevUTKaB0pYBzE9ROdjPc8O5VIek191RBfwgz/IQXrohLP7oJwQoV05lH7C6U/w6GFErXNwGFFMDdfbO4AgkCIIoazL66t4YiSw+O6of3Vji1cCkYlrHQ/a4NBhHAD2Ste229F3p7f6gy2O3PT7rtyErH350jUH2ampbzz//XavF/l8pBLTYCM+oaoiifBHgzAOURMtMzAB9aCsyBvVgTAejwprLqZLOl2DjhmThqKA23jMP27sse82yRONU7LDiSMk5AbV4UWpyGQA6YYtgR6OLHaVhhWobn3aw3ExZx/FKRUOqrBQy7me4d6QlVY6Ymj6CER1aaQzih1rWoxDkJZ+oADmsArSnWk/qiGiDQnKoO2OaIwDaDVq0O7oRRwXApoJSmgCCivsZNPDWGqG0CqvU62lU/MLSxVUAnaLaKIY9H7rX/3mIw8+cGb5ZEvrCAfMkmgGNO4wCWwtdATaz6rH7pVOb3un24Z/YGFGqArIVCr0f+qD7R0NmUl3sz5DFkwcWDycMTtTqA47HSQSgCCLXOyODxmAOUlpd9SZYi9Ll/aDLXA0t3sOkF5uPo/5jxZ5TXGYmxks4GjGcEYKLBmbbRax3dPL7A6YZIKY0Mg+4tRDZwcrs6Wx1O8ODZTvHF2EHS4o4MM3BjlW7esQXZrItfFbkIgkRfo7eCaTIaAdcRhiyyUO80EAD3OhJd3a+K3f+dw/+bVfZx1zdXVtOOpfuXDp2PziJ3/2E/+rP/FHXv3+ywsLC7AAeeC1f/irv7o0v/DB975/ZWv9kYfve/SR+3/t136dsz8XX7/4+JNPLD/y4KdeVRxfv7G7tbGOQk27LM7Ptbc32ttbDOgba7eOL59o72zIxoN+rVF/8Tsvcajq7Nn7Tp4883t+/GOPPnS6j0LQG7WwRqHcqylm9QuqJGrcVd3NlkmikEc80HLCERPtovhSOMDXIZtSSUQRFKTzl1aOEEWV+sQhK1zK9eafnqt0+p1qhbKEgMXMxjmfLuH2f7Gh49ITBtgcRkwd7V1pFFF1kIfAkepklKE6dN68rtYl+EjqwUIZX8cLURErv41pHVEUnTQm6IH5UF62b0RcxojkohCkhGMGVFS9sSSwQYVkRKE7Yq7ImlAyiq0geIIGiSkX5zZBYKprqRVN1yonjh+fa9Tm6MMsVhxypMM0OWQMxxRRxlwTunWOW5HcqkWJgZXBgE8IEALZUkrIBQ6i5y6DnOFsbqUie2RIGBuPkROqoeYSiiyRnAWFEkbTAMVVQAxoHJwd7W6srzNNB0N2wLnjlr9Rf9Rn9w2DLnohIrdH3mqtOdrrsOEp9jEroGlyVQgsIjaYJuF+v0uHUGqN+hoDqRxjGMNTo87YxyvFISOhCA51EOms0HQXB9RWEMkkNg/aYh3P4qmHFo8vI2VsCwBgjLl8/XJn2OmPeo1dJrJI3sQD1DnJaOu+zwVnpZCQqh6U5DgfBKXslkeF661GC6TR2mNMZTigUlpOmFu4wBlcTmv2XTplyMq7QhAZapI0JgWgWYOk0A2uorap9eQ5T7iBPrVDZroHnFdSt1oNOlBTmmKMa5MeQqA/ssFF2rMVCf00WJZS8BPLcGot5GCZdbKmxB58JSgCJ2gwmeRe/VlxPU+oW/hgqvzN73zvH/3jf/zMt7/V5vjtThfzH9Lzsfe+//6zD7zv6Xffur4y15z53G9/dmfQ/qEPffjS66+D/+zcHMuAS6dPPPfct8DggbOnv/alz4HhtcsXMWvMzDTPn38VJuXwZKNS7u1sTzUaqDsIW3i80WreuHp56fjy1KDf3VybGrAlqbqystIb7W12htf+pxvveuLRn/rRj91/Yr7XG2CbhIo5h4wrC01gtfH7vfoi64H8ic4HIEVBtumB8Lf5Vdt2LvCiKDgPAuIdMdbDv/QbVDHUn1BTSQtrgRUEBblc05U5dUidbMgXTQiV8I9KpIrg9S+JY3s+PoWOJJGwKVX445VB3TTEmmeC8syu7dhMrKMMW4r/qEAhZThaP0C2IINyOShCEy4hZrnRGBQbkwllOutaiBcGaeyQ2N6Jmcinl6EDEkAl5I7HrhnklCQHk0V9hJ/wnwASRcZjItD8E2EFtBAFxVtQRrGy31EdqI8jguJUR6emOhhr+qgcA1VqJ/OocRy9x6rPyeIhm5sRFyEMECgjjmuYnaEgYOctIVkRvWwFIS+QQ1rbrExRVAfRtUmPcsgIqT7NfjIM0B5vYQVMK7DMhOkZPlMMebpldrbSmif9/IkTM/NLrEqy/MYwNMWZkdVbK6ECb7IEgYyFo3LRfDsZPSaMaO8xjKD4qYS2Go3Z1iw2HczgbA2nEBjXQQslsD+oasKxbjQkTNyDKlzWgYHBNcMEU8aD5xmqwMNpAtNrTsfL0+XB3pBq0bIO6m7nIInGHaSzg5LCltcooFbmDCHjIiRHclM+JSDIWBVE+oCnhnGGomhluxYDINtAiJCuckTeo8Y1leNxGeeb6u11kJA7ST7/pa/9jb/9K+s7mytrt9i/XGNP++7U/+HP/Zm1te33vff9D547M+x3Nm6uzNSrz77w3fOvvorC+/JrrxxfOnbqxMnf+Bf/HHXitdde+9CHPgSet9bX0HVWV1bY670wP4/dlGkdAxUU7HXatTqLG/3hNJvtewtzi1cuX3Iv5+7e1uZGrdmE43ptxoWNpZNnWEvA/P2nf+lPLjYr7Dp3BhHii+onzswJc1f0iA5/KGWQeYLWJghiH0ypIIsuNx7SDyZ5296DO6LTB2ZwFnKNqSG9dbfETLO+12e9aVwc1EhIgxucRLeLMR99ir6JiQjOlW+zrh4sLavpDIMPMQDyoogNDo+IlCMlk+BJ9kIclZ9wGUT9AT/yxg5VF2+U0BAzVrhACjEEFkcKaHoTeIA5yTNEKVYhy4BklRieWW9nhkvvjJInH8hwBnx0OnRM5Ao59is7edoEORtghA9+qXZS+XCzGpfi/Y0MASoPMyhoBO65/DTERI6NIGuNSLKbTpZwjQZyoOaVLwgBrZ0IKUwcUB/1kRuE+ClV6FgNrA9VN68wuY95mqQArso4DTToDnfa3A5ikyE9YA6lBxJOCxnjmeofyRgtkU5MkpVR2p85aegeDhoZOekgMMQOW2/MH28eOweo+cWlerNV2a2oItQaleVTJz78sY/OtBoId6AFBsTkzqlQsGceEL9iCTdQa8yaVh2+2d2t15usUNouSMZ+D7MD2vywUmbJj5QMW6RrYVCQi92qwPIUdvnYLwq8Ci1MWRpAkJyWSxkQNzhMHnMu4OAPjWwLEjAMEeYMCFKwxAg70tjKi6lSbXdvdqaFXg8ENwZgyBv019bWIBsTDWkJ8prIHUIU4ihGWPUpH5eAmClz+FzwgO0CujwrXSJxluRN/chR/HOoYMz4nc9/4a/9tb/Z6Y22Bx2Yilbk9pUzJ05hRv5Pful/0+Nle6vXXn/1lZe4eOXE8tJ3v/M98lanp17+3ktQm57d6XRPnDj5rW89d/LkCeByB83S0uLGFpaNvXoVaW971etVdnd0dwccsGLHB6PcxuYaRo/rN64fWzzO0RZUCCZrXCG1s3aDA00nz97Xf+DcX////u0//nOffPD0Sda7MbLJ/2wygXquPsubuP0ksDX3h9z9W4Af05+2yvKqvCKiA3bwy93DvIeUdOqUOis2fuxRGhhCS97DOFRHUGPPTCllOuLChcc5HfxJf0WYobAiKRRFOuKthZ3XDq9jIyq9HlszfteYok+FTDd5ygJ4ZGMkJ4TtLp4tIh+dIAWaEJgIP8wp8L2qGbRyaqn1mAXCaonZImY8GTcrOenIGdSkn1AVigaHgEvaEDlCjjm5bX5wbm27WKsYPMVTN27AHD9/RY/ICIraeBUMJ3XAPSocSfbzTkhwkcpdIkNBPaC5AoaUjDIVkIGC4kNKg0hQSlWR9a1+D9szNrsRE9chKHPVEbbUXe+aQEiwPsjYp1Am6zSbPap7bD7DhixlozFQNyEBWik6H4AUJdDI9o45g+KInWlIL1R02siGYLcU83w0aBwapeIT6zcrGRgsUKwbrbnjZ+rHTlG/5syc51je+eF3feiDH3zkoUeWjx1jpwgDI7vQFHBUXbOVpgDM3RZdtH5OnUQ8msLtzWr/7rBAzqKVuuUTTRSDMDI4zlmxCM5WJIwUwwoWpfLmTtvxt8J6hQZrNrpYQ+R4sGwSr7AX22CsMwOScyt2h1Jm7MiU0DKzZJVeMOSIlUooI/ODfRiJELXV6rDJUZVSE8qRXQ2+z5VdndHKCoc1uA/PwdWTNMPmDIdoKYAOGAM/O4QqMb7ZHYEECsEPUoKJm0vhdkTaKhtRx3S5Vx87VmgszFib2+2vPPOtX/3H/6TabAz2OjWt+Xsfev/7f+EP/dESm8Ub05/69Gff8cgjTYblEkYGWHnv8Yce3li9ubm59t53PHH5ypX1jZscW9vx+imuhin3uh0OLLE2jQbdjM1VXB4IJWlbpEClVkVSM0OneDyM7f1Om1v9NjdWaU+4jyPBHEFsNFtMgzZXr24fm/tX337u1urmf/iLP/fUYw833BhkJ3cnunxC47AqYOewM8TgKn1socOq1hFEkutiOIYr7Obxh5wqkkbHB7jSJORytAHl2mXkjrfbZUXLF7lzrxm2Add9KtjlFIDT1SlsmfZW6q4kUMHgB4ZmYxU9k7OEXMLguB8GkCAQ7E36II61QepTGNLQCXbUxW2mkI6OSCoJAm+KiL1NUZAqrPyLuTcFRtGmJZbjCBgImU86xDtLDOaFlsgbCsIGyroOWKZunSQyEBUugIb5JbPi3Hqw+IW6hGTSfi40MKzaGKKx35GJjLSGen2A8nHYaafWwI1WItwozRFFOpDfXmbvo0opLyXxRxb3+4WtmTKoCH+Ey3HhcUxFREpzpBbV47SIKh0g6WLOl6VDSfsGDYZ0gv37HXa1sGcKnud2QbRnVnS4bIIO7oYU1hwwBHq1UaXpWtpuqQa9HQG9OGV30Fa/o+356XEkWuigoBxFc2FX8wCJjNQTSTa9ImJZ32uy8IcdgQZzlJvusuZeqy80a6jPC8uN2XmqzL4F+mPlz/5v/+xMo4k4p0gmrFTN5UmEUVbfjDqH6UtIkM7BH+EIx7B1ZH5+ASwwvjhWIBVjDGfTCk1KCkjANX1UZm56ztjSdNofzYTOZqEpWFlg052OVyhvh5eB1HPdSscc0eI8dhwb+9Lel0guaycX7SUDx/SJeYSQ4/4PGIETGEh69j9u7Wxvt3diabfC+SLtMOQgVzyBZO+hgZODASKK2Cwkfkz9djhaFM1hq939wpe+/M9/+1MbGxuXXr/EmNXu9h588OFrF6/fd/oMA+7f+jt/m4WMh8+dbdVmL164eN99933605/6oY/9yNkzJ1/53nd+6MMf6rbbr778Pcbq9s4m64ftna3ZmWa/h4yehiHZfAmyVI0xytUJqEoPgcVdvnCxIjg20X7IHGh7sMNE2NXd6VKDfj29d/niJRaI2Bbyj3/jN7Z/4vc89eRjDAaDXocTWkwTYZ8hTWW7QSaFRXRgOTaC9j3k130BviQZkkht9480h5MdyvevN0DUlZk8EYVgCabTVWhrP8VLiGET9VPLgRbBT0TjzK1shMs4Dw6be/APqQcR6fvsgsDRJZP4KUDB/EZEIyYPz9Rqqm2I4lQ8chTYSXskD+XKyfA0XvuV+CB5SWRjZTDBN1AL5JLXSoRLDRFeejYZFJGW8fa7orKHQWfsQUSGcmKNeDHbmFPAlFTiay1xIaN5kQCoxdxowOaIam+63GYnb4ebS3pcaiT52UbJTJ/lQa4mpvojFjltZ1YcqhwhqmF4rwVxGfVIz/YPd4Mge9BQKMyxDzzCjuGcnz7DTghm5uADFhVWVates4T6jImIwYnGQTNlwzOLdY352sLx2uxCteZNeEhwpeiJhROIdNRDUoJJmnU4dNie1PAwlcYhIcRgMG02cAlSD4TmZtm9Dqeyly9O5YGsg9hUp9OhMmj4TJxv3lpvcCy+4oUYjEiQzH04lMhAxUVr4VIxqvEAlRiOG4hrx0b+QTY4TQ2SOyEZVORHVGvu/GA34S4jV9CEFPEveDQazLEDD5chD7CMBI9SEro+h9SJCvVBlPJaJmQOtD2BxKdnnvAt/VLwxubOt5978XNf/urLr15CArKRG8MPo85TTyAGH6/DC6Pui88989GPfpQ9dteubjzz7DMf+9hHH3jggQsXXru1wq7nqcX5WaiDUF5b30SPWGeFulKB7OAJhTFd0fXt81aJa5KkMzMceJZZDbKBV+xipGTC5vA5xXmHGrM3lqY5DM8aBwjtdHZMVq9/+WvfmJmdf/nKpd//e34vG12R+DQB2jOSQY1A2QMJbZSMLndkpDvTTnRzB3q599/YL/0MNDwqgJaneh8c6mI1DOTWI+h9oOfQN5WGcqzjFqjzRLtmfAQUdYKPGaGZd5PCffypxnjCTVKgqLbZwuEhQXopKBWRxpAkEvAUrEpHwiNgg0gBECCJ0ukn3vTqUfJHYzKbRu4kAR2eIvv/ojzinBzSkgZTuqjkJcyxU6BNz7Wag53mzq77wbmxnj6htQlVmAk964Ro2pVaa26+3GiVOR/fmOWcV6nWcMovOYSmbUNRh6pc5cJibRjyRIhiuhZKD43J5jVMHTjMGyiC2KSxQXO2W3u0B1RYvqjNNaqtuXJjtjqzUG1xR57TTUzUZKrM1WaQdwomi8x0YfVXHTxnII2IR2G33wUvIhTTjm9XPOUTdmtjqeDqEIwGbLArl7mLS2BsiZNS2l/I0eUYnLYzIFMR9teiFkNFFQ9FKgZNttwRHbYFao3EYc4gBqLFr7ZU6IRezlwM5ndPC4Mbu6Sd3YOJRh0KdLMz0XQGawc5GOQ8iYSjOAI4neG1FE1nHQpiD35p4I4UYpBcsLd05pXRiFjQS6/hydPd9S9AqCMIAARz2MXXL3/qC1/81vMvXb5+nUK7nQ4KEJcFIPB+/OMf//a3n3nwgbO97U32bN5cufbQQw9S9Reee+7973vf//iP/hHC9/jx40hJutHjjz3+la9/HUHs4oaLHT2oFlqwFQI7ieBI6RTMcGwlQWpfY3OL5LJnQyCMJHUmwtxujsWZzfJzS4vnL19szMydPXvus5//wvEzZ7DAfOInf1xrGq2ACl3hap5YX0bAe7OMyppsAZ/GIkGiGGiMBUNQjHBnLLS08yUiQ/RF1OQjVcEQ+4m7Uml78tIsRUtNpo+EB4raFx88ti/kjV9ikox4RWfC2IGxEh5GsrrKpKMaYqPUjTsFYV1I7pJ96NHiGo6kNolk9v4OyI69CGVMKeESi6TD4SElTZNYxRKC8QpPSpPAGiVwZQjhAI8Q102SaCaZo4SaImZPQPOiCA404Gf9+ygZLxGIFkW8AOGrcoMTv6Tcl9aS79pRYjBeygBGgAKkMJMjAg+1TgZvw6lDuIx7kj+9iIrICCG4CA+kTV0surHtEsKBVLtsRAH03OzsTrPV2aqi0nGekEsskc1kx5jYbLVYsivPznFTQr01wz1LZQQ08yR28ap5gCfG2zgCSPdBOJW546LKFjh3Kyh8aW5Oemth4qa8epPW8LyhCGFZrmG85MwdDMDx5mapwTDQrDRmy/UWp03pm6CobQw9oMYZxWgWXoIiiXsS3SUA1YK/KO9glyI1okrLi/t1yF1DE+dgNX7+5Ems7XyVQEOSm/5CYwdd6KIYnsb6g/IBvvARoln2RViEBVN2gSPFSHUEwaFcSbNH0nlbFK3lRIJRhaml+3gc1HjoQnvDOiIEaWBTsXqoNckm5z/cih2G9ByNpZG4nYN68ioGTC5gXzaXkSwRI4BKpGAgygYgLoLf/IOxFNKlXrSyev0zn/vc57/ytSvXVlSguB1jMPzf/5k/8/ST75yfnet2Nr76lS9evHQaafDoA+deevH5d77ryatXr3zkZ36WIXxnp0PVa9XGiy997+Xvv/rJX/jD11ducS/Kd7/7XcZChmhQZZJBc9Bng4E9r8vG8FQH2zVxAJSGWsCiguxSgJ/00hvVlJgTYvRHzzs22+z0OqvXr5xYPnvzxuoXPv9FLCa/7/f82NLCAgoFzFj3nHLM9GhoiQm5kD5vD9HePLnfzpzQg6o5t0NKs2Cj2iVDpEElxVIessxegHxJ3JIIfhiREPUY6fmMyDSTJnaihuVpCnslLYIjCyMBy+bDWEMDTgqcBAU7EhhYyPGMH1oxaPGYGBMDMibxuBzjANPd4HCaJeRaAQoI9CYWn4BGz00FicIEv8uh4SYDCwhv3mNF7whyAgfqkhd0VLYSO0jZjqQSmqpAYhuDpoK4XHbiGZEZ9rAhkbmDjvs4htvr6zfXShWvDPXg2txcrdma5mS9V0JwkgP7cXOv0uBIogwdU3+6qkyA0OIoNYuHEhMegPlJroRGN6Fz8QyTErfDVekJgEdSh5S3pVBQOThXqXLRVQtDGe+ZGJMWbotUqBV1dWAYv1gl2Q1tlMRHzGhgQDUj1E/sFdwbwHHSzs4Wtk66N+GcA8SESWbGhLQ3O5EJXY8NLvnHIqwK/1kNtxrcxefpFucknnrqtBnV5HWWB0KGuk2oyorWAL7n4KADE+qbHKRckRHlZjfKy46GUc0YyJhiUBeHf76l4jQcNp1tclupllnrHZIXTGghDoqQebJ15VshKZjjkT3J++ZcAkJergH50le++pnPff71y1c4bMYgj9VocXbx1NKpdzz++NrqdcT36trKjfWbH/rAB9hbfv995778pS++973v/c6LL54+cXJjcyuUt9HGhc3rKyt/+b/979797vc2Qi9mXAymtJtRL9WqYFPISzgIQD3Yyaj4PEQKhKZYv2gv6o94oSuTkbk7N2Jtb96iHbjIu7e1s7c4mqlUttc3f+03/uVMa+5DH3jvycUZZnW0FmMqxLclnLBzVdaIbdcUUVT5aIrl3Y98icg+bVcBHeUi8qiIH3SYVeM/K2nQCm60vk4TYRH7vxqWgxOJqLM/co8uAg8+UL+JoCPC9KwAcY6XfyRiiESrwOGHelIiG1UPQvBdZk+Cwe4UJUaLx/Jgks5QU/k05PsY8TUmtxlEKwW8wDBQ1VSrQA/5DFxdITjTKwF4blejo/C7XVjeuPYu/UC9XdIxrqYgw+0Sihti1cVwJyVBwtIU9giXJSmCjF4HVuY2jNmFxXKjNtrtTQ+Xl05319bWkVrYNpgmspaHJEAa0Mqobkgo2hOhrMz3sDiSDU5P46CHuFF6mVxBYMkVjQ59EE8UZ3Moq5BunN5TCtNW5MGPuWNYa2LRcC9kpHFKlbKDpgqU3GSQ/TgaIuATEI2urUBTr0pRzm3G6SiUVSI3FA/KA9R/LhketBqI7dS0VI05A/TBsNFEFGIaFzONnhwKZ7MYwlfh6Wo3Gq3aPaKcZT26M0oJ8gWRwolA7sxEnpATFJQ0mEW5Zp6L85w3OkBRB1rCfTFRCZX4aSA7hjFSkSLGAMcMbukALGRxkNA+axQ0hf6wnHhrkZai1k9q6Iu/zENppOQlugz0IwddSNl3d05S47DZIyjZ6HPp+sqv/+Zvf//VC3E4bwoanLvvvp/44R9ZXlzs7XQYVrjbaO3mymOPPfoLf+iTX/jc58888MD62vrarVszzSZriWubt65cv3JscYF9nSdPnNg6fwEV+8EH7186doxRMLoqRHC1mMrJMfHRA4qm1vhRsak7egJnm0KI2jHn5mYbTZYJWnyqbio20jRn5hkUScmCMhKjMzXsb28w41s8cZKB9Gu/+wwng0qPP3z82ByTMrYrSXtVSEjorgeumkcrgz+labCcFAxKZOQwocnleSPYIwHtlQE0aaLYvidhbpvkX4o1y74EP8iXkCFgJmdxFIFexOpoqkDqI4kfIALsRROoQ8EwgeFhLM1ohxRjeZRhMdQmDnJhGQWgzUcaeNVEdES5PPzSS81Bkjr8wo6Q3QFVhoR8giWvMslCEFUjFCk6IPxAGumXXBRPIoFQIjCiUPVBRSYzW62DJEfiBUhKJu3h2mTw7uYnaBVMYjXMEeCkLh5/omL+4CFFSpTerZTBKU9KYb6gJawExxEI16OPIQRYZmFrBhBoEk6KDBGkHFSuVpqzqK7Uscl9mMOZYXlmjg9Xkatca2KMiJvVAGTh0CRIwPwasMrhGJO5dgNFsT7i203RPhRE1y5NsWxEDoSWV46iRqI5I+bd3QYw2oxQLB7YOhgGOFytzdplMNtfkZI5TBKpllFN/HaSjE6SSFIlckUzJTLlmS3Ije86lieRqfyBQAhoevFedVjmW55orKwNegMqzByGSHYI7NLN0cl2O9bbYYbRCQEVDoJ42xHdGSoDg669O4WxJLRi2IcODzcy2mCtUUDjaAnXuQaYhRjZRNN6xlN1kIojkXSgCpPWBjU+tkX2ZLc1mtIii90ISJDVhXU6hXwRDTSuvEGp1wBugl4S4o1crCKZicZjMRmb49efee6bL3yHXcfMGCDdow889Iuf/MNPvetJ7seg8Eaj9ZWvfuXBh87NVqfOnDj+/HPf/qk/8AfYYf+7zz7z4neev3jpAnZmujMSu9NuM0adPn58e3vr9YsXGeqoFEMofClTsqPOL8k442GMcvyrSw2mO5BnjjuT6rVjs7MMXrAXu/TPLPM2t14v811cbu1YPn6Ki00gE2Wh5G1xgr4/bO92h53txx597PLla5sbG69fvkZvW1ye4+IDhEzq2GiHmFW9GRcJpdiAwex5io7EiL7BM0HIeBCAaIH5JK1MGCn0T7gEpWgFPHKufRJ3dJYU95afFBMIgRYcCj24kADrBFowlY5JSV4EpIarMPloaChwOlSbVJU8k/0tVYM1JpQjPoarDq0moJWfxC450fnDPE0MGYi0RyCHaG8jaPgoJkyNEpskKh/IFYxnXswr5YDulrkgF+nhdqzhsrxMnw0uZjZtCANgAsp+GkE8eH3zzpJt6qgDvxZi9YGLS6AtI2RS1Gd/WQaZuUiNj+ErDTJIUEYjgKI1c+UzlztCNufmagnUkmvr+ojWqqtXmpIwUZBFa6DX0rmc4lYE2R1GpgRNpCIYfE23FTwU9QYhxC57h7FEY8+jB7PKGDsfbD3oCJGRzmjsLgtAOnCEL+iQmLpLNcwmWA7YH6yeGsXZlJQXjRyb1bJaUng4gd67Ixdy0hLcdg2WkMY7L5SMHP2DeyK2AM7sgyNYTDpcq0jOzDK0NVLpwLHHBVO6+jtGUPYtwlK2B2VZZTetpHLZc6Ate6+Kzii/xlcP4F1iSaUoVyt3eKBmjn0ObkIAK/x4eKVE0kNfmJgnKXmVXw64wyEHEtzxlU6kCZwe43Rp+Nzzz//K3/97Cs5Bnwu/uc77zOlTTzz52MXzr77jHY+zcLl688Y7Hnvs85//V/cfe/jq1dcffezhz3/+s8dOnuSMCTOSrc2tk2fOXb16FeRRqHd2tqE6UwQOsLC8TC12+54lYPKEtRrlNzb8MFersrsDWUwN5xdmseRjajt35jTndzkCyoLIztbWqdOn5ufnbty4Dittbm4tzM9B25lZ9lJXeWVL6JWrV9faboVZv3q+XipfeOX7tdLuXIsbOkszs7MMfiGNYW5ICEkxKsFgMN8EdexPE69489dkH9kfd/iN1Jlcj07p7PVfp6N4OCQ55RzOQ07jHd9wlRymRDCO5Py/e+cXJvgSllKQVQOo5wwoZbeHhA+GDj5n7KPbWDptDTOzNmR88HkkpOisdBCOkIMPuT8cmxy8+DWkSAwDWAR5z9JHR0FsOYYW7XUQ1l2/5ywgYYR4JwIdQjsSZzmI3B8f8wSXXQHKYVg6NFY7NRZPX7swRn3hGPo+lbZ0rwbVSOFVPlwZGoZk96XJtNDe/542kaiqbvQtLyWFp8ku7QBLO5V7w91Kr9fq91CQBBsLlbQJ8hGS+q68xqBR4Y4PxDQSSllAgyp/YqhN+MQTWyT6pnWz/bCsRHPDZwYSHImS/87PRFrSR0uCNNjyopKv0ix4xhsmR5BGbgOTNPxG7ckdDCgH8md9YTwnudo1WLDi47DVXm2EMpg6AkBDuqpM0AFcEfFSaT/EB57Y3SVfmFmFFqxmRxGsNEVC4dGWEtZYokgPxuZi9FOqRLtbA4nzNjrgWUOWwofDjfXNf/prv3bd6+UcM9i4/8hjj3zypz+xONf63tY63wxFecKMc+rEIuj2d7Y21m6C4/df/u7SxsaVa9c4eM1WaD7/zm2pc60ZBCiA0aM91clJJL+P6Yq2a+4MdU3OpAxaM01CYB0ujGagQgSzw7rZqFHtJx5+EEXv7JlTHhHkHsFOh/skuVaYthicOA6p0KNbcy1odWx2Zm7+2EPnzqDw37i5RpP0RyVuALt5/dry0vFqk8ObpWOLi1rl0jhHB3fAtsnfNmKGlhGKJc2TxNTb2Ep3CwoGwRX9BFSgT5EZhkPDQMpa8ag5CfTenUNZyS0LDnLBOOSWU0LTyKBEd4muD5+HJpR6R0S72K4HVVrxAXouOWSBGYDxT6qKCpLanlLFLizm45YLNcYQugg/b83ZFcLlkPLfo8C+EeX2x7sSGpqsdWALA8voDfZAIVvQkbRq2nDhqC0VhcTIYiydkhK1kA3OzsUlGowbC10aB6KjhqBIPkmL81getg7m3ix+lZmkYEQK4DBHiF81TxxlOwXCQstZ65DOCKuYp4eMBiPQyhHDk432iCRGCMSTv0TnSu1EUktJ9bmbZ8oo4uUyXR0tGJlIIPMCstO2aqnqqb5CLEwNzLjVEXAMZchcRqSYXEAd2BQLCibn6Vi7o8oQhwVagAMp2SeoGcRjHwmH16kGPEo4PgqVLiFw8eMoMT1hXQR0ICMT61E6ixJZTEZg9L7Ilz0SrwI0wQxYWUuT5Q0dyj/WMJBDv+W6uK985Wu0ZpervkvT3e3tT37iD549sYxNc+nYfIxA090Olvoun148w51yZ05yCHWbzXYzs1CV49fo0czJwIxXjMh8yQrjMedcMJjQinxlhy9rtFp1OBUCsFkIQcm2QqjM4Rxycaz/+PzsfefOQuGTx4/PtvhiUmnu2CIHXrkkG02c/1STlNCFby04aqKeN2fZcXdsgbSj08vLO3xVqzfc3Olv9Ya3Vq6X695Tj5LAV9IhJcjR0Z0HjrWDIJdKQNalgrK+2eejvWhbB0xa4HakDeZggNWUSHuz+ZQDFNHKb9gEkwkoLr3ee15xo2jMkQiAlH3MadSW04NazhDYbt2nFNSUKGxcpcgneQs08CRQgZXxdMkgFCzqK+FFYtNoZ1HzQLxQmG94EQMG4WhYkSQPpIVS5OBVPPOKCyScPB9EpyAGFaecIA8IxL7mj9DZ+VJdxc3y0S3ynG/q16qFHoqyEBUMKNYv/kdNU30L8GBOlQiM2sF+UgQ/pInKjgkL+bFs4EjgzuNsEoOYRn+GoMqE5ACeYEo0QIYIR2EKcgd8Q5xnk0x9OmQUGjTAOXEhd4dqjKUAq8hQ+wFfThhst9vcMp9yhSaqRKJi2MYxbfvBBGU0lxQxz3T6LnBdqof+FFJMx1K58joRisdIXuTI3974l44TrAgc0MNREQUQOfmcCvUhiFKYgLATWouEipWGhYjxU98McfAHWzRIGdzKB2dNFQoYVQzRKcMJHOq4HSzEJe+UgqTj8A71479caJguq3r8kJ4Q0idHWBIOhINJYhETmO9ol+T20XF3DrVIEb56/cpv/tZvsQC4g+bLMWA2p5QrTzz6yOkTS+cvvMbyBT2DdT+SrtxY/eiHP8KGDKYRT7/7qQtXLj/33HO0EqMLxEVFRjvocatqv78wN4++zFeAmyxUcHR7egrbBbQ8dfwY7MTMhS5HtRcXFmfnOcxZ5SD40vzMmRPLi1yQXdrFSOLUeKQsBkuAu9k+uJnuPdprQiV6K72YIy1oYygZLA3ygaj5UWmm1TtVabG+cuXC5cr92Ewao7k5FtKxblA1FBCnUjbKHYg6jopmK3jwKILSMR3awdftPd46Ewx3VNIfcFhg7ZULwVFwOJiEFRjFgot+o89DTbFw/IH+CSH5IEaj9JqesB/hOF4ZFBEB2MHi00IMsXDmmCbkhTd8xiAIkXV2Pu35yGCSWhjCVcXPr3wAE8ajyzBg281IfJSzQzqcAlEMkfEK94mUof0wUaCEyeCJFHfrLbILyhfpE3WUVQ64yZCxvwAxmToRMOjoAYsYA+x0Qe/QQhO5LE5fSp/1fEWYIbREwDQTPgga8xCuAmSQ8zJA0ii1wFodhDZHRnOJAgvvrPagQ3t8DzNzyChsJ8o99odg5kZAs8MZGzQLiEmg5cgLLPdLXfb0BRLyCuGUZ7xeW3vSGTDOeXsfmymiahKHPj7gJj7kM99JdsoxQCmDTPAHKjMOCzRjPiIxF9B8QkcdAEESghsIUgEG41+0oBVQdVERYJhLNHcEpqzELeCJjA5LiAsGWKGY0ZEeYvEkr7CC9DyhWaqpGg9pKFXZnXEuxQR19tVWOvAvXEQcTrIv/YEXykawcnvRtesrzz//fLfTq9carrj1Bg+eOjU/wz0Y63DC6q1VRrWtW7dYvOMyo8uXX+di/ldeefmZZ3935cZ19j37LYLhiIVXZSUjuQsV03y6F+CoCchRRLOq+tSet75WpmexOaCkd7uLCwsQ7tTSMY7nsAecq03mkKZKz2mGTeQxoibVH76U2lBEE5BfW6cuaYciDQvTsk1Jpp3abYJQo7lXbW7u9FhyuXblGs2z0JptHF9kQOCqLLU7RQi0miDX7RlqItEB+mWvZkWvh71Yx2CIYHVcRfLoxD+YUHAclwfZ4WEcPAXBpFmsDcopMmeqkF0UV+CTUhavyVOkYaUJwepZ+9zmycL/ZGKKAIL8Li5c1OyHtaIsZTSBFi3Dew5fiUt6UmcGPVDL0Mpgml4na+NF8Ov31VDT6qEfuq5EDwWmEW/FAWAMw3ItJWgVj/2gMwQi8IjoycRSXEfPQEAjD71DA3ZWYZUgWZ0sEEKF057MVnPFjM6GVKdO9U/pfYoiQG2ZTJ4ksoaIVkBjJsHKwRUJwZmD6sg5KG2qekRHQFqjO7O1FwMgO6C14Y4psN/vm1/so2LyknxDFWhTAjz6QZMbZc/dxxYThEj0JaP6Lxhjq6DD24bWUE7jnBUYMbKHosPmYhesiIXvwriMPZ1NCKABJ1o6GxtGlZi1sgtNiQAgLS7ct9rxQtISV7QgEwBAjVlA8bpySR9ChdGecUyGZINnhaGMa0/AhfEAnBkOsCukxmBnt7Xg2CBmcSgKhg4L6s8oKqQBw5SAJ1hFK+UCINQKqSrlqGvu8+2NHV8Bm2k1N7qdf/bP/8W1tQ0+xuyNWRwb7bV/9hM/NbXb58T2zvb6/afPXjx/YbbJzXzTqzdWv/TFL//QRz9CfR978P5Pf/bzQ+5rqXIIhaG8NNrxmzp2GO6R4YKVqMTSHIYN7BUMl31M2cvHFqgSivbS2TN4Fo8dY6KKfYO2aMzGnX4gzhCI0I3FDGucqmeFaErud9W0CmGpPe2ltc42Qy+DPaA5hw2xcu4eb9WOz86ubm3zja2VW6uYX46jqmPg8ppNaU4ZggS6oyd01RssF6FgQY9CgtBRcudSxGHHVh4aeG+Pmx53Wi0+RUzPqGkwxNGQZol+FJOGCJ14UGL0M1NSlTxmXGYecsdfmCSGL1YKWP/gE0egw7UzjmR82p5QBFmUBKbyCQezVPndnuU8FdikjCmjrymEQDoQLN2cmurxRU/tgOawi00go+rGXMZGcduFTV8JOQ0n4aAryh48jAGGOnqIHx6hyD3uK+MEP3PObW9ro9tmUIm0NehHlCR1oJ6tRSvFd7qojkCBDqVV6zJjyARO9+hNXQw2ULWyP0oj+hq+ULXo5OCB+SI+iSQu4gB7MB0jD5gT4ryFnSfofFFN/G4iT/WIa/iRByy0ejEEMYoJKAaDVdj56RFtqMeXgakmsPwClBN9gasYQ3On+6DlUq1MTh5NzHCeFsM4JkqzkIDVrwGGi3oDpRgx7Mfc+1yZwM347NNClUa8oDPVptjv3JjbrfDRak4SqkUBmnYFAuqLci3vEqBhi6DMTVI1WpCagJ/NxjO5yTS38yME/bxXvweBZYWAwCWpqMnc9Ez1CWEAcQyxRlNcWI11HC8ZlcEuruD8VIf9njqpFkhXX2VShixIB1+QXRJCIkIgpWIC+HCkZLYgnrQHqgxWAsIJIYdz/Gh5shOQKgI+Jo5tjSytpkCfiW/FexyWfCFggnkpgxYmu6x7MNnt3lFnuY96Y23t+e+8wN111sZ1WgRs+T3veQ/fstne2oQQiwvzL796nk8KNupVPlI1v7T08quvvf+9P40qjb67srnDxjXM+tTdyRXbk3lhc3iZzzmzk3wGoY9xghOS9coMNWS1bw59tlmbnWF/RQXFmVzKJj+egNyGwZS/OCQjg32Q0NcivJCriWszNqbhwF/JgKTDm8gxPLm0cI27TTfWT59cpggwStJZiPfsDjVAgpAa2evNPHZBR6vywWJ6kU42CQUDzBwIeCSXshKPhxBZEU+0XYRl8Xf7Q91gNMuTuygTD+MVYGO6QBFQhCeMkoFUt1JzgQPtJhDar6FIRENAiXQASuMMXBldQwzTKGKB+5zMSBenNRkKMGbxmlKw3q+wY/SxX9gn1UBoKnoNYwg3K2gwzdHKYJI9cotJhkxRWh5nuM6Ci8g365mEEjS4A6DDpaWGkziBCgmAIV5RCSVr/CNEEZA7Oi2CAIest+WkaTyyl0Rim1IAqQVFK/V1G4L0EI67lBAnjMlBC5udzsKQzOdp0UKxcqh6JdGEuIfZWBIs19kxzQQE9YZmT2gDMI2qFnLIjQU0+BexqS4il7si6nYe6qP4xDQT63iQiGqQW5EoZzh8IQ0xcSANSVzmOie5WRoySeXp6EHF1TLCsggfw+oOawxDcQiFEJPzz9IgrwJXOjK755IkN4k66vIvHGkQe2kzSIG2KNoEB1hTOBh9+QFnEycYY5IUACY8d46dSDjppSDKv3DhwrVr1wmHLH1Ode32Hjxz+sknHh90vIUZA/GlS1cvnD/P8ROsQOziZKS7sbF+48bqiROnmTqBPiaRUX8w2+KjMQJBRjt15TJyPtID1ZiC8a1XdSwn2+wPwe7BqfH5+XmagMUrskB7aBFH8NVD4LAYA/36NHkSzuKauUQxXg3L/mha+4PN4KZaxZJfekT7WOLgTM/jSItcNJMWZnJA49+DBJxgQcAG7BBO4xyTPnLbkAze0GjgYKMiagq5Ay+VoJp1xFQs4+TKovHUHWyj9xUgqWBR2SLwDh55N3Mq60mlpCi0JQsMVMRxfy1NiUNm0PgQXF1M61qqrmmRHFo1Ak1rEYtgJI6QMYapaALpXSjIWOFpbV6T8yPRuQDwPA8CBDHBwGBBLl8wLHMdctFZIlcGPNJkMi2HB4i8TwiAt3jcG8UKYEd5pEHCYlzHyXRF/GTgG/mhDXgrPTknQmJoSwPwQQxuuUE11NiB3AmXieuiTQnEwpAqO6ar7Sn7+BdOsijiaHEWbMpMJFGi0ejZ16R2ylggX7rmWuNj3HWsLXCee6KRioJVeOekPaI2YwGdIiNLevDUg8uawroedpmkYxgIbRREuZ9IAzmKAOYzLWixTAQQ1WdRB2XNMTzZ78XeF6LSfUqkRM4iNqQjuSjfmRoTijj3gwBO5Tvyk5vOyZODbjgMGlbYUcnhSh4jLUSTlFEPEqW+4QCQNheGfLTt6FWIp6B6VsLhir5NIXbOqalvfvObfDSAk01osSiYXPH8id//U0w2+I4J/RWb0lUutJva63bbV69c4gPkL7zwPHs5V2/dPHvm7Pzc/PrmjQa3xLKWhwEa5mAw32UnjBdnIYgr5cZck3NQfNsM63N5Pu6C4t5RujBbp2ENyMhTq1lskYZYYoWx3ramZ0MePxGLizbV40REUQDd06tjoZ/xBRReZn1TzO6xwcVRKb7ytje1ODvT3tnZ3VvGXKF0OezInLFYxAl+7ILrKJOQyeAiAYmFSjLbLxzyLkW7kul3KBnD6R2oAkwFTJkBsqF3wdVJREzqC6D34imAZVJOTBws+cOLX30iKkAdssRZb4kEsKXqC91BDc8kwbPOvUEcB26A8e5l93vtIwKVl+utiBRiRGBBmI5T4O8b57y8n50Rl65CgzuGpE4QNVee76N4nhnkc6+ljl8iNDWJE5TbZC/yvrFHfHOci2ImSn9jCFmKHMjBDNYPOtsemkckeNp+hxSC5x0ZIWLKlbgjqJqFQV7Hx4MIQcWke9NEztrRh0EeZvKQUJUrlgaYUKI/9rkoLs7XYXXGJhlKtF/kDpQ0Dxwk7kH86VETDkzEVbSCWg4LtGI2VhzC06R5bvmcOzmwTiGW0/LfiINtfpFeyw7UIAWSkVHL4YzdofQYqlllIWuEAREedOegEnTam1id8zPQyMIIev4Ua3S7aT5sLPPmyIBqKFGjPrN0iBBqhAgTThpkrnyUXCBLFGjQPzFJJziMKJhIOVtBnihGpcyMluIYAZzoKkLB74CYOs8bUtccBx0V5+78F154McByvVbv8UcfvXH96lPvehcWiZ2KN3z6AZTlpTOnT/7ar/86FKvxIYd6o722/uWvfP3hhx9jJJyOPfCstLIwJJYufdhwSGcObePnT1sSR4Wmqxg0OCjIrSN8tZ1uRULoKH2Q0SZxpZXM4EOUT/VvwenPqM2gp6XAPCaIbm5qqOSXJA2E21UdYBim0Gw4wcxXLtUqbNOeW5gRvTs6QYbdWVCpaEltUeJ6yEX72EbMB1I0KaOjIBZdvXJVhlHFg06a0fiODjwXYMhFB2Fq5lCObMfmA/NIGJlFR/sfKvDoAAolAgIyvmvSlVNSl3E2wlvKZjRlWq4kjjgPYZGeKqoxRJVJJkD0DGZ+pCbOcIxQ9Tgfi4DJEBOW0VSZBRyVQOqqTIZWqQqRGSEUDeZAGqgSZyGEmzLVOaGYNT0Uy5ZzBAOHOEhEigQBmwzEZIrEDS3ZCY88/13/Apgq2wK0UVxqRlbQS71vH5gM7SzMNOGkC1WOYNDD0h4ws25rkhBN9uPQ0rT82xy+okwwy0RGkcrGggkCmigFEVCY/Go7t3NGzeNpK5MeeMDEBKCsDyFN3uhLiEqYaMTEhHO6GEtJ1d8bcTdRbzQ1U+O+uhaHx4fufQJU6DrCjRvcGFxlmWCdjEWtGCGUNd46aqUSmah51iamu6MjS6IS4OAP/Uy1priTT/lrZaBE0J7TD2464ew5KYml4VXiKGmv0S31S3zWDRKyVha3l8PrXB/iZBvp7BDEXWqK3aw4uhf/IneiIq8QzWUSnSiTWLJbz4zDCEDXg70QvixZMitOVeOGKaf7OmLEOYXf/mkR6e/2ae4Uw0m8K1cuA4WroJaXl8CEvckPnDtHHjTcza3t771yfvn4Ure9eePGteUTJ/jeFKovFqILl6+8dvEixyJBdG5hfntjrdvzsg7marQxMpEJCdOsOH9jX5/3pj6+3oDpmUels9NGI16YnaMg6YV6SUVsqIxeCWnlYhAByingVPGcpBGcai6JzOPojXBI9KIhBQqTs2oVCpszPoacdqfd7S80nGC+jS5r5mA5my5qIA/KGjZiPknS7mHLirNXsOcZHdfRJtioWJdLkDaR9/YoFhktLHNRcBRpABRAN4KkSlXfs1QyYfCL5AIDzMPGu1RIZxWaeQ47eknQVvQFoFU5L1uIvhDFOEh0yOeAASjSKr74Q6SopkCUAyWgLEUjHi72DUIwuWGFw6hCS79B0jtGI52jXvbQOyZ8q5HQUAEiG3M/D9sQvKkNktgGisvMwezKJQQupsEQUCE6gtAhHiIx+XBQTgcHOTrQprQCbcpSOFNWrvnlumcUTz8URYeYrjRbaqLYDBh4hZeqTCZahv4HkFRKYBSPHCk+1LOf3SZfi0R39FD9RN94ygaI0tAN2EvCFXdd7qhkqMRovjesY3CTqTIHx3mJHUuFsi2s5CfCYFrSjKY6nmej+ipWkCKuyc1wheXQlpnWxfCu2pRGP3ulLBxED90kfBM1jJqk7ptwAIJdGT2WW+prcc3TvuSqM8HoxRNaSs5E1TtS5uhImp6T2XzfhD3OH//4j3AN9fe++8If/Mn/IFhi+pVXXmHwvnbtGkhdfPX7H/3IRz79O59ptGa3+JjgVLk/6lx8/XVG6cZMa+XmKpvnUGXq1RkSo0hyKAU6UiNZbXqaPdFIZS1IXMnqMuA0Xzmj7lQcmkvk4DMozx+EikqJM8S2DUzA7aEOYw63wUKykv9MTy7GT2LZbqd0wAVlETscKkI3cPYxxfnaJl+uWWgs+nLXTnzeIHGBr7gGvkmLBDn4JcaIEAC9QQf2wAW3eAAV/BlwmG45wHCsmb0NaIWoomGOnCxWhsod2XNvjlpWrD036VUkEC1pZdpgPz2+x/BmsOT2N9gVVIlxr5Hpggn0hMs4UXjk2ddGAcWKxo6CXXawYLXWykHilDeWsDB1k8BxAwEiGhlkflCis0LHYRO+hLplHnSaL1k0iVn9wbh7ebf6UflxS0/iF6AOjiq3gX8ElhMpZYd0dQYCOib44E8XgBNixFNxxtlo4Vg+QC+R54PHg2oQzkIAlZyNFq8S13bgaR5un+Cim773PnPP1bDGR/UaTZiN+zxZEEPeyZocqwoeiVwU6bQ2FR1Kp8gUDhNHxoIOxbavQy1jO0g64ReGjC0++DNaFpxK3qLNAw79QsNvjc+Xo+lzHo0dKoM+KlTf7tBhAs5N2V6ezxphB8sxlEBG8393wLKhH/fg6mwkMp/upktRLFpOSGhwo3y2U4MecoiNKhQMaSBymrmoEeyWOXyMZZQI9HGuLwU7awWlQwEMr9JciobDA5/QYGXvUollIygoX5rA+Y/aEAFeuUlI9DN3vCLwsCtgXxDFQ4yVgB/5XN9Ye/3CeT6Ixp3gzz77VecNw9Hv+8nfSxdkGsvqxdr6OvcmfeZ3PvXTf/APvPzyyzQBgwf3HEmkqca3X/z+3PwCy4PuCBzs8enP/sbm7GzLKXDPazf4TgSbKrgGkCc9Fmtyqz4P56DUjgbcJu4BQggQ6CtgIRZzNr5+AFkSM6SOa6UhjooGLOTCgPWX6ipy6n74lG9uxZHHFQMRhMGFVYNRt+xhT5gS3TlYE3VVnoptCyYPQRXtABwAwrwUlYJTu5ECy1mQV160yNwxs4IzyWXRnA5wFziqadaybH4HeRpZ0YsU89gOO+zjlE2cMvCGsSqLNlyyToeBY9lQQQWCdeSrjMMHbiuGpSmabQ9ojEpKbkZTIUdNGLGgwkILbcjmf4hETaEtd/OrWpIEntfDn1UzK6NC368oecMMQdbam8pNY0ruGothhJQ49spSjcDQbRfQ11yZ2Egw6XSsNNK7MHFi+Odkrc1lUajpARTlEVWZjLR0tB4/e/AZdrRk6LArRCbJJVRBUH/+7EiiZsMiERIP0GNZrGC3Fov8dY/0giutxF5KLCfUXhB0JKZPMX5TOEEAkxTJWYb1IoIiLEA6AEXpJbFSoN0fDCIP6QnPAaSgYMRoHfojeR1BHSkZp3HkM6vsTQenwlwTFsgxA3C2BB8SAaXwUqYNIbcjQgHFZw8xvNKssbu0KFdPkEq2dL4fDqgAwVbL7g0uQx8id+qzXNNZbfBpv/nR7LFRbcbrKhBCmgHhHpydiAqxORYVnDlvanbEFM7KUhAP2LpQEcbVp+tovxR3k4adSOqYw4xRI+iZ/BmW8RoPU9rSvLj2Fn9SLEQhYhRJQqNBID4h4+kCLXjsI1UbBOtB131I3FepMmELueULHrUT0O3Qzt2rEmabIBbsgqyBMbFYxP6BKCjYlEvviZMrkbOp1YwUsfi1gZKfyko020u9RtwjWdQnfxBI1XVCwJvRI4Lu8iGM0h43ECFz+STif/OX/t/f/c5Ln/70Z0AA40ayi33jG984efb06urKZz/7Wb4ryJ7la9dugA5XYZw8sXxjZdWhmrXWqAOilnMotBZEhApBpgECCz8LhCRhRKdGHgTnQqOwXIMqho7EENEBIFbUOupgpVLjpdcQFcChvQ2mbV2Z4JuHOxTBHYWOyKhj1itEkrJcGyeyhtUYt9nLRYxBiPKMfAH4dg9pe5Qj774oOpQsTlLHVZVfnikj2MaSWbRybITie/bg7HYYBTeTsdh479IGU1o4jO8xQ0/EmCp1QAWGBXLUVW6mHLYSQzYGHOovYKrt9CGqZ7TMCgGY+8lWcJ3ZxhU5iL6EtAl4IpjC4mxVLNxPSbDXmFev96IEDHJ0aJwineUBxQwZRUSn/KNWrIiGCZ4KeWk8T8yuiCU/ySQUkxPCR+HYvIEehAOBqGeAEVLmkaxj3Me+FC3a9lh0cLqy+EkPRTP/HQnAVTsnLRJ2l0S+vIzxrwTOYWclC4ui89Bx2tv6IoOxhSdQTxB45kSSwWmxAC3pLSTRMDp6Kh8iIaDZAUc6jdohASeLBmCGaZRim+DwQ2+7AZVWiWZFsNLCBNmqzi7M1pqz09wLF/vqaEB2Q9A5AgVVkcAQrpN7EnZFeQF5j9W5zBQbRSYM0EyUmoLxZBLNy2CGy2ILEEd7TJqU0OghQIkWpOGwJGC+gsXAx/OX3ibKLIPa2dvYPs9RgwbjWyAMflpHOX7hdKzEHVEuiKIG0qx1JIwnwaVmCGjqphAIXQYllDGFlTREGFLPETUcaAFTfYIxx0kPPGZnEgEOWiBN4C8pzauMizNDQbcgQVHloqGKkLvyhCi8dPESgBG+v/zL/9Vf/St/5cMf/kg6to8J6/77779y5cocp/3mF5599tmf+ImfeOihh1599Tzcz11ciJhZjoH4BUL4QJ2FmvnZGg5HcFqF89XuXVSVQDoTxWd7Wuz04MZSvt8zcQgtEYSnTCreqOMe4UlVoHUQWMkPNBxUgocMiWpDUmaIhCc4BIfOIqlMQjgNMeiVBrXyqMXQN+BDyYNBs/7mzdA0wwEXRcM1qqvMybCws3cQQUfpzunDiTnHlLxZkp1F1S5faPQLEtSP7myP7Y+4+ZcLcrkl0tHEbqvMjNEahUBJ6H44pW9pis2QlOUtZJKBGlMMNFEcpoagOAJDSwMBshyxvbWoB1KeglTJ+QNGHkHbUYoCDhBBcu/hRTUOCZhRmJJDuqRqRh05tWVHYt8cHQJ8aSPFMdKAPqw5Q7rAfWxpdXddiEZoaHB0bEFlzGAjF8xOH8iDU5IEH5nAqhKzZSgJlpQ1sE/hJL+b8KEJLEgUJ8tIo2p8yB0KS1TIaSGNxi5jrxQwkTNPMxE0zoTPcOpPc5MSykSNIGTm5JFw1iQmQSSA8qgwtmcOPaU59DQFgJD9VFwVJNqPFfmZWmOBlflWs8ptB/Yn16ShZV8aeTct4OFX2StpLgmd/QVQOLvT3IMs0lYktQXNhhTFPC2DEKFORAr0YeulOCtqhTfBJEFA4AkzyA+oKqEvI1eDPyQReyd6ZURxUunRWFz6g3gIYeDEpUjM5Zh9wmOIXrLsTcMHfTiK2UbiAFmfzb+yBSVGvYKV8dsppmFSiqdopA7MjjpiLXIHDtAwIShCombFw6PXhPBYhKaqHXgSYy8e8/DtOONAvuwVNXljY50Xitjc3PgTf+yP/dwf/oX/y5/7s932Dp8WpEUfefjBne3NxWOLjasNduOdu/9+hPLNW7daLS5IYnHDtsUmw1QEIIx5nBiEVAxFGNWgBpecTDUlhfrXdAkJDSlQ2Nmg6bgZy6hF7ag1U1GkMx6EPgCB4KwG4RIUSGRJ2BKFJ/kR+rRuSC5bQBJCtchuMdaujB1Gw0IVRdXJTamuTA8ARzwSkIKqvk6kzZhzXz7LRboxWCOd+eQ5lrOQBTRPQkcKgxETMiRlz25HKzP39755NE7kCMKbKyb5wXoxwLpAw2oKC06l5s6luLcLusQM1J4wzeBP5wUY/G5KfNCMrkcXMYe8jIrE0BnSdR/GgY/CilByAANZDK39GGbUMGWRymoJdqWggltN+LImRaZ5INyZpZQGnG2D9KJFM6rcMkSAeNJsrQ6iOx2mBVrG2PYVd1UFoUBLQmVOiMUb/jGfpwRBjyTyEMQl7ubMqRmzJrZjoUZTJBck24kVc7RSDn3/b5RsreQXu1R4itKtcPEyhkFQgTAp+Icz6UTiKEdoKRv10IzJxCksLVYrIoosKauIQsE0sYJEiF2RCzh5oWOEgghAoNUVKfCDREVdrrSax2drfKWby8q465kJrSdTmLapOjKOyXmoS+mQC7jAPz6iFvET2CuZ2MUx3FODjmIyeefgr23E4ljbEw1tm7SDeNB/cXYfuiEtKdjkyB6qB83mwYrukLmUZwtx4oX2T5dmcQzpiDqAEQV5Px2fZAKqijQgEStxGBMl2mkfi1RwG/2GF3Cd3uMTqOm0mCNhjF2gB25UGRZFZbAIN9C4DGOdAYh9Ul43vYjCzKriKjoMHLyjS0MgFeoEkFowY4StJHpkyCsJEOkHnPDh9f0gW5jnDg5ZiYNdIA3zgOrs7K/+6q/+uV/6Uw441XJ7Z/vYscV/8S9/88GHH0atBs7KygoXh9JUmDigEn4JyjJ6DUM/swGbB8SpODtTWjWuA0XH4wix/9CjWbCen2EzxyxftgFbRXEICGsYaoXrPSHfgWa1qJPjj+TCJTrjSVGp4nQ7yk30oXSjNGaRTWL4a1CAH/TL3A7Dp9rZzDPjBUwwkLyU3ASzkyEIm0owGjzEICevCfY5IbEVk7tSuY2Gw8ucVoQYPiJheHywgEapDPnIDT4rF9pCiDQ4BqLFHlBEGgYASBYWCps/QcFDR5Al7a0U6MdhMTgAlhSwEMmUUFZWY7fpvVtGfrcCEzp0RMJ2bP7LeAbkUB84XqbqDpNHAblIoQSYV+lDKZCbeE/2sxwLW9LL7bxSnlcykhgmgIDqOE4CaTCVXJPF0zalkmYywIYKwgZVfcXDjygEneNXn6/iK3gdb4gFinaREIC2NSOcsB2Y/AMBiMyQDJvEkizoI+hS/lhwDrAJgTEylhRpRE1PyhBveonP/PxQWjinSKnbmj4LTFGCy2jhqQvamvYN9UbZYd0mXPZKCqf3Sukk24IOqeggRRpM8oISPjyDFdy9xJDkl4hqtVm2u7J7k3dUIggR0whaMNjP4VkMCGbIsD/aoaIiAvO/r7YUAtp3i8gGbSjum3epIQvRMZD0rAooisGAfsiWLgd8GAPJlpPRutL0UIG7J8OS0aXDI6ZR+gi0BCmk0Yp+gA6jXs1FSfZmJT0rNbSxDS+dg+dpEiLFBvZnUa7EoYzRcJvbCejtbMOLBrAfiDkPaM98n3U2vjDCRRzAQR7tsYWvB7lxCWcQQWZltc6qTonyN852D+pYn3Dkyr2Hfm8fcyhpHhB0RtQiYWUatyz1uTKUklE3laed9rFjC8jo86++eu7cfez3mJ2fR13GRsF6FDuEOAr4/e9//9ixJc6tIHbBGZMlvIBM4J/iuLWI1swgShTIU4ryfW8Pcc84xxgOKlDM1pAmPiidJspR5JeKwTHSImqvx6YwRgetg+X8CnUKBgKgiJLQRCO1ID9tTi/l1H7ZL9fQd+O6pcmCAub4kfXQFAC0wER2POyoEeEsxdMR6qyd2ztovoTOvuQYMFhSxnyEIZD+7CgeQtYVPuad7HZQnoAuyCJ7ZYQoWiAxz2VEZwa3V5tGW+QXZTYENMwFfo7iKgesgKiy8CJlsWrH9CL6HdSjbYilYGWnsgzcUZ+d8qCcq/BoVKJY7BECTy7ZD0THFvAPCBAYJMATRzKezBxkZMsK2RwJLIKwNJ2IvKQ2o8GpWVMhkSv3FuQjTQoDDt2TR3gEAc9SqB/oE5Y9T0EN8ymduYRCCWePZbpMnqlp9hohpxweD7msjDzcMvmb6HH7ExiXpc1/I0Oe/4hf6R31lTOdxvH1Kck8dmRKCSyYhV+aIopJKYhLUHk1QbiiHPoOYsxXJFxUnBMLfGSjQadzz6uWKvLxh4RiapvIT3KEq4tzTme1jItiFATvGBQtKyOxaOzUSUrTtGbEhYBW9jJGyrdcKBQaNDquN3u4S8TaKgJk+KIC8gpCWbOG33zBOQ3nmUonJeVhgkE2c3sJwLVBWwMZW0swOckNRbGbiUdIb5gJIvmNr6SlTXGUHDE0GLRU46Kd6J1gAeuRG7UU/dQNLaiFDCah1oAtcgqEQQDJaH/KWz5w8yUIJEPlLUKY4ImLQnx96w5Q1K/T5YoktF9Hf3opBp9229uc2RY9xxWdtdoTjz/+7eeeQzrzSqX4mhRXTTEW0z7soUYuk5JKQQcEN/t6ZmawYwwWF+aOz8/PNFgVVGVAIjvFqnKzDHPbEmThEw5suqCZoEOqeOxmte5wQJDcKvqaJhGuU2WL74RE9akBDKDpLEl3ZXgIEGDSEdUKSJGTV4nCIjVXY0F2PrIFtKNkaEC25NyTfhPtUyPsj/ENtkaD4MiOUtS8ttwRbQV7w0x0B2Q0YgSTLvoBEzhmDkP+eehryC4ZiJa4lurQ8VJ5qCnUhSiEogsgECb0WWIDV0klweA+dQ/VGCvsDnNojiZJwtAeIAsKiMytdE7AQUnJJR9DW5EX0ASBiCREpYXMKQGSMa5jpuAEBA8gbTsAB9opavJJfusTOSzjkFME38blUeayLExGcUiaKwrlK1ta7ZnyrbyOqtpllTJuUBkweWEOlcPZV4ylppIBg4fMjnGZMyAalfciMI888jdykJjfLAM+0QYOmCFgsNMGllIqsDVBlibeI1gAvolTDkgxamBKnz9J4uTVtqYZGbbKZT5mxLfk0Calg8gkwQoaHLVVsyEYC0G6/yZYNwbs6IBSGBcCGgLiKqVR7NC3Gorp5JDtjoKUyKe1VTLE2O1UaRjk9jX4yn1Nkcg81p8Bnh2SsDsyBbwZMNyBFDxtUypw3ehJT93EIkj2Todg5GZCJfowx5O8oIA9CFGiSw1wKPM7oDk9QEzsDfjebGemifhJ2HIbFZzf7g3Wtze6PU60wKg84AnRhveVhshDZy1wkxTgHjwRguY6kvBCr8LgqIhRj6JchRD6YGy9iuqRKDqhX95SjYEnoYOsSBoEmbJp0qW2IYS0QqKrMTxiMqxhMq1O7+zMtGa2e23G0nZ32KjUtnY2WrN8ZXx6a2u9NTdzc22DgQWysOt55+ZNhuNep8tJUoYbDCSoXRwBd6wa8nGdOZRoaM7w1OTUISuDc7MM5d5gQvFcVMIWLLe+cVkHn3MFd3bNO3kiCCMZFoI0a6ZKdnPFBlSHH8yNIwXCxAZiFyQijT0GKmdUxrbDLMXYqHQgO+okKdTN4V267mCq30FLZLUK3uC27yC1ME0tQaMZDFARhYxhT5BlY7Is33vUK1ykyh9MlrQQMPBiWSQjhR2kf0rK5jNLAU5M+ikXjncZ3LYs9w0ETp2ao2PZ30K2UEfWA9Wh/dPqpQ2p6kkia5kcNcAooj7i4lyEsSdk1IUc7KtiP6gNDqepQNCNPcONz65FEIZtlYakO8OqWecrupRkr7K92W5HJHoUlRxhsHPiElCUDjj2RElsXOI0PLAlQzCvUFVrix5SwDlWxf5F+5KCpAisVB2BCMAeY+p4mlGw2WxWJCEDJ574xihNVSl7JYC00bJh51R5A00uYGBZlpuBKnV1a8IsP4OZ/FQ+okDdEZ0//iEoHNDsuLQRW2vYFGCf5VWlgCjoJSjnLmp7lg6jKoM1McEI1IZ2TSqISynOUSp2+FGfrWOMGrBsZkK1sZNxCYjqiAAIAQFKSAvm+dRRqNJAPCkN2cLRzT47a0AJFRBosJKn5JitTs3UK022l9JHFCSCQLsVAkLMG1DY5ED/UNcEcuJAD+Tb70giu5A4NRmtjPiESmlt3fFBMvjAp4SVqRMtAjm/jRuE442WADUEmDNLM4CqXRoZ6s7QASzLGcJhl6OOSjtO8tA93DFLDrWN0YjPcEwNKr2h6yRKcQNh6xHf/qaBycQNv57VtSvJQb1dzhpaC4pudztsFiap/M1Ff34cfNDudLg2D9y8nI0VI7aaxUoXUejwIgHpQRYCWMFwDHnBOlYhHIkk6h1diG1rIkeqO9Dhcha6TcZEd8pC+xj0OlAK+w7K75PvePKZbz3LqrorXNOl555/7kMf+sDFV8+zRxWzMWhuxzcGF1saoyEaUmNjc32Gc4czM+329vr6uuhXKtevX2NbxQKfXakuQhMk6a31dbbHLs/NcWQkmt7KI2LYLYb0lAQ6WtRZBT7AJCR5UpbVkzQygOlgHTg5Ri+iYL80mAsjXMpSPAmz6aIQ2YIivERJffLtcqCRIfrGELMGBatUr+DjqJpSSvHB5Y+73GITbAIXykCuOtI1YrCiK1oJnRMRD9HprDrdyJFMIRFh0s1+HkSzwiwzQnDyE0ZTmMfulNCPLCljePc/TIvAMacRCXl7gC8+khNi7swRhCHA7PGanrSmTJAaNk+ffov8hWdimIgkE8Xxjo2Ons933FWS4f6gQCqFYvmXHC3O4V5GLPVW6W0VsjikqKM4SBIgnhIs/cYzC03xJvB/yp6lSrmKwgqGM9pBEAhpxuI7OVFfWD/n4lB83DGRsTzJcnQLzI7ykIlgoWRDmsMsPEFz0D40cLVRnZ/V8qx6kqTKuK5CJCfh2ntiZ3GAEjX+Q8CiTPyA5dWbSunyLB0VceHhNVCxjkptXASpCSS2ACK0ioEDfQHCk6jMUUoKQhaCM1rsoD9qY4dQs2wwJjNikcfj2jQWe9hRTUpTnFIfdLlWlE7gO4IYw0Sn53U/XsPTZ9+TfO46znDUGYx2sAy4tbtKKKaMnTB6Um8tKQp3xx82iHB0ze99hx4H/ly0wdYRv9MrLR1kEkNICCYdoU6SEWYyKpS1/QQ5+EZrQz+LxPbDSYKgS4A9mDJRMoXSt13WG/R3Nta9iogqDAevv/460w0GlKtXrzTPnmV3x83Vm4vH5lvXG69fv3Hm7JlLly5xFPDmzZsnT568fn2VpqdatN/s7AxKNMQJbZo5yRTiHhlNRZAgqF6McwwGCauM8VHcvf7b5ody8iwSA5JQHQ710IVCDNngqCGgbvu7f8A2INlIswmBkA1awWtgQi8jZdCQzpPYNwwgeCmABTaZmPZBD3TYkGeE/TY4kYsCg8jBpm8EFQ4kCfnoJUmVRZVmiGIgRxJrbfJcSXkwrd0DHuUPRiI9GbW2OylEAUFRCREZxUE6YqEAZEmY8Erv4D80guvJhYPxguvkMDowqJMl9aY7YB29V40+dGRoj05AQ1C61OZJZaS06eyjMDegKUpREDiISkqKx/wIRUomC+lTz7V8yXAbd2RzRU/nO9nofSgWIXqFEFWN4gp4IAByR0JPqU2QuahS/gI6ZstfhZK/RFQRsQ9vRiAdrKfJR8EH5dWerHyZHYba/DV1EaWAAIejcdsHNZFZ9BIx1Y0DWShpE7MOVMGyoT0RmyH8hHqc2sY2yl0iFDMmpwEpMKoECyVNiLDoafZQ/OlujEKDzsHEr3Js0gWN4USbcsIlLAMJqOEytn8KaAQoNnGWXzwEzJId9KFsZhhaQNC+o+eDBWxEJ0GpFnsVDW3WXKLP1JjPO0VRAOak1HCz3d3poognZTVZ+jyPoGAGPfoCX5RAFfLjIeo+UN/Lk7xqwkkisVgD4FYXYWxBGsb2szVtSuvLq5SjXR1+HNMyjoufyXoHgyJ1qA77Byw6xu+JJOGlv2RB+MqeOkPL721vdXa2yYEx/dqNG4gA1gZfO3+ez6mgF3NR0n1nz/3uM88gtW+srp8+fZovw3JTEns5jh9fXru1itrOKk23W2YtMT5IqA3b05mYLBzPNf+zmbE1wy4fFEEHMxqcD9eEPkhuWr/H1hYrifBV2Cp5o/kcrjAaIEMVwVQJ0qeuDMvFIRc5IDFpaPQwKHkRwDydvOOQVpAbAiu4GRCks9CqdRZvg2Eykkz+ADIXVwJJJYCA4AKshfqWykhZFT32sJzGkwDfwG/7K8OYuzpzsckRcYivGiZq56FsJIes6kKiQ6SnCBmVkZXMA0IopyICLfLrID4ZCcGDC/STKIeSwU4Mp/RfhIeppJICBGTSa1TcjLmj8o4GQsbrgCoJYFeXbCRYlEnqkDIhii3VJqOvgbqlJBf5icFmBjRujnKwJCorihwTkioa0nykMCOALDdLTEgKsOcVGETz8BqtlkFNRUOT7D0QMk24qIvJmU5KjAQ3twTyCi0xy0lWHo49joLw+J7nUiUZdIgBUu6FhvhJIKmCYFIh8IkAwbH2w74x9QqSTzMf1R5tZcKOjAc4JraudA5WgzHVYJEEYfOkWpBYckRGugqtAyO1uG+Bm+Jis1BIMqqMbHNoyHOBcDATmSNvKg18g7zwDEWLPh7P8mEzQBC6mKT2etCl4g+Gat054AAelYp2IRetKYEMhYFExdpYH2Uws3EzaAjynvIYTLAxWRnEBVFac7BsML4Nd7e7O/ZHkVYD6wx22bgHgzFnRCKS3OMocUk/upwtGBxny2me4ofx0VZE+lvHyhSHFTC+pB6TtWXGpEEWCMM/dtm4scqSb+eIIR8mNtrb3V3lurU6Wk6MoSQmoHu7POruhj5H/UZd9yPOzLS+/szXf/QjH7z//vteeP65B86cZX5dUsPG6Fmdn5vb7nS5vXVjc4Pdx3KoYlUTX9KImh5DYWxyUYADIRxTPXbsWIt1Q74AiQDFhhWHSmwX+RiUpIk/UU1IFYM+11i55xHKOOvn0sG0xkBjSFwObEeDyroKbgCQGPpDpZSLJkYkG5uMmBRAMt7CYxo3bvNyhKPJjJCVxrEwxOQrJfPvQFDGYLcBO4a13ydOUflAjvmpKg0lU0M3L6FruW8PhRqWFSFqBasRWMHmTkgoOIQnnPXYh616xvIiilN9C0/2kHC4eEteSUhjEAJG9oDsmWXQKIEVn/XJoLZrjwiEAoDlmjUFxJtAbGUUIrDOwQg2S0yHQKrwVN5bqGlsuwm37y0lkPr7HKQjhGa13lJMTsgccZM4JRyDREV4ntTfSA4qlkECYPLEEYU/e/Et0a+IRZ2DfJkjNz4JDoRgJ3IozSM8hUBGzNZcikEaWhPYLlTtdwmchYVL7UFKeSFARXL9sjYmiOo0BxFazRoKJXZK6IlYwwWHiVSkDzpn3hQwflJiGIYRClrRmSJZL+suLvTCCcoWuaLjFW94rOdkg+dxwghSQhp0Vr83g0YZq21ortrsw5FGH1EAAo4XMmQkgA7EZE9OuDv/2mXs6LldRGkEyqR2EYqNfw62sU6lVYuehQDisl+3h9LLIA99TPJo63HypVAJFFRgY5ZKYlvdgUTeCux96GQVQ4L4CfEjnlFdJiBDvgrI6Q9sus4QynyNJatsVuREVktUjR30umylAFfFVWNmDrvN4szi8skT6Mt86ZWvFv32v/iNh8+c47b7tU6XLRzcCs2+OvRTpChmGq8esT6K0a2tzYXFeQrZ3Nrs96tcSZoODcKeWDkanOIr+1luBDTZ1fvCOWgFVTJuj81exFBzxgAwd9R0Is3iBwR2y1zKCFmIJYSnnBNNZi60Y2gba7ChmgQRiLcZMT0DEeq4gAPfodyjZiSAk0/HRig/GfQD9tOPFXdUIOb7II2OAGGgNM1I74VVWZaDq2BcugtUl51wtF4uoBUJOZ54hKZSXAhlBvsi3rQQIxgOb6T1EbksIANkTO4gPloI9j0MhyKBeMYsmdg4h0RaJVI48lJCNFsMZjmc9GuUE7kSx0CRADRZni/kWY7A/kw2Y9T+QHD2SmWlFCTKa616FIoR8KwmDg/N66q6VQs0xtBSsUaZTjj4DzwDkNVMUcSaIDTNCIoIo+0XqSgKIE0sENjRyQhtGGU7HFRmsyfLDDFrjMplyESa7EEQTU3VbGzHRF1KZ4lZDrrJwC3P3uVb51gKAtqOimiideCdqIs1S+0SucDKKVk0uNUVMDizdqhyFPXKSiA7cBAXSafMy4xfm3K/I+BQmLSmy4qH7KOHtkKSapnJOjPAzRdlWWfaz3UZdDhz2CgpJbXCD37U0JkFgtq7pZHICGemOvCmW+NUdAIyM26hYU6MD5RRM3Y+Ax36iFWkIQFbAhhrWGBl4EBhDUxsRXHUpuJcL1AwC7VQ8YeivOyv/uSbIoolEkbjfn97c4ezNKioYJFqSkprGW6smEQjccaWC/gx88AvdH8+CQWgZrN1/vz5rZ1bmDJm69X777sfTZmFzaVjx7baPYwe3GOn2cGG10rDbjwGa7/NFQMVVo5WvYXxC32ZRUIWKdjlw93WczMzs60ZPn4FAenkUkpyxZNqh3j2vJc0EznakErQ/bGfoCsj1g0MjoHCVNCdREEpiRokggJkR6yzoKaYRjhA/OiWpJTxAIqEc9ALika/FYiT9EkxrVavWUmIlnJXDsA0d2S46zwB3QrTtegl7FVGPoOJyMpXaNDBQxlkuMFYMbYI66sss3slZ7bMgbx9L+CQNELpDuO0UQrBMoflBUyioQXtQp8mD7UJcZLxD1v+41rcuHDbvktXlkikL0ouPIKOJiYWSmcoZNj5A7VUoWBtLmzqM2CLSIq/3eBoCskcuVNSn0WliULgw5heQEFVUhK1KPV3NVx30ECZAJEwH4OZ8AVE5WzU0jomF74oLxo6VT+ipJvmzQAinjQoIjvok6GBgovQiyaKLMbB0mzIZ10l2QPZ7ZHqZ3PYekKKPyiIxmm/SfUCQiL7mEVLu+jOM636wsyMlw2wHUpyyDAkjpKjWDJE3onq6iUQxRkS4dgNEb9Wt0jGFQWwH7ILEt6bA9GUATTwYOxy3IpJFZovWpJUQaJioA3gCERVQFAPElGN6OOsopDAfkF3Db0AfBxnnWpKGMkD32KzZihxwulOGInIpjF4whmoMF2lIycIEMnSnemoN9NRDyMyVpgQYWoWRIg9gS1QQXls5DWWDlC9aRZYNrUN3K9+HaR2EEuVTbUGPaLUrShGC9Ruu8+38DjKk32CZB8pEViOf2SxYuXRTnnU7nc3uZjfG3q887Cysnr9/ocfYsPL2srq3LGl973rnb/yD//HBczNN66intPwiHTGJ+QmNWdi4D6h4RQGaDar3Fy5AcrIWScS4Al5p/ZOnTqBdObgFLu4MA2xZ55uZOsoLdjqy/kUaYxiDf+qIXA9lTYiZKmKNjZs1hAZcLJaY4nD3EEet3nBQDKW9WH1TDrHuc44F0p6uiRaHj1WorGvx2kvZZOJvZzsQXZbMKVCkEwihe5ge6NiY/TxliyFNdkpgxYyvx1izLUF7zFrcjxHg4d14AXEE+9JmOxrA17kUrid5DSbjctHSlwidxtSjMg2v+m4tJO0cBTzXydssqVpLAji2eOdXBQatJmCIBKFeY1VERHFsFxu6NhR7hT7jbRS+IkXKuukk92CrjTLTw6fzgZBgSXlqan1fscWmXCh0AdFrWkG3Dokl2S91EBCKlDAwilRIMk9LfC5O6N2hxis9tgXJQVD1gMpY3MBiUYMmiATXUMDnlMJnWDd+iXh2AqBZGbZJ+b2QEopEIMIAMriYJrHVUZVvv9O5UR5RJ+kGagDNAVTEeACS3ob3EUTxiexEeiEeq5qB1CQMbArTbeHw2MUL0PQFRo9vpeMaIOWlDtdYtE8dUL5lL3G9Rp2QLLCfpRH6aAAYjvDfpdWHk43+Cx1ha+ysiOx3EXCZOSkALeaqQDRJdiS4MSFfBbLE+LwTREYpL47zS3r/PFhZ0ydJmYVPVqf5oOLUvpEMRkkdsUbqByWp9T3k8toqxwrGiKYev8XVYK8b/KRl2TBnERGIOIBFryOg9bUm8qBGb2Bya7pwT2wjEaHP217spgmOVoBfKO3q1YroexmwcohOSMyMgXaAYE05I5SKVR2TxkJJ1A+UZDJhWrfMWH0JXUnkuLMoQMoJQTo8YP3DD1bMnPBfZFG+ltxHD47UWAlc0YU52z8WEyFTwBzafLw2PHjr186Dyf989/+V3/2T/1H/S1uB22s3rzJWnOXjdIzM3RRlhbTwhSFwfn9PuczazvbWwBEnxYwa74KnN2ZVgsFnL0iS60ZqubXpWEcKWY1ol6wBeQFN9sCh5/qUH0KwgPA6NCBf6wEEghHIUFipIOA0I9O4T9ypSeNIqx40NZAtzj6nkM0/c72UCwyoMl3OWEZPQN7lqwwy6Dri2PmiLmzMyWDHHcJsPeUCjIsHGqrgADH8Q9sxcXGp79hi0wDDyMHiJOOJ+HQkK4ctZFzxA9RAQWUzFyc6zeMfAkHZfyN7ChDtnd04ERrqKZQ3++gGjRghQ4yaHxi5IL4KhnTmLncKBvA6bpztCm1415ax4OgE63gsjftI1pipttfgG8RFKjxAnwcHrid6tD3aMHJcPyHXTZkjSOAmUGkSADS9MyrMLyyFA3ekiziScfEQSmgioOGYmeUuDmoJGx52k2jCqY1RfDU+Bkh5PI3osIXLBbJ7cRZXcewE6DIYq6iGgl3Mfe7Tty8xi3pizXvh9HQg0YSDJuQDHJZR7JTlRijqJ+NGYK+VOdqhEaj3ORb6VWOHTTQPuFzx1jii7VKkmd48Ett0wtch8cq547YaBArEQ2V1SZ1kyNWCPPa3tsvRVpqCFzkc5gO7MBJgNFp8VtLqIZ4zlCXGbXoKXilXZAmKxf8oRBhLKA7tOLkCmMFldwE/xkRgemXcpFN5KZEsjI0RS4LdloBZ9BlAUUazrGH6CeORqApc9IlXsr4UvjhUiE2H2LH/DpbMXOM+IGlmoKDjg9aNhoYGcBN2U889shrV1cb01ML88fpNvRRDkp++Xe/9p//p392eHX33OmzX/2tf3Hs1BnAXrt+rc49/NVgIy4eHPZIzmrbrVurWKj5cgoEcc3XxUCVHI7wYMiu1xfRr0EHJMGQWOgFQbiyhaoRbjOo/cPj/hBFYIoyOtgkTUs56IjUgHg2nCmsD4jxn+rDbTQ5S2ySIgeCoEtqAHRGwnPAiVfIw6eAQlvEH5QnBF6A5l7I53VOQKMIyr8bBy6gSfmwGh9FcUlP5QVZdtCBMM1LZ5PbkOlevMY9dvx6y2jqmKCBU6MJISvLkZ4FPJCl6ZyNuq8/PsiNxSxrX6BFPrti0EweIMQSg41gPIuccFTPaKfY0k/hhkNEM1MccLaAIUr5GguqU2yaz3Ss4EQycBSOgtKfKVPxOetFE/ACeiGZIlzmt7F48KTtqSNAgAIA/t+G4FbAEuI5/pU5nBt4ORfGtCZrMGxHBDrMZSoV4v4ApoIksVwWOCmAnSgHVUQCFxwEK6QqkB6Cp5ciBIC5k2Wy8DyweM9QtHiS8GbZeUbfJpw03B1u9/ow9GKj3tqts10JHQYBDelhhsT2IR+oFTNF5ANI8icTJzJSYaAytNPrufYNzsMRR5nKFntXiBKQ8E+nthwu4ZXSkEWXVMNIlsibvMTguQcBnTJkcCZ+RCYYMXkQzVySRAhNiFMAMQPS2sDW60FoghwE8GKz0IkTZ0e3iKoEG7l5i+IAIjs5PTEkZcEDKGKCXlkD80rdnJWgnMZYlhAkCw4/0HAKYIgNuIz/4jUIYTJTGAKBhS/bseApN+MSQIsGgnAiIJhV3g8BTd4IT3ExkIQX7QIxN+jE9ote5+zZ0/io/uLi/IsvvsiJHz67wKehmBXe98D9X/va15aPL29sbyMm2NO9ublZ5YIstouDoKfVdyFnnUt/hgNv2azV5hts2GDrt5dALy7MH1vAJtZcWlxCjxb/wEzWgp70b/kMIK4ZgjSCArBwTvSjoKpktDcbksQudc+HH0U6qdKFv6kVgi8lSwgCCRGOtvBGKsYOJtTwfa/t56922ixdEgJwgDC8kAuG6fa44cpzXtBdPH0Cx74F3QkJwmZUDboTLqkBsrW10/Q+P600E8NkSuXT7NFegGU8UTBTDLBdK+LqFiUlyUCWQKdpAOWVUZslEMCaRYeqDneY2DElc2SEelCEious8bJ6OJkj+cQ1DytCSApKvDLEMXnR+pAwIXWkB3J4LDGQssmSxEnFJ1AMKgXMSBDMCdHJB3pagPhimjdVJSSobfLSu4CDP6CR2LHDEDuXvgTNkATLYkiMsl+jazO40L0RUFY4rO0koxK0QhyvhevzGsYtBaQyyLJViVRPKUSYshTLOngSbsTa/IEnfiJ4AVikpAQ1hoQbGaEhyqapKM3GA7IKBOGZWSLqnUoSyF5phy2fu6PF4cxMpy8XVqZqmDoyLgtQFAcMWnU0xQjEpANbHnnVxMAdmaAShlByUyqdjBj7iANU7vBLfhCyGvCP+ISzmrnDj3OiFg6eM1M4ufaeBHSWb+KHUiicADyBiB65ge/glZo0Ia/IU5Q4toeTkIYchN1WPIL6Ip1O75E0JG6Clp6GBUELvLMQ2ktqONGWNCIhq0WrZQ8CkyMcslBMDGBhWqFQNzBFS+SkMXFwKKHEZJnz3+z19j+pI5I8kSMltJgUAonAIaYXM625C+e/AYvPH5u7dvUapwIXFpc55bNy/dL1y1cePHv653/xF0rN5tef/SZHvTFZYg7e2dnmO4QQFgrBzHRb9M2lpQUMGjOt5uxMC25mu8bCbGuu2YLuC7Ns/Kg2WVb26ErW6xRmwTxwMYBgKjkQfOUw5wEEUHcNBWDLXwgXwuHSYG7Jwn/ZPuaJeVtYV/w8jbezYUjUtgHn0yqMyu3trUp1cHVlrXn8RLV2jo0SfFiYJuFUFYlD+jFcqfwGnERCnuAe9CTiKGeR7EIbDre4bYpjOHKaeXHqvQVzQntQw/7LtvWYgTp3CJcQjpJMDVdRaVrN7iRxEJqafYJzYqHV1iSlra1OHn2aH+VBSCn5cSyg6XeJLzLKkIvGyFAUTcLpOKpwMrQuCQnCfUFyMLTRbsHCIDvOqg9YOhslPOnFZFQOjPCADc5EBqnTGJ2SjzMVuQ96jkoitzBfyXhGeoR6mZK6SiQryTQxVEtTi0cb08wMOWAfgiCy6/72xLFL9Rm/hw9sDc//GzaZJ9IcEZLCfQbU/VnKtcbltdW52ZnjzSZ304AGi2eISUhFT1COApEsfqeHQVRGjJFUD1Wg/g7g9iDnZkgSKsT4Sr7EV/F0aASG9I7JWWBkixSojf1ZkwD/YOw9aNAF3EkPzYDsAy7OhqtUOFCDgkw4T1ISblslDZriUadAP/ieKBLwRr0iOz06Y2hecSk7v8pX/uUMF1HUPXGbtCeKZ+FJFEkgVBBjixs6WkyHgyvos0G6KCRl5d2+AMnJntxRvJAlvsNPwtwEgRTV4E+A2jdYk+vduL7CQZ6z9x3vtjvvf98Hv/nc8zs7XT7IuDg7t93eJlejUm1vbCkX3GU1ZFPG5jY33sWEK8Qlldrc2kKRQAgjbVEhZ1uNpcW5+VZraWHh2OIipUB/9t6xCsjYFMVDwmTJd1YH2ZGfIOhXUWQ1NA71NUKQx6n7WQNe6FCpSupDVimsuBpGQNCocCZOjq8HsIwKZ0NkJb85bly69KUXvrv84KMnTx3nnhAM6Rz6RIGzEyjqDpsmbP2MguE78FDoqrWpOHNMlPv0h1VOtWdwwGgivTqAFVPmgmTWGkWCogL2UNJF+zuAU1vXCknvEMVwQpagkOxaZIcO+IUtbUhJhbNY6xYuciXv+FkEUpeUIZ7BmpEKyJYUvE3i5Mb5c587ZcJZEdrKYSaTMmAUUhFhgY4qCYICOazoUDmYI34zuPtiXEHFTVIgj88UecvYJ3gpnR4Ow8WI5YhEq3ssE/4BlTx76i7FW+7ZP6TlocVvZD8K0UghLrqDCaZXu+2XV6/d12jOo7rXYRu+/uPWAR0sK1ZMeyUl/YKwgmT4OAFniwUPKJyojcOOvKFsi0oh0PErs/IKCjg4MGE0+UxtREiRWJQD/lsV0AmQXVpTDFzseQYQS+FFQ1oYnO8MAeWKQYvi6buwTZqGkFyESMB/POIW6RMoYqOmE+NPjHGk25cAtkhL7jFk2ShYKNy6wLkOTn2wQUEXlE1cr+iH0vxjzLdNREQXHdpmOtiyeVsH9W4bm4A4uOJcAwASTOqy9vXrN5k0YYVYW7+J/F1nUW9zmwuwPvSej3zp85/76I98bG1988H7z/E5hr0B00eET7/T7TDssULF3JxVc6k6PY3qjY7KoMO5xOOLs+fOnDq+sMiSBadWqMnxpSVu3qDYqB1MJatIK36Y57P1BhJxXIggVu7qbAvlkLySGtByCdXmRYUdTYcexQtMSnA2i3RFkupIKOoYJkjlmUINeUXzIiGUdJhud9rU6Itf/trVta3dSq3f7kzNzjBCsMkkHf2mlEqtStNIqkQxqRZOtinaJA+MX0bSaAqxhGnsFtMcaFRW4kBunE2DVICBCEpMuEixJU2iloAwT96ivNhhXFCkbtbbCqY2DNLYF7M8iS6RPWtrIjIcBBkMBaaRxUICkxy1yAfIqIkNhXNAI31kpC1AxOgYVRzwoKlgsxD84YphKeET+ng0IrDJZcPBfK4LJ4ysOg2ZIZNDyYBF0alKeUjI9ewlxchLNL0KpEWoKxEPeLgBO1oa3VI2xysUCk0f8m2kpXCFdtHLAq98MIuCRDkrMfuNH8qBAjH2B40INK+cqfM15SI0wqIPRjc0yrzQ0CMhleq19c31pQ5sTxY0iiakT5Y9GSAmniLhcBKQwMd6UVgqjV+qJBYkMViCoFJJcx1hOtmHgpNYC+00gn0Ezfwd1zXejMMFATT1ptc39wQb6Eq9gKLYRQLX7C0gR2NkJLeC9hL6ktpGrca4yf4cZpJ0VOS6HGQGe074xI5/hPGHFEuzYEIlDnGkC6wlw4Sj3RAYagtTXvFhdi4AKbHYwkX/3pGvmEasRG9LQCBoDAgiISTBhwPDMfqGFIQiCf7kxHMiikDiEpKEU33m8dSAdkEYcTK81N1Zub6ytbmFRL5w9fVTyydffe0VSHBsaY7NVlduXOm0e3yIhI3OH/jAe37zc1+kg87NtdY2NpGi2DqQp+475uu6kJIvcdQ1YrTmGnw0FhPH0sI8p8advihaQQzuoV+44gTPsAmbb091tnZAsVau3tzZvn5jdWNzq9maYeYzOzfXZOs0hXFLYL2GLZu1PSahdCqZjUtp4ys3IbG1vWEiol34JAP4wJJ87QUiI7X90grmC/eJu2Xtxq0V5gcvX7j4+uqt+8+ee/fjj5TYL+j2PqQ4JmN6G+sGHiuFd7D0wclpHJDiE07C5q2fglMnoS4QGebjMgT2LEKXLDb3RK5ktqFt93ELC8QpcQ7Qxs+SpiCm68rwaGQBZsCZDKf4iULAOw/Mk5EmY0/y5XxFhXNv0T8TsPyZFWhZrkY6kJAywzyhkyctfjPEineyoP6kV4WoxlmOI7reQBs5MIUQNZvCxV9vM7L/+PlP+Qe1AlYOEMFGCRhPpQ+6L2vVjMWkjt6ENd+NCjzRIdjr1pM5imGjxFSa/XC0cNLY6CDYkLAqcIsZ45kWJ02OjB9ZG8MG4AjiTv1YmuCAlud7QSgmNmANfkFTEkAanvFmVdIf+eyK0RvlxUxwgL9ryRixAdkfTN3c2uLaGhbP52t0CiVDdJww0ERNHVGCCiFqpImUSkoMRTlE6YBrN0mOwAgmn+mteMgCkRSTgpQB2Lew/iZP4mv9ke1eFgnNdHuXlA6HfBrZeYEslfpVlsnGyByWEOSIS1UQKlJSSakZckcP0hpHPQEUloFoHqfYahjWYqKiOVZ+gY22GtC8ZRglbc9AOLG847WcLvfLNIBMwjchmecGovQ7CnCRJHkKwiauOBB74FU6CFhln7vQOtym716L1hxcvrGxwcDBnsN3PfrYpz71mZ//5CdY2evsbLZmZx558h0Lz3z75OnTL58/j+lifX2T+kCWGKP5fnAFOOy2Q5Rj3zhz5vRcY4YVRQzQsBRko5KOnFzYyFFh2ANhVEY2wutTly+9fuvmTQjFYR9WC66urHCzYH2mxab4G2s3Wf154NzZh87ed+rECcW0Nis0a9hUdRsCMljWGnU7lS3AQMtlJ2G0pVdVKpC6wp7uTvvaxubrK2vffeXC5k5na3P71PHF3/NjP3r65HKvw92DnfrMPLDg9APESq9U88jw2wWKXHSj9DyQzOE4nCx2e5eJwCxl1ovoyYdzFGwTxR6RoMhyJD5FLFxR+I/0ZEYV4mxLXa6WyVEphCeisfBPeMYVAkWay4vMEM8jD5rSiDRlsOVEjgnvGPpEYPKSka7ESjW7YAZsaBAVVEk+nudkCybBktjtdkhDH4cC9DVGULiQxVmG9QQEGnq+ecLEcYcScxQOk5pMhwNTcsNpcCjGuKSgTxRjEEL27w5YqWaDqhN+ZJWooU5oTkg0UXndDzgkhjDiv0XApeCfslAdXPIjtYy1z4R85iXAxu8+sBlKWcThHzF4G0wcBeAk9YIZHEEILzDAg6MOycOTCqRVRCqJnxDSAwF/cunV1vWWCa9FzkkgWAbs/QQUi0JFQhaSnrykZMerLlZRE+SEhhkOuER+nodBH0jpq2IktPwj4vIgKxVkiCHFrVpdFFNU1G1ubtortds+2WB1dvn4saXj3/7O9z7w/qfXV1fO3v/Q2XP3/Yk/8otf/+a3OtvtOscNW41ut8+IPDPbZD/B7MLiNitv5WkMIM4c90rc4i82rvK55iSB3Z44qpZqKPCd7W32Vl+/evnqlWvDTm9udgHaQAcUdjTgdqe7ttO+ubnOLuhyrXJ9be2V85dmmi2k/OmTJ47PL3Dx9JnTJ7itCwWZBSJomyoYJlrkn7xJgWiRdImN7faLr7763PlXX1+92e6wyFl//LGHf/anfu9DDzyMjswebr55U56L0+FgvN+FaJYVDkbsTzb5RptGdxizzWQs/sRaBwIPv04KOYRKSpBY7kDinM/3BRfZA5886hCTyrrjyDeo5REFjXPnUCZ+J2taiHLiCTdKo5aiiOajQ0TIHQh9W9yiMyHhy1w3yQIq4zL8B2AK8GB6nIFgpuqQ4N3HaAZl7LuqtiCvmQaNPuxLzF5DIEzUQG/qMwcC7/IVpLPsoqTDiM/kLPRxQ1DSwaQxtXff3Hxlfv40t9ZoFouPqIdwMk90Hn5zGCksaJiImYuxxB5EFHySZA48kDzmvJ2DEDmyt0tC+D0I6H2cNwaZESIhBK4JOV4TExR1GCeI/hSTHTfPQzBGMXDFBdQkIIWDM0EK5ZI8LtJMed0ZE4p00Ct6tYn8oKGc4qEC8qIwBO3cQAVJCSG2IGVCFSQtRvXWORqEBYmUhkD8EXkks+4jL8nEQP4owjPKEEak1WNmB/8OuidOHr/yypVqmZ3QpEZq927evMU2u3Kj8trFi/PN+ndeeumjc8eeftdTl65c5h6Wbr/HYMZQBbZs7Gn3N+fnZ29cv754YhkUWVFXrebsWcXP8omJ/QZhaH3YBrS2evP6dYTz5SHf05pbOH7/EqfA+dI3CYDMem13NNju9m5ubpx//dLGztbGdrc/3G62+6jnWxeuXG6snljeQN+BoGfOnuXiUya0VIPKanVh7MOOMo1xvEa5XGD96tXV515+7eKN6w1WyZeO/9gPfezd73wXFphBt12qNtjiDztTERjA6XU0etBGcqXJYapFipKkGWNEW0ixcS6rqiPVbV0RXcC5bdI8okhZ5M1j/C3adTKwSFl4JmPHfjgsfylKyQMO/tKAB4K0jIaLvBkihcR3npQxmkIwywvnh95DFsiuoYMhPFb5YBqMTMhaQrJ+EeClf85IwU0SOG8EtSiaHIsWALkgAJZOFAECAN3CqElNByl4Go61wuViHCEITbsnTEAsRac0SHmSBnXJEYLcjiMEE4RtN/njmVUu1Zf0BGaUjxItBSBOxBXQsAnCGX3egw9TpeMs1FT48HZtnh2sGoOYI7rdjkSQyA9VkT+DY2mASnhG0ZrzkyNxgUcqnfDksXQLtXY4ap48RXqRksy6IzlKtO9JQAeoe3iAkHbJaH7wcyzN+YAo/FTAcHW+DEfC/chQuJSGVPCXn5JBBHDptFduMx4SJPFTSrOH4zX3Spfk54fwgkB4UnMWWRKQPK/JCyBvxmMXyoqOIRhVxle6hnf1d3e4yJoEqzdv8ckltFg3blfKz33nu2fPndrptjd3ulSt124jvOcarT/y879w/sKlZ59/gSxsfH7wwYdffvl73EHKpR6w09YG9yXNcVkHcKkvpOa2VRZiNORW06etBpgvtrfat/woeOskppBTp/2GNJ+ZqMGudE6/fMHuM8wdnMJ4z9NPc/f0+avXrty4yfYRPjpenZ1hg4gXpHY77Nbd2NqMAzJOXZnAUjfMvxyNYdsHcGhMFjy/c/48e+je9+73PPTg/Y888IADdXu7X6uzQljhs36surClXR0KQiX+vgeC0+SJnm+mad6mPLnkezPgqGpR25xLbgvncEFck55Sx+w5g4SQTYHyvP9ULAqpLfdHv4DzScbGbofG3NRASIGPQI7AKcUXqUJiZmInPu+JAu2hbU3JYQsGCx3A6GhZd3N93j6YXCA00VctWBeFAz+9ZU/eLNv/kxHJX2C1L25ffnMiHWG40myjyZlBjBvccMQHQVrV2lxDacKKMCipLrhZIGzPggB9qJgJ1iSLU9UKAb2/oDu9pYyJLEW64nWyYgdi70GDLnLe2ZOhEoYYUvJKPbUweCANGhiSyEmdiZJ7CMnbKzETGcceLFzuLnCDASox9A5TdGI8W3yinuOaRjNnuCRoAEzIkCVIbz3Q0GPgRNwkUoyb3Og7uRzjA2noHRkWOSiKdYSnpmof7MKgRO020340FhpwOqw9HM3uDW+tXn/48Sf/xC/+0e2rV65fush8kXP+f+ZP/+n/x//zL7x2/uKDDz187doVLr3jdApX+/O5LDY0sgaNGsvcIuZuWb9xRhcEdN9js3xKsXySCrZqNU5GM73wWm6xcDsrGz+4bgOdiP168yjqJ5YZADqcae73uInpxsoNh9jS7vUb17iSfHl5mVbjM8AUQbncisKwKw05TqbmJLN/4H1PseeEOArqb+5QU2rYWoS+ynE090ZrlkUhsIghG0THrXaAlodfbcLJ0JzGk2Fvzn/3WMiCh1yR/ajIcepomPHrvfqc3yWHJy9pzHDBklAIVsflSbOulALTs4iyg068HPACItE7ikgAUQYVZ3AyT5qenUYkgkmIJoLC0A/IhWM+BFlIZ/+25+Z/kepAWTKsQaRJBWXxQMgxnAzXP4FVlidPmeWNHyfFIWinWtyBgxRxCwEk4n4AjPzoJnFnMRHiCKagzVwDzL2DI25OUYLhjJVaYOjmThwUmCzpDv6UngR4imSFfxxUxDE+REqXMycCC+/hwVvMiujcMw4B11Reqkyaq5KMcKOoHtMB2ytwjLKR2ok9aO4kpIkle5ZloiZBFAmGNYSmQApAJNsEyPG03oI2ayqBLNTQxqZMw/wfxbnTA8kkh8WAgYdWMYB46xhAhBaZkife0oPyARYoABwo+NEEs6HO8oKnREjighCJuJkPE4HWYYTbzvb2cMRXDRRtfDmm1ait3FxZvUnd9/7YH/mjN6/d3Fnb5BaGlYsXYP7jZ8784k//zD/69X++w83Rs3PXr16ZOXeWPRfeXFHieBi8xmEN1mU6Jb7bbaUBY22pF8t2CGHuim41W3zGpbOzRSSYs9cD7JjZSjY/SsYGEw9tw7B8B4QVHlRyX6f2zhxf8s4QqVVmewam8JFfWB2yFRSVnLoy4EyhkjMZ4Jaw0e7JEyc3tm6xJru2ttaoNSgJ4zhngtmvTUqE+vzikrddxxbojLQQPRqPJ7SCXmIVIRNUz7xFs0jb26Q5nCtruKO6UwFERnoLbl/2uwRVJDvEY7dDZF8peX+cyG3DJwJOQqCOkDWJmKQYwiQ0PoEFCeXbABgNkOVWrgXRUD+DpyjKTsOiH5zMAhueRFTG6IQGAIHrk/9mFl76sTgaNyDhSSqrCemQ0e+xBDg5BhO1GYUGfcsAIOaBYEZBAPdpIiFhpvR6gQgM+QGcAdoyCyakcOky+iHWDLFBa6Hb+EVIQHNtFbYE655W9AIu1HF40VaqEgkiSVomslgqPkHxl5wIJQIYEfjxaqzKUhaTZctjhZHlzic8OQiDIR/Pu9eggUV73dYl/HgmPhBfMI5WJQ+Z81ryKxpGx73UQlRC6vTLYvGbXiCDr8KCUEb5l8ElMKUmp4XZDCl1gOKR0zBR0nibGx0AiaOABihaJAkR2RbDUof05Z9uHyoRYqAWNKDcPoH4JQBULFjI7yn5EZNr164Oe7s7WzuYdz2sAyMhsDXssGsJOkxVp3p7ty5Nr986MT+P2L1x9cKrt268+4kn9v7Qz/1//u7f2Vhfe8/TT125eoXhpMVFCH6DddjtdeIiWrZZ8FV5CMLEDKFN0TI4fMh5FXZsYlmwQjTQaLfLvf6JpjA3u17QE7hzWJMU1g6vyuUeaSzX7BzH5I1ZCYD1mQYqMJestHe3QR5zN7vL3XfM1g3OjfLx2frU9ubapYuXN7dWVUf2WAQut+bnke9+4JjxotpozC025he9Ac8NPPvIm7W+rWdbEncnZxslCt8p1b+ZuDtjPoFTwV05t0zE3cZ7mzofDJbb94cl8vJMZSl+ok+NkT2UBRQKGDI0PA/nw9B4ZS/N3BRkWTYHPSLAk4mUkTVVECCmMtCUAog/Y+FWy+A/eYkyM7G2rTHxEyGRRQA6U4p/eiMDfI6zAMDI/Ur0FmzsqowKGX+MKwwiQkeJJiGGIQcYOdPKRdmpeJIjl91i4icmFPuJ15Qt8V+ZHi6K1SfcDB3Rzb2SmBeeSS6l9BOxuTcoIZxUUgBP/rsX0JHp9o8kmZN05pmc9LcBxc8QhiNrC3eINS6DF6/UBNoyI/YHUoYjAflICblSJQmJVhxnjXpl0BJMX8KZKFFFTzBUIOMla3ooKjY/xrlHMYzViMlM+O/gogJRwzskUjhxr5BYczsdZwJPnz71wsVrtdpMt9uDM2CDIVcCVKe7DPU7N0uXn+1dvlq+/x3D1sz8bJPv7l69dP797376Z3//H/zyVz+7vXnz1PHj7e0ukrdZ5RKP6blGDd0WHZhrH1WLg6pyF1+EZPDxCAqf92a7Bxs2eljx+SMvu60HXffdIcLjkDTdD30FQ0cVdPk4MReWdga9Wxuco+bD4aNqpzPbqGG03uMuU+wzNbbW9Tm5P+2mdlb8pre3d149/9rqzfX29hqjkYbwEV/0brPV5PjyEtvqZquz7Lnm3lzamJPUcTP+bahWNNlt4v998FungJ0w9NVxBzkE9Kh2gOXVQ6Mz+gjJa2eLEEEU3foQvEMBEwWEd/yeiW47+22cQtFoxIpoMMVz64DmF7MgjhHQnglAOGeO3qD2H3KAvl4gnKEcQoaOkzukgRtbBZZ1cUATcFuMxOc2DgxSTNRLeTdZMdohveapxlDekoCmzEQl4ClFeWSKckaRohzUVVGkgiFtk3QukM5eSU2QA7W/UpP0+QIoM40C2gEPaZJL6VOsNEjVzRudXxKoOLu3QcMZQyUlEEJZNCcml3wkPVDCW30NlrBwhp+19Y1avbW0OL/Z39sZYStgfzHXUlfZ5MDGiP7GZv/GhXPHj98c9rqrfA1gb352YVSduvC97/78T//0X/gv/6u3isoPMv9H3ybgX3r2pbcJ0r8HczQFomu8GUEDOPg4PUM6+xY9267Ki0DfJOCjUT0ylGLszvG076vRea6Hi0/pykyMERf0awwcIpRkQUgSdBDCkkhIMtrsycVXZtiehIAmwOzoMaEX4ifxkZjcZSAAU8pAx/ImMxavEZynjJc3I6CtdQYJWGkKIFD0Y+pDTVgxSBXT7pyjIl3CpfqTjGpPYplSGs5khUlwkIaCCEGAMhjyCXAAmMXRPxO1xBdAIC4JEILayWizgK8YZhxxXU5Hgvi1aFBH9TNL2DfwJJ6bHN4MCqZMnvA72AAkDydariUQR2B6TmYESdJjEOBAY5trKzlKg345RH02A185H+z1WfLbubVVGtWmWyeGx04OO2UuSep2+msr66effOza1ZWrly++d2rqr/7Xf3H1xuVefxvrCAtxi/NLqAj1auWhBx9kW0U6ro0RA7Ucm7CGG4JqfuF7Z3tnc2Oloza8Vy3X+HbtXLOO0sDnDlnd9ipibu1yBxGbNSBkf2V948b6Ols7rl69vjC3CBla9cqpY4tLjBjznjmcnV/gsvLq7FxrfpEPr3/hs7/z6mvnL1y+hqLOWuPSwtLs7PxxbtVbYof30tzps5eu3/raN5/7P/5n/+fjx47NNapsROE6YcZrlH/QY0f2Dv/7w4+8+wloJSknOCdRlZCiFQhJbpLOedgb/R5QYN4o+Q8ovqhg4XlzBd199oJLyRJ6JQWOVTliMyfDiwuvprCz4Qsul9nhXl2RIHlIhoteHJkJHTs43UD2ecD5ISRpYuar9k1ziYeoJD+vluJWn0wDNCLnhxQLRDw4ksEv3WGPZXMkMqYWjn6RWBRZ9QEIooRZKp1dgKqQKSdpkC3FM91Rzyu1TrUDOL0iCnFjYvIc+ZQ0+dIoEDIXtAiKSEDKMm+UXRD2ALSgd0a9lObNCOiseIVkLPvFu8LZvQDsg/RzMi4ABsVByJJyaqbKK4UnpLOUDBfoRkPmCQgmkATKD2Q0G+AJiXocrFskA77MNEFiWoHmBgIk5j/8UTQ8gjnBJz3QkuTGGLMfMghkJNsf7tttI/YlJVVUb48taRz855XlONZYcOzalo0Gg05nl6uNyi9funbi7Lta587dvHBxuLbFMcH1Wze2NzfuP3PiyrXLQP3Zn/nkM7/75ZXrr7c3uJh/6E6OqSnEJQNYc6YVHA94T9xGRViNQ9jutdlt12Ztcue7L1/oDPeWT5yabVVvrdxo8kXFUYnNfWbghthmiz8OE+6W6u3h7q3t9k5bodnZafOdrQ5DSqs3PT3HABybWDVde/LBbSH91mxrY3uLkzCjZmv14kVKrFcBBn58HZlPXXA3ZWu6NvMjz73wIx/9CPzB17n2ESl7SRRNPeio+LclzAZ5WwD9WwYkcWHi+ZwCieB3XZE3Sn40XZFSUR6xlm6PDMkrtAyiP5k0LpAJYEdDFI7asr1dIwadmrUTD8fD/iFu7O9YzVGH6WTKKsVCKi4t/BEIz+OShyicfXLSxZRgMkB/jicZs6gjJFJobKm+CmmligVlGeInz43oSsFjgCnjvSwSjgGnKgELizI7MwIoXVX1GdE85RFORTQZshqDfVGTEKNEkWuCFhCOAPHloS9cSkZYAkV6AWaEJixzhkUiqRskjpCs9mncSnmNDflNekJwtCJFkR6vzZUaqFi9FC4FZgUd/hlT+HDcOCSmflEjNsXNLizc2tzUjKui70ksGKpRqbONuFwb/ssvfenP/Mn/mI99b/a68ydPjNqDk7ONWzu3uEZjvrEIyM2t9Z//D/+Tqxcv/LP/4W/vDG9x7cGP/9yffPid7/7i//wrSGcqEq3CLMTFamYcaCl8OJx9zD/3S//pf/tf/Oez84vf+sazX3r2W416+b1PPXEWZbbSnG/xDcN5uJ2b7WhTNnJsdro3N7vPvfT9ne3ND7z7fYvNJiZrjhKwYLi+vrE33+KG6lqv5gVgnCfLZoW7q6urjHmYBNk5UvGy5RLfbJqfmePA+Oljy4unTz/1wQ8/cGpxcY4jwHuNWrk7CHbdR14pam/K5ceYiv/e99YosL9PydTBvXfHwuOi97XWODj35WDz9/jN5bMlgkaUnZXra+HeAHaRTg/mQpQSNo8ihRHAhLjvM0QExSGj6WJ0cEQRV8zSsykboQRrJTrwTHLMLhMSQLxCPkwWE4PJZID+AmPSp7h9tciSCy+EY17DVHAWe+BnXPMCVPKwezVLSmFFeUXuIjUhCFTP86AyOSiFHKWKBMQ/vQhpT1RDBykS8Nj3FaI6F3kiyYpqDFPIRMCSzMCcXnFUXgpgqMiqxwobMh9lHRN/rBUj0vyStlt92IAR5JIvaIMBEjfNSjK0gvSBO8ZepBbp/EM2ok4zAqcWDa2aOYgb7dk7AXqgk5BMGE5SRobQ/EK8AwbChOEb/MMixotDFrnCWVVvQmHXMJ+SYmmtMXP25NLNjU14a2m+srbVxSDE7ggyVTnoNN164YXvI6ipQ605w60Go91b11/+/urqSuvYieP3PQbMV5772tMf/PjSqTP3P/LEd7/5Zagyf/wE7dKqzraxAXH/yLBXhxDu/tTQDjJaO0ruqZurT69trM+3mldWUY67v/OlZ08uLT1+7oEH77u/0WVi2F/vtHeGnWee/c7Gentv1GNrYK28d/3a5Xf+yA/3VMA3OXe12WlPN6qV3nCae52qy43pJnut67OL7/mh3/vQUx++cu36N5753a9//Rvbte2Nzc25BXbZzXCL0dnTix/5+IceffKdx5YW2QLNJac73SHrh9SIgzngCgGhEj+EeKmDOhFk4Z0/4kHf4Qd2wWPiGGJ5x59aZ7KNkj8SZrGkn3RF4gRqMgr/nWMPJH7Tr0UpBQT64iQ+9IUUVQRO1qvIletzEQC9gkAF8CLvJCgD7TIkNXUklpIG4nw3EFaXxWkIzI4h48wjzVUs6H70GPVUcgpIT+QXbXNlr8DCm0DTs2zXgA90X4q/pGFgs2CbPLKWyaXQNFf64SleXPIDA8yDA7eXLtQaURLXrgFkl+OArE0jefiAJmfbYrcBq3z0vrK7sxDIii8rLFjw4Nc3igm+OsqGkS6MFWaILBLjkENW15pYMVzAMwRHoPDDBboZUWXduNAmjxz/ouumF7KPQ8PHun8WZFweqxU4ubysxCkKI9IQiO5MdZHD1DmAJrszNaHSPPmPbGLMysBYH7wBJoeZFTH+IcJEAARCUXmyWo5hloWjTf2JbpzQIRfc5HkJb+PEEpURi/CwiviaIJs9CVeaXIuHHJie5KIEdGrNtDJFQQ+yHnI279hNvBXhRccJemFJr1S5d5/zIFsbG5hxb9xcp8VUo91J4kc1QQ3ZtXZztTU14P7Nwcbm4NbadKe9WKmuXL22V2pQ3gyXBWK26HeffO8Hb63e4Caum1cvH1s+OSjtzh87/sj7P0Qp11/9zpUXnzv7xLtOPvIE2Lz0jc9feuUlqtmcnX+gtfCf/YX/+r/4v/1fP/uFL/Mll4tXV6+tbnzx2y9gUuZYCjf+YSBveMpwDwwXZ1qL860nHn2Y6436bNRrzNePn1xcXHjsscfOnbuPHSm70y3O8GpW1LA4vXSm9NATez/8Yz8JntxOxRHHlZWVa1evttvbywtzp86eLTdm6Urd/i6fceOMCwNAULCgWM7KY7oe9I07fYq5LS8dzPhv0bvkuH295Pxg5iNrpNQZk/PIJAcD9xWV5815l/d98WTOk9Cn4N+D0I5+L/Lk0Xm+fRH0WuJTVxJ4OF4phirTSdWQQ1ASQ7/ljAxcHRhGL8ar6NDmTETQyS9nuxE6XCEDyH4HGqZyDzxT+gQTjMKTwICzkf5JHGOQc14HbVWsjSG5K+qVBxz4zQmTB1cQRrl//FvYYaP+eThKrGZ9rcCQIAzO6MuZ0EyJkowjAaFIZ2RhCk8q0iSiOdDJX6thXiSQkxFdqlwEEKalPznSTOJmu7nqilKMAs1QaLlFykkkDSQvQtw0hWjWQ44AgyenCUnGtJ1E9SBn5uxEGpok5SmECbMtLAF71UarXGsiXNkazLdQrl5nv7D3gEEsFihK0wOq98r573Op0cxsdXRrtc8Ndls7s5X6eqeP4ejWjRtA5xQ4+F9++YWTD73z3T/0E9OD7Ruvff+xd78fzfnUI49dff6bW+s3n/59f+jCC9+87+n3f/Wf/go6+wNPfXDl/CvkXTq+/LFP/OHP/8t/Wt/rvevxB1+5dGWvMdsb8qmtvY3eDvuaYeaZSmumWVte5v689XKj/tAT73r4yScefvD+Y/c9Nl1rofhDvxjDhps2tqvnTjf4YvdoAO25/3RqwO1MELK+vMw64vIDDzwKcWgbxkPmLUxztlgN7A/mZzigc5TSso/MB1+k82SLTPoPpv138D2xNM/oWDL5QXfvBJnIMelNwI8sAgbMEFEr3O8Ovu+PPfA2UZ4xiuJwoR6GOTl7dYUN7nEpG63KE8WaKH1TrclULgAAMMkKAhEXdnwvVhVbICEx9IW/8KQS7+aZsqT8efYMIJgrjoWc7fcAqdBGs0wT8McUivTGFJ6JZFkgAtojAziwx6UUVCl5UC4NSsGqxQwLjkdUHmUrDA8mpQBjAgibxqVLToUMToa9KYtSNAtFmUKAsmkADZmcoJEYBwQpDUz+EjiTp0gDEkAhZS5X/yMx6l2glipsTcwMqLBjhJ5vuigpgwmYyHrnx23SFPLZ3KbBKoy8ot7lSn26UpttYvNtsqTGGJfjzmyRHRleM7K+tfniiy+cfuqR4fZmb2ODy9/4ZOwMZ/G4n8jlQJAX/Uvf+ebZR546trR8fOnhzzz/DGHEvfbsV08//Pjp02eZR3AbxurlC09+7Kde/+7zL37xM3yGDFQ+/BO/7+KL3xzcev2ph09P7/Yb9Qdurm9yh/M2908yZ5pp1cu12drMR3/4Rx5/6p1PP/1uBHFjpsUyIZfYYWfmQ5PtnS6nEGkPTgnCG5X40hjkwpDPAXQ6jPWdnmbWUuF7yUhtZlhK54qf8xtwnROzSfSLbp0j3/cinUHelsZlP+nl39HnbTiL2kaXgQb0irtj0ttTKDpWii7KKzxAT1GQexxYBNEMuNvDPhQDjP3J09thDbzougoDpHCOCMUpkWPKm6CHvVmdOmkJHNQWGkIIOZnkhRodwopQqwC9AmkfBe0m/YeQjgA0AnB1ys5v8usxTCoIOPlTdqFHaDw1zWVp4oc0KTYlPvycjE3+Ct/rpALh8h9GA/d+6yjAHx/RsxSR3igYdUeHzo5FUBIiObWkO1wyJz4JCagEgBD2gSI+7E9JcBITeCP1qUU2CvjBZtXzlJ19Mxi+SUCIWIUeBQ6onsl+RPPRdqEGJ6TJZ3sEeQw2sdASmhgVdpFohCeCBUxHWhDBTziOmyWi9FQtExKFA8fkSbjxtLpZKssthv6YBmgmp2GJ30U8z8xx5hkzvp/Pw9nWKJXI6uE7H32AXXVcA/eFr371F37iI70bV0Y7ZZRqvjY4P3ds0GpucI1GBp3D4ht8O2vtxqWTpz/w2Ac+TAHtm9vv/f0/vXrt0rXvf+f0o09yZuWlr/zLheX77nvH+04/9NhLX/w0+sbM4tKpBx66+vLzU9O1Rx4qLXcGt7YwJE/PHV969wc/eOa+Bxt80rCKgZnDJxh5PGW7ttkhY78zmMVGTm/gdCCLm9GUUEL+yIyEkJsLq90HOfTTvWwCVOZjs66qZHOKETs9aaUDRijMG9jH/ZpAUC89pUfOMITcwdkK4YI7J0mf+QNUigw2uD0sQKXIlOWw//ZZ32rMZIkFrAyfcZ2MKeorQ4eDciRJiZnep+wCxBuNon+/SxnTkxjYnabbnySjWGrWiBIypdAro0DDeKV3pKJ5TQB5TSWmZwo3de7y9PySkh6UhEFWoqkiBdkRtejISTSzBsjSH3KZzkuRfJQhFUwQtx6RKZWeCwoElyfNeEbXIzr4JKcIqRM6eXrLLBDOiBiYBGCBs+4ecgG+hSrJS/+3WNIoDhMKxiZhEmmiGJMRHQmichGaDOvJm+ND5SMAfNLv+FkZ0e2lfcQkTwKWP0mLV4eIkQDu0MBxFwTEEIFw4BEzCe6E9d0ahETLYuEcmjnA+CAN5ta8m4En1RI4LtTzAkQKpDgiCIQzEnDChRPziMQuhCAVEhlByjihKfJxKRceIOFnnzAp0oAMGEJ4RrUA4/wgwc/qRvSEs9iooElxpFX45FaRiZRRsKPIFKTy8xClmdmF5aVFridqNbldv1HhpIr3P5XqreqD504/863nHjj34Lee/97OYLexMHvr+nUqyQFp9s/xjfTR9jawucQIXBm8Vq9cOHXm3NrNm635U+gW24Pd2aXll772Wba2uQJaq7/3R3/m2U//s5uf+60f/8X/uEPpo9Fnf+Of/PAf/LlHf+j3YRi+n88Yzs9PletT9YWYRXlih1s5tnrd6mDUCAM9g8ji3AyrqZTI9QVUlXojtjkRbtVoNWoNGSUeZ39cd4WUfJoCkgeFpEVq3PiVyeh6DLzNas0vvkWbThAsZ6bJoOQ/siUOJ/t3NCSo7QMNOjlZNkgM5SF/UW+lSPHyg/GMC7sH+G+ciRRKBX6skL/0a3dpIIvjGiYsawSnVSPIgIfySRa9VYMGDAqI1Hnpl5JLRgx5FKgSklAuPJM1CKYdByQ6022DzEXGaAAUrnCkDvY2l5ObxOVJluZRdO+IMI0uxyG9peeR+KSoSrvdxpeWyqRLcgTp4RFUcIz2PaqtdTivP5XPUCdHWjYEoWQqJqSI8yaz3NGRFXHKayU+uVJtE0yDYs2UJ7TGCYTiA0KWUgzifKftSAQDLCghkN1aSyRPgpNH4R8OgPymJ7ohH5bgFfhJviv6Y/Dx6onoBxkJDhG0wARQTCZUhd1VUtQ1Co+HbcNYxLcjGCWma5r7sQrs7T74wH3nr94yGyihL5TLnV6bW+mOzc5+/3W+RbX5xW888/HHz3GV6Cb37nL6pscXYNm35pJaY6aZePja65d+9L0f/faXP1dvLkOC+59++sJ3nn/Pj3+is7mGmXtYneezKR/+xB9Haq6s3HjkQz+M/eGpj/0HtzZ7jz39/r3ZM3xUA+xgfo6ec9kSW0xmufyoXp7l6+HencEubRuMGqI+YdDq8QFD7hIWh5hkgDUUs8uo64iSHmkZWkfwYSIdT8gOHaQGZkS2RXOCpo7dh6S205hg+/wTwTDSEeSNBLcLn8z9b70/MTBVxZNqnX6D8Ptq96bI8aYy7Sv2bXuRmULy0uDMiFGf7ZghrOFkF6Ojy0MH2Kbo0XiQFjCeH3TRS7eSZsgW8kYOMcypN/ZMBpLPRJHMzBmJtdoRRbkyYYKbC2gDkyNXnrFoFLp2KLD7yHvkqktWVpR+4FHhfnYW7Vlby4RgzDyizyVBRHEYEe2AzDtEA/OACqYHG8LYow4F7aAP2ND1evTlCSdN6YlATOmkcNSWzsmNPUpWBTvCOjnITHpsl5g4xNuFKCTEvko6XoQFGRxoPwS5bceGDWHxmQfsBxQqsixlIoWCrDGuAAyScrfyLgZ0baReFRQikrGaBkIzpXGR0czmB46erm4mxBKj4FflBUOETrSW62PgXMkXMEmRmtZsNAfJkGiM7J3K3qhdKg/KzcX5xvUXb25x15BcRcD8TK36+a9+C62az13Ptuq/9cXffe/7P1A7M9UcTm1t3JziZgyv6pCwS7Xap3/lr9Qr1a2bK7/1P//92dbcbr+EnXnhvgfaK9d++1f+br1Ze/JHP3buHR/u7e6xSSMaCdnY+tZ3Xg0lo3fzhZepMtXBJgRyHCWZbjYgKZZi2kaRC3nZKNLlWGYMusGdcD43eNSqDEeMRrGhirmUH3ik90Bvw+hM8qSkP+jQsmOSrKzHhKJa5B2A6bIojDz2DcezbAJo49lO6S+aQKxS6ATsQDZjneAWG+sQu+9jnshNlixXASxKzlICFq6zWC8rP5gyPiBS5Ms8FDqJzMHoN3jPRMOYcIGIQsjq0HyBC2VkrDVGKZFlEnykEpnJwORH0BA7GYWfpqfnGpgBdxaqkSEko1A4sxpb31QTwUeUyIFfyyX5IyOdImswemvhiMcRQUY88YgeCAiNf67NwBnpO9meQoAN5cQ4Y82NOVrLYA+GdgvCjmmpfEfU6yEpRlGkDheOBmMfg1sZYmnEWbCoUKjsFJinhNltodHANm+wmaoSaXRRDyOIyjYaJQAp2i6dfGOZDlYWZBZInGIpLIJ8w59lST8Hnkc1ljYTDqoo/pQ1fsczGitoDrKQlWxFCRZBaCJ1Bp4QKYT4xboQncwbgXNUUiLVJqHYNDyCTj6oGxolDumWslibqAlFE+5LqlhWNV+jjfXgFR0xFC4QAEgtKA2pH62eCktJfZomL4uXIO6w27UgeLHfR5GtKTCLsYIIQZt3n4sCGT96vT6CCpYgJ5ZXEqaKgJHIKNdivIS2XgIlplge5pdOvvLKS2fPnPnGS89iB4e/uJWuWeVcd4dPT3FImj1u33/11X/1mc/93E/+GHeUzt3/RHNp/vJr39/gk1dTU1xLOnfs2MbG1kyDT1Jxtq8/qg+6rCiOBiePn3jvxz/+mU99eunWVm2mDhXgdOoQ/Au5bBhkKX0PryI1HPsSkyf2I0oWIxiHuOF3ulSrchrbAZWVB6rKwCgphKU0NWM0Cq80WYzC3FWXyZmIHFOOlLZaUBu/W3IScW0LcTR9JBrnuVvfvWYDi8NZCJxw2duRKSeS/SC90CSB39fr3u4Sx4LpKMi2yj7C8J65yeSgCrLpORl+Oz/Ut1IBKRsJZKXsUy8E43fMjw6UJL/MEjoRWgMdWTHJvxhy8ISWN8UFYbgUqFghVlDZ+JfAEqwWaPHiC6DkFPrJRZReNLwklfKunSXImSdvH1EDSB77dv6yL4pb39WgJVOIO4lmvVScQ9QZSpkhaUWC+k+iIHXckqxhmajJWICkyqeeGUDsiBCO/u9HBsOqIEGooYVED86LyPManpxYjb36Gb9jXFEokF4F2C+wOMaFSGQQBKgzbFKn7DRQ4gnS48naiWqoswMlmCIv5vAv8gu8vT5CYw2548NrkS4QlgJREGVmhHL9knqzVklcub588tSV7WvsFC55434dqonG3m6n5+V2S0vHUVj+1t/7H55617ueeOjxdndQPbG8hBG53Z2a+p84yLdwYhlll9PVfsJnqtTpt4+1WoN2Z71UYjvzT/7Mz17d3ObYuDME8LBkkePJC+wL5dHHE6qE0xQgRbhJqVG6dhVsmVhM+/lBUhLlN7diU7lWnRDxmj4gFueJUK5JeuiyAsJxZKcUQAcWtkEiftxnbQcDn3GynPXF+N+wg7YJ5X3cHkjJeG+jm1QJJsEm0hECb/pMDTmZIvy3Cz+U8OiA6CFHRxG6XzqbDGbAJY/v4cAhoZH6ch5821/qA2SkA7yk4gxUNcb4hERiJLT4MDpP0ho2pZTELYqdEMWwmFIZ564Fg/CmgsFTmk2ACDSdz8uX4mr9oK4EzsVahPOuC704ee/4DCFyxxRvMtLvOrtzmCknRA/S+wgBrb4UnTNHNmuu6GHEGEzaxMYQIRuyIjyhY2xyVtr0/HdYC2ejkJtJQeQkFsGmqUVeHD/0Fi4BF8Wsn+MR+aQOKoPEAwBIAZoBBJlJRw9DymiwIExJGSImQaWlVbs9E0VAjnBRYu4BZcryzcKVSkpYvg/M3ZocXQ75I6SpqfSVk+wod04BuMeqj/jMzrGFhWM3rj0D2khQdqf1Bn2QQkoF5Kkr16499vBDc8dP/PJf/et/7b/5y3U25E3tLiyfHj6wQ+EPPvoYXztxyjkcYKKg6v3d3qjXrtda7V6nvzc4sXTqdHOhy22jrP1pYacUcSdvxtl7ezs720jUpOrSC/CBM2xNvUgKGokfoFbaPEPeNpUlymhMGSjdEFOLsp6gPmlwNEvusYESQDLZbSSus1TCDbF72MUol1gcgYZBpvhXNIXBb+DeMMEb5D8QHSUGJuOiqUqWKuEzfp/IDObUcSLgCG+qIxGFp/BT5IHMGSlIfJsqFglSSXmyA2D2ZQf/VIUsS/opnhNZrTJ/B4qOMg5UP73SiAUYPEUaPAWMomg9/Itt9STAkcWjDDCONhaitGoEPU1nUhx8knhFlpF5GOCLJ5pxRIoFAMU0ATAAwaBVQyD6ecT/VD+sedFHImFEZFlSwL5nQaGiUpMkCvD70r+5lwQnjt7RY9JglZMJaQ3QaBpxyP7T9ey/rp96AXymJ2alk0aCGT+Bti++Eo70m4yizOysCFJA47XZYrKtfTPMXwrufQ2eMAnElAT8i0YNrJOEdkcBPv9U2qyGwtdmodERdL4SmMYiEQuWSq8CC3QT1hPAicicgUown7BFp9PBgMsIxx5gC0Ww+VUn9i4z6MFpVCTE2u4UHxenrN50efnsQ689/2X4ipuaMeeyJDnAHIciiWWNIYINxZXa5cuX+aZlpT7zF3/5L/7f//z/aWrUa87Ps5EDJNb4aHZnc9TtLZw4nVSIcpUTt+xtw1w3xa0bK9evzR07mfbwUz2yUB0omSoATfCAaSAmq/OqHU9WHzHSEEF6mJ4nIZHXVrXXJFqlzJpvoKyUiTTAFFrGOdEuUVBwDCnoKQChWfCVSqjhFOwpdBdaLRpnqoSmv28s6YB/pKN1osAsMrUjLxOB4wadgBDNH+/jlE4Lc5dXCilQwMzjgiV4sXZF2BGeqFkeniprJgdQCsXthxzJJR7wSZBnzH9Jn0/S8qD4zTH1BYAmC/C80kYWY8jRiGYCMeCkNNbWUNJLooRFDjYDkl7zwDzzJB5Zzc2dgmFEJYqTMLVDAPH0f2g/pgrY4prjLIchlP0Pw8ql9KNY1Yd9CC1Qy7ASjxSWMAp/wDcBxNbMBk0itsiT1TBlscoHXciqg4E/oHdki8YNHHhDCp640D2jOaLYrI4OP1nrkhKyqgbZa6WbdMxdgSsBSSbKgqRJ0ONJGj4Gxj9oBKF1SvzIKi8mZOwKAjnKiWeOefL7pbHkkBwhvwlgTE65WTpA5sBndAYiU6BskzTXrOyjSoqwHHQI+BwjFE8um0AiY+tAKGMHSDJOOe0IxPZs5FYJYw5bmrVvc2Pc8kkogVGJvO0ON23yVeRRxQPcGH/hSu7gr3U77eNzs3yBsDw69iv/v3/w85/8JN8SbO9sgQhHpOFFvlO1sXZzdvk0FirtOXvsbhygT2Mu2et3t9ZX50+eARNqGnJP2uPgYgJpcYYDCgJFhkJNDblLaUhNAE3haoz6bnQfJHvIbuiAxm1Xoo0cAQN06vlMVzkrn5G2EA16AEE682JeEYFdjpUzxlEiDY+8Bjc70xHdIUfu3/QvqCYUQlS9zdgAPDlIVICGmPgJJzDFFlG84k/hRZYUmNIUgUUWPAnIZLLJ2LfdXxSUd5d9JRgrY/DpqWCZYJI0w0qopifJ4Jb47yNJYjzsVMKfDjSnNEGPMfVSYdm4EC8FPqSkcCSPIbnQSYtyFsq/MSNmuE/kTYD3Pe8cuy/pPb5kdnGaM4RD/AIipyidc+LNDmSdwhGFFIJiVNQ0E873cIZlVBBkSkIZqc+7vyLu0+NMvUt0SWtT6GdpxQa8YhxIAH0Nl36Ak4FKMLOhMOoSKVN6n7F1hMQpe94qXJjMF6aV0Aiio+xNobdEYQARTjRdkEckW5wJbHFbECcvXHpGQDviMR2BOFwo6iUbrjuXsZ+wS07+muoOBsunz7KoATTGNlRKv4YVtYYPZ2ebaLREcSMHR4JWbq2/8MqFb/7yX/6lP/5HnnzwNKXPLSxgCi416re2t1ZXr8/PLyPzWPLgyBCzwn6b7Xr1bncbxsXGwtcI4WgWMP1SrNeMKED5wixwZPpg/YIkECc1EAQPPYauk5EX4kAiMCYBuGmeCA7WLxnE3uowxMbcKxE5FRGtSe7M2alUe4ZcZSpI1jD9OKcdTxVq3DESjB/QM8N/P3QC7+RSRUhxZOY75XyjODtJdA6BS9Cx49V3f3QF36YwnpDV8HCFJ4WnwMlnShACaEIETaY46H9LdS3wCfwSksE/GQmdNshhwV1UhMJh0axGxMmhCuXESDxhkuzJ5qcY1N33GYAju/DyGqTieIM6mb/AJ6NnhFNqhllOxhyCv8XyALhMhh/yx0Q9QlNFDiV4kwHKEyBCo0m4IG3XyVEHtq8hnAklNfML1pAYhEKycYgBScQlUiiB++ZcUBO4tMkeBx1QWtG8yK8Bw65I90/1R61lAzMq1mB35Negw0FN2gPFkDIgcWokZAOoosFBLnQ4jdYZTNQ90CXWJyWwQJdmPCrpQKIVqGFYZoAANrhU63RnGH6+bMKmPFIij/pi6RRB3S+czJJ0QIP8KDVXHTfrlUad9z0sHMhovkrpcpkoIqMdFqgKGEEqfBV0eEg1Nze//GCt2pqurvGB1jIXYJQa3f42wp0Mg14HHl1YPH5zdZWjLFxgdOHiBdroL/2Nv/n+973vR9gHPT/HDc1Eddrt/uq1vfsfnq5wU2idMtg6yJFvrq7jy/KsZ5dmWuzRYQ3PO6G5509acw0ptVapRx0GN2rG6Wvwhby+8p9Kki48PLwkxEWCXe1RxPjnK+MpBKJ7EGyL8qAB8WC0YeNgWMwA53SURqEENlXxIH+p1OXWveFwZ3OdgRm1hZFNBQk6MUBQ5N05eC8ITbmRyVHW8SHlnoQTqwP7gBIbS9r7AidfIEu0NtjlHqKljg6CUos0y5wAnhd9x0pIwdweWxjwYI7EKkH7VIjP9JqKzZgwAotkGZLjHMHjtoWOLOmZpYdClASPuEcWmxiVCJtigE4pU5YkMKM9gZBQy2AWYOGB4CAOQGGhNBamikGf9kh42cdIFqUrXyJvShrSgt7lJQh8NhBpwC21yAplUZLCAgwJkCDwTI5Y1udhSySQEhy2yVHjl9xkTHlTrVE2Jrgi4wuZeJLmgW+qe8obMHzEfFkPBj1/wiXI+Vv6TVTSf1TsOG1RyjhIXwZ8f155T4oczlOETTJ6SjYJQkMBd8dBJ7g2erhF5fyRYRCv5ErO+JAIyDDKT2npzyR2sEQdn1iBzSBM/AAkUvKTqsSTkH200wIQLuWL2ZGPlBf0lJ/IBSQoXBOOlAQGY6HPTZS335sSAwe0SY+AYAMMLib8VALRyp/uEA1cdsNx3TIzs6XlE8ePH5/+3iUNrYE8WUAQKf/QQw9trG/cWrsFFjAf038+qlKujBqN0le+9g3Q+dxXvv7oA+cQha3l02vXblxfufnAY8tT2KHTzgpqwUQEs0W3w0HBISMC+0RKu9URfD/EDm7VDyCXsxS1A2/KtYfkUga/YzjfQSYydT3NLHRLdknyWXGdiwb8UBk6JDLavVGOSjQoYcQ5HJhZyLxi28F2z7cAVNAx3+81mOUeaMf9hL/D2+1b6w6Z3nKU/CUrjxnvLYM8AsBh+ImHDyQtAkmf/IczkgWEiZ10EbYf2N1VqACS93qz0XkJj26WxSfQqa/SuQr0RCZnMFgu+guRAgkOybQx0siKODWsTHfGo+WZwOiuZCkqGzAzfgC8PvCB8fKyCg8xmcuS569v9jeV9WZz3ymfJg5qCI0mUzEcHOA9Nd7JFLlfKuHPSWAw6fJqAyU5SRMEdecZ3ZbR2yGJyAAU2m0gsq8QokGMxigARlEAowARUr6F+hFQTGUhzISQbflkJ1o7E9lkBCCCsuJO/KzWqe6URV4FUz7SJJjFM1VEjEkQqCddmezK+ZC/6nQhoskFqIM0RBwRPbU7g4Z8chm5huCKrXjyLqaS5eXlixcvJiSRYnwUCsloH8Aw0u1i6QbsF7727O9+7as/98mf/cjHfmzu2vULr77yaL2p+mwP0YodE8F+b3tz4fSp+PSPJhSM5HxJYWpArHv3o5GymgUxZWJ5PndWMxwIJPpI1HApHK+IIXhDE1Mx8zqUDGbxY4tYHJfxmZ+DLtwLJbmGu61WC43ZNsAULkLBH/zem7vX9PcG/cjUqUbWSvcDReAw8LzYVHg8Ez548RQNR9+aSJJ5STDpTHIA3oHX2wJxJMApJqVAesn0Zbpr4cCHFg4WGIMWSVo7yk4J4KXkhGgXlNkISXLZ5Sl8imbNhMmpMQgcTPKKyouFHyQsQHC5A2bufbt/o8IJqLW7vZvE4c4pEww16MPQCDwQHKIwsMh6ppmoLiINeqUIpFYIKzUqXAILdGDZycflSDocwQLI80vRcATwG6DEA0HqtnJorWTMJp/oZ4TYOAE2SxbYsBYH8JSdNGklSo/DQI4MEjxcDi+KjrYmRMiRFM8BB2QkDEM7chiQqdywsuDNXMrCi4WHS/jwRNy1StW9pWVM19O7g1qlhl3Fe4WYnbNDY30NQcyy9MzsLGoCNKAgVOBgTXb1eVDlwtUbC9XdzXb/wsrNhx59Eo7kIDmnBzmhvbG2Tp12MXYP+lPtrenY4KyI3xtyULzadEmWw0F0I2bpmJUSnXkmvAGOZgLOCFrwplCggTMe0iDXSRZjEnswmNXiWCaMLkFfca7MYAMye1UsTGrECu/+sM9xHgavVrPJhxMZQOhjdBqwavD1r5gtSScPqtlsOcEC/B0fEnei9YPad8zwhpGO+EDVJcoAU04KnPydcEVxhOPHFfH4i4RFrkjAm9Bo8CJB5gm5QjYRmCgH6ZMSRE4jEnBCeRFY/kzJiNXFS4rlrcA/Ck+QUp8VWkImMlF0VjbtPgkwlZKlEYcUABB6lNXPBIAmjhAFQtKRjlg8qVZ64lX4QW0Yg0AYjJTkxZEzeXgSxVPmd3mdaSGeaBAzw6SFOpDRgfTAmXQUl9V/MnQ/0VJMQiz5E7g8R9YE+evRvybK2/0wGhFZwCk8BidwRZbCQ3jy54dnUsJ7eYZklphQMMFSlNJpETXRDFlheXsWFQAtosyIjIimTNhMUhd6ZYH7iU5hqU4IYBNENYBm+mAqfIAkCviEG5WbCQNk5DI9TKIjZWobUhZ9I5VOVIpNnvQ0Kv4XgWab0OINp/zJViiShkdLStnvB9Yr5a2umIAspfMlwFu3bpEE1nMDBpJXGS2tCITIODxb7c50Y/ritWtL526eOn3mxH3372y3W4vH2KbH9ogh34TtY95o++EpviShdAa6vYFiRBxwEh9TO7S03DDkE6MLBD1DyCQSP2jwJA1RscdGMeq50ZxSguC7Lww8iHLWR2PV12lBOFYj+cW2jrLsAB+NooWFDzAjvDFAI5edS/HtDOoJjtZ0nzsUUMQmGt+ezEXCu/ZEQx6R+vY4BKe9DSgUlD+i9KODKFS0RHm/o7GimSdCiyTG8V8X0UXEROI3rs1kK2WgaGV9IaAVC6k/BlSi6GWJs+Sw8KXfhGlCJvglAdELqwsn7f30ZuMUb4IM15AwBd6WjpMg9mhcvBWePFdEvfGjKOWNk+YpomflL3f6LRC7U6KJuDcjoKGvpKKT25WddACQQGjjLJe+GgSKJEprcSI6hDIynFcaIAJj4SrajFccoKLxZJMUklhqAuGM9ISTmLYnmeInGAufuYKFon1taeRUTKpBDQQDamLrxDWToI/yiw/h2SNhZ0CwnaUnF+UflX9/GMmGvQ63fMzMzsw0GitbHfZgTO36kS2WPpBoqUYnT568dOl1b9xWcRgSmKQzwDhhPijNbrXbJ5fmXv7uC+//6I/0AAeFWWGp8SVAdlxjG5lub2/3u+2p2pzkwIqADOUwDSuHwdkhgCUgGWnGVKuoUZoDOX5BKsIpnUJJFtocbehbavEIR67S/ViGwVCBFo1S4wAk2N3dZJMBiCn5o11ctFR8o3ix3w+JjXJkeFY9spI2JY8fsmYhEfyDfIDzncEfSOBrDPB3znU3seiTd8k/CRoUy1jYcW2MtoTNIY1DSQvdcweEAxWZwHAS2ETwfm9Aija2pS2Rcu3RuQbN+J3xEnHh7P65S1EQDziZYE/ZEz8CK17dQ6d00d4sk4QDRoELAZN+46VKFjiONWicssjyr9lT4CO7J2mlvpIhdgc+ulsBbbebrFP0QNQnGyZ6spHQj97K18LCGRLrBnoCwURfvEp0djKqNSkRUnwkEQavPGknPJRKqsKRmKlNyhKRNjQhlowUU3vP8czH2MCQXCprIc+tCTwE6nQwMgayljFBuqzAjB9IlGNFRGTJGCWYJPNned7ohxpwOmhu4RiLi2ABxciBxZkv+KFsgu2ZM2c6WDq6XUzlIBw8qj6b5nTI8Vh+d7iZazYuvvYq9zh32x0+T9KzH7rszKe6t4fumy5NcdE/3X+A3jrw3ny/z8BGi3oDWlHxZLtwjRMkjMo5xXYN7ZhyoZdWJjuTgywBbGWOWkoVUKyyDkllqIgaMVkdC9lsGFlsbdZFWThEnU9kBE08mOPperBIkjFJ6PjU8WOLZD8RdOCRJcx5/UDsD+BVNsnABlry7r0Xk4N4w5x3gl1I5QOdsgA6gSsEclhNITaetbgd8NuFJ8DRH4WQdRk8CRwwaeu0SGhBtG70R9gJ54ujeAackAQOBiNtehaSGu4JFtKuke10xuuysyAnqcfML8EBSOEpCFIEpqgiQfIUyEzG/kD9E/hk1Z8sroiVRjmhUgL6jFU/gLFyLkgy2WJ0UMUvohVhwXoXm6BZ3mHYdN8DfwEEDSkcReLs2G6Fs98CihC6Ix7+AJKajsY1AW2tdq0xkjYlpUXzRJQm8F6pFVYnZAQjD5t/3Q1iKgD5LyykwOJyBwtCLrAZB82REN9H0ci2MYMyNlI8hvM/zQBiE5g7kZjCqzCyJwyTKQXIhklFT6RiixJ5or5u2xSdqCEW3kS0kC3iVTigURQOIqHvjrqD1twJtjGVMdKWauxR5jChH8AVwHSj0YqlwswqR64JcxtIlwf9geKVEy18wvXqxenT9zH6oG5zhLELZSpc+TTk84fXzp+//z2n2d7GJmmumGuXqtyqxHe7GR7AFxfUywfCVJ8M48AU/3j0ArOiW9IBo73BJRYFAJXyWUPYb3qvN+DaEPEnilHBQ5XE+EHeIZJbwIhzWpNArl+V2ulTxFA7A5UBTD9HPvMBGNpGQWNVQ+zv2oGh6fl/VC6oHPwHK8rECSpsSi4cr2gg/PBXrLFMwiE7DRW9IzbnCctiorQxkCwF4OxhCZ7AgWnKoHaqUgZcMokAjJqAJ4ACiFqkKHur0tLG4s/FB/mW9oH0DNnIRzjcbkFglGt24YbNylX85LL2TSgYr6ykhwGVjis5aEd6jaZiAAEzxIOKVEptWOruAQo0+Gf/0/ymWmUn1KghpyK3mZajOmNxRlwHeqJNzYCWoUR1JHxyeoKwCcM8OH4l39gV/sKTUYwkgE8JrVfuEj3ztzv9TuKW0iEayZ4QgADg71vORXhJlnLRExKhstRZOSaArce4ZuG3+ckwcMasuOGJ4GBHrFsSo10t7iC0cVWNDEbhJyGXnoTbOAW6SnBTpuJ8TsAgxp4w0U4y4FGOgZh8ZKeREyhKGXJL6FDMvUIvJmKUCxtYHLcRqVcjYOxSuUvNu6+IgMaDQHDbF5XnutOvAqtS4Yurnj/kdI6F2ZFSHnC7evVqSJwxZF4LiFCbom/eurmxsbm8MI/S/dr3X3zHu997bfVWo4nELvWJrjXre3ub67eQft3dIV0QXkH8w/H4GFlpMIWrN8XamRLwHAV7QmoRsCIBz+RIljygnTxUBE+BbQpMi5lkJJYnuVCusGwku3ZRETzEZgyT1Z6STV9gwstEW0xmNbeRk211IP6eXu9QUh6V6hIF3x6pNy40B/fGKd84xV3CSu1ye1IeWR1g36VLKZ3CQiJEMzyFS682MU7TcPzmnR2eUaDDPHRFu3+2yoJ05gQKtr7/P3l/FmvpkiXmYWfae595yHm8U91bY1dPZLG7yWaLU1MkJVEeREsAZYk2BFl68ACb9oMeTFsPAgwDlm1Zki0/GDAEwoD9RD4QIGSQ7Waz2c0e2EN1V1fdqjtn3hxO5pnP3vtM/r614o/9733Oycx7q5pdgiJP/jv+iBUrVqxYsWLF+uOPn/GL9uafpUOKoAb4SlMrWjLauRWsHXkpQBv4BxCPSQM81Au18cfPBYhfQBhf9Y4xcUGpySQ5RdDzljaL/cB6lnQq8BoQzSsAIM7x46TqpndKiwE6gXNg0RnGmuLgztvslYzntbbK8Wx/pUxIzijmXQnWTQdHVSkoZEAkkzKmA5FDjo2OvgeV3IEm2oS9ExYGSRJvuBB9IY2Wp4K4ECiKX3CJYzpmFyLAQDa/IdgxmxTgXPS129jGQjqfYhn0Bx+8//6Nn/hx/AbPnj54vnlnZe3a9vOnV+Y7x9imnaWp/v7pYLj77Eln7SazCA1jAwUGPx4S2ps9SCTjiR99mhFyC0AMneSF1yYw5zkE0b9NYtKc+exUgUjyQUKERNHyKICZspkMsiJy7c5zgdQslH1wLt+EApLEXYDjwkKXJr6gopHsNVIH8GeocBL6RVVdSl/J+Dxls1NAcLFuuKTKVwbO2V3WRHfb6e4mja4Htz0cIUYtca1KtbOBmZuVrcYZV7YG8Td0PybO57RIKMTM3ixixkkFTcEcyiTFrAhbq97xQuWugnFfKbwQ8vtJDBlW/olAbSwU0HgjlLVquR19W1MqUAwmkikXVEc0bitIK0JG1CcylYvP36pTWH2FVcr/BHPQRhzgTBFTVGTnqOhHoxd3RdRKinwPWgrv2mM48DixxtrRiuhAgZtmiySq4IoGIavJsXJuEQCqZZbnO4fAkIKUoExY+fMOXhEjcejcAC3FiVs4WpFFSo02WPSwI2sJbDpGAnx0ob0winsi+JexJcGDQlSLsQk/GEdZEoHB6ZwR4kQoaHVNgDufPHgwHB586QtvfuMnfwIMqwu9Jw8/efPKDU7JOz7YnuEoUezys5mlxe7m44d3r9yeOuuenQ3ZOtfn/fLZOQ41ZVuFqwWAfLWyIB8Oc/OcNdFunvpFwzFhsJcxaNLshhZ3oNJ3DMkiDjr3R00mmvRzzYajyxUGduB1dEwzOSs8ZaJmxIaVlA0cNTTJaLU8AZqrU6oekXCZTZQKshrAV/oFSxki58BrW2z5JDlm8t+fcRpGaCZtfCU88HjhP2WzaKBJORqVLrGoN+En8qy6CYktU0TbUEsctmuyNMFeiHprkYiMOo7cCCWlKedvm4ysgufD+mOyR9TU3FowVEQWRcnqWnSwNQEaCGDjisx7KM3waIAJNR7IHU8od+BPTHnP7YVgny8x2/XysrVSSSngjJokzKZFqrfhNYYl6ICKtpaBdMYUgXFUG0IEgJbnDqimjoriwoiYIkzkhuDB8pFLoVJAhBLCQ3GWbWFwSsXEhvZp3hUXDA2Qrl1LRTnLErLBEJr/Is1uTqaETHJLUCNEjXXgJQFQAp2sq6J+UQMMzMwJbCXN/DYjJDdqaV8ClQgy8TxAG3giTu0ILpWm+Ibmoh9fFQfkccgGG+C2trdw6eKhAP/R4d7+8yfLaxvbfAblxO1xJ/OL/e3nS3yZQs3qtrZ4msdXY+QMTyB5LAkBGC3j/C3EUouPBUIHY/QQbG2E6EDBIlGJCX3tCGxCEUGRlCIOSxgJiAlc40/4UHBZdoSgQUSZdl80yVEukSUeKf0jCTbIpkU7LqFgoglNKy16SYnPnVwFsom0MIVYQ6vB5IaOFsi5aPD/XGorIV3YKJaokK71ERR97Bw9mrIdtg4yJIbKy0WhIppn0Q04OouYz4xeha6GggB+9SIvhqwVvxiMuitA7UAIqYkZ4Vr4zG8Mpcv6O0aEmGJkNE1rfkcKOspXIpv81m8VtKi7qb8BADtJqhvUbKi57IEmn18Q+BfzRPRo1UrNMzSKOAEzjZA/0glSnwH6svbAU+KkREHmJnmCSgpzD6XtdAQtWTYpTCJDVxSOAK2qYguD35eBJphdakQJGBvVLybwcA3ULjtM+ixBUtn1zFdUFhbiJbrUYq+KSfpjYfjg4acHhwd8K4vyZ8f9Z59+1J1fuHrrtYcffbSA1l5YPNjb4Sgn5i4MVsz0nNahlO2l/ZM+ZOhBdqBONiE5HNOtpjHtpVuJUJY4gQK8TA4YZ7JwmzMNkWRD5VYylvRsMo0tKcFRwMBALqEWLMQ0FFFTE02Q1pU+SrP1UogW8EujUvNSoEkA6CcJ+jMymZ33gFSOmPK5ampQv6iinE2DnotICrmW5YSREdcgvvjXnn5haKQiZSO0cwzg2qdZ2ioJXGOTRqpp7jGc9Wvo3+CJvtqjnpvRrnaMf00GXAdPc1d+J+qdyL3wFtoyfRLXhdCRWIu0QKCxzEjkRnBk+ecjUOV8Qg4oy9gq3VUGFlCjtnrDOrvWQc4LSMwsaoIpoQEZ5gbLxB+khAjAdrpfyuwRps2oMcw04OLXKqkajVEqjxnX9YAu3RQeagphAsJokEblFJSGWDr4vkTQ0xof3FOpHY3o6AnDVtXrUnDBLFZQ0IlPVqSu8V3qk4wTwvlf0uIvSQviM1qvpGVLMtOWgodn401zktoKT4TWRiusEXV2eHLUne8s8kl5NKkOA/eqtOFLvEmTa0Gn6VRzPMUBHc+3d3VW4PFlQxvbJrY3t59+unGzd+vuvU8/+rC3sHo8t9VdWIY6JiounPrFWRzwBLngKQw08xb54vw8Q6RNHnG7JpjD1dPCwoQmZkboa5pAXE574B3OEDnNHXXRDoBscOVSKGg6hjM6ZELTKNtkywEdcTkzEwjgFvQke8gCgWXz32T+q96PyImJpxRr9eV5RGMEB2SkKJwNcI2ESEdqJNUZR9Un4REaGlqlxtITKrskYKNwkwoXajQZP7rNmJzMFgXXHEOKUXBvEnbiviHNZKrhNlOok6Hj5O3gjYbYFVJiSv5aaVRs9Q6z0AxGsaAQHxT0GVsw0dLYdfqigyOjKpPmQGn9GZpEwIXkf9P8KN3cNGAJYlFpmChhMuT68wohi7cBa0q0UzylCn5opUwurYkf2idIEBwqO+sOL915MkiBUfGQMESTe0IgEE2GkhL10ZRUysHeZDIJbnWOxqMB6IQj90JkiPvAWtSTT/VVZKSpzoJdWY/0CxmjmzjcpyEFT9Zu491ASz8fo6LY4ofFa1/7xVhgozhFgdaEJxEfLxLEJuPEI05eiHNoyCNakSKDNKH91JEhaRYJyqQmqWt6UQKtAVLN4iIuyYpdEj7MiFZlMa7RLYmDLLWYr2/0Djy26KiHWqNaj3FD9+m2mwiyIKoWfwovsy6++6nZw8Oj/uBoZ2f35soK3xWnCSfD/d2nD6e7S0sbd1Zv3evOnnXWryxvXDvo+/ILm+1YQtJKhsHyysqTPp8wZBabYqspX9TBJUKPyA+agj+ELw3QBWEKZRotgUKawFCKhniCErMfkzVbtuCHyin4FmTCflkQdPnclR7Hu9+Z0RK3AebLSkpliEYFv8Y5lrniOhcS0C4IeeIKSF4nYC9MHMFEQW4b+TEHXJQiIAwZGcE3tZBukRSJppBCYSgkxx67SCAJ8VI8uC2RUG1Wlm2JcjVqxJza+KAjcZkuF5taolDQUlOSwYIn/V69szk+nHO1icg1KMy6IFRqQB7lwQ9m/uh8vs/udN8KgkvGSBHFLJ4y5DMMBJlJXO3M43pmfBwbiLFSURrL0CstLvS2sAvTdFbEuUR7Gyr5pfIs0aSBLziQBaI3jSbQZ7m2qw5k4qjVEQ+rEagGd9Eibjrjj3RJiwKqmXoTtKhz+CftTXFi8q3lgybzxUG7tAk8aNV5hJrhtPV4DgsuVinCBIncEkAIKQaJDFk3UkIkG0/ITK2JVFWyRiPBGSIQI6BE0PIGIK3CUGrExCOEdhZHLiUooiJRK4sZExpszBRE8NAWzZJEjLiU95dfa39cDjKZ49NR3sT2rRAYqPbkRNV4rjIJ2dzTMBgLJAnZSIwOTiJ98uTJO3fv8FXDweEe37vqXJnvrl4/7cyf9PcGwM/OPX/+fLbTmzrjAOiZreebaGS4cvXqtevXrj1+/OToxMM9CHQi757IstwYF0PYd7JZYXFWNSziMU4wnggBXc9uELw0OT59ThvSxbAdl7HAHsM1O53OEmmGyMyou+AD4tUZH6W5fPYSTcmX/ULQGPKQNVPUjudDDK/zyedSaPG5tD+EBKhNrCOyjTXD59VrBE3pvFjxMFGzZsP0ibXUBItqjRlBVKzSoCUX+kMiOA0cfzNvXA3iI68vpYUiE5gvK1IhLwNQThtsEzgv7JhLEMoRsmou9KFX6m1iDrYVypNbVJ7P2FLsa40UPC8UoAPPyMWRSC+9IpX+JbuD5SxN0MjpUFD3TvEYNknkmpFCAcOXnRPRIrE0Etqm73y9iaQgSsVkURuCrpd6L7i8qdsNBiFH5iI6lELbAFzJsOAZJ9f7DouJNASFDZePebUGJ23WH2jEVNiqaDbRhKjXpKPefqYIlCGxzK3IrO/44QQfs0QmkbFjmvM5YboZ6EAsX5l/8nxri0mRI6xR78DcuHXneKbD4UQcDs1ag5fu+VALGhnu8z7+3u4ux22zf+P4ZMgpqTduXuXoDwbI3t4+DMGIhmPkonbhmuWpSgtSBshw/vH1Ql45iQ9WoaOZncPElBMEkIQUeqL2eIi+iY4DhuIZAq27/+jBhL+E0+PIJu9K2cnkH8D9xeQoPLVO40XGqlS/uGbZEKx4MdgPMBeCM4Az5ZvbwM/14jaO1d40ljGDGDC42HuU2pl+jEHXBjelwR+LVFVFBvfSETji3f0aQ6wCAPSbEUhvY5mIV4SkV4obusZgKyQ42xkjmqLtFQyYCch2qcvixWmgyFdy4sYEJTwLEpmI530kC1NzR1jaVQZ2x1uwu+CsqGskwGLybNCQAkPjv0fsM4p9AKvG8O0enEm1liRFOnSEyiVCkhWRQqI+q9TfNDgkPgCtD9pwDDM5UaMYGByYvWyPDHcxYMBwTQMTFSNhTRVkhU0HjrS1zVKz8yDRXdisrIjr9Ybwsw7ksSpP5loCSVMig91JswgjlsJaGqIuVL8it1YgPZDKwt+KagDYCplpeYeVmSxa1OEw7amjsgG5DvVoUbaCFnU73USV1YkQK2YGL8fh081N9CmrGOxldii9+61vfuEnr56wKnLz5Bxt4jsBdAuncPAlrjdfu//g8RMQDvt8c3aWbYVX1jcOD9nz5/bw8AQeo7JBuMJBTjG94Z4GXvbNzHTxgQSfoZyyvqgd3W2Losc5+D+H2Wwcu046Tcgmq+z9+JYf3AKGhoA21JwikSlKToDZwChLpU13ZdrFV7ARyMvrxUCXp9ZS0XUFrp2YzCc3AxDZTCK432lkApNLBEJCvi6vL5p2YXbiT2wJUOMZkWkh3uRWYohPgGVZACYi3iLQMd6DsUZrWTMbNqbMkxJdUBpI7QTGIIkZp4oEIJJlkyqcObAoCeBKnEDvYw2gJYgjk6az2G41pMEgmQR6tOaOEZnZr34NPiQqCyVZreIkgJ9wLieBitaipVkaMEQiA21JINPGAwizcRQM9F6I50exEzZgxFXZSB9wX9Ay4nholGqk4fB4JQ37onpJomS9OqLCUiMNOjFleSkOOtvO1EpZYLjUSkRsKMo1Bm2hoZbVAizcwekZe26VADkCPbSBNVeWSfKI17JELBKUA0oJEjx95QQjFJKTNXmKQAiFI10u1UCLym2NheyoTSAhIMEffSZvI7WWvjgCTZgQXd24TggQhE6jMNRmD9ViIMZfR7tIsRIawLCJ7P7R8MGnD5F4JpXe4tJRv7+//emD3/+Vd37sZ3aOmCE6QLO+YQ6wucfHODGuXbuyubnJ4vL0tIuSDKN5gT3ZslFGMnh8j2t3d+dgZmZlZQVD26bxHo0X3w5GxkgIrrKPewbvlvEYSnSIEmH7vZIOzqDUro1d1TKLdIIRJ0CZS6CAZc4FUV6ccw708yYkVyldI8STwoLyQsrOVdcUt2nfT2jwiKMdD5xFD16Gvw3fjie8oytEqCkOd1/SNrJTu1BEWY0AdxoMeg1FQUe2MCFK1J69H4KFBKudY9XltB4GSsVxcaSF72KAF6fW5oOHeMWWt+2y2dctkHbmKC6SCCSBLkQbfladBuIi7bWMikvsXAUzEuJeAcgEpdeaVCoxwVcsOffGIRCBtCZaUvgZp2mk6cQblVEKLcDUSCT+IoNYBOomEI25N19pyVFcACoYEQZ2yFDJyrJR3A011K3bGIrUzREx5klXaG/AdO36VanynojygV7IE/E9ulMLn4KURz5Q807jUyzt4ZFsIkgpiMe5UO9GgyNbl9cgNmHAUCS1lilNGf2Qo5hC3MkpvgiIokaYE3VLXB1DyTdSFPHYCJgpiQtZwA7BiGYFg/mObxksi9PDp9/9LWznuz/2s6hdFb+b0sOXI94T3gu/fv369vZ24mTIEbDKwAATZ7vzsOhoZmq+tz48Ptra3aZGXknHpnZDHk5t91NXiZTnfAScEYwPOnqv7Pakq0YNbmIAnw+hCZWjBmryl4wLcI1BvSx/DPiCG3stQo1wB6kj0IaI5neU044FGlCNxKSd+/nibZICg1S1SUu0FaxGSL+IL6S12kU8BlwiufAKdPYauSktTrQt3NaSg6phI3LGHwIW/8OEQjtrImg+MwRD9hwpY7Scq/7F3D4HPplQWWGXREiIdnyizFinj/JCtpmJVH52L8tuRlQ02tY3gfZMhmQdozsxc5WH/LTKxYCvvCukRk0MX0yc8EFTt5YcdY6qiCiMjrK1VZb0JsSk6QYoo14gqVvdCf1SFIKk1pMsF+W6Q6GVuO10qRTzM7hsfczmoA51om4FU8TJpF95QZl2pRcLn4LtsqHw6+RkwFqe7V6zfDoExweqSq0hmU7lFOb7ggoKVCscuhf81CEEQ1Swm90gOKdx2rrPXkKi9VQS7Sgymh0QzaHS+ISejyGdHAAkRrBSatUHA8D5LhMxX6c6Oxge9/ee7x8eDI/Qfod933iE94mhHSEOukwh1wja2DmFN/Fmt7Z38ZfAS8Sf5zbH+ENmp9/9rX/C9ufV174+013gySGPZObnOMPfM5dBxicClpdXeHrOp6ZYbrL2YLMd1HMGdeDnKLz4hE2cHcr5p4eHPshBR6OkoYOG2Zv2tb9wz850saoFbtf6XLFgihQZAwjdo4hBvZ3DJhsheS1JHzRWmN4Mu5xUqCREqeyHTLjsWuAvy74wnTL8YeaZG2Ik/1uYtAfMgnBp4OIvBEbIiF0P8YnLXpHmuKOEAsy/IkmRVZCE2FpvVG6EACdCdkwcI8Ob8r/0flIauMFhoHQhLJkWGNUoGeEqUPzIYoOeGccTlbYJCR5QnWOZHokaASRuz0YAQ9x5Kwwal1K4Hx25gZUrY41/olF6tY0YwRyBxOALI8kmsZANWkpHU00QCVcjal6TUqpOAs5fa6sLioCwXYGQi5KVPGqyZFkEfoIKKVIEIyQBpbiDWlw5DGkSwYYF8kTCVWb6+M9/BC7UwLCKmJU7XEhTVdTKo+rQfEiSmK1HQcqek2Fa0ImyVtVEgpJygbgMcJqIqILKwImUUjmf7yivAQWFDY1BmBYiOovaNL/oT1hhNXIjaueulJI4KzVHUDtamm1Y1tYsqryzRYABwR3uDw1RFYL8ibIk+xFY850FYqmlYMBKmQBm2+GpQTI9MUbNZAZvvQStQa2ppjfEWlXcgb5RxzaNyi8NZ/0hzonBcNDfOxwc8ZTWQQNfslMuKAZZ0aKShRmby0r2OR32B8w1c2x2PqR1PCrs8iBvYXb6W7/+iz+xcetscWN5dWNv+9n8LA6NGU45wFjmS+P4OvbxPR8edRfmOfuA7wbonzoZpiucscgESJ/i+8Y0Hgw9fAkaPKSJT9LiFmGnBzwzwLTmoWvwB0GQI6ULqMiJB9lAAJifaYBDhasGu30UvG3YqbrIxBBk+dji/gWMiaQXsfqyMpHedBHCwH3U1iRx3xaCVjLRvIur8gL1yo2kplRwY7u8zfZFbS+5ZFGRJzlj4GLPWk1uQEcgo7ykZJTTxLIHm7ugrhA3Kpu5YOevyGJUZYfKjxKiocaBt3COPSpGSk3KoNbmH3MEmjkeaHtMHX/x7NmxScgaL7u+FKAWrJBgrPHM5TbaUlqS2YDFvSCFiCg2SmxoIxkANEMp6H2UaAAqDdYsl2QUiph0WURDZVWOCFPzblSKQiEobXzgYdAEbUYv3sURlHiJcegcqP6a1i2SWxi5g+8uoWWBYIGXCzoAOoonGoJMD8pQkcA7eCGHkez00vZXF7JBOBnAyJvYuWCPeRhQ2JAjwbjtlA5O3aQscZSCtHMTJ9VBHjO4k3iYFagLZhWSBNX/7DMNQrNtT3oLNS/7SY5T3csAR/mhrGYwTnH12ocRQuBHMBOxrIVrptvTNt7W0Qr5yKM/HnN2Oddzlmt/v//L/+Dv/Pm/+m8c7u/y8ZYDLGVZgxdQaWOf1NWNK58+evL48eMbN24enk515phBT/k6FXZt6FO1cE7GeEXgDBXCHuqXvXRoEAIq6i0pMYtAIcWjz5XFbGmkUNyRIuU2w4uh2R450d4QGdOs7CWh8OQlUJdnJ//Jz4YkIKRdXkLIBM4IbSZJoZczLywJBFAvbFViztrb8UxJ9PL/IiTn4a0wKOJqyBm00PiiNmZ1cc2S9iyBmTZL26HUpxnMT6HGmANPe8dzQ9mD6/YBHmOjLGIVG3KSYOBt1TIZvaSJk2Dcg62mTsStqAVQa2yD1UTIRnQbogThjwHWVJEprcoa3gIgkirW3rkcx+7SYxD2SpjPobubCi6kOZnZruMFCloMEEVPoAXcVMUByxGyb0hB4epVih0RjD95gbZT/Tv0IDFUoJ4UfA+gAhmCjG4GEBWD4lVeQ6dbV/yJInoxa7eQqyEmCevO10GBZMWs3WmAAegKfKnOGbBmDkdFLNujOsRCFxgbEtTAYe0Dk2cIwHvkB2/u9CmfNVGfZ+2FrER/+TXJtzcmYc4ltAAAp9d39/goyiFxK31ZsIqQgBYgK0j2ZqB4WWUesxW677rkdHFhni7pncw+e/7JP/77f/enf/6/O5yZ3+8f9rqnuIB4XQQ+AMcmp9t3bh59OPid3/3m/Te+sLjYY68z7g5Q4dBmwyTGOKoZxwYHP/pIR10su+kIbiEGyWM2wIKmqdkAOyqaI60hrKTkkaoc/WGSvd4S5ZDjAD7ProIVIXkZd16W32LZC6KQSngBQDsrgbNFpnPfiADdSbPawJPxV62kIM7io7ri/hXYMqqWskFgcJrk7ALzIeWFpAaOKOYFFeOfY8cW55IzhpidBICJGVxaoQ94zIOS0DbCwMuXJSiJCWDNL2OULH3lHglKg6pWEWjJ9PPXC7OYVuANWGgLRdRDorR0Cz4k0vcpDM7NGSgSjJVFTGPBWHkV2jke0pjk3xhR3vFXTylrqhz1S/F+JgVJWVxhtwqLgDp2V/mpu8sJ6ms0bgS4DhAjOBNjSnUXLFSSj7Jkby0bHSUhjh6GdNIpxJVaUJuz7c+vBE7SAcuqsy1JNE/DqIv+tkmoGNSEWzLdlAlPQiLwfviGN7kggW54GbKBeOCo1UlEBkRqvXOHA1rzUx09OD308VdnAcFiggmu2oTguqQGaWMXKoKAHI20x+2KAZe/RuM2y8CfTA/a7eOtrS0SIZW4bGm63JQIwBMnpJVq8eAqdCs59vTJ4nwHBU26DZnmvawB597rhDiaurK6+OiDb/36L/y9H/vZv9Tr8Nlvpk3IpKDGLLj2dnbv3LnDg8Fvv//h0sL8/bu3kE91tPyd4i0CX0Xp9WAFaprq9APJe7/P7ZspnmbFi+Mhb0yPYRyQS1twV0M2hhMPGLmFNq6kUK8tlXIuBhsVzSSdSKwmzQM48o02kfO/Fggug88er/jPg16WQkV2QITo79LRwSJpaxcEMkMmAkOkwNC6JCXuuYi2RXsCR0FSsyr7t42/xmstREBFqFktPKZleRIT1QTCLJswoioMh9WZRkLhG6iyp7KirJGUWAM5HgmZBZ4wyfg1mFj50qTEEwl9YjwCovfDiAYKrCoGChnDXogN81Eo6QlkgTMJyBqt4SJGVZh2bjuxxC8qWzFPIE9U9UrEfh0LYoXd/BhrBMBo3HNBO5cQ/QOz0Srxcm72/AhdlLB1CY+NmAhVXdFqsjwHMuGyXMQRnbJRhlwCEiC3tUS1Q7MsaeyDYEeCa5jQnjZH7aw2zgFnBSx2YmUEfh2R0SrPRGHQYgWyD1jR8V8GxnGSKwABTHggUK6cl6F6Bj39Tj+jJFCLPMzyTWUAXZLLCt49AYMSBWpWVqhmAg1o2BMDw0bgywU6/lTe7vSgmBqjIaZSVYgb/ymdkixLopsOGwfMvrMnkpdMdf3+ALsSL61rv5DxiSLeUkCBtv/O554cD+/xGmEsTWJ8SQFf0QYS4xeFevPK0sN3f4M3BL/+p35+b4j29RVuuAEH4RRvbvcPD69evfr29Ozm0ydPHz/hw9sEPCR2Urjs8cMQy1EqK6wB55V9qwaK5pDiwJO5/ApMPbzlSKeg2YHJUOmPvrY5IkHW41pzz0WAHI3e8Vx6rGiaS0HGC7z4zgbFwABMyiKUn7xpEUKjgOFqDnTo5GhlBze0CcbSEjZxvdJ1Ame7fKD2AkyhosbGcdcmJC319nLGlrbQQIZD9H54NnBPwphSo1MCgaratUemxRmqKgs3LIURJ2ujpytnk8hz/BnRPs7PUXoTy9qbu/il186VmqhwDD5uRngcGRHgkawFWcRK6ugntISMtEmGIjAMjBg7aj+S4BdYyE68oftIsmCU9TpGr1IXHGnkGgCe4TtGhI1gdUqeHVBUsx4O2Kwqhu3ANx2AY5pTlaMz7AafDODQLQNYLGLEMmXzhpsCINRdFs7VpYU8tEI/jofw2ghAQzBmfc6v4aVSCHzyk38cMzTf4ftNC37ASZxzRzPDg+FAozlkAcuaVtAEDkfWf+10LdtQ+6HcXcozt0GAvercBWZrkNBKEgmjm5paImbaDa0CregkNBNLBED4ZTJgScIHr4dTQ175gLMT8IUaiL1IQdPl0P3ld96RoUE2LGIsRSv4mPdsb37ltP/oyuLUH/z2L+2enP7kT/88BXhmQ2dDNucfsIOlw8aMoyHHSPemp7Z3dwc8vDw6XlxcWuCzWHxssDm/P2ZmXyPMKqgXG0HmKST0jdVmuxOAzX9E1tbWuEK8TrDaBOQ1JAF4AvLP9QUsvmSAyCrLWzK6Jy4TDPyst8HFUgiCM9YShZEgkJsANgFIar9IGUNbgoEqiBWlsIn61a4VwwR4pnONSP5mfAJwVHVmNC3jDlouZhzU5kSLDESfcnHBGBU4WBg1Ua/IkYMYOv4aghYGoQKOgnaMZQFgDZQJuPi9nB2X52Rp6ymxF/5YYxMuLFITmwbQbdEoe0oBnAwu06MlgTljwBBJ2znjkW4i+iZhQtiNVoRUzQ2VjZJK3ijBtxgo47u9MYrsCFBoQAVvfQrA29C4GnmqhtLk9Qc2qJ3yRRrMQIqg+eIxAMpazS0W8YFCPFhU9CunrWEFs/L27Qg+NxUfip7v9rC/WRxTEP2d3R5lWMIz9/hOIITTPj793eUFHPyhHO1DODvucOunShfZNAbCqI/PiHRp7s7eDhsLSEHCqBF7keWFPHD9jLFMr+aqhVN7cD7jzpg6YlnPgZ1nbFdYcAHARCpOQCE7eyht2LABzKCVbGlwh5hKirnJpwHMBXwosYM2cm5x44mGVQZwEaCK91sHR2e9qeOZ3tLe0dG1jc6zw/2jYZ8HdwVUF4QcpCOU65BCbomQAozV49OYnVmcmX7t+iqvuJwcD9iOjKedNszNdgfHAxwUbBLpLS3PHHfvdU8ffus3fvP4+Ovf+LmT3tpCt3M86M/PzfrpCgicpYOP19fWUNa76OhjNpgc8rfQm8dBwbzsMMLdPIcOp1cUFMTWTS/hr+BD4fSvvRy9wHh2Mj893djYwHxmfEp/pTxQ2YQm5OBVVHyaMhLKGrfZDV8mfsELplR3ymuwt8K0y2UXktVOzFtLlfRSDykEmpMR29qESglZSWFGCqTSTkPceQc9DO1obiMBkpqhopEPk0nBnAayKdBUV4ALS6iWFplmI0q81pKw3MIZ6qFBtAjZRGhn2WMa2RRWwJKMMLBCsD1ojMcbsz0/KOGL3SkDLjI1eERCdegdgiOK/m6MPCIYzlhxGB9AavZAGrSViGWoLjmWcWSwYYMI9UFGiFIljhHQJIqhMDyTLrlW3gZ3CpBVUxyy4Qb2Sowvz+GJIKERVBRBp1rA4y8NI4TubYi+hfQYkpGtzopelzzAmz8NqaSeXjK11Vq5BzH2XpAlItmZhASeKYZ3fL+DclEyU9EswOFkjBC8jnfGAmrEX81m+8zeEJ7O4mne0N4Qj8JPG1zzznu6WqgY+jy1j15NtZmKnT0aGbC1Y4tsmtkOPDfJnqDFkX5sOEe85CNDouXzUfpDU8hmXNrPHrL9QJ94mJPRYihHZ+oPs6DcChGxvWZ5qJerj+B58tBiJVhZJDYJURpgWmpzxZj/7JiYAZwxR9ARgxhcukwu9CgM7+/vbT5/zlEZ6GCOJXDwjAq0ok1iaWBzS52Qvba8eP3aBk2DAewTdyDEyIFaEPK2Nkse/A0L02fri3MPvvv7zEg/8lN/YXB6tLCw6LvZeIKonS9gTZ0ezcwsL3H66czBwQGJSCCf1Hr+/Nl8bx49yzi1j2isQ8l/fgQ2Ap0PUSmmtBEKaCMHetARiAWUwfSkmixCcCuj9FnRHAho6zHJqJHGyLqAH5FD+iSbx8u+2l30lUNEBjZFgtTmJn4vq6pCwg/igUSikXHos0cmgjyo9TR55wSmybj818EV/y8HGcvJOuV9O1lq2ve0gqmWUaVyZqi6kC0htbnAUSjxxCgQKSE5QDayQlCQIkywjqxMH+Ve0nwQtiFfJf6qRfRmFDKCWIbwiKoUiURVEdYIZBDPUEliVKj7g16yanoBzhJxrVlZn9oZ8FHlNb9E5kLzg1LbiIBdBcV+adcRqQZG24WaDsbW1mQkuoHBS2dkoBzADr7IQifS4WjSsxO3bdGGU3yTcWQajw5yJgtMdZxjBR5TBErUBA0vEBXfP+FfaAHkBi6kVqNpHZ+a2lAUjm0YD0BSRbCBDGvL/Kg3b9VoimNwXaEc8Wuc2VEyO4A2aynwoNNiziQe04m+9HgNDFNTfZslAjhhLJtMBsM+BizP1lDMzBndHs/fxvonOiELja6V5kwCZvbs6Otf+Xq3N88Od4bRoD+kJvoBgGANy4c5P+rlXDW8e/3q2ZOt97/563PdhZ/4E3+yPxiezXTC14D1fOyT3NnZvf29pUWf6aGjWZguLLKYcH7u9w/pPtS0VDIf2SvTTDZ0N8B8o9ZVUjwKwK5A3c8v9JaXl0DI+nbExeS7vdBwP1K4BU8rbdTkJjbGnCZx9NuuYpT6WWKhSQNNa6C0SCpaBojsd3ArIREAq5AZUc5C3GgfIFV6KpiJWbh1/T5aUYu+hFHUKvtD/tvEtKiwgTSNwMNhhqkjIgYa6QR7v/Zj0wpQ5cAnCxjimGrhsVNnaPkkI1rV1NrF2YgD8RZIidbEBuo8yGRKLTKZEfe1unYuiefSQWNQ1ptVMKyopYgVgJoEa5sWWDAAMFACg4gMcVNLNOA14eKIoy/RJZUxYEL3oD903NIB/LHJ3Jy0pVN/Cc+KDiogI6wgScQDEn5qFJcKnvfzOBXipMOhzBCZ2+CsLrotHoeWXk/qaIW756JDUAok2s+8K8jrEj5XVGLweSA60E1Q24MX9YgsnLJ7zI2AEBbcLBzQwpRO1xmIE7eq9lCgTCS0CjnR9ZILkWDuOaFK6upVsyLKenCiCxD7DiaVtvBNQLUXrGkMKBoUbDzj2SCK+vGjTx89foAgs5ONw5BOdXGMur9W046MZAh2n57MnQ3/zM/+DIzEJcGnWWgFwLSQ/oI06B8M+t3OPMoaqk6OBtfXlzCMv/2bv8xDxXd+7KeO2YIxPcsWDVYndBfTKpp2f293ZXm5u7JywEssctF30MF8cLCPs2JpcdEWgbFZ2UULdSVloADAnOCBzU0vAKXXJbpy1BDuY/YGEkwaAAb59vmCQv9q4eV1pFC+GrbzULZL1qsDjZSGl2pDrJLURiZaKF61Da0iGa2Nst4XBIkCIKhj5ToK1tzuImU5LCr61O6OEDAgsH/9iQJZKm8zpQETKiFzMF3WOkrJqCgmTBl6xAzctQnLxM9xpYosVYm8EInENOvYKIJyM6g1IrTHZ+R4aTJTYYy6IAGQzTGYcWEdQTdYoOF8k1VyCRDMd9ig/9x9xuiBfTxgw562X/gfgOE4TArgLkTypyZXFaBzML8G7IHT/6g7lVckuuxMPj7hxw1tdnysru1+6Vfb8gNkYNe1zK5eJ3AM0gAABh9K1m3H499QevDnHnc5HY2jktixd3riK8lBIoRq2IV0FRlTe+IKshQXMmkPlaJHsOuPZ9SxJSivtjNuo1OAjp4gJWjQkEThA+X2vSP2nCnTVN3x4STTBJMKraZVqLOmf2n70RGv76E/0ZdnJ8OHHz/A2Myt0Ji7qdzBX7stKayVmhWE8SiPc5hvbqy8ef8uli3eDXyLsADPMfMErsP0MeHIx3ymd+nf/tGA76LcurLGvPat3/xlyHvzqz85213YtztYQvFBLOYrO2Ivdl/Mzy/MHPHRlUH4kZhBVmESvIL5ySWmRoANOKRiICMAdNb6+hocBthuimCpKEhKJLqSsWlwkR6JMQ8sYCbC4Whj4XPTEWRlyvlr0gMAXdDOJZ1EQkWF2EBhG4a4NTbB3NGdRBJa+ZKW8ImVXIpSbwB6oYEggAPEG8yVAMpGTaqkmlgi7q1pEhty/AVP3tZIgxbSW7KSQOPca0gVA8gTAyKZ9Xgf9ASYQ4+G0HF0ae1cWRpMiY6zedlNMkLaslZ5AmTCAEBIacGaKiwHIqr1N7iQxASSIC2qB2OTn5gTtsQlOELNIztT2nCZO3EtJSvFGlNFPoEkl2tgK+Kdt4kWeo3Iq6bBAitsFBxVHYySveeCMKntI4vbrHHEwUBFYmjYUS2Jaa7T7WWs0Ew5vmrK9i9e+vCcB8g5msbAohkxikQUIX5x64oxhqXDzMHJ1jvVhkPOJmjx2h4ow070rwmcWln0qCmm09OoZl4yVrHM8QkOvr89p4Mb1/aZ5wqBEWxU1Pf7TWrKhS5HY/q5kAP8poM+WZAsmIYACkTCwQwMybixUf/oToYS9EMudCFGVO58ENLDleLJE69Ex9kefLSTCBUMi5B3+bCO0dWoZjwxKq654oEFGOueN7PZdHFyNHz65NHzZ08X5xf29w/gUyj2gqlVs+2o+GsE7hwfDf7yn/8L6ysLHFo33+2kScTjPSqYZ/8F5U44f2NK7zKm8ezc8soGJ0ejr9cXeLtk+Zu/9v87PDj4+jf+1Fxn4XB4jDvG751wCEeHA/hnOKyX1RJOZAYq7g4OZ891C50MW+h5OCyTg6W6qzy7nSplLB+LoRZIBTKBhW8GNqoaTtuNrmBiMLAyQ2B858wBYxvHWV1bfT4ypm5fWCpoeTny7P3zFbVSSndUyEJzC4Jok5jApUiCpGjlkBGy6V+6KQtStsC05CDLnr9KBg2vNVAkBHgCMjDJgxaoIEVVt6DpS3Dm3JtkOG8AF4Gu5JcrtV7I75CNeEgYUzJr1qSQa6yL/SUEJZVLpXoSM+ti1A2RwDTRUbtryqtEoilBAk0bZzK48w88iHTWpRUJr1r1WsvEbVbckGbJVgjwJi8hL7kC1AhN7VQ3UxULOsnNBjDH8CIIA8nH/UM9PHqqSgABAABJREFU0hRFAcYjQTUvndEodHQQ2pDWMsjoGc1YHv9RAA6gZelgXLXq4lBpGGVEHF1xz0VqyVJ7++CvM4dq6Kqf/aCOGpAX1mCSy3A/7YrLF38u6xG9LujuYW/IeMdm4wA2zHdlPUwYmxOqmVw2kuAFQZWoTagKFzBugnjxAu81gwNTgfOboyOkK1khYRf1hdMGRLn2YLMfAbo8dImAMsLWjLZwMsbsyWHjE5cWm4yywu/TPzhYmJ/nxZjNZ1tuDod7dbcAuLNeGXhBoLKVpdWf/ZM/o47zrZXpIU8IjXl6LN8qzDmPBRCukLOZ9CydLK6s7R0estljce7sC3ev//5v/erTre1v/Nxf7C2tO/u5LJk6OB6kXuZsaVQw65iFxcWYPfR2wUSogVYazsTGTj4YQMP5o13JhbCz1d0hHiqd0M8hK5GEoQ6XiFJMwbdqOMZVobqI2RdwIJMaNXEhky4oFfhH6RA5umliY4mS04yYBiB/AQPbGHALILNkqKRNkkdqTWqTRLzeno9U9LXSEolqamIFs+KxekRuQq3b6CQHEC17MtdE0d3IRerxLE9nEQnOTZbNqgFAcvgflSnwlOfqr2Fk0AAPcJtg4sK9MLQBsooXgk9mZivyGr3b5lJSKAEIs8RGcBUQoY0LtrwgJDyIbHw0KiMvKDKRVZ4HRqoWUiu7NIEng3RU54wDz9jT1o1dFJ79dnrMyXEe0g970YNxFhm74LzFo+ExcToA0BTuzQBDmIcn03PsoqU3/PAHm/UY1Lq3p2fRqrQAZmBI0yrS8WsgJYQc8Fylja1kM93FztliZ3FrevfIc+fYo0sZaDk5HB4ga5AEqUidZHu0HStPFDAiwU5Ot2KjVkCN2odqi83wPBFXg3s4XMgxDWD2agliTOIhiXVrS5whj1LJejQMj8XY4MeDOOhFoAn0IwOAf/5gRfvFYu5oIfjc+4tx3XMKsrVzp8OFxZXNR5vDE3jH3DCYwiHMt1zxCx3rZVKeQSMuJg6WAVF7CvRw/8//hT/Li9ongz2c7kwHsJvWw9pep7e7u80+ZljgG+x+qIX5zKkHZb260Nvl01cng2srnR99/cqHj979B//vD//Ev/Dz19768tQ0r1DSQy58jo/2mXng28Fhn3a5mpHZHlzH9IPFzOM/zvNH1c724KoMAEB+wxe/MEu9ym9yLIeBDYqmS0kMQv1nBaYocQb2zFyHHqHsRLB4E6ilRFUe8CXRueuLv+opahdpirZ/6ZQi9oEvkdh/WZO6gwy7vFWKeFSu+BdA+8V2JJQIaKiJLPkEah4tyB/kQDCxZKCXo46mRYGErPi9+EJuu2nECRNFEnktDwDxSHQMNsC5GocJgSJg6Me8oQWsPQODTdL00rDwPTBwJUw2xmcUjCax48bEh4lPlA1OTONiRhYYXES132iXxkd4QrVHfExjarS3RtzEleyUT6UR1FUqbTMnOifTEw5KEeGM49BscGbzRUZpIGKxFqhFK2WlePxClbLEuh+ZFXuRk0JK/MCfpoikhSwAaRrDkEyiXNVeCmn+RXYWK90xIgdZDqp8hmTIzoFtvEfCGMtSwWqjUlVfUojB5m7IGb9NCuPZ6MGGCrmPCphxrxYPyvByYsDyBEzX5RDrWxMs1Fa8qezuYMzw+HKHIhuOhZkTNBVVgbY0LuiI9oT7wOokEYIBwN083+ux/GYNpheEndBmMtDcVOBn21X3tgXhYpig01H3WOLzHXWfDpPY1Ik+paWsq8XuicYd3mOPFrMdkl+JabpM/BcEOS6F8E4NxTofbRXfRw8VaucFm5FO5wh1ATNCbC/l0Dg4tLOzvbWzywsd7iunCzXrR8KaNSJL9LGriNnOADXsKliLY3m592/8tf/e7EzXswjjNUSfrwfpno7R6bAHGkMYhztjgRUGeOEG2PhdWV47OtgFVXdm6rU7157tDf7xP/x719/9g5/7c395qrMyvcjGZzqWmSdOtFPa8JYfnBz68e+FudPB6WCWPYGMVNwgU3wfa4HNedlYrsE367HFIcCkECoAQ8NRUgW19TAjYYJpUZL7l4XEPML2MvjPlF+QU6ZSG32aSGpusn0iseaSLtMjtCCzlV5lSBGVUasvLJ5I6lWYFifPFyEF/A28dZWKwgRuZRUQ4GM08GskgYkgWLYBsVbECsLo0lLQdRt52BnstXUBpQWdkIEwRpTqJv8Cs9v8ub94lLGaiuEVDSyVCNxEL/ithEFryQ4nWlDM4BhjMu1Q0V2Ez8ZnEEto3gtqO5cUqJInlnYcCFMx1ci5kpcnNO0Awvd6E5CusTfsEJ/fZyJxXAHooZPTLsYUOXxLL94+BOTohH3JR0PazJpYL/DBAS7IAZ/Jw3qMQyTSHgYVt6x+1BfuljMBxUF3osSZqJpxUOYeulbNF3a0xKDEKQqjIdF/0fVSbfeb7eM+2B5bJ8ISpzgn/fiHi72jk5oAGGUo7h963TDFo7CSTkHfFkGawNniEGXGQ3YCVeiHmfN9PE3vmWa7ewBDdkzDHhpFW5FJ2IweZy4b7m+zxXhv/4AsKDwa8Ihyhr3DvPkNMbUqqYqegXPoRP3EYR38+//uv3Pzxs3h3pbTow7eIxR8MVoxonu9wdAjnH3YM9uVy/DHwSBB2NKz84u8vcMgOjrsry111tauPd9++P/5f/xfbtx758brb9+698bSyuoxFnh33vbxH9/03CwUf/rd3+Drtteu31xfWx+yd3t+ZV6vVaMIJDbYS23R3dYXgd7KlIl0bqPLmLlFwsAO8Fe9UMTaX9hTr4rrHJzMz9D8cldbVHNrhNx2PItW+HbZjJOVue1rlmpfM7edMoo3DCflfNUk1rL0A3EncYdICTniaGWCOaQigCoDd1kXBVwIhmYnhXTENbOsRZOURwgcW+tXpFECXIHRggMuBhkIAhmstCAqkyym/opEPI20ZLwQUXuhDXouXsva0JSHwBYND99ZtF5iETmgW3WRIjFNKPWamPRrNjWZF/+SneWbst4Zb4ZDpr8Uzxj2EUUcVd+iQLSity1wF6WWuUQ0zuZSQc8yTdJhvk+jXQxkHzAe9ugR9mEdR/Y0Henk6cYG/3wxhRcAVZAgJx14auPJHbnULM4gM5sUAiODEA/qZwsxEYpCDJCUBBGledqHas2+D9WrR8M3LDpdXlbEQNZ2pi04F4SXd1ZET+rRtipySedKPJeh2eoEzjIZ5xrBUpAh0uKNwc+DtkjyBQkMKB4plMSzM3TxFA/Qzs52nj2BpANsUIxudOXZGc5ezsTgE907OzvoxKyDKyRBKm11/TIYgoXEv/JX/vLJYR/6eSjoh5FP+zOdeYuwEomPFkyf+Dgeu9sejJESdjYueB66evQHaGDMameGh5b9wf6t1fnra6s7g+fv/eYvvPubvzjfW1q9dm1lfQPreHm+Nzzc39vZgYM3riwub6wszs/xyXDO9UD/dzoLNN+qQ2IgNOLZ9nLNlAvTo2MtAo5gZorBiIftsjVuFzkQ1c4Gq76gSPDfzo6CrkUoUJFELpeCpKZPRECeA75gi+xAM9JQtUhFX4GhzuJxn7JXsyA5B7DFc6aJzh0BBN6J2wROolNoSZEHssB/wBeWOKCydgsBossmIIEhWMKavfAfbPRo4gyRLmiT/FDuch2cBAYKuELp6fbQRsAH4nHPmlFRs2CgzWDb02+HKmiEBICovQHiN8hKyoiKAiR5nQS1lLlRJFE00URb7qiNougKEdgVwmI55fQghqg2KlEPlIj10g6BZeu5YLc2gewsldhILrfxm1BSE3VxSzxDg6D9S04CjBJbHuhssFddIVkxRKOOIdIuxEicjfWCawTYjnryJTNHPhvFrBZLFtJRFRrdhGg07JjCcJxiU9hcZ2l+sTfH2Zc+0SKwohme+aoH2KgHx8VZsUTtoYZM2REWgFN5bFMoOcAgKOAhIxqHlepc0sN6RoF48I8aRESBLEUwsdlT8ouLgeKh8W13phQC4qdFjPncZgAhAq1PoBQqqAIt8wZOAmWNHTFwAyODxcXZ0f6TJ085DANDhJUBuO7cu++HXwcDYCifmMG5tLRwOMAaxgfTx5vxc3/6T0393b+/vLS8c3DA1mb9G0M2jeD7w7i2ergNF6SAfYex5OA5pQ75WD2EzDMbekYob91TfHW5y7EbUnQ8vL7cuXvlhmQc8ub546mnm8Ptzta0Hwu/ubR87eo6b7wwQ9P20zPOc52b7nTZtyGt1icvK28zYeJq70RoR+w42e7sBp6aNVF2/FbA8ZRL7wptGhJhvDWAMI25Clmi2qoymszWb3T0Oapqm1uQ0Wtj93GDWFgc1jdClTDeNuolGwPSrOhCeioNAGejkvgLSUnkVI2ybGoBUA7HT8MVSEnQSGcyDxD7EVrIpFKC9KiMfeaUIXpSpZ151EKEgYwgxUquaLrSUqqlABUZEWfBYjvKGM/ErNJ6oySJSVDmJrb2FTxZxEjSZEW2jttgo+Yd8wfcJ5KhYAgyiGdZrtFqr1QabGq6rMWtUe1JYhSPSwECD9R7jVAjVtQUboraTEgiOQhrX0ms4PHJqywbjESWo1CDjjqgV8s0zDEszsDoBEMCxOAQ9nV9nxXxKrcyEfXBGjBhH2LPMX3iBD3FF7y6uLQ8z/sOqGHfF3RLmic1cwaxBmm7PUl3XmMCVwuj4OA78L6BzEGbKTG6Tvq6GPA6o3iYBfBUxEQdmlt+Oa1Hl5TGRf+xFuMWPRg5trBp9Et+YQGtBEjO2KGyx55pAjUGE+jj4HSY26SQzksfw4O9h58+cBuKQKJ56613OBaETwXiIwqEAMpnJhiPcuV7m0dH/+q/9Jf+F/+z/zEKmg+xwLxBf5eTmSGEWQ0/hgWyk+iVeKaHvwcMDhh2Seus8GQMugH8WOQYPCxpmEgXOoucDMITm+GwP3XSpxd7y112hEy7+OBD3prl3aWVwRQfYsHQYkWFNoVkN9UxA9KEGCVNy+M3W0U0WzGWF26NJkWyAeY9U2XAhfPYsrcBe+GvfHpJSDKoqNJDx7F2CBcwDSm7mC7EUou0i7chK0BNJIUAPEERadRHBZiMABNiQlcRsdTloeYSoSu5Rm2FC8RrUUWT7AZbgtVrJtN3iA1F2lLHbeJhrGmcNXrEjg704IR1oaH1leFddA9VnGTgtz7pSP6FzNP0oMLNS6RQmzkxHcfNiNpKZ43UeolQzusrBIrTtLjCySCSRzGRGNQXPNACymwmFBKI521JfYW6EqSSlhioIPFkn74QTZBZtICESfq5MFpQh9FMh6t+2iEqtlaS7RUfJHnLeILVDlcegqkgGcxsidCaTIWr2sa0jr2yaOflRSzCBZwPszp73Zyw398fskksXgEX2HWz6yxQcJvkRiOs1qeR4WnmhirAg/agXmZIhjf6gttra1fnFxZwpeN9wd7nwZ0Sb3tAEJ4N2IlyChcNCp+GhNGqyBAJrS6Ho/njXGhzpMkpkqAcBPNaMDGB59rKdlAizPwTPnGCPxcWIsArS7iDeft76v5rdz9673v9/gEcsI9Q9pCJrMsntOvs3/yf/6/+8l/4s8sL7liHXfu7W3xyFiuZp6b9A55whoQF3Sdwe4rHs3P7h3yJUULZCsgKCJR8r5A5oY/RjYt5mu0ZPW4Hh/sML7azkIhqp2K3I/L9As4/4e0fd8Rj5Q/dvTHXE02IEV1PPTxM1EkV3GqLYzQ3eBEMitiFF+mmo1EkTnDJ9QsBL0m0TNMXl4CYTOeez+WbY3QMWZcqaAoF8ig9hiElMzGfR05KYuZKPyZwXs+TYYpUCGZzXKqO1XW+SIOqkefokQSDmRUe3jpsfEjGgLUOq4lAJFUB7UvNpAClgVLAqMSCYqgB0ChugulkK/oZGIOe2I7Qwm9PG0vEhflZtbhNCDT+gkSMxEAVuB2oqqBIRHyIOsgvDhQppTLf+0bkJN6beIYZLBJxw4GgrtCWpGbzydeu+SyBSqWvwZxVcLUvXyEkC7gakQnRorhk6ZGCpi9FGv4NH5XpO2bnDGfWDdlId8Qz/OmToTuNnVTpBLcRY47xOoRqmtU8Q3axg9I7O9Lpq7V11u0sGOv0lpZW1lbWl5dWOZdOTYAfmdzlVZ6MEehddlws9BbIAg2MhJDcoqQI+FQBi/CML3mg2ubx57Irwx31uFB4ffxkCWU9NcVLxuu9FSIkalRy9jwH1TEPoJpPfF0GaFgQap6dw1BnFyJH7A+RSN5IR3fTYI7ktJfgQExFTZfV3qWUE3DoxXoFW+0O80L62ELB/ICFwZnVPE09G+yf7Dw9Op3+8Mk+J62us3PwZObea6/du3X3m7/xi882Hy6vXXm2tXfIl1b8+t/M0fDg/mv3/7P/0//xC2++Nj87O9jboYqdzYf9wz2mKPah8M7H3HwvegSXw8IxJ5d2UKvQcjrf9fknA4VORQPP6mCa5wkudq9MiIlV9Yp65LkAzGUxEe/WMJHMzM2zUVnb2QMCmejcDgOX5IifPuiyhaPTW4Q9LRkcydQokU5sBBf8yZ+2AtL+ghqXz7yK6TTJsKpsvDCSeIK9lEqQURHm5vMhB3w7nd6DS6urqzQ2090z7g4wut1LFFFT8IpWDBzx1rYIm4G8aG3NMmJaSQ0XaIy5RhvZOYVsMeZ/RCQx0LocOA27Kmipsc096YxBjfQmOWFhVNIoUmWSFjsLAulWAPvxGJ4HobiHSaWtue8tNlE4ZNydQQXhV/bZj5XZQQWngwfnAb4Nv2Tk8Zb0pptIQQfXlDvf2Ap+OD/IWTU48LBHBoPMFlgJJAXHbJImVQREL9lJvh/u4cb7CFBJ3dF6U+gqGav16NxTtLPI9KFZo8WlQvaXKTC4ETiTgWGeCBY1JFqKlBojsVzaiYEg8ftUzopAQKXOtbX7RqUlSXoZcTQBjSRJ8ecA0NRrpiTwgHykoItUBapsYRajBLc4Qjk3hzHPqMaaQrFBAxyH5ZCE7uPBF99b0hzi8x3Yh/aHgfTl5eWb164zHha687qrNZqwoFVptIFpHx1tEZQzljAmTbznza3MDfZyXoSLa2cETD8cHD2B3K6LIsHNylPBHt5SZ26Yo+q0Uxh+BEUxlKnyGDO+s77nKLv3mcmCdJ/3MdlEp9N/5I84ekEHAVeEqIJBf41T3Gy1v3IdrGA6O+YrhEcckt/fZa/x2trSXKd3MNi/d/8L127dfrL5fG3jyrUbt//2/+s/feOtt3B3DPB37O3cvXMPDwd7qA84ZSmoOth6jEPCoQAH2VADl4Z9tFsuL+Rhx93rdjXmNnQwDk6mWIFCFUxz3OBPoL3Spp53BtHcgHdY8BjfzKH05ywbQnrzCzBeRQ2rY7jQTBqKzo72TTKhcuCfX2TE9QvqvLa+fEFqJN28LOOPKP29R5tZc1uQ2vFXocvBMhYmbkd5Ym71aFYUo82Lj3Qc27HUDDtGOYrSWYXXwE0mz5FiC4dDC5uJ4cOoAqHqiZ8YF1wtkSHU1zlKLyA166Le2AggpkA2akUSNcKcJEUtADXVFcKzmAShahoKidd0CrRRf9Z4u3BUUjB/VjwBP0LGW3olgI+/vI0RC8OxKBnO+kD5uIZHbGBeEoB0ZNuFBMqrF/BOTC/Md+c5T9gNH25658UWz5zcWFtnuxuDnsBQRwsw/mEgikFd7zzg5EquhweFlsgWmkVATuIsDipmE0cXZdzlU9SYmCrYnK/YsBFa3zkM6cD6h1Sfrg0HHg8NGP9CxpQU6PfoJZf19mJMmvyS4r60EXMELNwZ/wkLYCyp9rQIVXf+TjM38IOgs2dj2N/fftY/2P30+T6HySHKeByWF+aur8z+3q//Eh+H+W//d/61/81/+B9hvu9s7y4vsV9i8cat2/t7+/3hCa3iFZa9HTfh/bm//j8dq/i/4TdFUVzKhadbe2Xzv/1cepMnqMMjt3jSOb4r7zqa/Vh+FB6xjMkXIVAOlI0IxhvJSBHKKhNnxVwjmauh2BRMPGPClUBTU69dX1f2QmqQnRaSJHiUUmloio7wt1Na8VHZViLRSjgRAwTEyA7B1Rw2OPogKBY3lIjak0yuBuZ+xiavPfAaBFKKvRcqGmQEiBczlTlMMQSwUkAXC1la2aYHMLC1U4iXFLNqTuIzs4xNBEAKhY2/iEXZSIySVmXElbFmKfrK2UMSY00godbQ4DT+mUNtDzgzfGYUowIV2fg2OwjMDgGSiDsbTzlwso+aQ9nZCPUh/Apb0+01dqHzLEcFYdviuDg5nV/2GAcUsR1GiF0dLnZQQtq/ujHgjSfboUctiteTN/N8Z0Q2B+PgXVIbKbEqOOWFFDUU2tktf/AYnLzp4ct5bCvQZ/Kzf+LHs9QP5/X1IOsvTk39B236fuV3uftf8/+Xf33q//Cf8Hu1nfvfyPjP/MSXf1DtfoER/YOq4geC5/XrG+fxvH1HWfjep09rVlVVOS4yvSbGaCuwEXc0xYh2lJXVY5kA0Gc+A2boWUDtma5LFaXA8WgnE1ORMZ8F6hj+EXPsn/GVtVOsIIxuDJ747gKDm8rVqthaAEoJtor7O50toIk/LobMFYgpUiIFLnkBnFAuRLnlCZcOBGCYUPB7qIcKLtGBFxziDgxcxRbpWSIMZ6pqfBEBhyaxgMAXeSSygoRorqKNYCTiYynnwDIBymBrQkZbbX20b+xC4gg5D8kabP7axMIdGwzDwocRjKMcHYXREWdGw6bsQhQ3RjYoXRyjeTGIfdePuG8J4vGEprLPq5kkAw9qlYf3J6FYxZ/TNdxwcouQLQGtUnJ2xmfu9vfY5IA6DtVMdgSfUp661Swb8o/+6W8hdsgbb33sH+zFgsAS5FINYEwMtJJm4wrAV4LpDZroOX7ZVaIbOuWSEsGsrKdwTTynHhOqx4ZnnrhpmSxYT4zyKaRYEJg+TjiquX/ItovNB+8//M4/++av/dK3vvNeH9/v0urj3cM/8bN/+l/6q/+tjatXlxfXeQzO4Rd4kXzRhH11unuxvOkBJzBftvFVF717hzvb208f7m8/nTna84Mw0M93Ynl5xGeeOLcZMAMOnEak8WGwtoHh0Vm+oe50yqx6fIxHyDEEzu4cNEI0BLPZg3qI0AP4mvA8MybmuvPuncYR1OmZ0VlauXazu7xx9cY9tvDZToJzd5sF2Ruja4B4O4rASXyX+MX7R4d8AGZvD4KhLXheCopZ3GMhE5EmSOUFHz6lSBcs9HyQUOHoM8DQztu7HHvSfbZ3wO3KAh/ZnXm6s4fJ8ead69/95CmlWfexk8hX9R1sZ9tbWxysur+z/fjRI/ae91aW5ucXV1aXKQ61S0vLmBF8hweiYCn9QnrKR4nA0BYb2mYiAIRKYTty79raR5vbdeGVWW/cuILf482bV7MtbXjj1NIgk/JzAflJiFGlwmtnEiiibzE4ZvEGQWRSVMPLSpr0iSoaMAYUL6nhV44gPLJYSJkoco5AE0J9NnVcAFFa2Kg1BYZeprLo3uKKbJRdeTSQtIxqj1h43qlI+aXpFCeZaxBhSw0NP/PuFa8voH4Sw7neh9Q2TPK8nQKJHmaUoXQdghc6CGg6Cv+GEVlS6DcSE6yOJ/yj/AuvNGDIaxcXBKcdFfOWT2+oXlUcaTbDBGjiD8XhBowztAApwBD0nIasyLoqGhCHuj0+3d3dwZbH/2yCgWeA0p7FISNbkeY8I13KY5MG2zlQHrQhsyzGUZwnfIJL9qj3qCsYBQm+wlI5khhfeA1K8zKCa7iuAmSRgRj6al7PDcgcGPfu02cra1d+/Ctf/1/+2/+j5bUbaHm+T8U7J6i/Z9u7+n14nV2vjH56TvXHSjg4GBx3Z5fmPQLjiA8DrF27vnFtbX9r59OPnj36pDvFRwBiDzUdZuCRKEsTlB1vuLiwYMLBv0yfoKCdXqOnUrnAv+xiNCOqnDaQO2qJi1O1HrqDaY8suM25sQxo+oIZs4deZKkUrw61S/3wxNHOe/3yfubB8Gg15AeCoZDmwBMe1fIIg1nrwaNHt65fe//dT4eLva3NZ3/sGz/9G7/yj99+43U6CCY8ePjJk4efzt66fe3efRZw+/2jvcMBGMYE9VWb3Qy5Njw81U5sJ6nvuL+wCsBHctrEHBVNsN/DYUki45XkiJQLLeJZT5g7Kb1ehYsu9sFgRFShqXbb47EZdHqKhiee7QAwT4x574ptXGk/X0h0Q9sr/tbWaPQ1IXke6LMt9mNQHg1smplyS0W+qUwjGBJisD1INK7MvCEh0qSIp6KvSNgPCowGlv6IH9CO+q9h+5gFLYQgpVSsiWh+0A0u5i/fLOFWAPswIGgqnmNeEWQvHR6Mxa4CTaJAGCc+qIIpqBw3D2RBXy5Mns1xUqgqQGRRkXZEE0hBy/AfpTIYqILD+vPiYTvwVt8WD5GPsZflOOrn+PjerRt3bl632Onptz/4oN9n9wd6LTQW78DFzk2+ysR5cgu89xze8Kgae5UTQ8HRDtLZvif+Z376x3/5N79F7W/fvf7Jsx0HlqGUlPaQGH5ZQKJeYQankzDBsAv8o8fPf+6v/Y3/4d/4H3Tm+ObtIo/3Fubmnz36lK/CcDzf8fCop7nK4IPFvh6OGgXzfHeGDwYyGlYWejxaZLcFFu9ZZ+naa1++de8Lzx5+99mThxjcM2fQn5trOO6EjYknzEFJXKxuokd8AuTOjNgGzvv7XQwPBirMomkwPz4OiwbTjoaZWNF4ungwQHtJYNsInYtRz6dh9rs7/UFnicNBOPqjUeUTvPrDvq2j67KKIBdtk7nI0vM9PxDDsoEUZsK1hc7O3v53v/vuyuLixsbqgwcfXN1Yffdbv3/j5q3HDx+88dbb3/3Ot7A/kJQf+ZEfG/YP3njjzV//tX/SW77yxbffZjcSowE8/k/VqqSgLCcFhtR2CDltJxinFH2eMlzzUqjiWqQrawOA3mmqoWATrSUDoAInPCgolSAu85lyEY4oW65BWQ7sHIwAh2xfjJ8hxv4NDbQYuQBVx+5EQ1p0jUUvpLxCJLVQrEc1x6G2c1IZvIomIbM0C7EW/hylQKeytqkEx0NpVGKq1Y1px1Hqq8ZUAOdqHytMbmF/JBuH5Bq4MaEiSfKQVJcMCCvgvrfJ4GOU67jw8H2kGPXJm2Y4pDnKl0+jchRSI/Fus3JzHctgdnHoWThjN/Jij41w9C8MO+VzSuhlVt94DjgVs8sRP9PHfBKKl454T4Jvn0qSHmZMPCjDdhx2T3nJjQ6XDEiy2ajdEw7pYY8dG3e60jUYzJx1OI4JApj3WLGy2SA+HzV1bX31xtWN3/zm78ONq1c2vvrmW7/znXexc/JIfLYB44xYYc/fwgrf9dGKpL3uc0j7HbpLvdYa27hgU3IqUpoLzz/DY8UZfr6vzTa12J4V2QpAdAUKTscLgoP7YvfwqLt653/yt/7jzpW7tG/Y59OsO+R9yqkaKEgP32JvHMdwuz+XlspBWMJiQ2SnSwvz7MTY3tvj27l4J6DcozbYQjfXW77342t3vrrz9JPdx+8P9p76ls7ZMeoD0jhcDFcS8s3MilTSovA7cs/6gue3OENO2Z9HuuYzGoIntzCE8cBKgpmHrSdDjvWg2znlj4U9b5DDyp4Peo6GfO3wH//6byytLH/1q1/lNKX5HoshBwkPGmg1kTbfojOTe5ARgWomQ8kp+SkATgwhBFmoSQwOS3COt4JJY8lAYilDxCXE2fK8r00yDT56tjvHGehnU4f9fQ4G/73f+dWjg73d0+O33/qX/+l3fuerX/uJhd701avXPnj/e9/46Z+dj8+AKQF6Qk63t7fefufLjz598M3f/fUrN+7ML6/F9ExHD3n8jaOJVzGlhP3j+RXgMF2TpKCqaXtNaiKyW7FpyI709BfE1daA2HZFsHMyImSZgezhUSiJkcDQRAqC4wwGXM+dHpJAjbFAAiSAGdDYMVgG0J8jj3YXCL5l7acpkQjEPd5z4pnQyT4jE9Ss6pQSQCUwZhR9EW3CIDaVftIf80urCR7NYUEmjgTTZ8jADGgWjpUvtgH5FVrDDqCEpykqajcjgQcaNbqhgZPskXMieRtFisrOuGUycO5jhHIbPyqYJoCB0Nz5mymZGo+YyS5pkWunZrAW/qDQrWTe4Vhwk2n0+AljiwbZxf5vavGFBp1oNbhnxtUNKlAFzeYN9m6gnX1NCCtWM9d6+a9ORanF+p13QthLF/trEON4FkwdcCqEydntDIMLC5dlPq5UTVgpQEXrEzbQuXy026s2soFIIxlE1WDcajbzaRKOUrM+FKNWNDRBP/UiIkDev3vrg08egB8NtndwyMaT0GWdL9y/QyJm429/53s//aNf/d7HT2kKLfnSW3e/89GjO9fW3VQxdfad9z/Z3t0H4Z/56R97vLm1u3f4fGf3K194DeQPHm9+9PCJ1JwLTQ9PZsADZX5qdjjVefvrf3yRt2n4vgkb/9iz6CepuvAZIlButIJE3UXRHBDZVU2AcmDgAO9341ugU7glqKVhKDMjLwDeemP15t29558+f/C9veePFs4O9d1wzkk4f9j4iwTzUiBLF7Q2Hg/2yiHhLCCoGsyE5CRtByf85sJoQQqCmOjFab4oSebs0eAQuaXz3nnn7efPn3/y0Uc4OjY21q9sbJALBmsOX2HTglf/bST61Uu8EBLrDr8zI5qDR7Z3du7fus6wQDgVSpjvj4xm6xHX/edb7A5CqJZX13nbkzb80i/9gqyZnuaUKBYxnH+ysrp269Zt0L734Ue3OxxbwEEofjjs+ZPHLBZZJK1trLvEORoipKiypA6GvJDMz5wJupaAXFC81hjtC1hbjf6gPUWLGCNtRFrqw6ogSh2AURBGpZZHOyOn7tzwMJihc7+KPgPVjtBdQNZnSYoavWA0JVLiiYAfJpzzyNDMdB/E6lJF49BaFbTkSdkLaavVgfY8ZJSWivNZ58koKS/mxAXkF+RZhW5hB2qwvrBf3ayiIPDrCaLDQ+JoapQp6qbR+Lgo9FORBQN4jaG03w49w+ayMagm5wuDqVqRQw7YZOCjmPD20+fpQgFWjRAcLMSc4wKaCBUA+dTIqtyNdqEq6I1ZtzT7ySsmcIrzsiJDEfiUlw8efIrt9+b9W085tO3Js6trK1/7wpvPdw5WVxdZ7a4uLez2B3dubDzFNN1D6Zx86a37v/pb3wIP/fnoyfPNrR2083c/fLB/0P+pH/vyZQoaeEIRIplQ/jiFDubwstrCwhItQLE+f/qcJ5G0d3l5hdGO1Q9nmJBgDtdUkdlLsEXWRaAtZMGBubm1ObDw5RjGxvGBW5W7fFkQK7g3Ndc7xutx841rd+4fbD178v7v7Wxtzp3xkuDRLHa0Io734wheodQdabDON1Aw+uwvaudKoELikBIM9HksZPikUaFnZFtmwEuPPF04O11fWeLkjlu37tAvuKQffvpoY2PDL2Yxo8Z8mfRfcrV1IfKX5L9CcozGF8Hhd8Z2frY9ePr4wcrSMtPf3u7u0grt7PZ3dp4927y2ce2Dzae377z25NHD4f7Bxx987/b9tzafPuZIkidPH1+9duPhg0/u3Ln75ptf+I3f+NUvfvEr7377m6eDg7e/8qPvvvvuw48+fPPNN2n4Bx+8N812dV6O7fLo9WT1ylUUCENmJBMtGpPJrQSjta8n0i+9vWh4t4FrLfZ1hNDP2DoqrRwdRKi4lkI9px4AAnrEEA/TADAupGSiLhEP3gA+RC1osvlmLxY3yHT4tvR9xXxRBGwvUmDUVENUKw5SKiqpjVBbyh2tg/Opkd2lYHBc8qMkOy4vDVndZdlgIEt8EbkMbCz9hU08jyaJq/ijKndduPRggDEqwyzGqkPdaeINPDgHsUM1kyV1ON1Yw9EnaGfYhT53SYLzlkEe1hwj25PfXQrJLEYpUQxxmIQfmXcvEFuO++FoN2Wj9aZ/ckf9yyecIqC0my5QlbupAHQYjJ6A5PinCO5+6iCC8kHmkoPoclKynYl2ZXnpD977mN55/Gzn7dfv/8EHD964e2PncLi+jIIe3t5YYRvA2ZVV+j8rpSwon2/vEnn3wwc3r21c3VjDUk2c4Mm6EDA6TVmneaGw5GFULUlsFNGBfDY44kQNz/mDJfOLvMsjbQNc40dH7CGhCGwBHjTMKyS2xRDIDNnxxNl4QNspQgrWNPDd+aXjqUHv9EgCp6YPTuamlm7e+sratf7+ztNPD55/OtzdPD464Cj+Od49dO6xBljNMoczAjmUn6qRXxYo5JIlN+xclQxGCElsteDlmB7TDN1NFh3KrmFAjo/mO1189zi6MKCRnOfPt5aWjtbW1rJFXAlJfF5pQiZmOnnjACQ4EggVMm8vvF425JTACH2WWzMzHsM3e/vTh59AMw/HtjY31xe6N29e//a3fv8rX/nqnbv3sUF+5Rf+K2bp73zrd/+Vv/bf/6/+/t/ljaJf/OV/9Gd+9l/40pe+AoW//mu/wgz36NEnX/zy1+H/owefDA72F5aXP/7wfU77gyF+Jn2W9277OK8XlpZZVNKz+JfOkz3e3pJPYzN2PteU4CEQlZW14efhJ2pMNnKtgc7OR7ukMLLofYokx+S+W4MxqyVID0H2l1MNwx0DzkU2Ut7nhGEci/FgH4ZgYaGmmyAJEObIiJD4ElXTv2l/mG3t0ca4cXQQ0PiQFFJoqwONWRkJgqWRQLy5up9dYfaFxqRGSytz4VhGgDcgClF1RKPm2IBCLLILTuKBoPROZtVrZnm1VeWuVbygqvBEGvptiA2MkDwBSRYIfPqY+CsCBHagWbhgymGgaZ/xkTsemqmKRcMV3Rub6nB28ADKXnITs25rxjFAvjOK85JHdq7smLhgCD5MNi+npuYtap/1Dazr5IRPW9HlRThaTKl0UwH0pspDNQOpBcfGDAx2/WcsXYpEnHn4UhwIgs4aDBfnezg3kilv3rvznQ8eEI8WxYZra9VDwmkeOCU3OQ5keurDJ9s0nCOS85t+kFPGxNTU17/45uNnWx8/fHLv5rXEmV2RlGOKkAiwnKZhCGnIutPdycn+Xh+2sNaAXvfimQ2QH5ClPWwPgIsAMPdkM/NaamnErt5aUQTgqR1OqmSnzvYPDngLiMeMvl7IO/DdRT73ckQbV5euL61PY1A/f/zs0YNnTz7pnhzDyTjA8ASXKt+hoUeme5oaUOXiptfVltcRb4PYUgdJMXzCv+dZ4D3Eim61VSeecMQGNXRZbwE3NcimUOJgeLa5ubyygn3v0I0ZlGa2GxLxRujHxLhJPAd9ccIrgH/0yYMH73/n6HAHM+Q73/mDu6+/w4cl/unDT/b3tvH4/8I//Pu9ztzu7n6c4zfYe/zpf/K//992EY3ltf3t7b/zd//O4uI8G+8Y8Hiw3/2D33300fdcr0zPra2v0AXPd7dYT3DMyf7wqNNb4BWkmU5vyP48Vk463l6BvmgY3M4G1oi3kTaWkkCf8Ur/goSrg6jxb3CbKVzpHQDa/QDdpEtCBCMBwh2/qGYe+yAZwDAaYY7dzFCI5pKY4RXIpIDVpn2e1ZVSDaqGLlCO4WsqsVFiMMhxAr5Ormgj2xp5YyXjBnbQtvPpYynCNAmgL7WM6Ig0ARw/nzFUxOfLJVquhKKgE5p+YnThiGBnKjoU1oQnh9rT2+u8yvMkz7qUbdmvqHCPo4NJdvPpHB0XozHnT5EQdPK7JYlj5zW3YR8rQlRl6hoAoFLWNp7QIjFh6IWOkAOSy45glvV+LEVlp9BxZR0fkgSSB4+fsIvj977zPYi4cfUKfYDpih/5yvragyfP71zb2D0YgGhvMLy6tsABAkwe2AKrS73No6ON1WV2zm4+Z9zqBM+wsrzwu99+H+9Ce7AlqQAQgYAwAIr3nLKMW+gnILp651gUuLFQSCZBvQsUiTGDkmNKxCZF3QWfZFpTc4DVm4i4XDB5mnfmfTQbjpGFmJ/YiYdRzUe9OQ6l0xnAUL3y7NGeX124Nn9r487avXeefvj7W8+ezrOJAZKBpTeiutKK4CFkMxYZ0JDLpmoeRZKC0QTPAe50eszbmNDMzeywYh3EaOAZG+/o4/xgwsBiXejOsvg6ODzE3cEeDyQMnrTbVdr0mUV6nBfJEGbFl4WDg13OtJ455rvng+7S6v4+X02b4hFtf3iA+cD2x8dPn2xt7fDgFDtkcaH3bOv57s7HX/vRn+BB7sz8AiOCvuOUWw6WYbPHweE+R+tyhPdwf5d34Xd3tmanTrbwqrGSQE11VQ54BpeWVj2jqqEuJfwFlFaAGgGY4cS1nTLC+AJc41nKbYqc9Dho6IsMAJKS4PRyQ2xIGLBBfdbOVdF1Ixcyy7N2Nnb6mhrLwXjZheUz1ocK0b1a8aWkLD5OS/tuQkFRuSm1sdwkBYHHC9qlXd7ciaDBV2xnGkiJzK+lKnJSnLJqxmWRFgj01doqOCmi8ucV1H0tlpGLqq+1FLSyMuulmpgE5BPdwDqGCVJPU9jOGs0MszTLaZkWJhRBF9YWe5AlE3+r5+kg5KybYintTMZW0znW95xOxH5kHMdoWAK4VFTw8PiYW415A/eKC/hVE6HxiWTQ5306xX4+Npr5boh0I23IHnRQH2rFFn/6dBP/9I9+5YvoZR4Jfut77/OG+u9974Ovv40j+gYQH3y6Cd3P9/rv3Lry8dY+9sCj7YObqwvri/PU+u77D+V28o7r9NTHnz75Y19/Z28fXzxaRinBx33v1tV9FhGnZ+uLvQN2uLCT5OBQbRteOckiIPr+2TZa5KtWbpgxDitg8cAHLMo7dMZDVj0U8vZckNnKAT+gAwQG8RFuzqXhRCS+oXVIi9hAyBWEJ6f4BqfmO3N8sJud0LyOw1esZthV2Fl4c2N1sL//+KMPDreenAw3ecuky0PuEGu6iaax3YZuD63LwMOJgVueYQjnOfCky/QIy1lm+ZgXtjNPY7Dz1Vq+jni0Ptdd6KD7XUMN0ebotSePH/cP+xsbV3jPX4mxCTSfHpNB0VKfXscN9+Rn24N755jQTqCspQgvhcXc4wn14HB6sH140J9bXOHBN7tj6U0eybKu4gTs9z780C+Sz/cWF1fu3L17PNW9+8bSO1/62uFw+O53v+1ehYM9FgoPeUFpbmZtefX2nQXOq/KR6xwPA8HOk5WZfv90gS/jzHEQCqKH44hN5QhXmekVqnMhOFBSo+XJpHNwhVcNZDKpgQqWjic1We1fwNxv5pBJJ0CwHYgQSBhf2EkHkag4mSd/w75mqsBYYgCygQexR2IZj4w5nY2ubMHsjI6865COxoKAMdmiIeMkl6oQrsh3RCj1SnZTaQOkOoCAqk4DR46CBjOUUrVDLc7SDDIgRIdzNLqBa/8WNGOMTTIipw1KPOkdJQJzLsn18/nQaBJyWohhdsMZC6nB4CsxdYW4U1iI0nwWKDbO1Uqok3gDkAd8oTpQje4sdnzid4V9dDC+ygW+DcgHpAcD91+po7GnKM+bDO5uYSJOyUNb0HHDYw+rY6/taQd7EgXtK+BwD6Kw30Lv2zNYe6GdpbgUp7LQ16gwv/2hc3YKv4TeqWgwFqSShI7Dc8Khe/TS1NTeYPDN99/75vvfY3Jw7MMJ3xEf/spvf5OHk/Ox+xm7kkXutx48Q7AowpOODz7d0kJgxGrXkzj9C//kd7jCmw8+efTeRw9RU0wkSOnS0tKT3cH84sLG7CzuEYxlsmCRMw41Ir/J46AQ3pCCaMcdHNLiViVrODOy8SApRjyp0xCVYP/Oh5R4+43GBFn2fBx+BLPggzb7iesSEPjE4HT6qM/2ONYpGNQ6duIB41z/tDe/vvbWyu3h7vODrYfPnnzw/OkDXtjpLrlIZRtjL/Yw4NqGQrQYr0H6Zsyx37I5wf08vxREIgz09wzPyrpLG1jKB/vP9ucW1haXODKEfdMelceJg/FpdlTgc97NW1qcX2FXnq2VuSG3wGRLERpawZ/9Fz2e6RdeYUWKR14DJsqNQxeOUdcZTwX3dvZ2jveebu/uvf71nzpkcUi/YQTy4IRmTp/95E/+xNr61dW1dV4uRUf/5B//06vrG8gM89De3tbTp0/4NBmygQZfnl9AqLa3niHH7NXsHx5Q0f6hjxB6qOvZo7l1Hroc8yYo9gceOqfcy0OrCRAaPAilMlGitoX0sSIhCecTJ4qnSDVI+GUME5qE7AQXTAxG1YSTfaDwGn3mGFI3u6hGtAacbDnwg8uYK7F5CmyoZba9xdMVRm0tnoi4jf51oWk/ZxU0eIw5DSy/pWbrL6iCjrh3fOW/GJ4AMMhVzTYLBWW7/It/Ufqiy0TVUfcEby3WIGuYlagaBiGs2b/IhLrGMF7Z+G1pGc3T9e/27WQMOlqrxdZSQDd68NDHP+2HGKNqFQNGjX8UgKHqabGFycqoPz5m7Mc3nNDfdh6UcUXjEMFrQRHK2W9NYMBziybFHJORYIp3TNBWaH5JphY2ZIS/MgsxiWeEsrhZ0dBoOPzGaMJjtv+ifqJ9wGC3YkgiI9TKqW85nbLUggc0nFbSBlafVDozd4KWBa/00Ljwm/lYGlCmIRZxzhrZWDlGQ1C+RHSxzc7evHOTN7xBhf2wd4ihyuvUsXE4GgzYRA8FBfKCCMWTS3CP2lOzkxImCGNDsM8WQhr0857iRZjmzRHYGIzXcgjRkYFUlHY9lfY4G5pHBJwnunQVTbR8/wt3sag3Hzx/8nQ4OOB0aqxfFuxwNtQ+rqPAqDS7IxW/Em3HzEaQ6D0fUcgxXBinTx89XLp+a6rru+Y8WJS9WFIUwcyfm+UQ6qm+AsMcCWp6AoAwIpRg7LBsuDtbPzsbXso0pJ8DVA/w+nRXZ1eub/ef81Xypx+866GAp3xgF4/+it+fj0/Z814+B1Rtbz9XjKdPf+SrX/tHv/SLiAbWNZ7lnb09jgdgkoYvjx89vLJxFWcbAQlCqtfW17DDcU8zGMCGPYBEvYC8trS04y8o8v1kpYgpcum4jKmO7iCANiN5pbtLRbTTwUF7/A8f8G+x6MCCRmGjE9EDjCG2TDG8GHf0eViEWhvjoUEYqVHLeH5z1+YDYCRTUs2Pimhg8leV6JBOaYf9yjxt8hJDYxz8c91BQFNrok3MRS+P2NSOfZ6KEm1W5UwT9GeNxQcN1vbQoLkEUuARw4mREz2lAkK5ss/fMesYU/PEDg+zUDz0PU8YSQWhxqInWzr8WEFzxSoZ4B7FiFZISMdU1+aGyTEXAGKNedXudtLWOUts95BD4Pw0ONMAD2K01+MJMjAFzClkap8dYLQve9R9kCgdiMXBwhtlbKfodzQFQTSjvyr0j8XdgIwhrOqEHukowf5eXFhcXUMzr6INaQLyGf6T3GNUJNuKwjbhmk0QQSxc+KW1BNIxTpmTktW6eujZHCcN+7m14KWB3CwdxnhMjcBiorLtkGcHVEFz5DlO4mSmk5Scx2rnO086lud6+A7pOI5QOWID9c03N26/dcamhOebu88ec4QJnzbrTvPFcYZd2OOy0AHIMdzUyo09ysyEMhvyLZu5weHB44eP773zZWzsWBwBwizIoHXLh2o6ToyL3UGn7EKhNCosmxja2SarnQ1Q/WIOBFS9vAyWEfbVH/kx5qhhf3B4Ovvp7tHzIfbeyY5WMBbu8coCu1AGrBUGCDwnXcMb9i+fALDjZt+D/dXlxafPntNcVQ87no/Pnm0+o/jy4uLV9TXev9/0u/L48E6fbW8p6JymPcVxHwecJ1vJvDByvq/HhOfCMt9XopJDFTkks/YUEsSmHaoMkog4mcVQ5/wEdnSxdmZIagRrPbPwYzAxltX59F2MwYtotOoMYotRfmHXJVVAWiBUAb8QnFJt0Sbg0nCYQwZtKtrZ0vznEiO7Af28v20KxWoI7I2INokjUj9fVVXjMwbAScPA47IaHsv8sJBhSfacrgA2zLo/DL2lwYsisVOIcEJnvNuiIkPO8bR5UrDmMykgNT3MddDieQ4dJBPJEuZsau+Aw2t46QxN59esWVQlTb7aNVBtE7RlQ/UoChjIzgR8LMr3BQ/6AzZa4CVh1Y7+AC3a13cB2Zw79F0DlS3DyOGP2wQPTgfTnHxe9cbW1+LlUNSzU1R81/1Xvq0R5oEbUthMRn4OxWzUtWvXeFOOTwGQivo+6B/aQNU4elwy0/7liSUAVGngNwSQlERCBD4ADAbi2agKXyJtWUg8rSswoPIq9hKSRaTTBJL5eHlntsOGCvmAcg6ekxsCm/xnKwuGno/3+D43fnwzZzsuYeBKd3XhxvLKrdcP9vcPn3y09/gDXMkwepYt2v0+8NPzXSZR2swGsqnjaeYoBiXerfnZhaP+wcfvf5vny73lZaSJHoVcZM6J0dkdfY2aprOZ5mc4+YwuJgIcvUsrHP2xwylpLgyR7qapL/gd8WMMqEESOrXT+WPf+Jkr61cebO8zIW0NdjbWux6KNRiuLvd4FY4JBq/E6hpnj/L1GPx1TunsYuKLukO2M9JhRwe870JjMLJ3fT1jj9c1afVid25pdRVIJjMGBjMvR6Yvr/Z4RPr08acrq6vNNBQKKQiEXpp1vm2ZAtlEuBJa7RnFM7eVZfQ8NhIrhionykRjPiP5FVUWj6v1kkXlxiJQXFNJRyIDBG/mFBLGIELqwOExN8LyfIU+hW2Ta6BEkkRSQLuB0CKv0p9kMLZIySB8BEZuCnJyBcgEDnvBVtkYxQUwoxRS9C4K4XC0EyphF0E1LA2sXhJn+R1NQ606AiguYM6bCcykK+3BL2t3VVJ6NotgChOYb7JgNl/FEQqRwdIoFqcsnlrBeF7eUz5JwIICwPJ2HtuODTDD28JzHa5EEVaVWCgjGRYbLVlBOizxGLNzInSu5VGjHl/nBIxvVWtrdoaPFrrUDkGhajqMSXvAajos9H12dHU5nn8WMxYjmG6gmbYWVzLP5pkhtNmd75lT1QKQjB7XS4OATWP54s3mlTA2VdP+LqMKy9PhRcu090ikQSxv8Qy88847bDtDDsMnixGP3gumhpBRF2VsPVoK//h4kCJnBrjrXAE38sptdEDpmPFC3+8dxPvFL970i2eVwZU2Th4K0KnyBbp5Ds/0isGHxCivWMbhjp9Z7l1ZvbJ84/Wthx89f/DBTH/YOZvDijxdXO7gg+YT7v3+vMyy8ZxEt7C0zqa/J48+7h/sTfEdcL+iIBvpTfqR2uASfcDEQS3sV6MamOB40+ri+GC+rnV6fNgPyZVaynI9R7xZny8gzAjSG2++03m++xsfPMILwRFsPI44OTo7ODzgEevCjUUc0pv4mhUW31LFl4PiZjXGMo32Pn/2eGXjKtYKj1zZ9THso6cGPBd+/Oj0Ju8pEjB6wsOG7wt9zcrjYH8XHUCTJ2iOKXYycQLm3C3wkwJzIX/aie14IoyOiM6Q4sJkwBKy+ZXzCq/Ee6WzvCLmJ55dh2jBTPKwz/zUBbOujVcfOt4cFJOknmvOixKg73w2IzQTQS1AAKEQtJ2pl4vCO1Jt5zHUFKX9sxAYVVl9RsBjbQ09Fe33GQFlaudo22iJQ/pcLH7heSxdYpnPYRtJEH5eAnk0KYxEycieIwIMXaI13vQiip6pFvDURxjXRKxNg1ZUlEXh4vpD4ZLFTANzsS4XeowZdlbi2GId5YM48AOgP+GI3cn6UeEsVvDu3h7bdjdWlnE6yyiVvDJEBJeopdzDp9pk5aWax9DnjerUlDjRIqbK1hbk7AsPY0NLuXWPwTfVg0LogeIvfelL4MfnccRDzpjVU1Kz+fIrJBUYAvXmlUgGwGoAG/C1eIoIue0i3GbBdmKD7CW/xcwIKNeaPQ7VnGX1Q40ZmvJwv4+n3m0aeJy0f6fYK4fHVIlTNznSmC15p/B0efnaF798/Qtv8wHEnc3He7s73eN92ME6ghpYG6FofDg66J/Mn+L+YRP2w48/evuG79PTEpqMz0jDB8Q6ORARBQGeMXlyh1ZDDRLi5X8fHXd7bJrgXD8WMcoQ0x4Ozoby7+sX14ouNUy+afZ8z3JEVn/nOb2g65Sl1PTZe++/z2d6fD2Vdz75iMwRbjo2kR2y+YRNp7v7++5OOh3wCBHHhS9bsTVyf4d3jdg6DZ9Xb96ZmsWtoecM7oEHw4htRs+3NpfXrk2QrpEzkfQKt1Uqipw0CjSLTuZGaoFsIbeLw3DOKwAGe2MsUGIiNaSI7vboMxx8iDKoDBhBgUusZQiMSXWr8omomnYiKW/BmhFoqgA1MSNcI+IlahabSvwVJgdlseJ9hUhUJUlRo1cjDQrjrx4uBy7aOaYcOOqamEEki6bZA8d4cNOMljRPvZweqZ+JEUsHPyITE5Olo8W9cwweyeOKxYPBmVdSeViEl84td5w+iBpkGJ8d4YhgOey6mrWQZxFz/i/+Pv0EKjiKMCTQkqycOkOMk47v97Mr4KjPw0CYj7rnKPC9o+NDLHKOayP0B2x12t4/WHAjNMMcfe6iWw3sLMqm7D6/PuY61prm06gQp98Y/4rqX3barxz8AjAH3fWn8nW+6flF9Arm1b3793E3UxX6gkki7AdF1L0WMEDO8VKGCwtyUe90EjwFIMWcfOJ2I+ISwsAtiRknEThuYT7kGIlQxSaBSQsEo+5PgFjDgMqeI4gg3A4FOgWUOc9dyewkY7Zyawf2TyCk+ehJ64/jSfnKjR/84gErHQY2OArKDs9+UJhoYQmbnV7tbazd2MAjNjygyQO3haCdtjwIgH2Xx2w63Jpb3uis3f3gk4+++PUfRQdOdXiPA4Ycz6LpNXKUJjYFwiYwImdSi/UNx3hIzcZ2FjLd7iJGOqT5bppPUJmZ2R2RCyiezklLBIoyJkElUxmS4PJeWYQtvNUKFOyxM4K9cmzWN0t5pPvJp49WegtY8GxTX2BX5fDMg6gPBqsr7L3z0AJWhgd9zxCHZ/HODtl4jIa80NTf31taWwcxPY788n23wf5g88kmC7KF1ZX5FY7dOGLfHQr7CgensPCantl6srl25RruabcYxJCL/SqSDT0SLWtqoFoSU05oRXSZF5c7FZKXx93HE6BFJJjtAszUVkhNKSxj1OqjGIzjBoRgCG4jDlSJyGrvs2wNoaX55DpJlmSk3ZMS99iSxWJRjqe9LBpp4x9yFnHHFRZSBChsiFTqoiWu4FhPk08dCTZ2bdoS5JpjQkiON5GamGKTgPnBnBj8wEbxSBE8gi2zNq80neptqkmRGvSLl0itlIi3TYJSHOsDwGhcTa8RkQEhK2VP3CLt1mKIpzZxR6LHzwFH4+1txhhugPKok6Lw0f3kBKqkfo92oB98hK2S1gKmFO5dFr14OIBEnbvr1Q4LdLgpogKYjFvEbUoMCDDZdJ0LIRH0LbumeVjvzlyq7c17TI8jPDYVwCJ0B+Zpd9gZ9tzFNZzD6Js7mJk95BlNf49XuThwC9FiOxQvGOz46acDSeV9rbkZTOxTjmnnYSX+CTaZoW/i2R11h0qSIdDqBQbM8P40ilYnQ1Aq3/GAcEtT2ZK8t8/JEp1Fdkr1enfv3sXjzKs6quZQrMFsuwR9bNfSWuXZB3HMLgTitJGZKbsDADBbR8g68R90kPIMikrIxSipycI4zajUhf0eROHiCKHwKR29jcnHWy2dEx59xQNSiFdtMr/6XN7FeyAR/Vl8kHcxKly9fpteBtIJ0qcUs//KX7/KqUnHsz1tR7oE6Yln+zBBkYYlCEioZgmANHQV4hRWPjBU5K1pbgXAju2wK3l5KZmJUqdbcTVwTflxnUQn8hljDArb4UYWqY0CVOegDKaAGxKYSw55s707v7rIi44H+Dc+3tnm0wYLzA5Lc3wBcnnZzTm6+Rw4sgq97MLJj22yWVxrHqp5GDvDqzg0mTNguvtTp/OHvKbPByuQe4cCC7jjp5ubvHzY67AsdDqCc3JPzP7kJdjSJJpBVgxbAaCba8BnluXGbpvkcaCampFEY9w+UBoV/7iPqzgLPSLnVg0TgWEcu3McykwI/KEX3CKvphAVGGEr0xWzn/rIGghKCzjyJlJGF8H9n+EyqBZIU7Qp4j0oSrK/Dbkl6cU/FHgJvMqhAYFSQjPRWGujlxsCXlybuQ2u85CjHCox22uyx2thQubNoYwcak7MXNncyHNDH9MprCjmY71rDDdTMFOVX7pSeaSUYwrJYoCe6srEasV7Rwov/TJuFG8dx5iybMaj89wQja5kmDXp2G5dMNHFfggLm3hm5jDmkA6u5m4PswjbF5XOqXJoasxuXjHd3d9dO1higUxBX8FglLIll2+qhg+aAax28PEgBi8vKfA9Er03EOtQZQxTB3olTC3YzuN3PrcFANvP7t+/z/dtOfsmWSMYejlOEQomMuoN9GK6QUikLTTKNirthoSkYAZuMyUjP9jri4VFhnoWii/CRG9YORTSjYoiM66vL+Ln8WEpWXZoLFMAJkVHrB0iEwiwMJkHG7GOI+3sYDiFc4LBfOPeGzfvv4mdRY3xKrlnYYMnQzzMjREdeNw+G3hjIaMQUS+QMFL2sdwKL1NcNerjvCl2KDOHCgnPCfv9QxrCzIpkk24Hq+QKS5TLGG0ku0O808WZwrZz5GZptrO3d3L9+rW958/wV+A6X1nmoJU5BBPiy/A40wdNGxFtjmAEP+9RYiwv8n5gb26RE3Fnj3gd4PTksLvYW1pZ51xdqpG/BkUBSWfLDi0CB7SBKnJGQzMgR5dGfKhKmHLNQtHABFXFtnG0gEe4xmN1wNMBjDS6nmEJfrhnLfxvgswL5LEcQTaKUmBo8HgQG4g+And0fV6LbASZ47WO30XzHX9wI+yiS0sE5Hhh7hpNmVzMbBvy6iEY1Qande3bdlwyoyavcsuf/M30NvBniI/TCyr0XpgDYk8vR8PQAsoomdva3qFbkAGHH1TrkWSBisZBQfPsi12xmluEzILDDHdHCt2Hq5fC8Dw+fYS5gWU5PYMZRQmWRC5XWQkjCHNnhzzVYww4XjibAkhm6QEPx3F0kM4Dq9kFPjbYZTUKAZw0ccibWiBExFHQ+yyuQISkMDQ5OL2/ury8dEyjeIcCF8YUxzDtc7wvzPLjlUzvKBOOqcaJwbTiWlzBclcQA07sdrh/8IElFy2fnvnaj/wIGyGYrrwlmTEfeoo4DEGQQ52RbCEmA7VJBFpE5wEAJCETrYK1Z2PGmjnePQn8ea8F1wuwUju9DhmhdHD++hhT5tN3WkHGTeHFsBm3rjuzxlI5eUVx1wS+Na4Ph+B+mGZXOB4QBYA3nrE6j90WzQRHVYoM38nt+RWxrE6gkBWOuEpq8XX4/kYEOAuVzrNMt/DIFZgr+Fhcy3/KEtDUXOVsPMrApsXnsLi2ws45eiFnEDsjjq6uLA39zPHFLJNw480+eb7HAWw8UVicPv7o/e8iKHz/Z+nqwszVqxbl0CjX93AMzxlTP5XyBOXIrWTu6PDdSNwuQGCDP998dLCzd3x4uLa2cufefd5twj2NBrNZ7OU4Gp7ylg6nT+OMpjlaEpWoaATV2JSxAA2ETGrHSRm7Dca2SsKtUUHqb2WVaLLaLLu93ElYgzp/2wWTEjZHBdeBdcjD6pANMVBpIBpV0S7+gnghMMmc5IHlAvk5BE2z1PHNQMr+BTSpPVfmZQky5CIKmnLRTmuTpGhu5nD7OWu8pDbQa57btNI9OR8lK+a+9733sBsYNoggbxXwsAzAXrzzhi7mS2/oOAYHA4iTb9CqfrmDcR07XMQs6niHEI2AAcTmjyM/Q33MOw9xoAoaU4U+sCQdzDWbh+5AE6O88TaSjrFHDtKt4av65jghFqXuzUAT8gDwgPOPeAWCvM7M9s4WRK6trfPmN0Owf8Sbb35UGA4GFae8d8Cxye6UBJWWtgyWP9El3DIakVCcnyzEGU0/8yd+arG3iJsH2qhPkUShh5JNgkM9FAZre0QAmAAkyLMIEQIpGWhXSSHtXPdk2YRsl8qUwJ3DYISw4BVXJkIJcWFLRY2IJ0KoIkJD0HG0TcBm+gFVVsGVbkE+mMtKk0mKgpZKPU6vT3O+FX5klxQ4FgKToipJkiN7WfDyn2U9VjSPzLjhKENGNthQcqi8fHCgJoxAUX7RA9EKGU7E/o49PFzJTToTktt8FMwt/RP9wIdydFTxtHemu0hD4uV033hLa5qZif2ESB4vAd68cmV9dXG4/Xh1abG3urS39Qy3M+906hFVkOx0qkSiIYlfnGzgxm+CSGJWMC0xG7Hz5UvvvP0bv/4bG9euXru2zoukeJwRcR4xYkvwoZwFvnrD/hieiIY3j6UhC5VsSMxFZczzQwOjIV7yYUe9hTEmhmFhxzUhu4OCWTavKdUNiL8UoBQcyABjSUxhIIUIBR2LWjdO2JmSRArJHKl2dtHs4xt6HxdhjFN2uQROa2nQS6plyxwaWXEp5IWkJTSUMKqgoNUmQWvVUXnBUBNT1gXTOprMrbUI0AgMicQJVUILGD8ktQZpg8/hUIjMklzD8KLKBDchQo3UskWPj+cCFrWl8oh6CyukEzlT4ExR8g0MVfRbKOvI8cJGRg0nh3maD7oO3aKG6ZV6DV8BO2q4sYcJyDAvjiSp9CFDAaSaYlTD+PUBHc/0WS6ennVCl7M2GnCGiZLgFivA3D3tApY9bD7pY4KwTjeEOFdBFfKE20vlIm7P9OHBVwcLGh1BFbwmzZZkdsjxkI5H5wxpOMn8QkkwKW4+3nKkgYqtQQoshhDYKCyR2NHusaPg4tLiz/zUT3OKBHrEE0eyP4OPoOE2r2DOuLfNTCOh6hSTiF8YKkLb8gMNFTOk2d1B+flarBXFiUOZDnS+cppUx0YgM5xCGtEBGODRJOgFpCLkMTBrHndG+/gRexye0mdxMClVA1gmI3ZKiDoLkiEy52XWOsoYWYgISKI6O9ouRiE4GKJQ8JwCSQ9JdIOCIJh9mIFnJuALrcoR5Oxp5uEVKlXBolt5VhEyzXblk4Pjs82nDzmSqjO/cLA9ONzaWlle5TiYwf4urw2CGHGb9gs0sRy0XdYCR6Mu6scpL+HUT8Nnpub5qu/P/qk//c9+8zc/+PjjO/fuspBkvOwf7HM67+ICj156p12epJ7wXGNr6/n61esMwNKclBOE0CpKl2Vz2j2SKVyxjeq1JMJQWSiR/kQkDS5Sgn0FUFE/FxKeZPVy8lkM4iGQnpEYp2pnJJuuUzvjsUHj574aIBO3JS4IiaqdEY2VvFGgbO3LFigA9a7GYVUm1kjcjiBrkeRzvW0iI8hK8hj3E531SWAlFF57T7D/C1CDc+KXKiruiaxLbgMvHKcOLZboPiSRutSDcUvy3Be/+EVuWIfRoW5NC1502IfuTghVD/rYjkPItITou7xaK93HExpXPs7E+DCcZVnZY7bwZA/b+YA3iHndLDbLUQwVKD7WjW4TwFtZJnlcDykaDirmC7Wez1dQAFDBfhC8oWgQhJ6Tklxz6sX0rUImIYwVXi+HbBQ8JLH9gwUppooVOfJoGgD4N6yRUngb0Q8ss9H1G6trf/Kn/ySD3ONT+bI1Nl/wBcS2lPRWgDWk0Fb+h8Zx/iBQhLq4ng+UBiCv53O/zxTQNhiMXFYRbYC35NK3MDbGoNOhY89RahvpL+fLsLManKXt2UDxs/0Oph5x9r8zPZwHI3sjmW71WmCRMWv7/FjfDoEiIITVfORM8Q6fCQJg3XSJmxsRAM0xuNpU6vyK8pZkt/EVj2fqGgABJiSwa3SiTLY0PfxR4OFIFhQ0Uy9gvvvO2SwHB3Q53+rGzp1fmr91+/bj2ZMPnz958vjTJbzvQbmzNisLa9WIoOVUElXhjKGxOG5QuzyJAYImcrDfQn9/8JWvfvXjhx/uHe4vrV7lo2u0Bx3OFiTOC1xHsJZ5M4anzf21aF62UQs656LEHlzK5sQYinbnfVwRN36DotrXcpLEeiVCd2ShTMw4RkhG2tcEoHLaCFr6U0QNGRHNiwMxYFTQTHgsZMngpW5X0w3G0hPNbf2tCGsKkWhx66IkXoBAbjeh6WqNrUyjfJPplP6CUGloF2nDny8tcUlmpZYCVBjpMMriXFs0tBCex9fKvCQKYoplDcRdftqXXinhjzuy3DzmjSNHCi3AGLRCO76QE4kMB1c+XLP9dBl2SS+G5Ilf2OAVPQ7AOz3unMzzrdHTk0U29OM50GU7VI1FsBprAn1UEtNUkTqGSDNcER9IyXajSRARJMWBDalIH8c/Mr5jMy33lQMry9e1heOLZBBrejSLX5Q9OgEtRPH5OAj761/6MT6phmGOrIIRmc1FfWguaSUdHSYXHJm+EU7IdFDhZIRpPDviKajTwbkA/wr9Ms1sG55J54AzAeTCND2UiXlLnKJlgEhdQcTsFWBZir7xrnRbZHAJcC8wD1VMA11pQksE1Ab7w+CtH7thcjyLlU9QEqiUDctmRx/5Qj8pKDWW9jyjZaMPZdGLDvnwEcFh1l2Mfv3+nkCLwwFuuime6Y0VmM8j3LG9gN8DRwg0a6uFdKKh3ddpD6p3JNCHFo4dWlZZYQOjpZSVttDVqmumCXTp7By7Aim+fXDQs8Xd3uLK2spK/2Bn89GDg4MdvhfGlhCYEXTxcBtWuA2DechaoyLQok6plWHCKZacyYMLGzlc8PDrEw7evn3z3vsffMjSAcuGXaM8EQcBDzMP9g5vXu/yNYTTkwXMF2SDjUouMrAk+BbdmZ9/g0g8bY6ZaAWzmzMEKhzu86w1XxN3+xQ+PMoGTc1FwkihMvtZz2KGZA5XAq1hegwe0rTAYw+SUewMbCoYn14UilukCVBhfzmQ9N8PIYkOQk9iO8lnj3+ggOggREvKQwusJP40jDJW6OIeOAe24kDQncbkk5wWiJqDass3kaawSU0LR2nEFDbIyeLZxpQZUlL+Gz5ZHLTUnBGrI9ZUFlFuoIEoWfy4842bmLm5p60jagt8+6c0PpMSN43i1h5NSU1jSIbBDTuCbKRAYOZ2tbP+NErwv9BJjKM+gyEyQXXIuJOcXIuR3wTrso3lnlhyJ0YuKGxyvGGNLNt5sRUWMeMzsWgDegMFXYQRHJAHjN1LKApaZnLvrB4h8JMpxUgtFjqI9BlTUNPMoYQ1XBmXpK3xnD2Wb4nE0tk+KnVuCr3CMB6e3rt3b3VlLVbr0ceMTXRK2AvZTqWZ7g9sDhElqzAODeVUwfsg7PxDip1LGtbUiscitibRjiV/xpvkyUQhWR+1t3Nl5eVhghIKEph74A5TFAGTicaSqDycC5llrk8O9E5ypRQM4Yppw5QM99DOFHVW5NiL2GNDEVL0YMOx6FG+WsC34OlPexlFjhBAXNaaIgwsKoBSZoZ8Bj0xiozVltIBAFAFAgAZC3Hox2M+Z7XGIeD7N+7eQuw4r5AmKeuFPAct9UCkk2wjexDDbE4WRaI28HJClxvM6XH2+Vy5dm1nZ4+Xua9fu8kWUD6tsr29Q1toF/s/FxcWAJvvDedODvmkMfv7HHIyUjXNU1kIYPrC4icpBWcOF1CME+7xp7NbiSweznBlEuSawZIRvD3XxeQSzLmk40inkTEgqT4xTWIpqeQzO+HfwO/Owlfm0gDQ0z9Jy8uuIfEFyOJF/nVlsi8RJUMVDaog3Is2G5BRU62ggSJnktoKkxGIn0iJmifSCiWZWpGXW4iwfoMEgU+92CRlxme5XkhAC4EEYzRyjZqtk1ABHE7cQUeQEfrR7JSJCurWiujc0v7CCEuJK/si5gVQhfGEXceTIc4R5hENXOdQywhZcdBAhcofIckBtSCZNH41i+HixB6jl4sTncO1oGrgF+a6PCIUY1xItlOb+vhF4VBmYXkRBY1KaiqP8rQwNjgD5Lync92yqZp90TF0VqohUOEZICDukHEx3Q1VktFA1O5vZX5f0YoZLFCVuGqi1ZW0US1BMCAyO4crcSLckoSzgzYyfu3XSwKskBvRduYqEGZxCQjLl1wkgVtREfQM6ZTi1opltX4xcno8P+QFavQ7xqCqk9DooSBgxo/Lq05CPgpJtaVtAgNxdNnxMesbsnZ3djc/foACffrs2e3eLfoU1xY9qeWsYRxa0wrZ+KNAJbagAEJGIuqraj459zQ+dmTzcSw+68XR/rdu3fruu9+leezo+Pjjj1eX+cBD7/r1qyuLS3hyOBWFRQZY0bFst8OJHa/k+kBWe+3Ig6qHh3xoYerhe98KmZvqLS4tcJzHwgKJtDqvtbGlgUllc00w7pLsBCbe5I/9ApyrQLDTJ3K1FRI/MKgFOwgF7RtbHmvo6oS+PSdLrdIlWnBWokMs4aazLzMH6TGInawahlMykkVPJG8r5ugl75zXXxgmmnMZbFaRuTVeNrAFITHupcjx8P0FJ7RgMq0CWRtfrVq+jgfqzNy5gzBtMjdTjaug5VMC0THiVdX5j8QSicS4YMnDHNZMgBKjLOKt75irh+TEVJQDTPziZvkw5iazFTaiNkEYA9REhWDnDjFx5JiZBfRdCBYB64PfpqRJBci2SHmK2a0b11gMx/oDpU9j9WgikcCz04AyTEjEFVB8GqgWlAs3ob5RJUg/KbjZScm2tCUjU6y7CbImdI4JgbnJ+Wy/l9WS6VZBE0rjy0+oq1JLdkKQMOKQ1PIXFMaMNcUbOKlGaSPA7UpFFEVrcyhCAB62kMmg5quR8AfO8EyNrqI4t7Y/1phcEycRui1f15xHgc17wkcYrJq3VENBgvIQm0nkfqrpIMmsSwKKBy3A69rkf/GLbx9ub7NOv3b1Ou6U55vbnIYEhZxgR7NZbFoTDzgx55KywClt0QQmFBNwf2NS+yh8amFxGbKfPXtG5Pq1a+9/8P5bX3jr3fe+hyues0n5Iu3mk6d8veH2jZurG1e6aws+GwnPBhUdnw44NZBDAFHwKHm+KYy3x+U/fDvYpfUsNU76e/t4B49XTYw2RktlWgahy/+SWDmR4NGgETzNtESDKtnI1STH7Bgb85YtHPQj/+gWHxsFHQxkuFqIaEhJ5CXV3IKtoDV7rAiMTd4CAPjYDkT7IvOVx7FyFXGNjNFRbibaUmgMwb4IfDJNwqJWrdUMDW/G2jBZ7kX30VF5KYwGFeqQwD2V1MIZH91HL5I7971PHgDotJZJwVNfhDZFeH4jKKGB0LvEa6kmXiO82BK5UhFTX9AXuo+UqCj1fe1NwSmu2jUE+UlM3CNKMWDBFvjIyraVO6gs9ADOOaRRqI0n1bcCAWrMtuWlxbW1VW5ZZHPlL1W8bvpQyupj8nz8GVZGGHqAMWg19JrTiMjMupSMQrUJo2gj/ZStkBW0cqzkxU8mhvg2ZUDY4GlD1ngA298GRxEW64gEqkZEI4/EUbqwQRZXejYGq1A0HKXJa0LFLg4eADOiISfnxNhIPwMeU4u0fOsn6acyWE9Z+AaLSSSAP4p6oR+Z60hkZzu+3VDyqLPScDREQqK47OPEQwfh1JUlY21JyIa3PvZMCxqww37/5u3b+FtQSnimVlc3tp488k0bHeJU4RFdjMwwJkuNiClSx9UcmeYKibgHlaI7OXuk13v65MmNmzfv3L7z8OHDt99+e/Mpr1I+W5yff+fttzmv0aNdunMnw73Tw23eNuWQafbL8B2WAafmwgFWljwy92TtYsPyDBXmYaXrVcBlFB/VTE80B5eNRCHbOd6RWBaZ7Eo5GEXjkFIIluZIzLkttLP8pxfKBBg9mIIgT8OTR8/AYyjjzJycuuwrg4MU4KwEbpf7qB4izWsC8TQXTIwOI59MbiENXLq5CeY5sjKLBgg/jkqrL4Cj5iw26n1xtEKglLBWWiEsMU8gr4nIJgRSjD81TJuGVrvaaC+MT9ADDCntxNpAEokTcmIQkptxpGyPJQlxzBEogDavGtA/UUQ3UJZhEcscC2RAb6bO5rYmau3CT9updy/io3oDcylfPxdQqM9aC+7RT7SgoM/JJzp6BNCONaSR1tRSu0rCbNGNGzfwH6N/7QnnpoKAZR25qWtClFF0/iaD8TUDl7IVuhshz/NUo3iDpOAa/7mkZeNAl98V/lwOIL+DALsr+kLGR4icvMlVQUmvPzk2KGhLc37CMT89/ZV3Xq8w//WN/Omf+Np54n/mfNJ4yt/+2//XTIgBSxQG8qfnB180Ixl3M3pmc3Pz9dffIPujDz98/Y23EE5OYWX1waH+zGsHfMbl5Gjr8VN2Es3Pc+yt76W7bCu2uf4FhIrpEAw7O/v40JaWVw8Qy+7yndeukcgEUa9ECHX8tkUChZe5eXW8hDD4y5ziqtZoynbINFFlPXucUi35NEvtHAEAlo4O5Rj5YhGzwzlDu95XjCNvOr+YPJgCompFVx9qUk1aUN+M30A7pm1fWtFI3YyDlhpabGznx2O6oAISggjpakP8IOJVF4MsmurkEwayrea/FFSVxKTNjrrQsiaWf+rlfJc34YtYiEkUIsrAvRIXwYk6QihlgHxY6VuI0cR2lTWukVLKEMteL/AlPX/Io5aARUeWBYLkFkqaX6FDQRk5Xwuy5tczeHy0tIiGxU7BSMRgETpC6mPtF2Kh4ahAgeU+wMCpePlYzLN1OE8nTDAL1+qIZ9lAWS7t3Hb6K8YrwsvwOAQDV/ZRG638b/hESzKrjYcJCtaTnk0DHJ6wt5yUb737ISopGUIRyIBvwYyCp/IOBGmuAYbFByoj2m/uyqPgHEZZLEqSk0kG6QS7Nh5fR+fSlIo1oZjntavAZUNCDEBOKNmtnypRAk9N/fhbd//RP/u9w93tN978Ap8GBsfOzvbSwsLmow8+/fgPWCKBhJ5GvUmn+sKq//pf//dHyHOV5jMt11usmdg5hKsCMHQ0ez7ff//9+/df27hyhchrd+9RL4EDOtgWLd/dv9/D+8xWU+xJDj5B5/p2q/4DDzrH0jvrLYLN0xpnO3wafG5++a0vfXm2a6KP++NaOy5VNolKWfwUkyXi7QvZsNqGaILJfG6D3VxrpKiybG+mg0QCw6XHhMIsQmtTrQRYjlOioC5dACUXdAaILuojysGipI14iIBNEWHeXoat3bwXxi8mJqo4X45KM7E257Li58t+vylR9YgAGVBCxYzf0AczBJK062VY9Ac/JU3KzW/+gEg0YglgiwMeIuMEWdCnK9uxmlo7kysjClTTN96m0NWMEmE3X0FpRRH10gA31Y0VsxkRqFoCeFWm2+UDel94663OXI9XDxkbHhHtW4tqYOC5VjkmnoGH6OB3ouHAkHjvmc28s10fMllBcctoedbqg5f1zkglhnhOaQhpW5nWYWYDI7SLZMrEtQKAiiyIcSKzLl8I5CfijsURo8KLBAdRReq8qAsAjEGitJeCdBU751LTHQ4GqCHcAsec0Z7DG7hQvsmoKFjwgIY/pSR4SfXIQ9pKMB9fBmaT+aGvqQv6KVlohisyGZq4FHuwNlBS+VMeHc9AylAbPRlSOCCE+bcbPvHB3v5Sb5ltfWDe2d2lHE/mVpavPJxePJveYmJgMmGDYOzMzNoDJ6RJKV1kt1o7ITaTWTcf11QKef+Wj1NOffjhh6/dvw+e99/77ltvvMneZyYmziXlm99M4ooX36UJ6eKoQFwGbk4NBQgijm+M9kztHvTZrHb7tfs37rzWWVzlXHxD+tDYDxd3XOyZCGDJRIpTQybKz/D400WkUZXPVbzKMGl2eatPyTQQ4MIhIRCwywQG80ATzYxznEReZOCUBOCdZ0QtGZRRVh3jUMKg4JD3rNzubqJWh4RQyH6zNjA4VEhRzHw7QZvcw9nMBs1cNIw0JYIaoNfi2VjxRZrXuPFeeSl1+xM9FROq0OCMUAG4q4kwJEO7vKMmAvUDbPNoeVMFZUuZaEWN10gFoGw7sabXxBoJtkolKf40oQBoPHiouiEhIiOwB3dqehMpWCpwSY9kErN98CHweAEgYWrK54jQyXTKZy3YqlfBoTyP+zipbmFlmQ3aioWPhugLQ+qLsq6LzEg2FzzEleXYNKY5GcSAkPRKVau6sfQKMBGRScHpifTPcXuejJoSoj5CSTOhM7spSW+TXeM1cmV95drGWtg7Zx89fMLZx7Dox778hd/61neBIVgR/3KGb+Qyayc3q4vqAVXU8eBjgwNA7oisVqxS3kozeln6BFi9zSe93HKW+O1bt/rD/vziMirDr+YccxLB2dr6+t4OB9GhViDTkfDS7mgoHsk3wsAEBn/Q0a+/8cbGlcH7H37wxv3X2F3M4V58i0cfHxUgZzq1ZQg2KUmeY+sBW7jm5ziTADpfe/srd+/ed3c6B3hxKHbsbQeKrLxm0+o69UItAf4Eo5OVzZwV+LV9cWNbtUIAyyY3YqhQFCB0q0W0vOuzjGrD2evWbT2jPmxYY2oTxB/BEvUmUkoG8aYgVEmvKqQq/FahmNQTRxApgnGUgfeVLyPKx/g4ouuVMf1gAOXqJE9poWaWCppKAqDhVvBtlBKxgBGsDVxua3JQ2268wFmy6a0AOXcZ1TzKSuRx/30xLjpeMhgai6sr3O4d7GPPMa7SDMwuZ9GpvomguDRaO8lAC5EYqiqENkQOmEpkjUjrixubTbyoyaPGf5YYZLTB8zbpYV5p62haRRvpE1rfTi8UNT1HM2n91M///PrK8rff+xiE927fuH/7+gcPHqswoBzsEVg38yvCFgWVHiLkeg0bDm9JlooiFqiQtbRUNa25EKwm1iIXRmh4PsI9PNzvLswtdZdxT3AsAMeUOv9qHc/g/FVBIgax0/ilHTKqWuvdVnMkqh7ksxl2Qz/89MHNGzf4PtiT55s3r12f7c76srnvgihlejOmptnxjXcEtzMK+3S6yzEXG2vX7r9+nSasXbu93R/iwaAWPSBBDWerk5XXbKZm57kwIix7hqUDGo3OhsPAh3govnCk5WWS+dDk+7eJk/mDVRSAnL/hGWe8CQx8mEdpnFJPBAmwZwnnaIk8UEeoucpcvTEeNJHSaGPAY25pZpgArkXIMz+wAFlkhNvPG9qUt+LfB8ZXpqRVHcOmrCoykWttcsXn1qgMtrwJ0Svlpl1GGPNi1DWDP4rFOjsRcAWiqSvuolDia6FrQMgdhXbVTYmKbARGrBZvxcYA8gZ1w04hRQIfBadGzvB5wwMWoZxqw8jET6pzjvP4PRbSAwdGKIjzzyQTkXie8pgLuWNwoxKZOdaesUxvKEp7JhGMGjMqUGEubP9luTU9EVlXSLTpwWgijMRcuxFP5JWk6F7gpqf+5t98+HiTIYpi/fTJszfu3uRt+0TOIOaN6jfu3aQUmue7Hz746tuvvfvBQ/b8kvKVL9z7zvsP7t686lv5MzOfPnl+MBheXV++srIESY+e7+wdcg6na5ik0AjN50dOj2TB2xeFEeR5KI/iC2/As61tTGYO5OD9b3ZQ8Eohj114Nreysry9xdHiHPDCIR6IMtguro4WEUakxoNiUpAZLGjWBMkWzvd4+PDRzVu3vv2dd3mNhc/wnB30+bonh69yBheTO0/eBh5KPssTw2tXb/ChgrW1jbkO77aI+2ia1+XjlUBEkftoe3KgzQes8aSkfU3a4Z1WR2xIygkkWKqpYdtCO9ObkE0KItBuFDRgvpip5xpJnxpwwiSbE0M8gESRcCVkvYypjIDIiGB15hAoWUkt5FTgxBBFxBT/BJScuJZ5KapKzFlj8QpSRtCgIStIIvIqOvO5EyIqK/lZcV4jKdGW3HM/NdfaXgF+AkFTyOR2XJIa0ErL+UgDQlm1RLGgSU2OZTbxWrKkeF/KjmIloYIY0fGo7g42RY5UNmUTtLnW1BppFWuALvyNAqVUq/CFsOW54vziIq8PcKAojo6trS380QsL891pXtdmRGi2wJIUX7AEzc1Mj+y3m6DCE+Liykx9MUUvKHg5ylfLkbQGfe2m6A5T22TZIlLSwm1PGACpMKenvva1w+3DBGBgv//JI1zw9Uyl+7dvbG7tfvr42Y2r62jqZ1u7a6tLT5/trCwtoIBv37jy5PnOYX/Ip2nfvHfj2x9+emN99Q8+eohf+Pr6Kod7V9qSBq4N1URfKST9F4LCAj59uzjvux4/8rUfHfCVrrOTnf2nw/7+DE/s7NVTvtTOZx94TYSGyp9A1+bPeczCRMDPwKTFpkCkJcDUQUw5nPrPweVf/vLX3v/w/Y1r1/EI8YYHmg4gvqmJplpaXL59587a1Ss4r/F4sMXYc8RTtcVLWLABPQcroBHMenuba1Q0usRgbNEbrYCrUBK8tUeFBgQlyfIRA7p50yqF3IY7zVgVKUo/EXYR8u6gb3gr4KF2gSqz+Kj6VkyWSDOKM+mxHPnBKgqKPEnKQgXeQhHilztpcKUlVdkjZAeN56yZyMjSXgODRWqSKBrmjGKR3c6q8H84kWDMCLUEtQdatrTSOQIssSjOFo4aghl5RxRcJR5NimYWDkw2OVla8USkYc946ue6G/G9XfzVK4g5Fy083+GM3vm9Z8+Q4cWFJcwf3jRhkGAE0SIkk0fL1JCC5VXJzvm6XbGymCGAS1YsVsbA/mhuIC4FNhqSXXeeEuhvoEpm9Pg4YDxkA8ONqxvrK0sctvF7736AUgMSTc0Lc+99/BB18Hx777W7Nx8+fv763Rubz3fXV5dIeePujV7XN4YISsvZ2c7+wb3rVza39z56/IyECcKk57OGi0vY2eTwmh9vi4CS4/b9uvDZya2bt4YHuxyfi6+B50lsjkYhsFeaow49nJS10SvRYGuAZMaCCUgOSKgF+nGwsz7j7KS9g8PVtSvoGvjAFwqx4xcXV9c2Vu7cfW1paZlHrMgUbzhRKkxLtJlGMVMI19op4Y01YSLEo7lIU3uWMWDtoZrd+eyOOIgJrQzz5ZJeC1+4QkEXE0R3gWUiIOcqR+ggsNrg4zVDHmbCE/oJlwuG+aiuCXqoehTMo76Y7SKV6rhp6pE2kgU6x2rt+yCigmdF4QIomoxCoMp0riNWNEmROQLI5Mn7BviP6je5Qe3tyHmGJHmktyzoKJEZ9EiimECUue2rhaKudiJxBSCQTKR/jltE5Hyp6MjzyRelOKFjWaCU2buqzUACh5TEt4z8RvXhIb4/DkDwSyBwJAOIaALhglY04mXuqP9HsYuI+OeUFiQVi8OeiWac74faLiKFMts53oTvfGfhzut8k+/x5vOnz57/6FfeBiHHUACP9ZgC5piLajjtkxd4+GNN8uGDQxLfff+Bg3V6enlpnoH6wadPlxcWblxZ2VhZ/OTpc9Ipm7WPaCik1B/NKfpBsgqjC4WYZKTlJFOSopBdHRrAw/WhjT1z/+a/ee+tr/x7/87feNw5W15kMzLbUXz2xYZLvp7z+NNHy4tLLu/LtwgabhRsYxyh1YVgt6C5SQ8dTS06BniNZa7H143xSvPGDR/aRBfyncVOb3V1be3e/dc5sJrdhzygDOvbt3Naj/5CWaMmoyWoZohoC1bQMnmZ6Cz4ydIACo20hBKC7WGVHzpQM5lYtiJrwxseMEIRQU3ikI9PXDhhgAmwQEh+KdH0hfkofCmztMUbwosEUhnApEdfUHMQl30HcOLz6klkgDmRpD4vlTazSHRlu13ZzVY9HgK3GIOY8bwfprtkBBRl5EJqSSTUZVoBjVboNyISbIeNdL3rprxtN5MsmFEUGUZozQM0uixGcqZGb0S0xejoXRKb3jd/tAWmFCGTERRF0+gwqh2SPexdyTW9qSe6yjwCNWIX8OD+oN/ne0oIK748aMMG6swu4pLmUQ8HkbEaBZJRhyxHC2i1jUsMyS+kzJP0rFrlzW3UMIokcCZeeE3FMZGlSZMhZp5kUWVUk+dydaIgtxDWTiy3EhjJTQRs8saeMSOMKCOZHlkODst4nZ76L/6LO//5/+27H30KT29cW6cat1zhLWB7e6e7fzjYWFvdfL5zdX1ld19PyNbu/o1ra/sHA9iyd9BfW1t6tr23toRSXtv7+NE792+/+9GnH/T7X33rHoiogX9JCWWhOavGhx3E+Z4bXcw/SJHJFEAm/S44u6I5ptZXOh2lQS/Dm460g7ABObZpZmZpfuG9775LUxaX5r/3vd/+d/+9f/vtN+7/R//h3zo52l3scc4ceoBj9bt8ym1z6xGuCQ+tlR7PqaAUhp81Uid0lUp04xYdPYeOR8vjpaWtnLJExc5YwB7h1zjmk+Cns/PL69dfu/fa2ziFhod9/dR+dxhbnlORhhbnMUDx2zrW3OvdBLk/3qelXwTQQU3Ivs24rNTpwski5ga9sRku+AtBWsYcWOD5VPBSiQVhOKsZswiC+7vdXOkzllm+ooO1HdMFrTthDDBjUEPudNXSKbWKhn4IYjlcREObOH8oWxMj37kLkmSdOoR4HTK63KnGyZZTxSVM6ny/Nyr1IYlnRaiL3AJDQCIkPj0/qSg8zirQxpqDtqCEkpMtMikzHlLesmDN8ZC+COSOEkfdUtNGkTbkKPWiWK2rXUQ2wZwygZVi3BK48cqrthtLuuri3r418AS4EYCKN9JLm0dNF75RskIYzI3e8abqr2CiKYSsZRQjL1BGKUZhAI1dao1lxhYHaTV5BIyoxc2oPhQi2nlpeRkZxu6hqPVFYL6GDVjWjB9eXOEITIQDvlBEJiWbaAQxJIdUgkf/JO9a3Tiq/4cmBpMR8KBxvBPb/JfahMlIsqW04b/8Lw/+4//zV966xwh/trOXncYIwjhdX17Y3Nm/sbF6/coaKR988pjBs7Wz7+PBDx5S/ONHT1+/ff36xir1f/DwCQNva2//i6/fhvGPNrcdhk2fl7qaH7bGyu2UKt6jowA9zSGoQSfpXT4THGHmGEe2bWTkYwWydZdVcsdDOBhnp2f9o3tX1gH83/2t/+C9jz7aWF+7c+PG4mKXd8AHw0OOrubhMG+lry6ubx2dHu71UdrO+WiE8bfywBCkWhW1Kwj5eA3eOkgg1dYwM6AdFSs8aYsrR9Ozi2tXf/wn/ziKG42Pdtx+vmVh53RUrFss+NIKt9GU7/cChQimdAa1GSEOZYTQzhJBhNuEqVVKQzSDCNmcdMpgCQPllWijlI2IhmSBbFOkZx6d4RPppmpGd9UYEhzBokBLrcpcKulWt85HqC0iQplSLNvb3BVMzU8t0iT8sPzahAgQlA3h7kLi7BYU9L1b7vIx2FMZOP415kvGhhsq4Zejxgk/IKJDAzu3wVuKZQeMoQmmJ8aq8VtdCfIAb4F572MSg9SVMKKsSbH22iwGRk2PJ37e1WYjuRjF7FfNhyQBGWuCnLUVBmWT1uGh5uMvIdBoecciiMNuw1Bw8QhJbuUIISdOqLVUAn5IItCWlExSWJnaEFoh6UGAhc9/Z2efPNp88PhZAm5u7xIB+Pe/9zHqAO/tR4+fD2IPL+kwlPXHP/vW+wnMBrLvfPiwYibx0dOtR5tbqrDED+dCoSV8vaL3+KMeIGMOdjql4xir9EAOWl/fiK+f8D4new34WjAPE8Cg8XvEh6n4oMsJn5tKnDP9vS/evYHz5ezoYO/5Ho85eQiGWXY85OOTc8vzK52ZzvPnT/hEz+LKCh2OeqJgSpdXqQ2aIxHKXIY7iXuNI0RtJf9ODg9J1pLtzF+//dqXvv7jjx4/4QRqND4yefe1+8wMrNUgkgiHkYKqsaBr6z9nBOMZVKmjg1iJDn2rdlbhxpX+hVYAckd/VmZL0J6xDxIAvvoWCjrGe6P0X0BWND7UKHWGyOWvaCNYNvhD5URjZd7gK2ac/cwJNy5a5alghCzdIGEOZBw7/TrUQzhoSYlGvZZhtLoQUYHEVGgaGPz5oQmlg4J4iMrbi4mU8LO5lTU3P00EP7UZgV6vWVUF1wgcqa2vdaRur6UyUn0U3I4g88HIOOiLOVurdvDUulsY2KGRd7UWIGnF0uJSWhBcuQUPQ4k4ISG58iBFQY+vUgNgSl5lBma1dbqk5dMyYUaltLQqvzQaouTlsjCiNqYBbosoRge2cyuGmlhTiEwkUjpTAk3EEW7+BWQFJkLIGonYqUGs8RoiWmFwCjHt9eb9zC46kVGdolKL1EgigJOWdRRHRUT0mCRdapeEV22jWnwJDaXvrI8WvLmxxIkV+zvbe4e7nsl57CGC3d78YDBE1YKR1lCLS3TOHe/zXXj1U6x2OWT+CNR8+hjHDDYkHgjNTR8Scl7oRqo2Dj862N/devZ8ZX09G0g6NIAz259UQmEqOx8zSjmfKGS3wxFqAQ0JGZA0t7D62he+eOXWXfao8UlDJqozzlKYnd3fPxBgfn5Rfe0W7J2dHdQ0+ho2WlGs25hq/ILBuZDMaScnnaTYBGYA6ohjXRMmVCLcY2pL/4Yv6JMFJAVRgrykboQgs+QduhH+AYcRnZACOz8WXZJlyYoEYaQKiBAX8Ds+ItghAZZVEE/6uQrWqJQoDn5xkBYRKQQGODswsEkA9fjw07OryqinLt79oVFkFQJtBjXUTovSXsQQoZ2ScZJHiTXWEEwCRE6UbUF9tugEnlp1MidxteMu1FHQbOOcqMc5iC8/RGgXqGA1EQ66ZsuQ3UK8MYGNNonpwGpSkvPkKjRNqImjKSGzAknNLeD2WUlrEMTvwtLkfOP4pEW+pOBHYROaBSZ7oBCp3CxFFjIxhihugHYPdQQfLWUkJmrlSuVQEjPrB3j9gWN+OcLalKZdlxVhAJGFhM31fNnZT6H7nW/L87/2y/niYymMjXPcc7aMSRGNjcJdiK3UO48+GhzuOQfQHXy8NU6342Pv9iwHLM86UNnDDj18Pjj6Ed+lH+2Anv3DAw7xhDw+s8VIRdzRz9q+03NoSeYC9k/wj9PpurzZfNifn5+nVHg5IS+2ixdugDgW4FjvCL2+W/yq1IMTA0XIZwh7Z52lW6+9eeX2PVQce0iwCmkMY4yRhvaCHp6EoDH96Nrs7Or6OhWho/O5K/MBugmEjV4ik/pLl9TBbGorkM6MRoBtBCJkEuGq8azXR4cBoeaSlSoygV0bUwLrVDp9mhh9CFQM7EZ/WQVpoezit1ysFS65vB5VXYhuw10UD5SMJcqbDQLaDyq6M3RqJEZBaic4EcWgi7QghTLtynJMBuXBg8DQNKGU+qH/CZbaqozMLc3Pcwd3a5PIC+vBpoTZaIRAN2ekDZkpXO2oCBFps83UqqATJq+1CLeteK2lIoG6EJcW2KQWb/Bi0zXR8strVbSCvtdgOXUYlOpssw6yFF+uKWRZrNTnTYki6pkVT8qZmVyGZ8rEtbYFqcosp/kJoFe7TVQVz6sVGoNKDFyV8YuoqNSO1EHTspo1hjF6IU7RAekU7vvwKgBb+6uAT6ZoB6lKMhuG1AKVMDD6JJKvFE9PLS7MHexs7XKAxvAA1zHl8FWhwhjHvOrGqxUcbQ8qVCp6ls7t9w+6cz0e83kkPQdJhBCzcQIVAMajaTQ4bpAdtBYfSbxx997JyeHB4S46VkKmO0vLK/t7u6kug1UQmAY9WtZ/qeygH6XLczCU3iECpQ0HxZzMOHf//hvX77y+f3jE2XX4ygHkqTMrB+QKMOxTqAVpPrVT7GKf3/rVa6YL4yKj8kcuBYPGUkwdBdqFaPu8NAJ3gVV1HD5nlTSBRMqQCBQwTA8JT0q0xrGPeqaYFncjKeIOzwI0AR9K03JCN0EEtMkraraRm0vGRVOo/IoKa44rhlJY1ninTvxyGOkEfyGXH7ooTOwyDSAi1FT8caXyNs5SvCQlorgGmTX5hzRSicwIfds8u5RdwXrtyiax1Rk1seGgXTLqq6a97aRaWS3SQPmLcORtBYvbCxMnFTLEVkstkeQ1TwG2i6KbieCuYcMqUsmOOqyYdMAhshhV+ANxOkOwPV7EQjQmeFXQEFOTWoGhiQmmt8tqLgi1OS2ciewC4BckgaeF4QWAL8lq4cnuGqP7PLUh/2MwExUwbGACiYxnrqhIjOgJmIlbawFl1k9e8Dz7KAgo1emxwBnBEfcciv/44Rn69fAQ21mdMjs1OD5bX1nhS4aawGdTzAzbO1t83AQNhfMA59Tjhw/o7vh8sc8SqOcYL4Ofj+IQDurhJWZPz7j52mvXbt7a331yMNgaDtmC0sEoxp/Nuyu7OzuV8lBFxThFYNIZRjtwwODkQpHh+6ZVvfnF+aWVO/ffuXUP7XzImoKqcYz7GVkbrHyRgE5BCrnSHMQOBvbm50GKZUiNKyurSXDWngZNb0FzPq8XSDt003IO8GoopoFKMT8uKcBXAsQjSCFLSlQGChGxqPCUZIcJ5/TRrSIJ8xYqBCjw8SP8KFCSxkWtXACWZerPEcirxajR5WzMZbADCrjmACOSBHgcaBAMTbYy/vhOYvNJRisNgGhUUE6KFCaGgK/kJFC9/SGJJLV5hftE/Hp3EtemOCFMb6XSA00oHVC0eJOav20fdIErjCtwLeSl6rFaxrF91rtueJDbpWbm+FSHPra9wwMOCEUQIAABRjkjv6lmU8wqYaQT95aFVdNszQkLsodfrcToc3JvSPcwoCYAlVHGSElLwQK+FbH2JqUpWuSp3k5GongmjnhbYy1ox7MNUC1aKbcaHa2BGlmAMANxJYxKA2mBuDbp4xOV7mMtJrcP42wYoChoTioCnrgWbFQbfiEHcYiSG7YghnxSiOUyROpOdS9iMJ0d8Q3i4eDw6fPNM5Tr4PDK+vrK+jW32OihOuU526Dvy9nYxRx9r99JPwXGLN+B6Q6O+nQLkKDe3n5OE7Z39zhVAh064KC2ufmlaze+9vUfv37z1t7h1sNHH7CBZ+tgDySwgV4bHqk0KcXe+KWlRYxyHkZCsvavxogfyaUhKNuDISca9sC4wJPlxbU33vny0vrNPo+a8Qi7DYFCs56qpbzgJKOUIsEpXXIdBzqiwwa1ECRsXbK6i8tYkbiHZQ8MibHGubhkzXO1Nwxlhxmx6FaZpqFr91EVcocFiqhr7fNgMA7TEDZCwALOrQ9UKMAf/iFXI3xsjO87D9HPGPyQCAwgXEd7qoxHp4XFAn1Q685C2ipK7SUSg+6GXIjK2kVILAKJSU8AAxDc15Qmgc0tDLnctKe2ZvLxKwacdqeTstE3gUsBVL5ogu33GaOH7FEoNbtV05TgZApgfh08RM+oNLfogmiLXBYEbwVqJLQSXhLNJnOlVMYpUHEy6YtNHjgr0S/kaoSwi+NCxLVkzW1TX3MvJLHm1rJEaiJVjre0DWWcFdhk0svu22ScN/NpNkpk/+BADrgyVSAUAe7HA6JOLmGU3AIBPgMeRJIBQ42jmBK43ahaKI7XjPxI4iJYCAURLAbyUkSKH25U8Q8uVqr2p92JkXxxLTJmTBoFo+3noTORazo60IzE6WuCbIwSpBA0kCIYT0zE3HGGzFIdY50f9hYfbR/uoaM4eIhtG+zR2N3eer65iYWOEcqih85LrYSeRJ3Zl3z3bzg9H97bRw8+Rm9wzIWfq9YKn9oa8C2q5e7ixhv3Xr/3xutrV66jnHgOtts/nppb5OzRTrf37NHj1aXV0EVSLpm+koPz2ueKDnu0rFWxScQJgWdsWNBM8Is9dwG/9sZba+vX8qjWpojsItAstUg8UsZ5gM7jkSDHJcmDCIgcmpQKe/Mc5aQdYU7wgsR0iDMFyJsIVUGHtk2bwFkSCqkIBz1YQainQte47FFth9uIukI7q9ILOn7cpuWUQkujifS8Oo5/JdB+zdnSaVFQJsWfXZcBJE00hDxuCjMzLlMNLTC1FbfQA6GJkPELBwDiDzrIogiqmZDxWhyC4C6JWXN2G7khTlFXqJpRfUFAKT4idoSvHat0JlX1tg3z0vjnKBVyoWyAnCvhYgV9vm56hMLn08+nXEhWTXR6ODf6oaPiacdr4osjFXkbbITn7AzHokKAwHIQDafdMmBCC1NwBNb0XztFShvSSM+QgpYzQa261QJbmKGxnwvH7WyUUPiyKQhJICdC8EyxP5wAzSCmiuzxrMTbVtPO1ZyFCtnnckcJMTzkCqqZStA+WNMMKVJslZVaNbdFWwcRlaV8copcVDfvhYdD4HS6M7PQmdrf33365DFzIDoa1zIaB92B2uGsOLdL6mHC5kCUnAQYvrzYwAPfrefPn+4Ob9++c2XjKkc8bz7bovYf+cafXL9+fZEvfDPyZ2eG0zMHh/3tnZ353vLc/Gp/iNu6wyp5f+9ZZ351erabNPOWKccAoC4VEz+MpRblDr0HTp5hsV0P84xvp12/efvatevTnXk2ZAgbMzftBYwra3ZVZwgbb0XRVtLhvAxpJBCxJA1Z4IEo5XXyNMKwEK/LL/Q4R6kRKcuPQqRzKbWEasZ9giMn9G3MX/CKRtVAl6H0yGmwxONBN284PFCUqmdobCZUyc1OrAXERbeGULUISyLNa8IonrqylZUgYlI8CjbiLEwlgRFKx0YmitkjB3OpMMLteoOHC7IxhU2G8z/pdbP5SMKbUuArpNXWN6S2f0dgNryd85njFdVlPTiGESA1NGkj+l5VQVPoFSu7kJQLEytxFfMYaTX7woj8fxHz6Lk0b4eDY7zPDFFqUS7DN9djJRoBJHXiQb5JA0xqA7eKwBSVO1SQhaQwfir/vI2grRKhTexIyEN6yPc3eoCIg74Jiz1X1uN8ALhgdTI4194RcEEIVZWuBm+Ds5DWLE4aGrLGwsaaKJZzrK25bTpTy5Al63i5uecDQxSEBKOu0E8ui+UhP1FwBiWXFhmKAHcRy5GlxUV04O72Zv9gj0cCjk50iq7ek8MTv3oDNlfS6q0ZJgAQMh9wDpEjl/dWGL2d7uHewfrV6//iv/5vnQ5PWau//953eJmPGtc3NnAK4xzhqR0Inz17yvDH14xLeuPq3Qfbm7xOury68ODDj/nE68LKfMw0fspWgzS+pzwFvX6Ctg8BmqTwRm/o6drK8sbq8gJfM+C1l06xSdOGTRah4+AJ+zYozqMRrEAVYCMASA5gNi1f/4vVljoaEBrPHx/Y5IlocyWSgeYTiMePzMV+pmlQC9n4NSLXCcDqApK6kudQQiAtriLgZCRQObmwJvDkwo4Gc7jCJqSJIjJCjWXtGSLB8dLCb06AFZi4L3HSkyTuMyIG4ZMfLkyZlVkFMR/ifGX6pIvdg4NENcGCLqT4cmrObWUVkijA52gBZzYzaipFgxvE6zIdVFG/+TVSgONHYy6U9IW5FTL7o97WSG1sFue2tLMgbzgpvclW2QvhiYF+/QwKOsv8kFwV4NKKiyliYCO18IUNpyzAGXj0sQsmFUNLSpQTA1hqpEq2CjpWfFFZ4Wb5Ga82yyaemlMZPZGeAI20eIfegTxCSw5qaQk7p59rJaNIe7IZpbZjCHaIQauWdvarxs83B4QspTkdf77Hd9U7cJsU6WlCoqbHFNBgNvDzve6Snw0bbD55jLvZncv0WdMRqBuAcTqj9UGG9cqODiYAegeoAw+pm2V33BzW99T0lY0rC/MLh2zZmO0eDA5wYqysrlLpAUcXLTk3D/r76GI6X6XZH3T40NTx1LWrtx8/eLJx7erHH37yZPPJ6jEfG3SbJgfqY0PiPOaVLRTXXBcCZnm/BMNUVTszvby8sLLYPe7vd9av0j35aiJUQZvtDjuaK41h2wmB4sXUw+wPfzbS679WQDJRHDBSMzzSk1N5TUBXDBaSrXGFF/FYVKfGWEgZTmK4BnK1IKHpk0Citw8HDhMJ1glmqzQlYZYiqLgMocCsOwhIcpq8dlLJ8cdSTRBthEzPrJTHTC4AOHGY75jZeTWT6Z35Sw93CYks6YcHmZqKralHv7MNCO0MAGCUr7l/WJH2YP7+6whs0T2X+KC//yr+yDHkUEE7M5wUVq0VxomTp+/chw96TFKR99QczaRKrl2rNhkLDNuEJBWVmnk5baOQNFqa3mLVmLk1hVuFJkI7UfoclSzxRpZCA+hwzCK1bN5+1it4wJDN+qxlXwxfKGSbxHDIdJhaoLAi8uoQ4Q6DCBgaOofDeHqKzW1+9Ppk0GE0wllZrmaHFaF1zvqhJvnQH9DPt7dB67uFXSfgxe7yIl/968xsPfykv7vTW7++sLi6fbjdmT69evUKNLPBmSaj5X0B6ZhNgRzBgRcBieBpZPe0u8CTscPDnTe/+KVf+ce/urS89nRzk1L9wz57o+kUHKI6bY6cFXI7G1uq8ZahsTszZ7du32RzmmuCrjMLU07ygasih7nEnMA2xHxowSJD1SEkzUyTs3KVh3v63nhP3afNLvLJyu5ud3qbjeBPlSyXUNDxxiApRNPBkRgorlZG7nl5mn3bYcNStgTFTtsZS78SY8UqaX/yWlBJfoaRQAbQBcOkgfQ38GRzGowp3MkRc5iGnHt4hwhy8W7g8mEqYXXElKWmhisxfUA2/AGSCU9crcBNtdus0VkpnwGMqG2B/3BGa7dIHqPhYgu6KqB2Ixot0U6TV+P3n+UupJACwfQXFjxXi2vghiB6Yqyw3cEYd8MpB0fEzll7jmUxeoFB5Apohs/e++BHybD+kTIBL9IcyH10RyUhEUhDrNaVtpBdxChqzavTALIuqMofdJQc6Vo1TlBFMnImwU1KIGHBhvZhwGnCZDYgoU/Fb9kgE2IlINKa5ptUQ44Ue7kktXmTiaS0clWFBVqsBmvOWNTZRJts7mt2K03CZ7RzORsZZUAEbohZtePGBF0Rs2edLq9iw3+fr/JWBofo7+/uHA0POYf4rIMeRH+hG2f6uDB4+uenPTASfQgGQig/4HNQZ2c8M+zNnuG5Hnbox+HRcKHXWzze3zk83DteWuOLUriwenGCx8LiAlWjnTmWDyscLcrGNFSVAtCZPjzyXcRv/vZvf+mdr/6xb3zj13/tN2/cukX7+nha+EgeZu/UHLs/0Hi4wnEicyo/W+U6M6cbKz1O6esPDoYnHb4RP8TpEm+awAOtaJoR62i0MwY00oU6dgsHMgJTFA7ZrpghRNEZuI0ha55HiLzPoow0XB//ZRM4hi4IFDa/HRl/sMbzjuQTDYSBunBVYgZ1cwY1X+lbZczZEEnFu++KBPLccEwXhgBEWaCFCyRcpMl7x5ZDiGvxXIWgkhsgkZ2QFqj/Mk5SjrjSQvFbAn89LOFOg1l6vbCFw1WvdKtsrR2gZG/SIb1l4hMN41bajEk2QfxWYcgUrq04YKVdNbcdKcXbSbV4oC057fg4cN5RowQBdlGIDRu5spGaAA0iL9vFMWrKRehGacGN0e1njtV6auQyFBc27OJSAeqqc29/3wVndAxCSJ/Z74R411apYNiE4UA6koCUOlowTML8yV6EsTEiuCtBDDDahxTJ00hPXc4AjEdXqe95Ll/bkz2ofg7V3PRUAcB60bGJJsMPKJGxD6gpLJAd7PI8xkWTkb+jSrgPWTS9MqedTdy/mJlsRTS3QII/8UFkRsauKTVjSa1KIurb2249HmDUYq5ZDyfS83KQjtTpuekTjvvEaj718Q86kvlouLP9bG9n6+iQp7hT+8NBt7MIbbv725wJgc7ChMUfgAanT377d35ndWXlzTff/ODDD69fu8ZbR8vLK3Qxp4byzjdP73o9dPHp4HB3bpadaYu5hYYeQgtGDzp8UbVnaHS7oXs0PzU3zya5Zb70+t73vn3v/ts//dPfePe736UJZ5zUoXl6ys55epfj/zHnH3z8aHvz2Z/9s3/ujdfeWFpdZpMmh/atb9ykTXxX0F13vMrY78cayOelsUpA7VCp34DlJRA+d44adZINTtsBIUIyzQkNDU4WJcIHT+r5oDQin27+hTJfjUXHMjnw5wuNJ+4d9WklmIpWgx7EOyS8yA7EUDMQDAEkKiYUi5BCsqCQEDDeqhpDHvS9SHIUNUZD6EQlU5giPGJJLSmGwCpagzeBNqWulSIO63DrKvOZG3WkwgGLq5mxeR5DqB4bEWgcHEl+plgXGeA0G4wZsf5yF9FyVylpEke/L8oCVQW0hpcFcDVMmABVSA2BBSFuZV9sQbcAflijsvxFtDnRRq8gtTxjYLSxsqbH6awMCC7S2Zn3cFGGB25TtgkobihBNZchKihFkJisL/is8BBxMm+6ht8oE6ZLJLZPIKGsyLEURN/GLwKsaoye0CkaQYwp5wie6VMsJIxfLSshpeKynjZvPDStMLWWqok1ZbzQ57mrOOEf0x52qhzDrcAkOcOQs40ojxh4UIJrd3h0eLC/s3UyPIDz7lLv8sLLgE+J0zX7/T2OttjZ39/a3uV9kD3e8evzDkhvf9C/duM6uht18fDxs5u3rmLh8iCJEX540J9f7jIpuhWeY3/6Hl3d68wONMrYMDdk+EMCTJSumVP8GD3P3Oh1F6+8/oVF1N7m88c3bl2l1Pvf/fbB3n63071157Zm5fBk4/r1r3/p51DnHNzBkR5b29tXrt559vRofe36Xv94cXkFrYc/LdzNamdc1bSCvsTn40cIeZCo/ChLFzKXdGQJOezwiOvyoDJFQIUNxQqjldwIRNHy2s9WgdSomj1hKtSdnoIiAGRZXnFU1+eOD8lDGnx1UIUbGFTBpJTbkB8ylPuCjExNoAwjqkNrkliUZmTXXNPPBWqHGAJnDJLJLWQDmcRTDYm1YEYu5uM5zLUUOeB3CP4hBIh+MV7IyPDCykFDvxgKtZe5OF6I5Ycj84JeHiNMYfXhtKzDrmHTPg+RSArRPGOHKfwi/bB/SEoGJSfYnAwKHiEWBW3wLbMRlvgLSaIIJo9uQ1SRKhY3mvngVNe3QooHDkhL+1RtlIt4YnagPFgE6zcDhZMJRz6oo4FTv/mrZm+hfHm0DU+ltUA7vSZ+1sjFSGamTrDjTgcLva7bB/Wr0i5dnFhEqBTefeP1CLTR9rMng/0dXkFxojs63ulvY3qjxHf2t3d2d/igHyZqf8Ar3UtrG/O3776+sMibJQsPHzxEiS8vLTx/9nR5sPJs6/mNq9c2NjbQUhjHLNRPzoZLy+vD/h417m1tdjduoFPQlXIxmM+UzOOI0+M5Dm5eXLv18NOPZHtnam5pCQcGpf7Sv/xXWVzzEhcfqkSO0O8cd8xb5xzWwXHXi/OnO3s4xLtXrl5THZ6xT+PkYH+AUtaHdnaGgobV6kvUs5+m1ZuhskRQYj1xEZ9VuKjX+G7ERfmRxoIEizkqjV0XFFC/RvApn7JB1QRlheaGmkP3qqTt/CI8Uh0BwXVIcC4fKlLLN0wYEaRxUOSfW5OUSnSzoIIQ7NIwXEaS1WQFfAMVN9EEC10USEXq0ciQCN9TQacBzTySeCCZoonhYiwXYo4as2xp/0Vg30+aRtkLB+ZlrZ6oFBxJJ+nRP62HhDXDMq/WelXGC1tcyRpDPiLqhYVHYC+JtZETd+K2E2fQwqy5d7e1a/gGHVgQJuIOHLZN9f3wR6IGWskQkawOXQht+ScIAOYS4BsvKrBeZ4THAQKmOPCaZyw4HCFAg0X/IHmAAZxYgl2iIWTVeXXe9PBKzBU817G7UypiUPHIROclSKWilqIE9yaNo8rEHIoTWfUWmMSTSGq8RPgp+SNxIZa5l10rTljImIVLnKs5N8vx+exWPca/bmtydGsDnh3u73DUBq4oZiAsTHJR2fsHe7441z/b299b7/H2ydzV5fX+0TQnz335y1+6desWqmhl7bu///vferr9ZGF56fBoACSsYuMz3U3P8h1Y6h4MeCqoqj063NXt3cHlouPqmB7BqOR5oa/c8YkGBGTuzS/+xK/+8j9c3+jM9ubQtZTa5xCN/lCV2sFRtsekwqcJ2PjB63/sONnd3OzOL33jj73VXVjTMu7M7R54eCkEoI41otmXHW5rVBeKntUD2j4sXqovvZicr/xHgUu87z01rI8hCjEVkoiF2SHKLhM9IqGdtUMaHa35LAhyjnamZvQyKjp0aOk+pBEYUihN/AhUqe9DOSq2KmqQ2Fta0yrllLS86taI1SMRAaGQGglESggprU0jkbwKYCtat00ZktJ69kicsOZ5SkyUgkxvk6uKZAVliRgPhFYR8XorWc0AIZJ11SJ5W68VoKYQSeTtSDt3FG/qJWUCD7c1BWw1nmWTGDo1+oWGlG4iN4G/TxdHq1dGxP5zidGQiypXFrVbz3hPd3hyygfilhYWcwnIbMz4gRG4BzHT+Fodkp1cUOnKGTCqO7QTRowab07UCxLkO+S+5IYOpSSGtBoz1tJ2FUnRJWC+DGNkOBCwwCk4w9N8f1X6urntOURWe0jqHDTkRf+Vuj/LT5ZtS0mmfBYcF8NWPLhiCDaY9a9fvNBK4wonaBj8xWfAprqdrWeH/QOeDcLqQ97enpnpzi/waT6O10C7Xbl6Bfh1tGZ34c2bb7z9xS/DW5QSO5+/8M6X33r7S4Pjg29/5/f+4Fu/y6uAf/Dud2/cvL3NNwAZocv4JDpT/cHikm8Scgweh2iiSRdmZjkQjweQvP7JVBwuF5/a7ewPeIPkx37y5z598O3DvV02WVBqtrMyNz/34fvvP9k+QP/C9bXVuysb68tLq6zDenM9T8DAup6ZH/qmsac1uXtX3WegRznyWTy8DG7QePVNFmeFE5LIIiRwuy8yOa5jl4Sk1+Ohnq81ql5ZDqJcEWIxq2URSMVTBUdQxTIajBUNO9JfFKc8BB+FeKWfgiqBDCtBZZZ6GdJVkxo3cZVcpTHpC+QlXigOOyLjwApOaIGUlHEBDsACzI/kS7YRrgXz5M/kKABOFBEqrEB/+IGqv5+KlJlGHozEQ+ak+vtU0H/4Tf+MNShv+NXciHXMOimllrdU2NGRuzjobpbNDhqEN/Y8AYMkBIs4Gx4dGKOAUeajcgL5hhpDDBgg3FKqCg8RV89YFxYUVltJQxpiuCWknI17PTInpoUQ+phhKYoiA0PMNIwLkKvAw6Km85BAyiVB4q1ENNgu+4U5LwB+QdZlCNvpySJSSnPz18b7/Sr5ECnU4sFze7scwQwD0RN4UdFZvMnG4XAYmv3+PntvFldWO3O95ZWVGzfu3HztLc4R7fnG89nAw6BP8CRMnS185as/yUe7P/nw/cXOCkfhH+4f9jps1DhDfc73FnDkQwwuzbmjQ5o9013iOSWq1g8t4dBAR2O247zodvhkFyfG37n7tf0+hx0dUIqtGYdHx1df+4kr09MLC4s8xsB/xf4N1k1YpHwUiloWFmanOlPDU3YHLrAER5xgb0ymxhE/HxKGqUlvkYH8pa+jMk2pQshaozGyUk4qlJGEJIJeLdoZo9k/92+QqyyGLoPJxDTaUbUsAfiniovcwJN4pTRMcAgGIYnC8Kd7IWQPBBQyEYQay+WeiLUhzfkPGLNS6EXurb8EK46Qt3kloX1bEwXkhgWCBNsa/vsTFk+C2dImJE8ipUEYGLjEbwP3z+UX+R5x4LPXWNtCxEl+hIFvEtYB1TTT3PJUcQTYjo1haGeci78E8oW1tJCBpkVzZNiZFxUfYBYMOUOdnVhHvaU5hPdwOFhbXcXGWOotsTOAkYMRRFEElI5kFYjqIMJ2V1zAyDciERIro5TjSY1q9+eaC82CtxFyECNGTsglmdw6kBiUvBcG3VKjsvf1LORP0wQvIsXKyHR4oHshnIK4PbkVi24NdAn//HwiI0TyRKEtIxqQMnisVU00EXIFQG4yDliCcwD3tNJKohakP28iuSAphRqYSM0egB0JIxekpYTEz43oeQ3sjIddZ11agM0IETxm8/GPjg/UHBPk4f4Bf1iWtJr5lI1ybHrgi+AUvXrjS0+ePOHD0pxFsXYN7fwFegJfB6oIxvPsES8ufldPYYQ9ZzO377994/abv/gP/8H23tFKB6d1F7sbrXU41OkEAEYm3pOZ06N5B/0sVijmpm5vu0MVhpX/eH/YPWanyTxOcEodTXXZlaFeYqo/Yq2NHeNTvmg0O6H5gjeIQk44lR9F6VaN8uYqDwgPDvp4POg1awLD6QybuCmMs4o7eg2dGLjQflCh9iPYQZjAngQgF02CgfJTOrGRZT59CL/AysSGMKOh8dTYlUqdgLoF6Jf8Vj3tdQ2nkMt8arZBKdegw7vOd+1ZuOGyo3GxVwJpoKeok1ZTRmReg0bQW1eY0sGKqIokqB3JQpQx0RblNWwh0yNE04LmJp/qCneBt5eC1VJvW3xnJdgY3LABMbm4xZAmyRmKS2yM1SySV8o6+BxJSR/NSN4WGgB4WSi9Mw4mJe0QfGmxIPKisZOJ7VI17oBLiqCTSOicHGv/tbCgaeQkQ2MWrw0cRWgVzMOYZYDg2eC5jSogXilEGuhx+p4usyuTqQidwh3jJdAgCqSE6Hhfe7rW0U7BMM9uEG0rOCK0nZEMRwVTgNVECBefNDTgUVCYHD8MOMdxk+svJGl+himBLHrro0Z9Caa3mNOmrY1hIg4CIL2S0RBWyzqKg4C81rJjNNXUiyKQiMlpI+MpfwwTZhFnA754wvKGx59XrlzZ2d6i1UNsS/QMlpMPyGbee+/9wwHfnL2xunHz3v03NXYdZVmNP/yHVLlKnMhsB3x//i/+lY8/fO+3f+3/i4d5c2uH4/NXV507/+xf/BcvIvAlaf/WX/nZl0D8oLNldRGQ8tOuwR7xGbRyi4BrZcVMSbqsiAAGfkGiqEVIoY7ElJTgnkV9zMjcEXZCigCuOeWwlBxJa+BrkSK2DPE7um3BTEQTZlSuxqyOho3AG8gYjOTVKgImxZJmEigTV2Q4dWVD1QhZjbUqqGk/HJFoSiEv42XoxbhUjb36YUk/HC16ORXpjEtJw07BV8hbZGhqTF3EWinEhHJh6KeGFPqYrOxs5DtMA+poej0laLLSCzucaaDCKWfO6RhQaBM0D5UQ8C3rIozAaCyWOYqGRJXZMT5WymFSIW3IKPKpdaQmDiojHdsGU44r1FIOSP4arJWCSG3dTUYlJx0m/k4W5z4TzRwFyWrfkxOz4QiCGDAkq0xCf2oMaO3H63M6a9ALvLl3eLC7x9x55doV9u/COmZTHg9wplW4Ozqv377D5rrbd+65Dzo2qFVqrcIAQq0i/nQdzM2yvfn2nbunP/6N99793pPHj9ZWZheOjv7v/9l/urLCuaGd3sJSZ35lZn7lcLo7PJ3jzWYsVW1gXhXEaJ2e3do73Oad8tm5+dmpv/GXfur/+ff+EfX4qYeoLFbdbIRI89R9d7wzzt5N9tP5JguTPl9q6Xg6M2402oOYeYYEhw0ccRS1qkQiXXbR61jIdjFWLX4210ZUgqjgXwdOPXy+80gOfcScFNYGPINphMBDbWwYpRj/FXCFr7FIG8tDEVLWtVb4jag3gPLXaPlQ96V8YhGVfWrfF84HgXkxNTLMrGEkI9IRAR6UXxGWIgw315UMgGhcAMBKfvkv4WDMRPITe+VDsKpcasVSXkq0qSI+ImkE/EMQywZACPRpyjWBFQGJpvzXeJvdJfxFyrNzkMjc/oww49YIUzqsXTo+BJ2ulAtIuWVcayPopIQAlU4VItG1qmv3NpizCAJVQcqoiEEol0HsOZDk5/MzIlXi1LKRyh470zn6NkUWtaH6wRuCCyOscIYe3tygDNL1V7h8vdDBAaJmGCS1XDNiJSXuoLaySksTSZu1QDaJ59iQ+RdceR0E/cmCs+RRMfeekaSR6LnOxwP8s/g58OzyjglKzS/CQomL7JM33njrGcen8A3Xjev4flF0OEshGUKSWq4MYFgCL6iDP9QcZ7iJvrN4+7W3vvSVH/2nv/Irz57vdrsdHFzrR0srU50VHxlq2TMJykSQqc4UBdbwnBi3e6gg6AeSP7IvwKIRcZcMpG6S6FJ+ERcUHl3MDKGWk8vTvMGIJsT/wCYWkhAwScdL4zYhMEOCbrQQrOba9I2Q8CguUXG5BAKJA1uGgAyGsCwUuwZACmHwJ3gU2i4JlubQAcxrEBQqPs6nlhHRJEWGkI2OKJek0jspyZ96NTnSC5XlZyRRASCEzDKMFZD72ohQT0ZFHhq6rZ2jZHORU5aQUf406f5Sh38RJrLaYD8s8YZ4GxPt4MKf2qBajbh3KrljTWoK19wfXGSsns+PdhwNnZK6EvHl9Cv8m9gvvL3KLU8Isc7YAqX40res7BRRH5WSwrCBH5BRRTAR51Qc6QpchqQW7iFRTTwijcZXuNT1ZMptH9XoFaQat8dSL7UirlTPycI8FlPUsJklyD6hJixBbGicgNyhtNxQ4m5oXZZgUGfoaosKsKEJhZAi38JkaIYO9JCQVwpaIzCBLfGkP12Km6LGJMCKsmDkyjQjvCuPFzYC9WdEpKU8Go5zyMLs9+VsGED1PIRzYmTjeZ9da34LnGd4KBW/Xmrr4nEuTdPXfHS8t9f/yo/+OM8EUMR0IWBJRlOFdcJVRZksntrF1375kvdwcMpZHLwc+K/+a//6/u42vuzNp0+77NvrLZ52EACcHmy3kx7ZzUubwVFq4IQONkVMd7pFKVMf8+s0FvEApzmMDp+VLmFo4Mi37DUw4GDhzAhUO9s2tZbjkUO0OW6CjcQohTCKFDZMTyGcyVvSI0RWlAC2/DY/dlpioExwQ3EJGYD/FEdFiwSeN32dEbOi680VDEH3aCRtdSJpjMMRWipVFuJ/yLAdq3DB3sDgpBHIG6ImfylYaglSM1uMJRboowISSCdIUhMnYnUNPFkZLzCBM+PQLhcMhQkicXYJwh1DorUBGXRAl+iFP2MVNQSch0y0BWXTrPNgr5ICqja2vHP2VDuM8uhRumikoF8F9Q8A5oXM+tz46S4sM4qjplHQYU6wguR9CPcRoQtYVvOisI+8Sx3llyyWi6QxBnGJ0FvAc9VmDZBgWLlkUYaG21kzNApShwaGSVgpo/HJnuZgM0YOgM4PYC7SI/d9ETr0D7Zk6G7vHResvxn0LviUPupDi1HYccRPSKRV6UAAWvqhmVCocs4pFLYTJSIGGk1WHLJg+8iQLB8DNXFWhAEvH0jB/qrpJdKqhmdgNMNpRTzuDGPKobE4mo/Uz7voKtb28BkfAuOJ53HAcUsj0OsHh4fLaxu9xeVjvQ+2rtWsrA0afIcEltFgTEIerKKd2MfGGF1eWmYrHv6JzuLa3beu3H7ji3QvvgRI2vXT2lbiWJCLtoVZCNd3sgN8MVHyy6H+GP2Hy4tsz8sgFVQZP+zm0Aqmw3FeaIbP+GmSJC4aLWbu8aVlIu0NbqBG7NJUqUFDYgU+iEnoyStC4WRJgP/xU3o8AJuGTJYq96NSPLLFyUFNCqovuIQajCmJ7tOYKPjszKRSgQldGbe1BgAy1JR2hKy8DRiiJlT4jJg0EWqGWWO5il3KK2KVNyXBZEMLvFbUoCfvBbxtoP6IfrN36AMnXUd/TL7RJ962Leh/XhT+4PlFl6AyUkEzmGgIq+h5bLPZWbbh02hGBYobZ3Sv26uqNXqVYcapkvYfBdm0jzAWlsVIyO4PYVAwkkUxORcTsib63EskPpgCQ0KSS5xBweDVmnYZTPMZ5q7o3QEFAKPFMUN5e4lbzrBwehBS89CrrsXQSI5QKnL8ELEtVpZoTRkZDknB+DVqB0z7QkSxnNdPHiFziaYpQoQUgGpu3kbBkphZQgZ0gaQRTihYl3IJeJnA5poBx5EOQOJudDcbzOAHYEqzy1S2eugpyadM3vjyWy4vXPGofM8Fk+xWlaBl0M4gQKFS38rSIrudOSV0truAd3h7e2ems7DoZ+op0Ac890mMcPLNJNQQE3eM/ZisPQ+arT5LSwt8BgteQSF6FZbzP9U7pqjOqdJwujttclMcaBHCc5VROQkeStuTospWcc0IYEQmuZqF6YEQExkPG/MHUNEYiBYkZGWR9rVVqqBh1wlWNNtOLEmIi8Lpbf5BpY0lNNcAbPB6kxlNSvu3ZmUzEzQTjWeA5kK1RSGS5rRDG2HGabmNjSbKhOgvrpTKxKC/4Dhf/I8g5XIWlRaFooimONBsXnQRnQyA4zt2RCHbEQR4UQgMLwJ4pTw5XCpqS/D5svK9CTkYmjt/bUyTj3WGtHbjC5u8NIYWADP76nqduaXe/O7+HmINNhS0MxIr4tCDPChE56G4GX7od1rH+jptw7aFSHqGET0sCZsmFCGBdWEY4XuENjRvFmEMBM20JM1ci7llTo06vdjr6qg8GdIVB0docIwsvc08LJyfxYJDdTmz8kYEJfhKK4XxQYvfWp1RQkGTnKMKSQVzkXMhMsRv0sP+qQzJkExkp3AmMsOVbIdOYS4pBU+kUCRhsiznN0Mdu87c8Y0tO8VHVNlVyB42BY1eYFMYCHgzZPdw63hw5ITEF/nm+Rp3mApnvEukV4d2yvyz44P+wVQH9/OtY86ag4iZE9//UFaDJnAptmpn8NIyieFdwDj1gjo5pZmpkIMqUdCof97eW545OTjeOu3PsxGa77ue6ODATHd3mpY5c/cZtvwMu/aeDA74bMJytPbq8qqdxP489pVAh1vTXGPJDa11ND9Fg3Hcy4umqykuiFmUpJJ4Coj/BH+X52LAPidRXTd4qA3Rs8wsp360VUmWQGoDk3zBDOe/JLPhj5Wbtq9g8JH0i0J2jUIKGeUPcF17BIpydBNfO3Ad6GuVvpUuGcHMMCOYRVzRWZ42ejVC2aytxjM3EzO3wAfxkR5F5YZlyW0HiuQtWRV5YssruaSb5X+5wRpXJiFYvnBk/0OwjpvgtmxvAik1as10p/AhOs6gsjdDpDc3QeTo5pJYLdKqZQRaEysFozxbSjJ/4CBKL2gm2TX0h0nAMkqQUkcIU+k/dxdHm9gfUBxfBkqZAD4fQbHU1eCRP0T0dExPk4425IMcHAnMLYnqIz531AiB7GqFJA0c8i+4WYnNYdPcymuRNPf8KkXB6eiJkqEajcDASnAIwDDjNHoMSc39Kc7YHHKWJUvPo+kTtDX9F/pWZ0iMxjIkEzdKCkSgxKHgCPKPL3pFEpNNQxC0AVNW1i67DRIcWDI3E1ElBTP3EUueZO7LrtTn8yfVtLu3rJXRQKk8ior6mIygNLsD4WPB7VDTjeHogRLsVjrv3r3XUUaUFMDzrPT1oDOigQwsgdkBkcsPdChHM89OD99779u/9qu/8tV3vrq20lnkmLu1haNB/5MPPgTtwuoKp+ihsA5j+nSio2HRQKdlFBd+sJnZAQus3tJqnCKdm9GtTKvXtnDJInnnGCfGeitZhpzI5hKogDtApDrKRwNUzf9/8v4t1rYkS8/D1t5rr+u+nGtmZWVdu6qrxSa7W6RpESRhwDIFCLKtB7+YevOTDdvwq18MCDZgwJJsS4AfrAcBerbBBwLWBRYMkZIAUrxYJNXNZlffqruqsrKqMvPcz76t+/L3/WPOudbeZ5+srKru6mo6zj5zxYwZMWKMESNGjBgRM2bxpM0YRIIPD8is7m7bKHmaVixHPLn1H/NXlbZQuO1Cm1a/TfHuqcOj1DvjDPoSqPYCSxEVV/uOfrair30iIbuQslVil/hmjGwB3IBKqYoLLU8t1EUqcwen0OZ2hz8xqK/B3RVGqLmBmVV05X9eIx1dIKiClkKky2blJsRJRLTIW86D/nkl7W68IIu+TeAxdiW3bqHTqvFwg9PT05cvX+KD5inNR7qtmFAZdu0fUUCGeVg1wTtispCUm72iMiSjGjx/laaCJmZFWiG3Q8GnisIEhEfDAz6UxxaEyXg4367nengPhhzXKSC+tofaBY20o5f0/ETsXDyKdQA8ulYHHMmtQJ8kl72uJYr0/ThoVE4sRIpz26n+wrAB9Gk/VIEBwOYND/MhUB17x4ADC3A+uWGDaQ26xfmKTWMmZi2xRSWBEXQ152U7Du54/fzp40dfwiieYSrK1uDNymT9epyQZi0b0yh9+frpR598/5OPPnj19OPJ+up3fv3v/u5v/X8fvvveg0ePeTfkdOoHXq5+iO47evj4i/2zdxia6QEAZRBh5GUYg2oYMOgPv/7FLx8fn6yvL6i07ElGR6hy9paqQbvhgTjZfF0KT+Iu2vEIXRddTEYCzNdWIMDfLlMVV2E6sFGLYNPOTRY4Rswea5sYkFiuHYSK8LQLe48cQ7oMRBwU9+CADI/duKQLzTGQe0am4CvJItP8NpEOeB7eTuyedhHYGBgmNEWKxtxWtk8BBVHk8dqRJw/CCh8lFVAtmU0dXZVVQa4d07vI3sOfabQjhVo7wpAVZwW2dKQhK2XSyjrNj8C4lacfke0z06hp8Rlh7WXbizY17adAM70dgatn9vxoYW5J5IAztDNywE47FDeRohzNyBRCHd02cNJlIKW4yi7NLSUhF6/kaSeP3Mli/plTcTWQibLNA+8MVNoy0jgpVQvQ6BZ8tunkYHRxcb3dDA6HfMjjYOkEXuuSA6rJTf+mA6UUvS7IRC6p16ck8BQ0aF6kVdqbWqoi8QkO6CIiXQhWgRYicI92KV2eqi63gqG6GyBQZab6gW02cnOOsnNwNDV60Ck2RdQpzF78BqszZ3EDguKI+8N6JYx6l7MFs4hPvvvtB/ceXT77/poD98dj317p80kSq3URLrmvz6+ePn26ePnk+vKcE/odiBcz9r1MH9wb9Se8qDeajrfzq4dnUzQ+SvjYXckcsHd+tDnt8XqjrwEB0FajZvKMpxNO1LqHi2y1Oo6jTHc4Aba7fFAocmUkFAV6khr3Ji/QfQINLVzJSK+LaoY4B8g8bArBF/ngNZgoPnjYGLrMYPE0WRUpQZSVBmWbUI8+/QpwAQYiJS3WqDd/jnDfSITamR8oipp2hhJsLVbo7Uf2a+ye7icmswk8lUn+FU0BmOR6aqa9Ku64Cx/AGub4z462C1CUIrtLVVMwybd7QKy9DVa7zngjz8/2RgyDMRFFm6uTRSfLdCRwoTdDIm/l3qTkJpaf9uxmzs94B28+I0zbpA2I0O1Qzd2m4plz+SV0VmdoxUKnBynNzFqFmNeyUxCRdIeWq3XanlxTSkOSkOnHrmKegjvy5gDQ1kv+IgjRadMikeTjnx3QQJ60gln25SqP6O+bCa/aHk+evrzkVWVO7F/Ol1s/CqWSo/H0d6DStHgarlAZnpB0KmkOM7yANjBNceUrIb81rxdWgnnaSIteukCo6J6SZUdW0bf/jN6FlkWDxbOxWc94nRqholSMM0dNDo3z1CpWBRE/tmWwOyL7aiBDX65owHlqwamBC3rz6ulTTm5+cfJ9vqhyNOZMK8r157PX2aTjKRxyJjpquFnwiRPf7/BAIl4xYcox6HNwnQuwtDYuLA6jOFosNxxuhPcG/81yfuXXEPKFQEx1fP24d3nEq+doJxwdcFujHd5CEY6TfHwndIsoWg3qicCTNG7FGk5q/7TqpmGSuQ2RK4UHyGk/NmLi5G0LmkqDueOQ5nOFwnvRqECiOtof0wHYPml+gQ9Aiu2H1Izg0RyNiFIYCMKxFv3pQMqoHEeayxfBKdZ0FQdgRcx6M3QZKrkwTiIJdhM6V3uxbAcHbKvIPswu3kX2yQkDRF/GEMIwQHZwtP4LwxbPDk6yWz1lTaxrzW/C6C5nQfvjvlJdg1JqkhxE321Ojp7lweLKQyZLyP/P2gdtn9yXvp+cHzckBqGq9kL4EFbO5u8AQz9MwXYuDVv2tU9t567FjZSnr/LXFRnrBu0qjtjVSFDwySakptUrTbO9eaq2bKSzeWbmRk2CapVFx6FbjifHF7PFJ09fsukA5TI4QgXTjVkJpATiji60Vynp1qlCUGC5h3YI8cnuj0LJ1VVrpOzCG0ltzynq6tFdRW8Vam8xumQQanLBRwVhFxYzp8XxWFUAR2U3fM2kJva+Ili79DBP8Vv4qS8IWk/G45fPnnAu6JJPqFxdvHr9CmcVVh6rjJs1uz18IRyOoWsBzEyAd1uoGf06PJoc+o3DKU08moyxeUFJcuAGUoCbgnUwm0jB4PsMvkbI8MXcHnA0HKDCKdoJfmq3qKB7ntDBk3omubt+BSyCaZ2SqJtc6xE7PzJ8goiBJ83ATDkQo54IRldOZ0ACnOsSCxRXMBVZtHDaKxkCqGJ6a+BjI1dVvAEXdQCEWwGUyMB/VwUxosXQvaMmp4oWmQatvXplZQe86rpZI3dRhXtwrGlHYFMIIPvFb8XbrnkDcdpLcQs3aNpdkfQDbmkk+8AbgaRia6d/IHbH6Dfy//El7NNDx6iRFyuDaGln+lJ1EK6Z3//x4XIX5J2Y3/X0x0nbCSil6EhIAJGQzFLUrpFKFkl320M25HGVTTRQuGXxiti0wiEziQqQcovSMVCfQk2i5Xhu8LaJ1K9X8tcNlh2RFCJbmzOCAQDknIuNkUVz1tDun51xDvzzyyu0j+cBYTjbeZCl9ZE+WIQPFCxGsD+JhsZn0LICH9ldmcabZz+kVBWV3u4RpJUGCSnJENZ0GW5GUrAtbe+WXDYNL3AW8BI0SgR0EDZGD3wbWLy+U8eAgySqoMHfVgABeywaPQEuQO/rFy8G4ynb4zgklrP3X716NeaDfpwv2GgzXZpay/lWy1z3Ayn9wZjpB0bygDimOkMaYxlIaKCjrOEdlq951ydn4+F4fH4xw+kqyepjGVHMgInko/eDkbayf74Qaa2iCfObSKRHFuw4Firai6RBp4JHJKoQ8SlJ8ZnNVndNCaWIf1FjSZKrRBrE1EqllwAS1pE/gKq8xSG2tQa6RNIJVN2Gjl69zkGsEWnzBSAVGzcIpot1kQ54Rbqr/DR7/tteuwBpcKMFFrhdsU+NFNr7WRA1eZHrvn7u8sjZ7uauiOyrdPI1sbvy/bGlVf1cm2aRnPyt2Ximjo6uUQh5z46dOztLcx+ljor9xC5+51Mb5+3hziJ3JnYw9gHqan0zdKw2a5PdMeco32DGRsrbECgItxCjYGNY5cxI3RTknOeoBLd52S+j7+yy1Tf4Ner+ZqwtFtCq79rxcUE2ssscRCVD31JLWhY8OIUBebWwPAkU82DlaJBjuZkkWGUaLDldg94xP9yOlosvnxzNrleLw5P51RwKDkY6YZikk1ejkI5FVkItmsWGVtclAJTarVoHiDzTjJOaWF40Oe9UY4IyvZAZjYRQIpZZeR7JTLkGooucFjeAOldUWDMw8GYGW7XWSy1UNq0tZ5r8vCtkb+T0Ed7hvobFi8UM//Ogh9/C9zphCFvaUp3buFCl7jzzPcnDFx8/4SRsjswgz9FmfW80uXj6NESgTcBC7g7HU/bs4dJgAPLFEDUan6PiAwouQaDkh70haCw2fIDVpUgHvoM+m3tmV+tHHOU8OeUEZdsABb7hrFDf6QRKpMsWBSfGD6nN0iDpcpYBjGoI1Z4kgGHTEg7b6F74mw035LaEb9Gol/n6rZyGcfLNF0SpxP8mMlPIOW0McLQun48Y3L/vymqsQNqGpyGf4ZvmzNFzQE7g0c0ArY7fhC5dfukMcvSlajE4PFqueguaLLhl9JC1YOyf0tjAlxO7eG5MEGFCKOgi3VPlX+qUmEJzd5UBjnhVtivSRYQm9u3yT8XrGoWlEeKEzHdtXLqAc3Rh5kGpMfjvajMmxL0AqL07o28kiEDlebM46fuJmkAJlEhVRXbDn3qUK2jsMClyEL8oYbsuuoWTZnxhiI6ECxClRDurpgW1wMr5k3hRZQ//P7po2NfwAqp2XGmrKP7CIyJcI6O70ZRbMvJIe5aOUTPyNBhqpGB0LVyRtjmtjfZB7RVMMtcj+tjcRUj2zGLFuC9b4461Sj6bp9ubpSpbpjIjvX0UXezPdx88/PbHL3ueY8lg0+djz+DjhHurhUhhPaxu2UYb2gu7Gos0ADYRMOOji3nVBQi2OpuDMUhRaNl6SMHK2RDYCmjdvnEtB0mMTrWIioRzMmZ8UBVlw2BPReKCOiCPQujqoF+7hqUedRJKsZXpcfRU8rH3WWuagCj+8Ic/fHh2T98ovMFF1e9zEDMAcH3QJdk8yScK+SysnNBc1I9EQSDDb00qdgl7HukRHIcBc1gJvQ7Mvcm901/+5a8fn57N8NozcnAQqT5xmiMtl+aEmv0uC6ok1xMrSZuKdMItTxGppIQOHnOIEm9y20AB0A51Pq7SydjmTpK1qdGbPR7VDOYOFrQX1JmRDJWSUrsLg0WD7C5NoxXxoh6bQ1BM1pxIB3lqEwN0tFZDAnkq4lV9ugst1E5Bi1s9bh+Fk3uJPOURCFckmc17s1TDEdI7uoh0YS8dAmVCCR8ZqmRzpa5ibl2t5+2BPOFm+/v2nJ/tSXgMYW+2wI3yRRRJdoOEWIwoY4YcPYD2UNdscBG6S5+c3JLxbgv6Buyf+5tq/hIFkN01ezAvmainEGyGRhG7lsT5DaTokUwgA0yqeHvt5LJJQIEQK7C1LaQDDk8rE50KCx0+4xWlNzBIss+Mbb7EOVp+dMSCUK3JUKFN5rHJqBWMc9+q42Ndw1fLFSYeDgLNWJzU9kH9FhYAeBBQLjFoQ1TVG7EjgTwKM6xg8VRlConaMIq4utKvGYSCPW7dhHOLi1RsN3Dl1FoxIQC65hPa6+XVcDRYzlh55jh8ujwvZM4ZfHBssHUjCtrPWRW7hNHVyA48dag4vnz+ggwyU95iHrO3+ZAvsb56+YIzSI/Hxy95IZDRwGfuaca0cJEPVlEaktRBOqrXDATcAGB4yCe73/nce+9/8UvMUch6ydEenIDBeRyT/tXiBTyUQ8x8tFMCpWlef+SggI16ZyR0V4QofylGQj2FjmKozgNVHzoOqh2LCLZFheQ3BRBtoDYH7Ub/WnfqVzULn1Brv6Kg7L0ZzJOw/8haLF46AXpbojVmqTCIgkeDohEwTh3iSll/Ekl8V7WJ3YNUab6EKtWV3UtuOACaKXH3pSWj+d37gRCNeIu7yUYgLecbWd7j6N3Ab6TaOT4NkxuZ335j79pvy7fkFO1qSlGnAeiGKGWEGO2MruCy5Q3YBXYcxk7UCFdK+ZHzt8C8nfzpOT/9aQer0GxuW45+xrIdECI0fHeLZCdBAWr6nTO2xtyAdDuM+WWlGaLjuJKIiYpWJRHt0KCB0tNM847+QEnz6z9V2Ezyl6vagUcVAOJT8WDoc15J+njIZH1BUY4HGUxGs36P/c6b3mi2WvMV2/KT+8rF0RFvE/a3fbQdH9M7ZkP0ZPzRxbPD0XTBOlqPvcOSVjXzI7q61K2P0QKSmopFmj8JbHD0A9v4skGHHa6FqWUB5kSfVLwMTqTN3vGz8tUtmXlEToCic5x7MCZQL/6M+Tn7KwAEeNcGFSQ2CEI9ksZXE9iIsQAZ4FglU1QUKZKH0mJA4n7LSzpOKZjUPfnoY6YgSOSYPeE4CHI23MPHj1++fqUK55Aj5v7olKMhM0HOer66uBi4WCjY45NjKEBZHw3Hh3wXeLV89M7n3/3Cl3FXHwzHWM0cvA8JYm+zbvBOnE6Pnz6fQTxVR82qbOFPxwEi5Be6xnpjZEIgmMsN4UVTSrH/aIqMQQJgsyDqOSyN1yhNYQkpSW9OS5glnAnjtRVke7bFWJFDTqOgpdLWN1hBF4CTbF16FyELEssVUFKSoJ3mZieHy+AIzJBGPvDnJuWJUYRoha42gFUKwIikkAldhnpatxXfuxZsH8YYEiGeRlyNk+5PGykglWIrR5fpFCCbYuTcKISF/4X5XmVEC0KBvXVbiZVh/1FX5FMihVJXqosU5ncWbIvQmkos8oQUYSlDBKYBbVIdBr1MV6UL8PaxcorFQb4/vRa0ItvyAzLK3UwCdMs1uJAVfzoh0k7v4RGtXw1HfvJwJZGCdrvMPAoi6eijgk2c+QeZy8CpxJTFyatK6nJ2kRI08iDxfsjDevxwCC9oTPE1jgev+ejLig/T4dLo00yosfV8NT8cvX51vhn02KuN54PVtsmIL96CGa88YwyWG1FIdnFoiUCjJqsrFWLdlSqxZF2rU5DtxRBuovSDKVED+e2U/IaVlSLwPOqgVUoGATpHcWa9mF9cXz7HloXOqHi6Px/nADS1+h51PGnkp24E0yz8oJ9jz4YG2Ypn3y+D8LXs45Npn1OLVB58QIMG2A7waByfOAkk32C4WKz4RM5ywacmF+PTM77IMkT/Xl1vFy4UYjMfn917+M7Dew8ecose54Mq0YkhR5I4c9u+Td8ASc0T/H+Kh4qniO0kytvgmCuF60Z2VU5AqccsSYr6nVEdaLr4aSNbnyaQu9VCHYQqfutqLiVNZzc6uq27yVVl03bAu4EjNfD0dmKVS4MlShYliUBpBmrdcaIotBpsgqq3BIuIeBNvUpK6n2i+PWTqUZvZ3y4lkYaBVWjHzobLQt8PQdYiFUGtFQURP8TZETB1+LNf8M04GSj8ZvrPLiWVK2ZBQ0qysUlFzMKgygB9jTBuEVpSHEW1CjJb+NN7HnSnVqAEXwL2L0dtEId+my6tAmeIdC3BIwLdoCJdXCnfsF2aY3HorupcrlWK4pg2XEnUdU9pRF21o8+oQHU5u0hVmlFBjYYw0YEdGfuHnNb0aNi7vJ5fz5eosd7hYHPA24O93/vk6dVq+/7jxxims82SI9Q4VvjSTy6vRoeseHEmcmPs0e/iRrT92Armjo2Owr2IJOBxxefK8yw2meJREBID5uGCHgu3ihg6oncxksjOFbah2NNxJf6A2dj6arudcXAmC5AsBdLRFss5vIuVjQfFF+7lFvIGSzX0cCIJbLZg0zEqQl1MrTDn8vyCB2yU46tXHkuKjot5ymrJ2dnpq1cvUXt8Y/CTZ09PHz5kQIBvLMIu+LT64fDk8YPpyb3Hjz9/enYfKcfOXjjuxVpZc/CszEfuwSp8AKQCgKsEdxONgtUKMjwuDuTqBZxb1cEj6ScRJPcyEE83MpV/UAZf8Z8Ty40DdPLXfSAIhGKBsoOVW8QJ44kVB8UqMwySZXuCU6gUo5pKCbwmXil7sNuE/NpgkmNmkNLBHwYHbVvFdi0Kik36ZTLI7NFr2TQK1EClDE3oaupuiSRzJXgN46j9FrZdUSOimL5J/orXrYJqm/nmpxGHL/DVkViAhU9cGD+noSSpI8qPhaCCNVk2ODTYO0rD+2l11pQ44yFE8ghiOOuS8LP2QTvk/1FwkpZSwhIgCpnjyh1XZ/1RqdyiJioPV60IPTz0V5pbAaDNMyZz72F4sYD8EEZXBGS1uOg6Ww/7T+dGDShz6BcqBUZlhu0VAS4REcCAbjFEC1BMhQxqm/npdEJXfnmBjutfLhYvrmev1usnF5dM0h/hh+WtuJnqA0OagQNQHg0R8spT3uhoxZUKiglcb/C1IaxhiF4FEfPdFm0m1uKU6qBaCN8p5Dyq4QqeMWxBlwq4t7q6fLVdMhyuDrZsbnOsAhhKWYPUDubZ3OCbKrlgUR8s+Nir7HdhFIqY0MMgzFnGoYvLc756gt6gLoJsRK9iUCw5omSkuYQ6HwyZavDmCUeGPnr3vd7R8Ot/5hfvP3w0mZ5cMyPZ9vlwII6kvPACq5w5yjAI5GuT2S8BVBoL2UDdM6GhDEMvVvlgxHjMQ/kSHnoTzGsg5NaUmwESFDaVA8SEd8gNMSpV/SkgeZKHydIA6GApRbugMMIyv4dYtUeugpgpSlOTvVHZwaqxUoAvwgYzV6B1m5jKuXkCX+EwGCpcgQi7o6C5E4g/pLe62PguNJvnyIYUJRssazJUTq6m8K+A1xh8A8gO3H5MDIOj1zZSIqTY5GkyBH5TEoybWEPMPsQ23mZp73/Gv1YPi/wJZVICXQRVsqrFFXZORkMgTXFshly5Skaudyvo8IKnP22odgIKg0YDywGlZVr7e2c1d+LQAQyUpjwqtVPE9nCOVjjihWmHJl17aNhDjr5UWDBwPCyYHNrKen80bJ2YH/UmYxW27GN8xgYMuzR+SxbZaQAPlQQHgI6YVkYU+grBW1aLYhoG+HiV2L8lSiiS3maxGPX7j9lXsFwO+bjq+OzFxdWH3/vwkm1kw6PT0fgax/HJ9GJ2Od0ecT5fj29a93HvLnocrcQIlDZHVQIdu/rIc+gJcphuWfqGqRLUTqb+4033etm9n1etQUsNfcBqG/gsoQ+U06eajoUCDzDUDe4h7U+qZMffdHi4mT9fLs/nV09xr6s2/HgKL9Ov+B7Ci49ePH782FXBzRKLD9MAZmGkugKSI6LjFMqMBJ1AD+/xYjtYz19ePL139kAJ8ew43Nl8Cof3AdkKp7m3ORxcY+ZPJgfj6fpo8Pj9r/3iN35lOL633LKJZTtj9uHeOFhRw+0CPvPVbdZcaVigDNFHjB8JeKodl9hdw3azgwFTGLboXV1cTo+PGTgZOrDcm04fzxDrnnKWYipIdH2jxXnoAIc0wAI8J8gDhJAvyg9kyJ6Gh3i3RiIGBOSK8RgFybhBLYgQnZSxx/kaEjtAafpJcpoiAhgALgaTzHPEycCcidBUgaJUlGlpABqElP7PNcWoNFpVweDMP7KDIh0BnOwmFHFtQsy5SrzQw9CKAD6AK72RcFJ4WukNu7ytEqBTmPpcyF4FEhTMI25tIAqG+ylMVLlVHnN1kG3NZ7qflpI08HCDi9BBFSqCt/XZU6lLZChdlUQydjWaS00Q8G2eFh1/qyDZ9hO7dCJvPkrOHYEdpfZEW8DJLsVoJsZgrhhfzECxl9nlhcnsl6x7Ob0y8/IO84rcraBvIfcT34pdhR29O2b9xGBvFYSSju9Kov51HMSyEsW0XMGQ3ogJNCtQw8F4aJ9lwQj/ARsreCmNnChqbWEsA7WKy6hIMP0OGCUvdi8UdDm4Bd2g0LWWIrUXAFqBNOBytX8ap1d66rSJDBbsJxuO7h8cvn98/N/7/Hsvr2dPzl99+OxZ/+wxH6WeX189fHDCfjRMU12zGJ1ooaop1DV1Nhw1SVWhkerRqePxiEo85O+gx2dlkEs8E6DBPz49EkNPSUVouHJLKQRbee9GU/F1byCnNgyPtourl5vF6+fPPiaLLzliydsbfJmesienJ3BbSmNT8yCtIBugG0ZlDHOPIF5Qrjic2eZxOZ8dcdoGzo0cdMfnS+gi7CSkFL2PgcGpEs7p0fhwOP3qL/y50/uPLy4XDnYMTfZeBlD7pYwRIfAHgL2e9oDNNpk73hJowjhhOZea3YY0Aa3O7PLq2bP7Dx7g6wdKbecp4QncVoAbEHf/QGGqgx2y1ED9kQgIEZs20PAow6bFKKWWR3W2WqPRG+YuMELai4NNA1dZyh+1tHlLGjuZLAiRNNKooq7+2DcExD/1nDeyKxjvRyqLmZtHBTMJldLw584MlXjrUUHgClvAnH8V4IR9pJilUqNXahTZM3lU+cIM4gpUyLkBnPQbaDZVkQcIPGn51KHwlshdQN6S9dOSIUFMCeppTWP+sAmwWPgSPHYjm0dV0Cjr7NwgX1G/D7SV3f20P4Vx2gC1C+LKHKoh66BoARzTKKYVL6TgKsAdyeavIRv19XgSZihoDS/dGDCPdyoiC5pCpMoGt2TwzFADL2mwO7X4XObfDJViqySYJ4LRSBj5Y24pS8gN0DnFjeP3OF/0sH96sDp+fHz/7OTXv/3DzfTepQ4BFSa2JZ5VRBrViwIgEQtNR22jk1ocEIIDzFLnsKzTU78jjZpRB7ovjDgiDHrDg7P79yA4nwP0u3lMFxCaKFBlU9w6oqiRDXAcCjjqP3n6Yru5HPEmiFTDJJbs8jVejxJdcmogZxjJpUMPDgVCN6SpOMMonoIP3ONHxm+3L16/mhxPeT0wTUZypjZ8QUbS0K/qYb5EdXz/nX/lX/0L6+1wtTmanIxYJ0RnpzcDQy2XdoxSd1R1toiLGqMU/nYKmtpBCfQ4HIQiMJOmpRnQ0U+fP3t47z4nerBfRA5INZrf18E7Tnx6xEmBtmdsOrICJm2nVw3kAlMICkCTB3ycyWAXJPgQtNqQvLYsCVybAE+IATxaPmC1iutpiu70bJdIRJEI38lsCwAg14rYKO0tKR1A4oR6up+h4lz3UavMda0iXVkiN6hos5aGzlM7IHmc5HM1u8s21feqiXlkQ8cDTp9yQE1ogd39S5bmgeL02Vpz17/vhvkZU2GO5n+sCGQA/PVjYDWjkf3infaSypr1GmzE3TawFuFU80e2za5jBKztCOjiu6Tu2Z6IgP1echPtAO4/6gDuP0W7wAoNxsgB4gq1SGSYonMBVULcOtw1sUC10fTX89nFxRVlyw3tQwe6YGLXZV5MJbpTuZZYR4XZO7rQ4dOldJH9R8RtrQoBwB1okuQMF5WBusGHu91MtmtGjn/pq1/4O3/4gwUDzPrgZIUBiZSx0kezHoz6bN3zsBHFGXp5P3CFS4GgTcHGNTsitKQuqiqKIAHlTA8Vve22TF0SOeGPZTncP+d8B3A2w1kEpdjUdAQykqHeq0bTza9eLxcXgwNOBIVNOCP6i+trKgE+Rbi+fv0aF8dHH32EYwJQOD3ACUC8OaK/gnf91GCqcmCCzPnFK7Z7I7Xsh6My8pN5vlzzOjZE4RvAW/zi/PXk9NEv/tlf6/VUzcCgRtQvSsa+LYbuA+FXbtp+EKi/HF8BMyUqJQAWDEGmCvjmeVYmwBloCoAO9NWzZ8/usSjJBwxDOB0KFU/Dc7sLcMRgU9p2UXaABQU0rYo3EfKDB/monXzcdlyq5T4eYT24+ozqVEvva1i1eQUGYiIOx22fSttqDPqHgqISMsQcaQu1v20RaCi3l82sx4UShhRGwzZqjvTukb6XvZDsENsUrNu6kgvcCF3ZpEs7EeqrW65dTnM734H5lq1WKCuoeeJGIDOQg6cO1diZsBs2xrgptiehAy9869xR12DLeGgM0MGhCrS5KnkH5FNigd48D7C35q2cVSFNhUhABQ4/dE6Ust8jRc5jR7ODCU0tpYCjSErdqOVP0oLex+at5H6GByUHmRWZO2Q2Qk6c7QJc4YdWlT0bk2x7dX6NbrJzapJWqBb1iriUTqcrt0/3fpum30t5I3oDB7uo4kEufpx8G6XV6Ip5jRjXoq9M45L1W3gHh/MH/eGf/8rn/tY/+/2nbGs4RXfPeyNimwGv6/pZFL8Log5G/6b7khQNHfPqNjLiQhpyw4DQPAwJJbm+V9I/HB9PJyfH+Bx8cyd6jpxMvQVLZ4F1Q17lmx71Zq+fvhxOTuAath+Lg/IwPFfHPX326OGjT549oUaqu+Qlw6jF+WzGPrlQjcZzVDg/P3/48NHLV88s6x9iTOdDmRzgfGBCs8pXWgbTh19+/8u9w2M6O9zyAy46T2nDdC3YFzaioWEGIGhOFUl1bxkcFRCjzMcyXWbkT/UAG9BPcTBY6NX5udZbeAXpUsHNXrh12z0puzZUq1P2umgQc0K+C4gruo5s6HSqdvCNIkupqCUAtT2WKnLXNBzJZoMEmrptzA4NI136rkJVuUNNuZuTbsaKAEQ1H1nIhUeu1yQl41NHdBexnjbcjUT7tPuVoCKEq+2j8jUBPuxfadlqPT3Ozj7MgJCbJ6KCxwvHl5PHuwJtCuY3nsjJmyk3Ht91Yzf6MYvsgwHXarVcIY8urwFtN3I9kM0b2EC8yc0yiSpASVQ4CRStpqg4138eFHQrXfJUbkiwoSSAWyb2eeSeL53K+l1rtR3dzROCr3wRrzuuQEGhk63jV+X7DFdqbnJVrIW6V9QMmMta0GgIbFIcEDpOWFvbrCZgu1l+edz/H/7aN/7mP/zdD8ev/vwvvDu/uuCcisnBcoAtaNkVfQgw/GH2Yo3Z6aFur5KKBpkWofZpRxR9k6EIjX91pfl8dMTi5XC1mONNIS+ea4Z4N1XBsjWv5o0XfHcVXtmN2Niy5O2+6znHfrpIS1fCNn3x8sU777yDav7www9PTk5IgQnMCXC6YShSDFRfn7/+wvtfuJ5dM5vhlgwZsmwCVShg0LLD0dH43uOH7845ZYN3SnyrB5sannFEtmrNnkvJiLZ88Lu6WfFF3p3L5gkKGmsQ7LNOiGIklTqQkeoZXvHX42/xFfwRxvXFtZs158v5dOCXd6R8L3AjjndwOUOl6XowbHEKA9bySiSNlgTHJ//geMxjEgEH+Y0iMnfIgsPAairf1Rf8rQI9ZS0Ju8eW4c70QC4sYqQ7FnCrObL3yJ5SiAXS7tIlVuauFJHiYWUF2V2ZXYzEm0iBaxtoYKJcmV1UpK6kdImdXm5cHCUZwlSTMQ2Q9luKOLWXJO0QIVb8eKMpb+S5dXMb/VuPf8QtpSUsAVppSUca/la8vcVuXl9IwQfIO2j0qVjPZn0b0M5+fFuGJv3tEG4XFL/27/azP7r7fZKI07SV0uHJbUkwNhE9c8gyuZtJzYnyQa5wUcIp2pvOGQEQ6xIr8sNJhrt9ISj4tyiwjvwVzYJweCBXHKMA133MleemIi7G22ACVTpp581C5uashw3nq82wPzjtb98/2v7r//Jf/v0ffviPP/zofDO6WvUv+OqI2gbc3BoBzVTG0icmj3TZWxqtbV0JLRuaSkWk+eOxccgs5wb3pU95N+/e/TNuMaepC8xxaGDYj6bHOCTuP3qsCwmNzFsq+uixoAVydXnFygfLjz/8+CNI/urXv2bvgvv4rS+vyI8rhmzw9r3PvXdxecH4h1bF+4z2VafCe0dPrGA64HB0fH9y9og1XPaBMAbwmrw9Ep+JRrCGVQ2fVOFfdu9BfWOSsIJoT5Y/NDAc4zC9bGZilqljE56oH204cxBoBHBjpEFOINy1ZZzXjHlRVKQ0IcyTxfshukI+w4gK+Y2VLw6ETs3BcrVLzEHSwyF/TQpXK5F0oJHKlWG8+0sVbS1kTSCxgrmV4PqPNi4nCL8OECz2EohXcJRobvllSIRW8JRinCFqcwxV1APo5o8hxb/2FgEXwSY4KHXB6t8eQDmdVdRDPpc0Ym5oDYb6NCtChVLDEqDJ6bCOJbJNqeVfVVJ9rSrbw2CvdgjK3f7TT0cQDuyV//GjoEkhuVPCCtYhFKuQTsOmUFQzvg50D/+klAxRQSqK5k8MSrH8CAu6KruF5C5R6htqusSSqqZIS2r39Baou247gHc8RHraVEA2TGcejWxXOgJEQ5MNxFBiyBcUor1IiPri3Q2NNKQe8XNuG4DCSi9K3+EjGyodagIWWXjUVqr47t11yXBTxCqfUoTGtFgsdGHzpMWWp6kU3a2kcbSa+sHlKd+ipszhETIKBvfHg8/NXr1z7/hbzy8e9E++9hBNeXS9PphiQ3IUBUK73jyYHgNFkq3T/iSZhqbz5M6dYvQ5tJF1S4LJLSH6QxumwaXN5vLqyo9t4Bee8mW/BfzK+E8P58DlyeLyfJ6txfoPNu51u8bqZOsH2znUf2u2tn30yQ/Ho/H9Rw91cWSTDOvWQ96SHI7wGl1dX7OHA6ObjW6T8WjpV1FwQwOiz7T//Gr13pe+cDA4XR+O7ZFbDhZlOuMO6776eqRGZYgCfbUrhEgyuhu/83Kdz3ejkaEfvxFfR10Nlup8xLTxxPLeIuQAGJkBEtXqo0Ur4ecmU+Py2l7Nr0me9MfR0vY2Gy26oVHuMllZgp9ov+KA1Sg56RbgR2Fd4rp/uUt5p+60AKXAPIMIYGwUPDteo71KnmlXnoFYGtHqKmfK1q3XpqUrG2AdeWgW9/Rx+B8grYl0m6hEr7lSQrJBwz9yezUxqcQoVUlJziWCDiklPLmSxXEoNFuE6UkDqDIJMq1Fc9orbE+WxKKWIdfhlmSuNEg2Gpotf5YCCx4FjyJC5jp2yr0GjdQAG2zKkCIaopuavdgokmop/ju6GMS2RbIiKdiUrTx1rZxd5v1Hb8TdbEUjKx1MdRFW9HJOd+CMB2SS3sNLt7StE3kghnWS1CAD6oWkCP8IBf1G3TcT5N7NlD+Ju9Dopas8N02yHK+/7nGWpHCDlmLaS7a/6VSFqA7YGzTuVxSdKIC4BBpIVXGEK4iQfANIIxzImD0JxUFD2P27hgFlMODUIZrxgN0FLy8Xr2dXzy5W/XunTy+uv3o2PWDvx3qFDyGvhnc9tAS60GgIoLuoc1B0qgjA2mB7rCrkqohX62Y7X9Q8bzyOfPsDXeZuX9TfZPzw6vXFg8f3nzz5aHJ8fH11zSn5bN44PjkFNl1NTz/ukPX64gI/B18aO8TjjGUKBDYebzbnOLJhmhMLWL24Ppie4K/YotSHk8X6kC2B73/t67zfzmDgQTJ0n9Dkikp6KQdxBHu2OTtFdgaUzoD+xouy8Iw6FADjiwfXYaHwIWzAoBmOPDJPnwNWNnigoNEi0op+Tz9Bh5pgz29ehsYhPxyhXH31Dpxtdx823PO2Dcb2b2F0giX0MFMWHEqNGXMno03si3zuTa/s3Lf6ogFeMNNsVdV+pZXylqvVl3ASSauKCVgGr51WytMGxn78LWBNlhCDUSBHVOoe4BGycCk5GxYlPzqXUONiXTPUOvtJuma0Cpo8lR+624j1Bv8Cbb1N9T7ZBYSwrXyX+DOOObgQQJ6tU+6la15FMe4BvKRgxnhQhFKY9iBeSDaR0FDxn05B/4xJf0t1HXk8j5Cl8UgN2eGAzUaky8meAc6Dz6Ndg2ZJUHuHQX1X1e75Lq2L0RBtvMZn70qA7ZEp26DxhuS0ZfnVYmEABdYOpW3vasZ5Ekf3OJD+gi+sHF6t10/PLzlhCBXzcHKM2cZ3WLAtS1gLjY5ALYYKyDXKAB2hdV7Y7vjQ5LnJHIDQz3gEZrzSiO5Dx3Dy51EPO3d67+F7H/3gd6cn05cvX2Ou+K0pVwKjBWEcR4xzqCl60Q0wuJg9b2RzccUmPLT2cDQRJi+2ANH5QG92vRiMT5ac6Dw8OT19cDY+vlpuRv2xb25mtW/FnMduj3614y7WM1kEM7VN/QPRuDjcYbrEWtS3e4CnHrt6ueX9RVcyMw5KkEMVSGpCa5yH6WEUqXSZnH9aPGGjCXnZR3gwdL+ec/4wmspVMtBbQFXqJXVynD+4FwyNYdDxtJR79UEqphwPhEYHTVkLJoip41BQCiiyFcDCate+dX/z2hUkOWLcHNpV6YHaKGjIraKlxG+C2bsLsnv3Rlsc+K1oRaBI6snQot/lNKLazZyLSFSxrcDYicQQaBAbRSPaW9DLqKQtDkRSGhz2KWySfu5+grxU6Ktxax1GNFYzqlm/KS+vlnNDMumlzuFv9MeO2JqG7BR09+BtFN+Z4c3EdJm3wfhp07vqFOFGjIWJnGn5JpTMcfV4zwiLvdmeiXTa2I8ePWJPFRGf5h9x2ModV7IpTHAvYLmSrULAV2+sqPmbxIiRStkgx0GAd2Gc46fLKbwJPk7ANiPB7G2fNJltDFibpKM92Mu82kz7/Sk2HFvtMmVFupm1nh4fcxJpzfR53U4gCQDgt6uIeJfi85BfiVRMnyAOhlwpUnwLSg1n7TO4IczjV2Bli9knx/ceza5ePrj38MWr57hrMZCv8Xqw2dHQY3s1P3AGjTyZHrMV/eT4hNaBytEYd8Dg5dOP2JCHedsfjv3M9yGv8t2///g9TpCacdCGr4Zz/oiafckGOHaA22yw1N5vvw3PUJEwy7ayD2THNwr9sDfn8bbHZwbPRmNHqf4BhziRDQAu/h/25+UeIbNpdCGZIONpNVzkvDLDuqtHhejS4Rvg8U47njDYQBK9iTaiFOyCzGIvSBBRdMJGoaXjAQrY+N+poNirTo4Oco82GzmioJOtkQoLJBBREG00yeZSgSoI7V3zW0U6aSSVPJXItc0s/ypeyBBHCKuGSg9sCpot1bQR+U5qPd8lhuImkYqKau7BpOqtOFWAMmYj+ZFuuEcUO9KSpMhimpHelEWz4M4TOUGrZKAGHwBmodNIYRvWmDu3SSTePa3U3Ab5tlQzelGqaS/RaOWfQsSpomoh3tQVBOppl3LrKbddkGTeAuME0TXnz6CK+DwIs0D7NtQjBgCBXeShSNccpY4KPulEdn27q/VPR2THbfGFmH3p7FIaLttT1U7Ix/37958/fx7+C4KtBZW5rvAEULTpXrvw5McN7PbV5comYxQTKo3qgp4cp8ISITQT+JjCIOqBQnYC1BwbOWg91hY9A/qwd8zW5Pl172TIBruTo/77D07feXRvzTnRyO6a435CWdvxgAYYQofxflydZt3qJjKgvfaf7uL0pQDAk4soZQDhPD0iUUO9/umDz5+/Ph8dHvA9WHsleizvE7KoyC0buqEFkxPvB6t7k7FW86EfHmCEcc+GQyk0kXlwzCGhJ/c+N73/Dq+joOag0S+i8IIfS99qZ+1fTWDIAqhUtf5N8O/bn5terVZB9JcH4/Hr69XRevsOY4lC4RQDHYBJjdcevwdKwtfK0wi2dBuIRiq8N5L5D1QQpYGAAVasNIO8Ca3+hRxCCgqqIly7GJGqockJFLzS4CBW8MWMXMhT3bXKVimKkC6FbfDpXYGcu05+V4a3paWG8DU5Ckm5nVCl2psmCQJIbxId45pQmHHDw646GyCBX9sC6xHas1iBQJFXnW3D+foVt/Ay1x0E+0AED9oRiRv0k6u9T70ys6v6ZmQvax6Qb7+Om5nvuCv4IcXmfjNHZSCdCDRCDs6NOe/IZdcz/rd6P4VHBNC+Ewg4+S+hAP6pVdB7HILUhuy9RNueRcIQG4PAC/vG0AvpRzKIQAkY4Yheb2BT7Mdsub06mygiB2QGS1QrO9cUhfSfEj49Dqncvhn81LTgwCyPdmXUpU/qlQBhVwxPR4Np37WvAVDn11997+vr61dsjcuaItoe5dMJm23KfwLWxh5i5bEgW9PVFZFoBGsJydx2EeeVWStTk0EL1iO6DuRcWhWpxVXvC1/4xQ+//c0HDx/+4KOPhtsh2VRaR+gvDszgaFBfj+LjVGoNp/kexk86FM74CBa7qo+Onr88v//4/UcP3huMztjXVyfLDfHO9jiRbrPgLROXWLFqoRQaNTv3KBL9DLhi6DN5LglU/Gy+GPP1mXUPRwrePhVAtBwcBiNod9TRoI59xjhpNYIDT3VAo2cb1WwiOlQ3i2xjmIETAJS08Iyn/CYXRndaNTc2bxSIGRIsD57oqeKsvLXxsBLIw1MbNS+tVBHz77fLzXjBrGtTvK2IxKbK/Ux3xW9xlduEnQqmUCWlNFFZ2aXIuQSepkxOTG1bqh6RnxIQh2zY0dzLQ7AVdHvIkrSgi8laAdRHSss0x0biTQgSty7UkkJmu/Wou7VVb4nPG/dd5rdFihyud1YkGkGFC4Qgd9mOkskBc0FObuC7xyiZMK9Iuo3Rzfa1w2FBB+ZtlJzL/rGFvRrvYOjbmXwDoTQKPUQaaFZYVvTYwXhme9Lwa1Zh6EhYb7h/6HysVz199ox9aUy4SQcTQgRIp4ZFLZwGyGJRiblY+r/jSW6CQddUxfeiRwco1QN5vcTZzckPOaFJ0AhkNCpP7ZAlo6Dp98dQfJJCspRqtbHa1e+dHfcHfFFlO+Bk6Ie8LIJFOBzOZ1ccfQc4dr+JuiXkBcgbCyH+goZxnoBa5QrNxlWFZABNM/ow6CteqGiR4JVuV8dUTqUP7Z2aj/0BpsG9x1+ZnX80HU3OZ5esZuK/ZZscCirqjx3SqBqUH+89csj1lG8FIrJQ8vGzF5Pjhz94cvXova89fvcLrBAyDUQ7ggntxconhZh/sCqJFa/aRaAx+cG2aAuOQVutyghM1b64je7NkLOa8bZibzCFGIwzJ9VyFqWP48KN2Ew5OeBJ2xx1ONB7UjpVTSMYuSEyEp6I5JOQOLyrZGQlysRk8QubeSQO/pk/V5/YkLSRBNC6lHSSj1FAS8dAt4WokdJcaSuvFaKvyB6UCq/miei0UXEWhqJupvzrnlvv28MOCjzaC5Sou4oUgFCgSu0yxg6QCcDxv20C4VAqyZYtniIZNISLZhiSvBcYFcbbojavDUyKgfz5Z3XwRFqojFErLMm9VIen8NK5R3BJflZZyGv1Fk4IdVWCJKRdCmwOftMmla3y7sUFyu2uIVJNZdvnmChWEHUlAuGHUihcQOlSIxpbhT3PpLCsjU8HehsI4kDhBkTV2ABL7VKxfYuLo6Gvqbz96bBpE+7+vbtwm/fTn7a5fvSvY2JDHbQh2w1PYxZF5agBXYE/YujWc/C5z33uk08+4Y1whm9YT6CIhjP5CLHd0vZhW3Gx5eE+6TxpGLhrtl2KWAG3cuD/XLCoxSjKpN6Ve0QxC2oKpK946ojUPORIJ1QCnVeHKNQ46jC4cJralkMwxkPtQRTKauZHV+iHg6MxVgd5632VtDr1dDyBNG1wElp+ixEF65arVARThN861VMGeInuYuMwcdy1YyxfTDxfraSvaGVGwlEw+KLvHc1evfvOu5/83jePJoPFjLNDJ+yNgeHsJ8bop8BgwIe5eQmRz26PPOBo3buebd//8hfOHnwOZ7TV0VH0JIcXrgraliDjLmvkUzba7ehbUVYNn2EFO+OY+bLfmTNP8XlTkLEZH+XVwnn0mKHAnaZleNvCKFyI4lhDjTdNNpsfaxUo8oR3r8kRLRkmCL3hDChau++zlJiRlzxNtnCPOBMW8Ibje9pZbiZjGkZyqhC8bWIQh5ecG9ugDY3wKAO2AootTRlM2+p2oC0Fds1PkxM52+X0UYIPbwU416VQ763AI1L2r5WBFKtMpW1x2FnRPKgbhzEluRrYTuiMhrPcGJ5UVdCtVusI8F4gjSRXBSAN2lzy59PchpuU7ZAQAf7iBwluEsvT0Ex7ymZvwpvqGAhBSX2SefyjQhgYgJWzq1y+2F6QgxbmgFsVdEbh+k6K1jOSh5SmZq8BU7D2mdyhEIx/5t8kbEfWDo0/skj4T+PJcXtUAmfdy7Ne7+zsDOcGU2/eavMJpheyybDWLG2BV7R8K5GfEa3ibDLvNVtbGMMZyx1XLMcwbdlhUMJktRlpRQBTTmUxU4rzprIamlm9tiG+6xEfyBoOj4fjxfFwsLx+5+EDtwaqYcSfC+JYOHgbY6Qqr8SKd/2yS+wiVmQ/qREhUwqwYyTI0hn48qAIw2yGkfzzFmwj7ccP33vx7Idf/tJXv/PdP+SNSJTYaHi6WJ3zXiSOmvH4RAfc+przUI+HJ4v5ejS595f+yi/ycuD1ej0djlTYNxmOkPMy+8HSb5n7TVyazumRvnICZDuMJbCPFvLt/syd/SAFkNwK/dE1m7h55QZNgFtIZBkdKVtcBYAOUD2EjlUZxYq+AIoDJPRBK/uIG95SB6pZVCEcbjKkJpBUVXgNmBLCelrXVG2hJpGMgFJfmFjBtmz5oGjqVDJQb3dtcia9Lk2V4NAMuwVmD+xe5rdFC716SvxWqPSSNuI85VISUTnBqvIEvciLBgd5qmXthlkazA4zVgnRz07/0wcQGPtmI8wNnPrJtUjuqth7cjvaMneXbseoJomkcpvfJgMwG5sOTH+KEIZYnghkxHxGNbPjCUo5cIP3cFfXfPzNE0Vd+6fbxAyQMrF7s/Zwt9q9OPyz9kGrUO7A66dg0s2iEp7/EIk2YXqKRmPownXI2iAvivHWHIZk6WWzKHONTEf3CK7j+03Yd9zB7kothXYrB/XSTrPlJTsC9JNaly8Wko75jAMyO3NZvOIN6AEzIL7mhNmmuRhAmP/oqeOD3sPj6ffm58ODzecffJFNEbhN0Bc62KvDNJC5bRRKoZGnklaRW7g1iY5kPgEzJ2GhnTj8IXEyGPm6YrzmxSMqVBRlm3M5Bp/7734ZKj//7uf/8Ft/0Dvl5Uywn7AkMj0ecowoxvOr81ff/vDZN77KB6wejE8eLNe4phl6fO2Vd3Ooax89bkEY648pIf6p0IdCq1qhLyMJVrM9W3FXF4AIW68xjg8PXs5X359dfOXBA3jK6z8YvQUfOBTAIta7HhOG4hRlUKa+4gz1IiT6PGQF+oXNMrs+BJIiU93KmCF5m+KVUmZaEw9pxf+AarNEN8cuJ9kgaJGBdVqUXgIaOaEM1+Ty0kEmqr2e0Ewu2uoq237mJtte8Q5O6YK6DYVytgKJSfGaiNwgFOSkmKUrS3qarhlXFPUMhVRBayLwCJWjY4Y5dDSjoUAa0luWdkQFXF26WqquN69N4RsPOl6Jti3Xolq5uAc4l5aQG4U/401XFjqUSI6mYfZJv8CO9swNPmaHrwOPHeTWoIwMNqEru19XsaNSyADYu33QLZf2y+7ie6BDY57sJe5ydrE7n3564g50B6Xh6d59osCBO4Uz8SqIWHPkG7qYToeORi8TIZEUJKZEn9Lc7sD5FmI1WyOUdgN4FpgdPtbVhfSuZBAOkcSdR/OJjRlfgbJLO0EGBqBwVNABUX46a9HaznkO+VjUmoU17DoPqgYMngSPlqdZR+xtWG/eOR5/8ur5r/6ZXxroMZUK5vJmTI1VK+hRRw05xCtUBuJEKkVEWhZVXMTUdLFk/FwUsrVU51GkSlEByGh06ieVddaOssMU4p34xf3HX4SsL355+f0f/oCVkOno0fF0NDrpHU1WP/jhx4/f/epXvvEr5y9/eHzCGVAnWk/MfIEks+VkoWdHBRVqX8yd5VzNVugplLTmsxkZPOS8owgZ6Vi6K5hFwlM2/68H/YvV9sn1AhubF9NpYCpihFuuZig7btXOmZowx8LWKc4wv+GAEXzlZAcPSGuNV1e02HeCg8ex3NkMDdK0OwiLQTHf4bQCCeFUSxFtwQPSulld3VYJOMltNYHDiJJm83WJLfyAlTsFv8HBmzYErDcpy2/laXJ2T+Ff+6gt6W+zEtNRVCh1t3tZC6BinKBQ2TQJkFMFTWREV+IZRh1dCAzb8JO36RB4MvAQZLmpslx3SGbgqpRKBFDkt8vbRPaeFiY2BHDNTxZFRPZyId2Uhtv8+rAhIuk+NdxOo3g94CrwNhQ8EotqWo2AlECfvmbfFVQr+21od3HYdbDU6On64FqF0wGpKrq6qhISK+WntKAhoKWu6vmTuN4itVCg+WUIq2woFjaEta4MhIOpRsemfXyZ0saVbav4nyZxEmyWah5jbw8dZ6maHXYMCYopENAqYTY31t6adVp+KBsmzOw94KWOZMamQ7xR3p7bJndZd9u+d+/kvYd/9szNb/QHBcXR+i2h2rV7WLJZt4UhUHd5REmgyBBjEx4DJqSsanBsKUUgPX5VEVIl4y2OtYZjH4lkkKEMx3Ucbo9OHn9lfTSeb/svXzy7fv3qcDA+f7EY8CXYBw/f/cKX4Mfp46/hkJ653gVUX4TZGxg7ZK2OqQWdnZ3I2a3nHjtVqgja86hXlrpTjVcEWVYNDrxG2B9978WL6/nqwXR0xrzGMa6HYmCw4bRT6FVIsiQFBBqIssLDmcM+SI4WruD41w20ZuPdclIcjVykaPBko3aJnI8yV1ZS0hHIQjOWDmuZLL2VP+UTpeI0DCk0pejB4EJyxwy1G3eIKyAoJgXU82boElsMK/sbGanoTbGhKQCr8PFjNNCalD0QLb57SUVzEpSHNgAAnJVRWe0fnY+dOQy36RFSQe47BaBghNYdMS3gz/AL6DsRfbNo0Ul6x7038/yoFFsOupRHSGaPrN/owdnMwO97rXRqxAtrGrr1Wzkk3wkyjAcRfkErlzbfT6mgWzB/or8he78PiE22bbDycwTB8IZbEhGWqDc6mwrIsM8xszbc8ceWo+f4s8/ZMLkpVpnM1wbiWFu2SxrFDHGHNTkFl6ylE+kwLqS45utuOU8E5aXkvruI4wziKc7W6cHmxG/oKfO+bRGEvL4RCoubyTvcfQqqjWVnLgavLNewG0THAv0KTNBJDmx5XBJVMlz8gCNIHxtVdFQsF3D4/BrtiYp68JWvP7z/9IcHq9fnV9dHk+lgev/43vuL7ZAT9/2s7HrBep7nT6Oda9x7o4+Cq3qKT0D1jy7m13xsEIZpnIF1+JYNENLBFw7mBz1OpKavbwajjy4vf7iYjQ8G705PhkwyhxjJzD/6wxEx/M56BRmAoUndIRsMRGgp6mK7Cd3HDhSCacGKkJf3U8AH7cLjKpVc+kNKLqrjdTDb5vW38t+60swiEig0u9lUjxrvkb5dKUUoQsu1Kr0TZqd1C+db1e2wcAGuUaM7Tc2LopFISpVSpgrgcCVUvQUwSCfasMF4s8ZWOdorzrpoZwwQmO0QiA2JAWliuIK0QHZrSrbF8ltk3knIjXw/Hzdq54xD6F8MC7Wz7wrqcl4s13OProsHHkY6yhOwF9NXbuJfrA7LG7bzvBKPqqfczC+oSqlMt57u3356hr2ne626K7+TxV1aG9srezc+MVvMTQ9BBvJublMYO4+BbDwasa8KGRKUfFGnwFEZRZ9PKEpNQT1pVlmX+Q3oIlbn5ayaLC/+8Ujp434XiFNAU4+dZcSY6fiYd4VbUQ87fZuV5lQHx8bCC7fuH7GScMnbz5wDxDR6izFHKRG+Rsmse9PR5ngwYDT+3uLy8Xj0iCzq6CAkoqpUfpF7yoCoGGcvBHoItrBLIeoDNsQ10eCMXsT9jSuD1TN1K7hikuI1m+MY8NUYvqSq7gzQCBYDHi/+UW+fzyIOX16/PjrgxL0RR9pjNvDlPU69m/eOfvDJKw7c/9I7n7vvXG6AvF4vgYNHh00sfqsErzBuA7+HUmt9EopygnGeckPA08DLLGhhMDi4VpWS6JjEY3OiKN0qR+DQmaujA766MNweXQzWf3A1e7E6/O9ONifjw+VsjrVOw0PhFE/T4WbFJ9JxviyWoOXEG3XMHi945KFigMKIHnPUNo3v4ECNsk6JpSJaFKTZ4wGv5DwB5xRvGZpCdsRBO/fQDywGXeBm9kY2GBuzSYkCJtnIi4/GGCQ7n3DSoDwwOaCLRzmSWIHpMhHqzbVJrB+BI5UJ3SKqVSiaphJvnzbyLHSJy4/EEXXgSSx3eUys6SOR2lDRZUlEIE2gaaqWuidOLdiMIg2l9gSkXguTQv5BZlZmMxjBh7ATvhdj0/XC4sKvrcaimgDwrfifPTx7eDQZAWMHyXudzkARLGG3gbJyiHJVXtIbBRHs2nz5JTO/xbIuUriBSWgCLZ3O6UqufzpXYE65Yc2/d4W40aPggh1To03qod1TuRuUZJesAaOqK7h1T6HYj6XeFSzy8x1UmR0lMTSKoWBdyLdMaciQnhCF4FaAMyTRmEXrLZJvNc9NZgD7bv4AhADLw3V6neJbCFW34YmOZj6O4jtUbMdZM+vPvB+C0pEYYvHtqna3x2M2uQ1mq9X5bHax6p3gH2avWtO43W9LYFFoX5BSUTTwVLAOWOi2xoJSDSWRH567oY39ajhVqBdzko82ojUI/6O/8uca6P9/9pPWl9F0xTSgskaP917G0q2weJ3nEMiMJogKMpulLN+20y6SFslz1irhcHJVzpKSAh7Wm8383TUJuwt4+a/JEHFrM7eJ/BqCUxPlpom1kJKhuZGqCikkFVFSbV6HlVuh0S+pujBi+ERJJZ0DrQTPgBjTXVr2+4287Jh0C648BNU3UpPwKQXvgPe2WtKUwntbNXdXnhJUE+a74OlsAH2t4xSFjJeDM8EYk9DgHauLjbfZ+Sb8u+j9EQr6Zgu9CfJPLmVPdKpvZLTsRFa3BmuD4IesqHDSDJCjNZRD4svCQBDsbhnHOnnZp3pfgova1NxIQvdUl0SWRJJCT7YJM1qjjU2rnEgqx/fgpZqLVv96xftFtKZTfpTmWrtWJzQGGhuJ2erAJ7lereevL/nI6fYRW3u39V2SG2ynCIEkLjUec+vh/6kzzzzRzeHcLASNNgSLmHpks53jfXDA4Ez93ihLqzz/T/7r33TeH6XEQCPrVCmgd3B+eYUTYzCcTPp+V+WI/VKIKZ985KzRweD5xWu8JGxQoQ2oMEMppShNEvbG0oP85wveZBE3Bw+dPGDFZE4lCByWwnsHLz2VmemIs0MGLPJgrcBUXnaAFik62C62/Y8WR7/78vzV/OrrD+/9xYcTviLOCzynw6MHkxE7sdmKsTpYn8/mfCgd3Bn+LhczBCbHGOlhTtOvp5PJdDzhTZYBH23EvaGVJ7V0M2jQ+GFkZWwVQ5+AEB8O9zwP3UHc7wKCxy1lyZZWkctFqVfvmiA3yaVjgwG0WrCyNBlKYSIfbQnBNnEkqoUKmAqhpYGjsdpkUCtaQ9Dq8nQwuwhotHFrkYSAbhN3tnab0vw21ecHEOBLFGnTwUEQ1brcKpeHDlR3pKf+Jj0A7sxzO5Gct4AphjuW7/KbLF6ELrJ7+ukxqSsalQpmYAbWq3VrYDhrO7P6oUVNTnhYo3jYeQu7m/UgL4XRXvLdCnovw89rFEpaYuECWKZfKBmRKsULXVyPuFakmIWCLg+1peJ7vUVkILzBqjYTT9uo1VU8vTG1IHBMpO2ctIwN6VwLlcDZxMhuD2+A7w2ywnsw6M9X2yseeKwbiCBLtPeSrw5ORn6G8Gq+erZYvub4oRWvdquPmJejLG4Fa23RqLi3dFpVo2iQH8XtX4M4o71cYrubeLoZw13a7NZ8MB1z5AdKq6sCUDtq29TRaHjlnnLO09+g0fiMbJ93U9BUfKB7POF9yOcvX+PUwC/AMEBx9RllRYXP2ww4iJTPqzNviO8CTNTUjFCsRWYwiyImIxDs5q5LgrsrLeAKE/RNeI4SqavDwfdn85e9I94c/PLxmJ0BUMTIJgfUFFvY6CAjLxwtGqdpGo0ntBpP6UhkpomivDx0xB12hugVtyNo8LKsoLXMp8n6QxS30La8/3JwxMd5/EJt0zI7dlXxqAfwKZQioGkSYJPBP7CVs5WnyWaCKXUNKruUSvRp/kEVONu3WxDJsCteyfrB2izCeiNUdSSnOi5N/iZjt6zbYdNCa6v1l3kYeJWhYIMl3KF42tpTy45nbbK/XT3Fn/1Hb4uL8k1gb9HPMF/qCLK/iVbCj77CbcrQm5DhyAwDOdMF+7UrhAiKnmcX1MEFIVMfENIV2z54Zy1kv43KW7bZtcV/bNzTZm3p3e+nw7nzadc8QHkzQ8lmVUAfgx0VJ4L+5f09tUP8s3TBWiEkAw5JwCZdGSKyD1k/Ue5JL2hcOzRIJJgnEkBGA0Dsq/6jmc3sUxpfRqtK4pJjhSRndW9nHFePDkYjDIaeAOdWhH7eo9gO8XVu1hNeremPl4uDF8vF+XL1NBr8aNW7N/JUPJWTSsLKGsQSKS3j48IjVaNXGBrQHYgJBHEsv/o/lOEJa/ALb5EmTNJjXoRHz2TPOKDAP2BzImCRRlICHOZkDRZC/OgIRahGHUgRzqm+fvTg/tXMLd2YmAgreOoj56Q5ssIZt0NgBWN66jIIPvjuzKLfUmVVMno4GY0vrs89pINswGCtTzbHmcB5cnJ98NH19VM2VM8WX3l8/ywrj7YJwAcD3EfSrQsCdPlsut8ip8FddGQVVnVj69Om+JFsWuwdzygFLnghNXIZf48I8VS2kw6JIA/dwmWSQz+HULDSmdmqWpikIOTPssSoLNJIKpV661FVNA2Bbz/yik1jbZEtPPaSjBq/O6UDJIcrakxIpoxqwBRsnlCAiF27uU0EwiQ4z4T+9lC2Tj0XaAKEVESMW4TAtqSOR+BErdw3QkZbO7rDRjmjJZBQQLjCwi7eRbrEINokN4lBpSjgQZjalSt+MOaTbD6qaiCEY7t8eWQGx2bzxAKxSJN/P+teXBKSx2w0AcO/ww8zRdwaKBjsG3d5x+2sOQ1oDYBYAIWMIuOca9e+AAxLXGDsqurQqMifWgu6I+hmBC5AGPMLF4ciATAW9yu50K00Xz3lGtnit2lOOaVitRHMdhMsd+QvgFXGK2WdoVqjZdOPkFC7WpobedHRzMmKvd4sq0OYz3qfWapaba6ZCOkKwJtJ9+bBEgN2NBxfb3qvZssXq/WL+eaTOesNy4fb/tlgyjs3IiVokVQC1CPZ8ZaWFotIp9j61E3EZAEvkGejL9aonSfHdwSS+dHOiBYKdtI/4vMhMIlHKiM3YjN2qHjq9Q1pytiAtTgaj67Z7elhJ+4IpK54VaX85fOnX3r/vR988uz5q0tmE7yrAgN03AjXzuoqKe6gtgFUiFnYREqxoam4mkHTg2+HizkcJhetkoNHUNaSfnS+3n54tbhcLx6NDr90PO5vZjSyVKcrWJH+/Q32i02f/eONirK4nYf/5CWAGqiLfbVcq4BQm+46oWYZJ4lkReHSEjQCETkowgqB9EXApPRWqHwkwqjIGbnpxFAKckDhtkFgryDYcocOtJo2iORe5qjdpuzeIzQIYrhLFzig2oJBvIX45q+rIrcDzXU7KbgJOcLW4RXmNYyRYP/E+acNe0z4aUFR/qfAKGyEtwfZpKHDDYOD73P7qRRMaNRtOoq6gQ5aYkaHokYs7eoIIYBsbyFkl/7Pm4IuyUOzsBO5ektdI0Nq50xAPE0NgSNU/rpqQ0Wm7bHKnP3Gfw03MZ8HQDBPJJ/kAk6kTa9HuaIWWXlj8w1719jnwN712NGeiNQ7nK1pUDQ1mkrtMOTL1cMJR8NfX8+fLVcfzbj2nl0tzzeLybB3n1cv1GF0CN9gCQZiBYJRL07Si4SarYsPfRvxUM8Kn3L8lbtAHRG9ay5GL8r2OM10MuQdD4h2gOE1Gr1DHtLvpjg0kdUR8eUvgB5wqOeYF9g5W0FHBGoxChj3BYf3jQ+HL549+eL7X+j1n7x6dbFa8c3XPtsRKIpuij9XHc19Pl0DfMxTqkNdwTfMYI8rQRWSHbq3+SgitUOI1JCaG4bRZ5dXl0yP1vMvPno4XS9RdEN8RbYqhJoz/Ac4KpuZE4ONxyQFCzhDtP4nHrBcElJBLvATUaEQva6G4PBd1VyEQBZwSJS2RhkVQGixNoXImNQZM9rApy6bCMKyp4UoKbu692L76cHQC8+52rIp2KXXs3IE30oEm0pJtXsV3IyS52aCd11iF6k8BVAzxSwpGNR4ingmTxF8B8yC8FmvAGhZ91mLfEo+Gf8TBshUmDGtsAAIbHn2FRV+MZ0bwwMJpgL/5LUzLgUTcwGLKjWrRd4adrj9JAq6aYa3QL+rcd+S9VOT92t5kxTFvKVC46YNlNJ8Rk9oQKm2Dg8GbEfEVcimMt/nMbB/10f2soDewxkZbuCaERVWfhKHQl/hox4MHnoc5WyhyG3eIqaUPHd0zUSG2tilSwZeeMOERO9ROY7UqwO2Aw/4CConINOLluxw26zPGE76vKnMHkrPKbq/3Twa9iZn0+V24uEUm4PxenF4OMbdgA5lXQ4UUKVSQGujxYKMh8yzdS9BN+xmy/nFbM3AhER61v0xG+glh9w19KBd3Ge2OfajVChId0D7iuPWN7aZsKl9nNuzCw9/20pN52ZGWYzWOhv3FyPOvYDDvlMNg9ztujw8X3hq0vzy4v3HD0fDox8+eYbUAoXdarxLNvQzBHBRux5MkGIZjuPC7TTAOcB5sh0c4OCmIoYHTmwa+KI8a33oV7wLNBwfdhn9cHX90Xp7vj6YHEzeORw/4KTmPsuBzHIo5y46aMP4htc6dwbsitsuBtsLDrAmA+ODQwrHqHL4Hm3Cfnl3P9lYuJXxPdiWeh7gCe2WTgZDNaXR03AlFKh6sc7BnwEFZtE0sAg4fJU9Rag5tEJuhIpSkS3cPWDIjYLrvE6vN0S5C533ILXWI9IxuhjIkLpSf9pkhRsglU5FNC95NrfRv459UB0d4vNkQxz85c5Q8IkA980AHYzvu9yVQzQMAm+DbZeAburSgFqE8rSaFxSafF0mmbYXFEiIK/7spSfa1CLjDcCiAkyW1ALg7g/M3JgoZ7U9mjr9ERWZk6deKNxhXM+7R/vZmqqTA5bQMnmKsOJrFmXORGBOzJkzuOnylAw11S4NXWYHOZERdQhYZLJ1aO3OoAyl8AMaJNtE2IEQJsOfwotUNA2wjz3sI6Q5SjjuyLOf/7PH0U0F3CJtSyMEO42uPqM6eY508IP006D4QtEvvHOx4Bx6O8/kHK8pEnaw6i9m7w+Pz4bj0xP2/faXvPHNmUjsdedFUZR7v3854/PS2mtsfRujQ6i37RI2bzNONCRT706elJLyQhLB2kO36SxFLEARaaJwkcN+XoRArZxNGwg/VfOut2TqolHaqNYND5Shl8N5qcQ/O8j3bjN5i/DDeOjDS+J5x1C73b778CEcePrshWwAJDlAQMSFXtJpJPysVlOPZGqPZeJ4kHNKrZ/hAV5zGGmvf7XYvFxtL/wC1vbeYDjWL4O53WMXOcfgOcvkawfqMgAwBkO425Z565sRAl09UPSrJ4tGx7RiCFcMI5gNvrCknhaG5m5CCGhv+AVnXimCP9bYhjdKSbIlrYnRsFSGNfAfPlNW1Zl4C6N+lSYrieK2NGwtMN4Ih1CAYXXdVUpTW25QMTfB3rjr8jtUNsB20p2mM38edQU7PnQRHu3Hu5w/IrKT6x+R0ceK0Z2kKJ9ys/7IgmXvXXi1D9jUu0Hs59rFazQEIFUzitvc7oxCAt0B7bEbHOyw4IXlFe1YxWhTAvG67mBV7Cb+lVWE7dSWqra+W0F3TXU36NtV/YncS8ObQdHC1AmPnIqHQW9m+8lSChrwqzhamFCXLpH2a59jeLKjmXH1gL3rl5vexXp7vdxcr3osGLLki8L91a98/nH/cHKwnWH2cozxEZ/pumLrw2C7mWFcrzcnGON6Y3B6biZ+CvUm4rmlEvqrpGLf6a+EfNBpNrEw1Pd7HuzpEVsaquRE9Wgh0Y8RpVOs3Gw70Zhy/HCegB4gB5oGRElhUY1i0uVyBlsjOD9kgUHAV7pNdm+Fu/SoHLXjgIIYI72rg/Pnzz//4CHW+YcffXzEWdZx45LJDrYXShbTXswEnWcg1KhJTiplP8vCcw40a9URBwec7PxiMX+16l3hDVn37h0P+bQrQ4lbUpiSSISOdZgC/jpPGCE3m+ERkJjHsPVEQ1fLtlouKhiVSME0olTCyVxcBhQgOFH3j5Ilnt/K00nFjlZpjyGY0YN0i0Ri9aVk/gcGVbAErCtAYp742wVgdfpUVB3d+Fc6qYHTZI5y2WGSWI3DlUjZinS1cEvZJrGN1O2t6y3Cbz39md1Wqxa9oCRWUJV2aW47VBqy4D80dqlvjQBTIUhAHPyXExowpZzWoaQBQ0W8vgSMiJZzzxKjRN4KumQghdJslE5B+99bDkui7k8Bd+ejH6PEp8K+A06ovV0pQNr0/SI0A92pG8RSyvqgyNa6GYqB9bR9Qh4HV3qsOjOlqiBxgpnzZ+cJSNPSxknhuYW7bGgMDky63hxerte8uXzt2/mL96bTX3j4hXePJ+vF+dEhe6JxYKGYgOz7VygnVAidlT0VnNGWc9lod3baiViwqBZsUS4JtFY0D/pGw72YQ2Z9C7EU3JvJPhH6LjsYcN1iZm43k+EAC9NltLATWhwo8M5wSzzM5BE50XWKJMoXJadjxYMT2SvH1jpkEoLhGKqPfL7pyJydOtDdfN771Yv7J8frdz/3/afPmg8XFBXhUtdYQRXMMzMXmvxlpPEVPnWuPY3tfMveFn5ewMyDISc/D/vbswH7/CDTvRdQyoCCtcxogX7WnYPTQ1rAdjsdDK6Gw5mLAHXUHSi6OmmbBSVuidrRtGE1abumr0jL8ahsM9nQBOrdz8xtV7AycCvzKuyJoumUTm4gsFHR4bHLnBLymkxREPEsewueqIlQ1jw1kUwG64IPZEo5c1tLfrzuBXJ2dxblJlfz756YpctYpFWpXZZdLKLXMKZyveUKxMhA97itMoX3HhVeVe/bAFceQAGkuoeRYAWk5q9UJlxTphq223sMOwL2CcyjwCSVOmBs+I7h4h/mDzNDHHueN0KPUmNEiqpJvRIKyK1rVx9FyJOrXJbPKVIF77ag3wb0Vh03b7sa70aoMrdtcLPojbsOTpvaYtze+9s0QpO0V6RlByRUKMGCrftzz6YcOSJO4UpxkyfiX2WJFLsrRe4R0rSk2AXgbPWfdDS9aBFwG5H1N3fvssnhgNnP9fUVWyQfTkffePz+yXAwZBa+vMDfiBLhEH80obN0upVvo2in6mHGHMX/vMHoXqFU0exulZMeFDiqpKG6nVGZno2CPo8pKY7agG84DiUAANL0SURBVGE6W4HmoBMjq9ZIPaNedql8Hf/TpxEznCoREQjTzAbBCHok2V6vT6PYgnhiq/q1RH24VKqqdq+TTDigRnhODReX5ycn9+6v1s9fvcZpAQz9GBCC3sWY1UHh69FQKnqiz39cFmh81Ks5QU5lyTfC16s588rDgeehbtb3h/2HrA3Gvmc/Mm4j3nBBVXMeta9uWw2eERt0sMVpPqRVLth9wgItLaQz0GEGzV6BKBEyk74fITOPSORRF3JrZgNPUs6o3OahmamjIHNb1MULqepvdmuSH0zgQurlh3HB+U1TPLCdxDAk6KnpQtq0ucsul6ozKRYCbOHmSX5JaFHNTXeR1W2AOZTnrq5tcvfbZe0iZG2etr+5jQ+rKGoLU+RGFtK5J7WyNZllnaJ3s2wLo355ltDB467LIfrhv4mJcE8UxtKTZWJ6dBHY4WReHrwRCrKZRavhPu0IFHooGpmRnoUljjRQO6crUwRjQRokwgDUurbgm5p4QDNHbPae3EDDsncr6LbEH8cvtd7A4rPU0UlMR6q43xX202VPGFQZCwhXQpMevndgusxkoBW4RZERrwzd064KYNsL8pyn/gqwBlpdVOoHJj29AzTy8eAEhfHFdx6Nr2Zbvouo54MCHoJBZ/IcJCvyCAi0EkXYP+wCnW/SrTFz0dUg7Wpb9HGHAyC0BtoADPwPOkTwrYix40b1ftQldJO6WMw34yGH7d2/d388GR7yodWMK5jWTNbYsk2HDtEosALP+zFxLqtODbhE4A+2AydQIKKoNVR9jDuodoABB3Tv4MgvZDsl6Pf50go1Io4ehaEWJicWcTR7xzEYZg2oa7OIvjtMNsPDPl/7pjHw4PMWIApa/812zQsyjyfD+/0euwOhEl86HYcBAc6zV0dvMyzDjtbex2baTFhNZY1yezg7POLdH1wfUMHHaVDQpZmt8TNIJ9lKhAAbVL2UnFRTwPO67Z4n3VocsZARIpIpK7hVRweDaG6G5Pi/7cBmEEuMNXORLximAh5F4QBF4akau0iVFbEOx5vagEc+3ReeN1KScPtSFVVqcex2jjvu96q54+kffZIsSwBb2wux0rYliuiqq4uFoaVj0KehIe+jFriycRZrmVkarme/LJHPLFKf0PdDEgBKWiq6AX+fIzw10BzRIG0+EfuZK+h9vFpEfuRvkDcXpFZmqGmjN0qjvwgaIm3oypJPLuyL5I2iN25ojwLVtTT9pCnPdDqaLxhIj/8bzESKdqxEej79cOhegB6rfA9PpodXF72DITu07VoYjX3XqtRz2VmbfoalRnO6y0BLlDpJPcQM2sywsrEGefeEJ3o8ZAVVSyixisdAiNGAgmsQrOfUhvbkdCG0/NX11Wg0nk7GnB+E/YlYgDEqF8sSNy3ao2hCU0dHQ69Sju7D8lO43R6DFmbRjs88jtXOUSboV5QF5qx7Jrbby+v50fAInXI9uzw/v56DK+ZzmoD8AMQ9AiEIOZtXSFc9heKoDYYkrD+2jhxMx+P5xTVa7YoXMHHNZ+ycjjkOaXOf/SIHc15ixB3TP8DHbH4GNflVXQpd55ZgJilOL6YsER6yELu5WGwWHBHOqnr4J2WNIW37hZ1h6b4O7lLb1m743qZTjn9Na9wUULFiU3oOKKcCq2s7raLku4pOSojXtaQUlgBbSclgwi1qN/wTwy5C2xGHXKruEmFf4UVKg2D729zmJxphl1DFGxJ2yZUVZCJyHUDuYy7cyqhVcDuUhN5O/cnv36xhjyGARdh3wNNOEFV0QSORjlG7bJ8aI78SxTwmponqmU1LWtF6NpA4DefqjFQXcqs6a23ber+GfY4AnEde36Brp6Ar0z6IN+L7MN942FoLnwHO7bL7Rd7A0MxQWGX2cpLxDnyU/YFmb6yQYirvA6NX/BRpNonZeHaFZg6UCgMJvUlBAnWVP4R4dSSVJFymt5QG4Qf1wEUrU0zoV6oEmy9714jh8e2PDzcLpt1sSDsdDieoLrZuYLIGHOYjYnK05evXUIK72QrAGJkXFLamH9DbDFgn6LHMuLi6nD1/MePcuPfff/jld+6tZ3NW99wrkZlpoQ2AMp3GY4BTn1YDzpHJcHS14IPavK3cv+Yjlov5V+6fDdZrFh6xMLNzo6eFqyMXpOAPehX9i95DhzE+bIfsJHZrmBYwtaCJ1TfY/sbcFgLO6HCIwLBdLtj23TsaT1kUPb+8PL+8Rl2oehRx9QhHMpEzCR5tDkPwuqOxdSVrwRP4qApKl+P9OFh0ezRb8+ksjs+/WEMUwwOoHT7mqwCD7WjAp2Z6x0cjegyjYW8+m/I1WBYkaYv+wXy7GG4Gfkj2sD/cHrLXG/RwnrCng+P3mDHAHsYJCGLYQSpAMx4RlwRskUO/U+5GRqJ2NL2XPBE/ZdJLIhS0BfgHmRADDRnUvI2fx3wMR2Qu0wI++kRXsuazNMMEH1NDOcY5s8WK3MKFMlDa8XVWJaCgWjaJgwb9JSjQXv0LNibuAg8DZJeSWJU1GhEqam7lyVPF3woCvsnA2FGx/WIwicQSyIrIO4gEdynkcfpPsGlRbwDuA2+TnCBYjF4JIOv3zkjza12pjicuHcFSyhKxdhYfYPV6zZkESO4RTQy3nWjZFmZIfzfi3V5ITfog/fP8HAQdlxhtot285q1gTjrbznMWh+sv2kaAlUslFFRAdyqw1FUeKqScGt1wq6yR1xrta2CZ0dck14BEjFI7Bb2H2p/maHF9jwITmia91QJ7mRKFIxVuP2jvo5EVixLStG8u4WYjJtFfCAFfSmWLHF2Sljw9nk7cEtu6EZusaQCtquzLtnsXcNoOQWsUFZWDFQB5yJj97OXzP/zwD7/y3rt/9Vd/lYEI8xzvVxUkG5lBj8BMGrc176rFOJYADGdEBEfHbDZ/9/FDzgYCdUXZbdTxe5Rca7nS7XhodwImHjaM5YZOIdmJFD52/g08vEnHCNuTXWiUBF7MQeH2x6NX5+cXVzNOxe33h4EkdwPAC4KLZkE948LjNqrZsQLkKw+ZC6NDXtHnDFK/zM0oWEw7GM9nj04mD0dHE0/MJjkvH62WU77hCKvZM41+R+KxbtQN6kb6ub0CM76/PUFfs11vNgNtknWDVAgD6VeRGRXNZw9B3m7fBVjSaOcWStEvIwhhfnpxeqqOZlnRheJEvuWAHrcEW24NagNahwmMDK+0rlRFyHwrJe32RtrPcQJsbLBDq4anHbKqwTuCqpTgxT3lsJMRxDu6Az/oaE1+dWZTflfFHdBMohRXLvzwp5xpL3vWRkWswzziR86g2UYE0ITmsXd2Ky0hwVpUyF2sye4PkCn1p1dBt423RxJRGjIk755CJOpOWf5RodjENdqwcnMnBwndFYAl602L5GlJhhBkP5oh4ziz7dn1yWh8jPXmpkn7nzovIXBoBuQo+sBHjYsWKUDKSIjRoUGFgqRV+YzO+GTCAUU/eHbx/Gr5ObQRokL7NktYCigZY/6nq0cvkgBKbLNDX7K5C7/C6fHxCKUHfF6w4y3VGfs3GUs8lo1aLdmQwY82Hm968ETaQiwH3qHwhgNetHGoh1RoYKUwufGec6714bOXr1+dX2Jk93EoOP8L3UTcDQeh0MRePZS/nQdoWBa6Z3ERtk1HfcgoAcPdZUjd9lDHgdS9437vrD84Gxyccj71tjc6ZCPHEATHR2xy5u2cw9kVatkFUgQceNgmmlPuOGTe4p5qXn7hi+Og4ku6K0+tpm6v2r0gqyJnzDD5swWwRWwq2HCaepHGtDXpDSDFiX8G+MyVRy4w0N4hViFoQyxR3pc5QiPQyohKclZpWqMCyN4Z7kxuC7UlSgjbuz+u3ztR+fTKQKzDDQqJKzdwtoTwLoh2Ve0Jljcwcrd8DxAdGm5zSOEBKx48ZWFEy0IxN5jyNv41GRAeZJW2oo3YvglI1LPODfbg03fovOkXwU0REm3xjdJRfoIq9RXKZE7PBJgF6eVadAFeg0GHTwD5JebbbRbEmsunP93P+enxfTgdBl2R/RQp/gwBHnSI7xfns7B8VpUUWyHBHk63h0FpCa7oL2S9nqbjtK1N26dkBzpMzHq4awu0VICQvbqYINQ7aSR+bew0lPnSksvJZHTMActRw276wn4L3slZTec9cuWPNpHWoJ0xF2xT5vVEmVWB6mgy4NvYh6veYNL/ne988PhX/oUVq10jvrpQJDBnbmINw9P/h0e6hOnkKIPrq+uvffUXRn0W0Jzpo2iv5wv+qJvz7YsB4Ab3xECnA6/z5ZsiDiXODLnlhW5MERZHjoa+XckRi6hdgEsAWwk36+cvX6BS+GgsDMLxjWwCSznDf4Ehg2vEBU8wolYZyNf/yFItVi2Vw5hyThPM4ZXIg/4l7WDtvel6e3p09Oj4bP761THeK95HRyXHJgHMiH2D7qRmYoB3Yskr6QxEM46ABPlDNB0+DXaNZCjgHVMP4GMJfiaKaG5ah3mn7csw4ZBCh4Rum5mg2nX3BcHGttM2IU+NF/fNWqGRwSabZWCi7/siknK5HhClqGVIyXyi0sGTyHg0WK3V0ZTEB48c2pQKnoMZYsMHCZoKClDAVj8igUq5Ejqp7iolsbJ1KQ2cu36EkADA7nmX2KUQ2c/ALXlSgktbUHloFFYV3CHZAioglDUUd7h2AIhkyKuCXSHIoVU8/Sa7RTmMQPcB01H1INJGz2fWxtcmpaVgdxU1NkRwTZ0hhOET+0PUWSxBZll/VkmjmrF4MGu8AxdXmxQPCuroKISEAsoqXmrRbq/KYBEGCkKmmWKSF0kruWqILPT+BCzowqXl6U/6C0E/SmJCdqglZ9sZdqxLLHxpOKIGlqc3QmfQaQ7J2RshtOzSrFEfNF3JAYBPk8SvTX8iT3xwot107P2+EaAZT1GpqGMmZW7OWw4HnhniU0cHjCm8CnRhLYLL+ez19dWYPcBae03o0BcTxcAp9tXl1XJzdIluXq7v3buH5YvnWccKZjWGgG+9K1hRyBKory1+NAQnwz2SDQ5YnW7U9a1wrM71Uk+C+kam8UIJbjn0PcfYfXKOLvU9Q1Fo2dmIqLsXGCycJxLgFXbGcDxk2WA1n8/mM3oQH6lC0H0RJuIOYXBPe8SSB5Pe9rR/+ODe2ewKv7aNCltAAPQ1knh5288qM5hhmDMM2+kA424cwfjuD1n1qWeH9WDoXunT6QSvPJ0wCsBuRCnBOibBjqa9wmLSrUMg2reWKdYXtiQ3LZFHcqCKJUIp7rgSKF6Yex8iiAiRK108ryMyWhBsqWDDdSR1NgvaBkq07DTAmkpRG4Fvi1RFkiQKKW+koaUydOjx4OckgFjh1kVALNhz5TeLJEZ2ASqKEK6QR3/B/4CCxsWxYDxjv2VvNWBfk/ts/QKepkmYUpcOUAOkJL9NFTQBfgPXM0XRqH6IQAUdK4peQyhsm2tbtn5TS9PI4I35RQr/EUcijf1t3FBFigNgS+RPq4JuZDAEdYRxZyNoOnnKZUg2oyFMLPrrqoKipVVjLV/kGw+Tez+r3abkw6zCbZ9ahRyPfe0Nj+w2BKykKUsS+HNNpDfhBlM4Oo1vchscSa29CVShIGhUuv05qPJIGQHC9PBgxTuHB4dPXr64/967VPJmEFBDjnrs6ZOn8ARMTk5PMCiY5mGTYonNF1ecjEgG0I54Q6nLXVkYw+LXpIR3mbh5vjOBoSK6lb7QZ3UPTUqi9vLg6PXri6zEDljNEVcWZ1rM8DfAFsxs4IMIAxjVDLVmdURcXfF5KzZ/YJjLXeJgi1YFMUKWOt26h0HOJuqzwdHjYf+DV2tO/nOqob6MBX+wGXJSiFtT57QSY4lM5TwMQLAyqLubAzM4e2MzZ/PMdj1YbccuffJdsfHwgDM/WBGlf9uYkZb0OuCnmcTK5qJR+OWQE14Xl8Etff6W3EiI4kb7l2OlyUJiBbQvGDU3lOIv44iCKO1uzYZ2imHgcyWOSXa4ZEXBbfFH7PTmXSGZ5FuqMakbNABL/rrSRlUFMNu6yLZDuNIb5P6Yf96si2YO6U3FDlj0lQSS9m5zZwpy6bCpC0r2muQVkghcbSgv7KtgQY/vYPC+LldXmimF8HIsJGd7KQ1ar0g82QN4D0619R6X4K/v6SLzHvoIy+sTi5rOCD+J5PVIF/+LWLVsIbYHRiQLVUAET+WM4iRnlJUflSW0247e6pj52YYg8UdQZcPUNyAVg2ABoXtoi7bNWYlpYxkqd9rg/DUttitLNS2YFNFW2T1NQephOJSXqZEStBTNjx+A4+BQVTyhx7tESKa2rqrIO81c2rnWeHFxoAhAib6tFqA5UT+qhlTDjmAPK0Jn9Q852P88RvEJxzi3AoduqEpcIUSiee/ucj4eHX/7w+8zyX/46NF0OuWc5aDBlgC+3rfk04JgUS+VuDYoGTxXKNncwF5mKGAs1x2SI7Y50AkmgAe4Mb9j7ZF3uJGy8/NLnLm4O3jnGrvac47EumVf+MgtmhfpppOgdgA9HHIu9oz0WDb6HLBayUE7omKAINs9jMmDOAa9w8l4cJ8pgKqPHX7DDYeaZH8ALYlljquEzypi3YCeJ+FxgBIFWWSUY9QNl1X3gMWQwb5ijEbR0vvYCsKOU9Y2aYq0pvUmNJYASEBN4UO/Aj0UdAxs0gzV8RzAmhDSw2gSBFXXtg8X9IzbeUYmsGHyQgaghG9UQnLe49GUokY2IjDC82lFkJYvCgvWouIHdjWhUFwESYZCuokAq0XHhmlrbdD9mf/scKFqGzkh8X3UmlRlGQ5JSkK0YUVldNjFQ1rI9qvzP3NdLeh8dMf4N46Geiuwot8egCbv2iwBTZoamiv63o/DaaNgApNCbjELOo127rD3WRsYRyu7yCo3dSe2idlTCPxoLIXYEZ/8ZEjuUGlB3frd1XHrwa1bob89gHQQ+LQ8by8t9vV0j/i7QcE79Bov7tkzmcsyMmd9n5k8vTTaWFnIy8zKBH2ArgVwIhSBNZFuhdzBUTG2Ip/IPf8nQiF4i3WcRhI9V7mwG+E3rgAcAdJrN6ZWuz06gZLAZEiP4mJTV3okkC2sjY11QAY2IJBzyP41e18MKowplIybeVU27E5gnou2Ql6eXs75LioGILYUBLpxAehsUj48mg3WA7Ktjy6XR9969hK9+ZXje6ynuUejd8BL53xSCn9CHGwuqJVpLwGusmxGh0eccuGL4ChNXbxHHOGEXpRFqmz8eiyWYAKPsMwv2PPMU/jEsIRl53luYiKvEV75ZyfhEUrE9T46DdQfHDFCsMqpKRFNSr08QUHBjL2wHtkr1pynMe73To9H3392jjEJIX4Ahl0ifObq6GjC7uve9pUHUR1OegPmB8cY0b3ZkZb3akTnHmaPFBXUiMPbPMgBG1t6vLiDw4aj+Wwc+hVDD43JiVHUanYbTKVMc8wxvX1vyIkRVNG8ykbkh6cMKqWjIx76qXiEP52yjDrMFUAb8OqA9g/exuaGTUD0VCcVbyrFt57itLx1kYP3J4GPee3bOPDdA7Zwhsoc4OHv4ClDKTKH5YWZQGMHe4TNTUHR/zYIVCKWqHlRJ2cC4la3d1+z8YBHyLUAUurunDdTzQ8WYWxbqBw8NZA0oCDbnuUPmAuiOER0Xy+TboeUQ61KgXAKOu3DyN0uVnm5a3PAplJOMmJiBNs40pGVIGd+bLRjcc+9pQfuQJITwiMo1kaDRgtcS5sXvGSMLcgCAYb59foQm8L+goXL0EmzQmEEoTo9+KkJArssL7M6eIAznSvvNCIiUdq60fCSRwv5Rq6LZKF/A9KZSYndjxNA4sfJ/rPOq6qNVgRPGg428gulmBo2fv7nXQzibyUkxZJ3L0vJZfHVBrAJBFHXRO16TSASga9SbaqdIUW6fM2TqifDgSn2IhoKH2lbslQeipImd5WT1j1YY0OvTqaoFw7jRPrMi9QhB8gNp+mT+3j69//b3+Ag5Pff+zxvpmQTGq91WJB9DLM5DgqPUpJVBmtDS9LPx+gVNAQKllSqWzGr9jxlxzRkEQEVNYaioysOsV5wQobL3JTOkORT8gmSNnBY0pENdUw/sXMZRBFqfKausUQ/ATnrc5DdhBYlZ/rUj6kLmccTpgvaHekYdlIaG1BRTH00FXcT3jlcejIruI2Pphgh9j0HDBSSZ4mg3NBoaHgUJ3Y8feZ6scQ5IhC4R/eQGNCmL1tQKnbt6lgOeeQAUR8lKBUGbhrfgk9pBcKAVT6+FcyBgOnICqf5KFEAbOsE8juRb33QFCQbvZRZAbXJWTZxM2TLW4CDGZXKQOh1kBM1GMC+RlxYeuHpCDQC8KkJciSJ/ypGADsa5oZ4mimEGt+R5V2Fu9LaZzd/i7q9NFF9o7jck0N50lwjbMUTUuoPOOZL6CLetdjCS0jX6cBIn0+JYyvo4mAHJ4fos8CKwZTdSpTQoGpLcvsGVlWP3aEC2TWTkFsG7fWac7vU0rLc6qUgipkfza2ERhKoC8QCCRvIzovwUSwALR+0HTJQI8hdINFe/sVUdKGIwbjB6J+jH2UyJ6BLusKIFLNR7IhVLB0OTaOEU+FyR3rXGR0bu2ZsHxdzuSNSca5UFRmvTAoAf6ZRXPk3iILWkS1KSEq6SJNQyc11l2abU0pFYRH0l1sgormjvTmQVv29WlxeXh4dHsdfKVEUoF4yDnH59g6erZa//gffmj56/ODsjDXGKLcDTqPQn4aoUYlkE5qyxNguyv69KStoqASVGlZJ9tWzz1/zTXOfbLJXs2U9n8+1sulPziRBQEuTwFOzaSbwUGtSbZFvkhFxmiiTDGIQIu2TbQj4dGNMqM0CJwWrhxj1OFKwlBBp+JMLxQHADIDviq2Oh27bWKw5W3SNu/YIJw1GKzSqu30hhOkHHCWFXsZqPK/usJubc/ngpziD5WZJxlhtlOlcFkE0F6nGHEbf7nUfKYreLJKE4Pikv4LFfspxC2XyRAtd4pLIeMGCakM2P1AEt0Sj2JIrZckv72gM5YmMACQLKTiaaCB1NLzHw0+NPKKpEQkdPQ5CpDn2xI5NO8EQqwgSIEIUDlVjGLX22+GutNt5bt4XjW09t8p3zWxt5PFi8AcwFauIDxPqUcVLkmWmi+ruvmc+xEc+mZNdzZbYuewdzTs+8Hc7dpOdBEJiZiMtjDt/g3chjyZ1OsmVt1SRdaZcBNLU9OmYYit6O0sKEbMuHpdSbrQzvc2uQPBH3c0NV/IqoJk0lXaO5GTtYV/C3o7qnU9MLEbeeqwQtaFjKFiZPwJa8TbL7d9WSKTw9rO9+zRoc7+fEx4eT8bnr/RyggksBAoEE8eeciiDO6ZTqIFf7ACW6Jk/58vEULQCmEh+DRWmIjaVM1TLurc37HXuB82gxMjAE9muoGlKpRpdHQWEfiJOdENqcSHR9UwSmTDTizSKu9M28nISBclbqNKnsPho2jjUWEqidnpz//XV5fHJFMx8H05xseMSQ8Ws+oN/8Bv/9NVq9eV33uGBwxOTdL8JoDXm3lowlLqNcysQYrI/Zqc1jgSIomarRiEyyUM7oLrYOccLh2z8gjoe4SG5OL9S1Hyqk0TpjUCDJlHZgCmLc1+NkCK8wBN1g7haAywTZx9Je9zuxClFqKbBx0rDgAAn7WPS4xOpERgXBVh7gvb1VY+v0GKNbDbsRGSrGi+CX/PNRN71YjFgOBj7iUIM9iU+A/SVnujMPGXHen1+dTUcje5PpzHD5nzXG4TSjo3k2HYOTlozNFbhRjek7fQRuRXSCUFRYZO1FOEngczGXLBRyKIpVTJFNigtc0mS3QUGo5InwllwvG9lWCaCdPaiUAR94V4vLUfSwBkSQRW+9jincMUbmHwAAB3NR4c5SoqG0KLnK5VHzPLLvYE7JLxXyIvbwIeTDY2KdJBOJvH4iQKoQrQOugSBdwCrJlOMkaMiZqwOCivkqAE4BaG9Mpbh9vEwOda6VdO0eE5nvpov+aSc76qsNnxITknXnSsAGG0Hzcib+w6YEVOCAxnhSSpl+uiGS1JYqrGTIOPJVm1to8h0y1Z6kPVcciAglLStXTsP7R9wg7x8j9RppRQzZcNapmmQImSgdgHidCP8VBa0pNxmmUR2odDtboncYvD+ox8v3ojN7UJu0T3so2X4bqzVwZu2dVV1yL/fc9JsuV0yuFVqTXLDT9WMDLVTNaFIxjqlj9sSdBiedO/90VyNHDJD9jllqYva1Xlkpw4LGXycuCgVtkphiSrdKRavitjuyx82LyU17g7cHqt4UjdLc8vlYMLRzCocwWpGu+R1ebD5nQ8/fPzO505Hk5H2cxkDETvBiAq6WoNgjSd2NeJYJm1d+1K+JoL/jU9OeSYfH7TFJ1BdF7lhEzTXyys28Hn8BVwujQemoQwcnLg0tIhZxhOyRZGQJ4KLoEpsNVFc0w1nyAAoWEcfcAaI5Not3DblQUhuQ/S1XSwOYGMompN3WLQqKbI5GbpCi+G67Q/4Nq+u32azHXs+8NhKMbjRT3FxCG+zeXV5jpYdso7EB09oOnBH9TLFYDSIq6DasRCTRhjHxQVJVTZPgUiEWx8mwPIw2exyxEKAle3U7tjkurSNJYMQT/AHuXZkEsWEBr4wKQ5wisMPRn2xwLfFfMiZtxk0zbQqN8v+EePZ0QDnCoMSQ7DbEJmE+WEBklgmgDYAipoNJMyqTpSaZOhq09q+m8xd4o8X6SqwWGliwKX2LqUgfpZawksdVgxR6GiWwS/ZlsTfjKMGsKbdrQyD0K0IL9pwc8DJ5PtkVlXNteE1d2jiNCDw6USU0252KEdo69xzW+YGhghAejapNlKEoREzNn5E3OC0rUecGmxB+a+ysLkjZnWNiwss6tlPp6BbAbpB6F03najd9fAnSoPKG63dAKGi6xnHc9KFSeFizZFrIsYrtcndiGZzl4fqwWqfLLy6gEUx/gspQRtb0LHCseuaxCotqGo57lXKqIh8igVJwSPsI8WRh7YVt00AZGrIrRBarWXjWRcF1NFa6+pOUhE1hcKp+/WCrRruGKNRbVmR6NExf+s7f/hiNvul97/O23NWR8/FkDRIEeoJACg0l/SwuUaj0xNcJapL1DTke0qGr25rP1M3C3FgAjmwlz7PAaqYLQSX3ORJlFEjp1ATlCXWQH2MjmaWYT4iwFrMuyRq0AAZsuhTFUjXQtGC4xfrGdnmVWd8i+xZZkcdqe1YMuSFSjZsHIwFAFCmtCyTDS57Gw5/ZqGQySk78BxTcyKCg5B+D5kAMpgu9GB03MU1a8uz4wm+epz68PaIlVizRG6qHUEFEsCNnmWMpctBvn7ZaDqnSuBfyIeQhgM2SRvqKQCJBDi/aHZ8EUyw9FF0QApUlaPX03CIdgxnWifHmODvyVxBNzSiDpdYzzw4Whwsj1b9Jd8xyOjEGMbAweQihpqecVhFPbQ2za0wZZLXIgiuNGnIrj5jG3QPf/IIct9xwaY1RNqjqIDrfa4VeXtNDEFIQZ2L5XZ+NhehlPlmKy/FckoGa9YzX1RlzJPD6W9VOfA7FO4Gj1SkfziQIzma5/Fv5EgDqlLV2x/2OAKvak5mRepnxks8TwT1dawBBBt4cFVB8cyHRrwRKM0PrWevjT8KzGIk5e2pu9H8lFRq+GwhnDEruFaJYv+nlP502LunKJu7oDAnwKCMUuUxGhGu2CR2N6w2uCX3UE08VArJVKLAU1PlKb2OnuD6Fbf09zC6VSqp1Fy0SfUucQq4POLis4TYR1bEc5V14RyBoYCNDPwEcgQkGe35hVRktSyw1JHJgEoeU1ixEzBQBoMhm5F9XxmtA0rZyAGc+eHhP/2977zzuc8fH/MKtAYadFML4oIuRKDIA050ExYDJ0yo1LTQzscDBvnuOE57TEgUGPJDZxYpZJMejg17uZiRX7oCFrhoNCZs3CPQ3MJK5M4cCWxOikKjztLI8lMvjgoapWbRYWzPys9VySVgklAWb/uWFTNZi1kEZ4DGXgp0PvViemJHMqIAEeodLlabCW+iH64vFitW2akKbuHjYgCLIkUIZAPMoqHtH2DFIDBwbzgHdDD2sL9Q1ND2vqzO12jV2KG4ECQ7JNAKjG02WHocIsE+a9wKGKh2OESp6G9kLG0GvlAVysTK9qc3hl6KIBWRCGGSp64lJ8QVX67YjJh1BiYUnEHI9/FcImOM0dJjPOVILmG7msyki7ELla9/7Eg/AJty4CbtOOB7l1gNauoYEQ74BjkDSyCXWBusuOsrouwjMlaRNtdbfttMbe6mHMnUwlU6jbX5boIRk5sBEiPItCMGsp+YYPMGC4O8i4X5fMnat7uhodWpgmwMT2/AgDlvYJ80GymBxlUy4awTFFlLVOUR26YlXpFUv0ULO+bDRHUx/+yKpFsRcLSgHbzT6KkatBAx8KOj0HEVGgUDkRZT5Bu53lnQqegGCW+7oca3PSL90+GkVT+t+JuQyW1vbkJT1mnhG81GEhvBoBfisCXUEbKRVXy1GGivmJJzeA5MKXHIxIRbMtDUiHixEhIUdDiKoolgAjkVKrLpIdyqcWycJii/FfY4oBIUTeCUDNo+tpIp6uRGKNUW9FJ1TkSpOnFLYCWRgc9Wk49ihDQ2koHQaExiMkzPhhEBPCs9toN98PLy9Wz9xS+9Y3v3XTGUJVRBZ0QzEyDSb7D2jkdTHV5Iji/4gEKPXQ3oYhDEu0q96H93wODmxti0HPVSDhWFXlLm4Iv4c6U8lDqPo4sDgDk1N2R3Rg3tSCB8Vb0iiWx/gwAo0UG5nXL2HzmL1SFTLjmKKOu8W8N0BROQE0NHnFIXBFAv4Afcw9GAb3zP2OuxjguPBu7zfXG2fviCClqY/Xiey6F/S8FhdAkL1e9GBMJIwG5q+whkMGJAQw1Cdi+PQ/PcOzDkPwQ4Lti7ZAghAGSLo1zakYHKQS+EoCOSS3Kqbf3x+wNLK2ZrJjs23DhfUxJAKy5lovEYjBmE2A6CixX+2cdjxcsr6Mk0j+oYoqIG1BGaJnBtpf9HRw16hq/z8LKnh59AJLht3XnqLITeAaZs8FMGQIfqaBF+QbJpDft8niiTMswnRMIIsoUDpBh8shd4BI5hF/gaCUwoIg5QKjKpACZahW3yisFsIwgw9WnpY406v6WBGKwxb2e82LrcXs/XV/PV+fUSRwfNxB47OhRctGwAUJESaWOxViRJ+5oFLlaiIuhmGRnolIWXEjdrHCac0Bi7GPGHIuWIQBEtg+houE9grRZ5pW8h7HARThLqan5woS0dvmn/2Fp565VbJq8IKSrbVw98TUkB2ylokn5ug4xLAOOKJKFJ3EcbfkAisr5YzemDyABLBUe8i0HHYYDCWemWA5hgQDqIUbxmNDBRBifQIUmnEbqquZXTBiqR6xTm2tbeRXZFgqvpLdaVN/0Oh6CeUwDYuqXpUT+OLuZGADoZcO5PPrOmgIZTnLM0KgFFgoW3Wsx43wIAiIAq8nj6n/3N/+idr35jzMmbuFajPbGDHddBMMUXc3po/x6LqqMhC0OgBVi80BmcfEsahlEprOCKBudMD5jG3iU6iganFdnJwNhOhvD7PxvgBkMWU1QW6JFWm4EUFYshv5RLp6FG4EOF5CW0/Ox+UTelDhzb2D12OhmxTL+gvJNAoXAiNX4GRpcsELljB7zKDCHLEpcHm5f7sAGDmB4Ny6DNtqP2GEQ1uXFwgFYJ0+Oi9ataT8PS52wUuzfq16dmyFAL8kRQ9AQSdxIRgUlGc+Y5dWswOS+jG2sC+9EZdmHz0g3p84UbSMQQHBQbAZaeaosHd5pKxtvPacHh8IDtX0ztoQeoMpcx1THNPJh+QAMiy4LssKcIgdZc9zcsIYJL8DfdQchhgD4htvCH8oU/V7jhvwyxXIUt78OdLtNbImTqAIUQEWuDFAnNHF2uW3HhVk32mDCZeRoqGL3MojFD8NV8fu0fjg4XKeCGXIwCror2aRHcGyGAbT6bRh+FNjja2eG9/Ei0Vt4ehMu0KL0MPlWpyu8VQbEdiBB4mkWXAAQNMEJ+7Ds0XN6hRQsrEBwX6dqgcdaxaVOwi5b62R/Y/wZffrIEeXRXCL90sS0UCnUBlCP9BB6NRiN4zsELHP6gsEUKkWeagEAngrMyF1mHuzzda1XSaTnlX6vadiRlD4V9fJp4elmyKMuN8KH5AEF5W4u3aGKAlc5wEmrGiGs3+OMFnrsDDAyjCQVofls5muKQecMKxTq7nvEmB1iifn//k+9vhqN7Dx6ODz1SmXGY6gHuurakaXuw5P/w4alGJvNf9ury0hVVsI8CzdooL6o1Dj9hHTLLNyQiYxxzyqSZsaU4hLoDooYdtQQ3XqZ2iY6gKeeqm1RxCxWyIvaHHKWRinh/sZVJabjX8lYXC21EW9JmrFmejEYXoyF+V+pkEMOZjEbhe4PThw8+fPoKQ5ITGIZsBMangeOBUQMtq8EODP7chMNYXfjygyp2JuuLiPQ20ILiNFCZwbDMsdLRPcVFTjzDH5CvAAUQmThY77QM2VoqzGt1adxKhBX0VYY9Xu8MTD/wSPXqlZQjUXDgGmms6kgUUmohjgxg7LEYyHYSziPxrG9360Iq2SgLAIcDpMk3iDCc21ZQF+iIljUsKaAUiOOpH4BF6kglzrsLWygu9INhRtk96qTrU8LNh4HTJDVx6a3ozawtTFqOEPGQOWRHvJjyIs+YzywMXs+WvCx1yVm6HOqCw2+7QWJzzm1xXeAtsLf+ItC6NWUYilZ515WEptbxhynNFd1gjwAaUiCLoqu50GnSS2N3czEXCgBuGaPKak0ilMWn4WIAzad0oZRpR+dnrns77opqNYLLPm/F9+aDT8/ZPe0i+6XvTNzP8Gb8Blo3eQs0sabRFEGfZcagJA0nUyQQSq+uLuXttsdGKDZ1wCZEeTKZkIeOQfsxqaQs3tvMW1CTpMN+dpTJ1OImObVIu6ACovFsOdJoHiSmchYalbHjKJDsFHY4Yg0c7KMOHrhTkCtGv/qexorOpY3IzfBNd0MiyA8Q4mhhChCnnLaj81AbO/YxIoGXhldThphB/+g3f/uX/9yvsuiAycl7hogBMFjmhgKNaGypzfbs7JgIQsy702hn+KMgOh/GM2ulFUgvGuEGcssmLTCI1EG9mwZEgTm0w5dNEoLcBZhW4uVGAjkd0fgPhVHBsoM/0gs4IwQMyHEZzYy2rV+w5g1g3kCYjqYnk8nFhWdSwAyk3Mkgi4H9/v3T4xcvXrJlEUJ5R92VviUv1/BRG9SwniAxFS1CJi4y0yM7JCKuG1uVdzj1KFM/TOJrAfBDRwjKFHzRaT6wFzm9kDaKO6VoAshCCHmgK0OP6YxwVQoUMMIYZ0zUyb0dYz64+moRssGBYkiT37qsjlsAF0SiDUwmEmhYaOCc1e0RDmmkfDwcsWDIESVSaSAD+iMeKyrRCVizNxROZhtpRnBCDHxpDumGS3AtlfmGTEQOZRNdXfxz0kM6+IOduIUV3BPnxmu4VBGIU1mlQKXkofftbfO7n9LFbX7pEAK/WE8IHm81LNa+18eRdZczNm8sVdMLjtxiMzQ5aQV7+sjFgwphIxq1RY8ILYVwEyHQYlpobNUglT1wdnNOXGIzEDtTWYRc4eLAVKeLFdWaF8qNyxhEVdBMW5AiCtKRYEimpKSQB/K40ruxh5BYGhotrIKm4ZAk+r+amqMO8MoRZCBPvTaM+fn7UUYSQJb2CAdhLjIaglRTKg5/2imn2RFUBjO3UtlKp8en9PzKBgR0HANs9RZbgWzILQqod8DKEHaztxGCiEQrFkGjuEw6fNbmpAlESlbmaqRCJRK34ya0Zdsc7S+lwY07u8qQAX/AvgkEYjG/Ynpll01IHpd3RiiYGKOkALMJrv/Ej8iLv1ucGNvn568urpdfnkxn14vjk5Mj94kyS9N1xlP8yUjOg7MT2IoQ4HFlnYkMs6ur4+MpQokSZAIGlYwNVQXzj4uLC/LD6po2OsW1FzQdjV8GDGzjilSnlU2asWZUPcu6HZdS2PwV6gF0kTmh+ZF2AYgoEoHfbtXbzNZLepWfNHRpBfOWXRmozIN7JxN6KFZUn695UYhBgzH7CKceOaHIASImEr3XqQTNTU/XbUxvORiyqEhXpMXA030tNrbY0en0fusNUOQUnAQegipRr5GExFsCGt5ITckVEYBriNLxUhCdeDyduqjfBjkAAoGWjIJUI5ES1a/gtU/JDOqs9a3Yh6KFz/+Fe+h8cUPpI6sXaAYMkPnDDc8ogfpx2yeU4ZrW864vh2c6xg/cUAmzyZDh3ygWH7OELIiClXTASrPAqDg/Wvz9DXr8tvibxJ2PKvCAwhWKS3UNT9pMt3+Voqg/Gk3/hk7h1fV8dcEX1bSd2V2HduYFb0+pPcJMIVDprqbUl8a5DTr3ACcgpZBJZ8GIo9XohVa0cCcrw54dCZNCXkKO+SlKi9Ct+It1rWpAiZtes+NsfFKM03VpL4IDqk3n5g2CW5L4gcmy2sG+w/DnV0HDihZLmxM9CwmlW6FWt43ioRTCF1hJIP+zl68wirEDh/0RX0Q98owFPy9NicqGrgEOx1BoZWAPskPLd+FwD/CFOhfEKiDZCJX/boc0czhIS3BjK9lOb+ZsFTSPNL4MZmqZTxVEbTm029EI2Xp9/pQ+ZqfCKYBhyLJUFDHw2YFwDN5RdJXY4MEnpg6GKAxKQY+6LC+nfOlLX+Hrg8eTY3og8kx/9On2gHPjyHtydkJx7HEqj7GsvXR8egZbSMejDVspJ7djKqLzkEuNR9+maY+biPiTnzySRs1Wz52eAgjhytNwRwaZMywlXvYppbpglzc48NqtGjYJWYUin9QhqIhXF7zevj6dTnnzBMMYfpEXJYECwc386N7Jx1DM6W9grJWKnGiqZPO/DaXNByDsX1Cmny/mdjTMIrjrGSbU6PSFXE5RbTjOhzAoa4hYa/KTIkW5hrTC38Q3gxVXyDNmtPRM/BIn0wl15AltKCGqRas3TVYEvjysEO3c6WiZ4ovgbPRmgOFlTvOTcckk0hVfAremGATpWAdg6LBeHvl2rczOc7Q8RKK3UdQwCfDojZjtG8RM0pKkUGL9g4bMzdIDP4Kngvq5dd1LFUhyc0mIqu7YeKtgeyuTHCcdb/S0YduinVHKHLXFp9zYVDfTAc0GaJod1gI5jQdwQVjRXsu0UG/8Qg5yoz5Bw7L/nw6A89lhgB17npmOM1qhYmRS6uz76G+gUg7d45jhG122Ip1Rw8cB0AkiAfVFoLHoc/QjdRDTfBYJ9flrZ8BP/RuuiqVFWk7uFHTTgjdw/hE3dxZpJfFG2b0GklslMkgCQYswwmOjexoZjFI90CDgjhJxGWTA6Q18kJljiDBGfL0Y7s1ZGHEjGPIpL3G9Ae2TF1dXvFk0e/nLX/4SZ+Ww3s/Ah05pvrxL8/IqHTakQyOn3gwpfX3NG8LuHgMNntuBbQCb1p7Smku2b6wb5kG8IkAr0jJ0M1QjT9S2kTxwoIpqGCez6ALbMKBBvdebTDL3ZOMTRViZ2Xp0/avz58yTaEgwABBeB6oHCXusS73+82us8cTa4zS6IwzMrfSB6LMgYdKfMHo/WW++Nh1wzPKISpiXqYOB1n/28hkm24PTUw7vQLiwQEEe3Y3jEcFAOwMZiQn+uIDU3oOjEf68xcKmVvvCGdiipaXmsx/btLKMXht50LAiQgr6HICwhyZvfHKWzbAKPyCBnIFIAQh1Ac8pJ7B5LUaXVCBlGkklKmG5M+ofvjPlQGx2kPWWzIfIjP3C64VqqNVkMuA0Jc8YOfBLLjih4RyvEaKy41uFZDdx2xdBnTJxf0Eyql+0syBJU9rczHnVZ5JtXkLamLZIglJMAlhSkQymkDkoqp41j7TbY+EqEYBEyO2BUIkvgk950ciAFr4ssbpAsCC5LJXewg8oMqtiAg+q5IEIP6aIgA7RpmxfwSbm1VEMDo5+BaqOCqwycFP3m0+YBImAt3Le4gBO8iFvSzM8rcBlqb4AZZZEmFDQsGTku37wjUYBT1khP0ACo4+pSVSRdn+RoAhQi60boSGftwnGaAyHPpkksWIkCsXPIHPjwjQHRgCcgnR9ms79zmze4DuVi+3lfHM+m59fa0GjPEQNQFEpYER1sBrdp/rT6qdiKgOgVaaVbGBlnv0x7qNj1ZHppm/Pc346Zy1dLZfs/WIREuGzoR2+KMp/mxhBonupDJicNRmsX9BWAsM4iBdvGy43lTGGAmsicJ+tGjCQTmQcZR73G7eC9hL8/mRcHOGdKLhiboBlaFgcwK5S4T3kVcDhcDwZoSPwFKO11Ft2Xg4coBfna+f5tAGv8zIlZS/RfL289qWK3pPXHC18ONlu2JvAGfBbXEd+E8PZip2QGEzEnFytcEyTqH5XwVWXY34DcpEtpVc+2QhtSJuIfRLJajtQRDHkCl/jbKEWSnBlyKQIuiaVm52+jWzxbh4llLPF7AKbdjafjCcDuiv57e3pAAp1wx/RdqQAUsme9VtjgieSs7aBY9HtAYf/8L/99cef/+JoiFggSmhmlv3G17Orl69fMmTj8SSbCkIlhUSxT81xHYZQNaMUKXAK+xJNlvlXb37BGwCIuFt0tajlgi1CDDBRQaakK4IS3KuFjeZJuqm8oUurK1TQURX259xLBaBUNmAlnRpB2rKpwgtUqLkY3hhhIIwWoD8wExIS6fBFhkAPe/GOp8P1ktHaTYGOuz2/rIuPFbflANMKRc07dnAsgVJVi7ssGVQSZA7MdvGtWSKrR2Ji3eYs7psC6RmfiCvLKIjQ46P8hzNQRDqwEQDd9UDmkD1WFGAFJFNAGDKkKjDBkDtSZYp+MAZLLAviAOQpbcS8AQ4DFQXBEh+9HRcQ77rwdTR0EpUyPDOBVnDAupCmZAihgvi4kDQy6rpRzIIHo6FbKMWo3FzUpDeJTCEzw5VGA2/D4PyGMje+wADYLmbBnkpp7KqrqzEakxrVYCRKtgWrRIrdfdG2Bxs9CXifF5vrGTvWl8yEs/GZF7vxPXvCLohog9YgiGYBp0DPMIMUuHZjSH/1F3zZJuAQFDZr/+HiQKX40awrtu5dr3hrHJVdgUGCRiJr3cI0gh08R9CQuKMl46C9C4FDFx9pW3Cl6akdjtE+dDT6fN4OawaxILe77CzoXdoffwwaaFL7vARhFGT7Sph6jzfncUNwgiZ9n1YMh9fbvotla4ZNp68aj1wVJjpLNBeHV820oJ/O5lcvXvwbf+2v9FZX/clgdXlNRyxe7pM1nR4DmXpQj6hpp5uwauf13c/bxqsb0enAy5EYAcPGpb3somgARBxQ1TzVTmgEFY1feKJfMa6wW4evFmGo0jLuqkWfju+dnT7o0/OqIEC6BlazZz8JGJAIcAISBe38J1TmtQ3NlNauOZ/0P3r94mvvvYd5yX5h8lHpy1evXl9fIiYn4yn6zc6sP5rxXWGCcCQMJiJJ1oKmVt2gTrg95MQZtrTpfPZb6fZX2NB2810E/Kir5VTzm07X9DzIsqgdNsMXWWz5DIxcqRgACkDUdzQdWUSDkiGfXz08PkKfoFlwMroDge/FkCY8ehql11sOvN4c99gVrcKiWX0n3MrpRmghagKLKkIp7qBeAHw93N1O9gieovAcKls/GzggRRAspqlOrECFtLjmkWXVHMxtA3DIXQXAjhW2LLKpKvlir65nPQqAFG6Y4xWwXTBRPhloenoJgXUUFsewSxxdVafWoEGMHQMCQMARxcTBCYTmHS95JyeZ0wQd9ERwGAglQWqa6gWT+Z51kBGqkHt89KnLFmDkcstRfzWIB4i5or5tbGxwsGOCRZBXHdphblYLfztGGbn59PYdGWgjrBM6P86N2RLbNgetLJYXs9lLTiK/ZAM0qmHFfFtsRSIhpgjFK/DoFh6hVxLlFVuqWYCxIm1i2My7iJhT2o4unustIjA3SbPJejoLMHkKBDIV3lUXnIjpc4SZ6dIfU9FB+QNcMYY52NRwSh3NZFQzwM5YEDo4RP4EFDSY0224om3gMw4HLbvBeDSdTDEi0XEwGNSCLdxitQcN4bwDcUMq6G1Zv5KVxTtGudny/JrvaPSenV/98hffW1+8npwMnl+9mjDu12wLGYG5sU9lxJYjVI5hP4pT2yOTwUVPG/ytofBJX47/sulY4mkvV8ohCkHmSl0SyLjiLnrGdtaccVxgrDKaYq46KUKl4max27oF1kkCIcMQXgpQpeG17gVLD6yDYRV7OzVyhkBwkxknLhcaklcdxn/3t37zc1/98ph3AYcj9NCri9cvX77CicZGFj52hf0rZ10snbvFCteG1z4Lp2LuuTOOEwxWmGZyqd9H+KGYGiOWrrBhpAgj3PDSiTyR+ssj2SiIasaUsZ8zRUU9ovZ45BAXe83ezL1JOXcQCaZlKU1KWNoAA3skR/kGEOf3uyxxhACJhQFGWZDnx8cTifL9dl6whBqxVAR8x4FXCdx9LFBRrqK+9EwiVTopY6IPzym/dx4vDRGUeNAoHLB2FsJUQ+1rIAPVNVoZYYN6SFCBUh0VaeIxW5p4VsyCZSJ7NpnUX/VXSDVXCohhg2B0NNuMmDvm7QkGC0XAjk2ujNI4zGAvJQ7ZutNnbskbhShuxwTExp8b8AWeIbKtQoOnQqVUHKJEDk45t3dRgxrxhEEupvMK+5lDozREPOrCwS9Cpo6G4TQUkt9A9Sc8bCK5NcX7BOpto7tfBx/lHXccU23UKC83bPFpvL6cv+a78VnBQ6uqJx16Fbq9YKNUCMSmLtSIg7IcyPzLDgV8JIVeqSsJJsfNzaa9fFM5S1wykpCu6m+rlGNLdJWoAehaztT0aThlc8JUcWRUCYFzCA3rOoiZfyWHO5pDA7c1G91P/9FxMKtMXeRtZboMkEJ3KgkmEelEF1xvlqNh9kyxFc7tury5ofSXmNDO9qXslXODoYoW2ZMn8RnodoQlxHl1h1WjF1d21OvL13/+l/78eE6zXUO1y840bhqFegnck41uTJyzfoALI2E1mlC95OY2R8UmtJTmVigIZex35IBda+x7y8sm4MQ7ILSqZB7iwUJrAP98scZVM5yMj0acNoc3GIN+ccr0gO7qRmFewUUi2OXMxlUwMmAiNdJkr0a2oHjrikW2CUacGumjz8MLiiAMOoF6/as1NfKp7+Pj/nSxnv/gkycXl+w15N2TwfHxMbIF6TqDZaRSiyJDjFj9IA5bqJorQS8tMtUf4nVj2qh9ieVpF69QWlXUkSKMFdV3JLUwh0tEuKp9CmNcB/qPbVltLKoDEr+gYqLTUXQOZdR0aZ1CCUhkbMBSn10QoDLfoQVyer2z02MOXIVzOPrCjSiofulovrcC8ln5Sx+iAEAUJhYZgonTFKdQuP01VsTrUNvTigjWZeARg0FFuDYPsZ01f8TZ/VNRDS3FpBFsRLW+1a4nwxHnfGA0IZhsLCEnDwBtNTJRqCq1BArzW9fChzjDNaYcL+OjprnFRFHBWFhDBCYjV4JlYwaJLAB6AAlzdnOwk4sLj80RyIlYX6XoRyWOqSHPiz1NfjM4PfE5cHnmSCA05oQbVA/puETYkwhTGT+jnRx6rNLGJaP9izEQUKQAnkjCrgpuZdVeSI3goyxx1fOw3F7MVq+v2LaxRDnr32DHEnpC0QI4YGkIIzrhwo6CJ49sighrpBbWhyAVNH9Ozdc93nbBSGfTXm3bcKmKM6ZRQ8isxpLeJZc1wqpWNsWZ/9KVwRiVAgdwAzDiu4kV54bWBE4t+hzZUCP81kEoogjL94huooAi9pNY0LbSZwtUXLONQfZO0BOwa9gSAJ2j0fjslK81Daf4XvELQjUYsUs0a6DwIYcFukahbAVZZc2uDRik3a0Oauclb3auXy+XL6JY/zu/9NXxcsYLZzhNWGlCKlNUhAUSmokz7YDxqNGwVt4q5TLZUDm7zG1i/Sr/2h384ywdXlTjSGa+cMrxNGXtzpkKuQsdzXx24oZcDg6XDy6q4SUcMCKjTWoVFGJQQQKMtoUtXdXKguYkVVSXZWAwKlaUCC4ZeVC5y9HR5Ggy/Uff/O179x7dG04vr2ZPXz5/8fr1gD3g7LJtvuaHQNCF4d+Gk5WQF5QD/m9XlT2zuJk9AFnNh1/gaPjJ0+fofcnVY+5kBLHEvFe6EsI9KaBPNCloPrLntpLqigpHDkGfZ27I40djnCSLMwqrMF10wKqweEHoYJo9YlApXukcIHd4iFedpkRHu3/XgQCe6l/GW80CLiuftDal1caqHfs5cTLI4LzLTnfiFqUTqDAXu6bZRKxrMgInW0KUOWkQkVFQGq0c2IhPiC30jSIGWCU4xNHGZyfHWM7wsAb4TtyaphSkQaHOuEtxIoVSnuSCSoYCtUQzhoTdYGFOjXdHU9rT1QeYExodEGRqRI1shJiPRtDzwCWyq8JY6EhHMFNCipCTApkvZrx09CaJdSPsaFeSvI7zveDa9YNSxEhswBUcEWlS4F8DvM1SyFRiUAIzhy5Vh/uRNxxpoFK+XrLY9Ppqxqd8eDnFqTVzmIyRxX1acz9UQzUNU3XRsqkGIYDnzGnxR6pPUAuchIdVvljN+Fs6xfddCUiFcnI7KlsSaB22gZwKGcYzyUPDoJhVzbyJFB90LGjbBBUNBGds9AVlJg0QZICT393lp1TQbwLcgSaWYQOEOQVgdX5+znuY4EMiC3SE6SjDqT2N0ctOS+tjR+kA0nZ21FIp0ZORWtjjnE57YIXJiXuEU+f5btNsdn41fzFbP5/r4viVr35xvDx/rUewP4bzcELh7LCqRlF2ceYh5DA1ckBnB34zjoXdXrpiu4ho0FBoZrp5/zWH5fOW8XTC+gRuWr97nb5N/5nTOTbsrXYIYV6qinC/QbSsAzZDF40MbnaHzmwnQ9UefHC6OUJRkm6JcGTgjZKmnMINwng/cLz18cM9uTz/pc+9zz7h7z75mLXRJWMenRZFm+0v2ZHgOT6x4H2vV3+FoyL9Ss8GmHMVS/YOZyeiW7Llj/oONCQIvQQFjE6R71sMEpZdQZZSpJ7WFahwzp4WNQHqkI1Nodlih21qobgFEzqe7yV2aWqvNIGX6XiMzmCjFdU2DAY678WxVMqHxufODLAl0WpqMr0RgIyqTl08lbJwXjop2za9HTLHme5h5RxPAiXRnPIiGr/Ls0MYdbxaj0aDkzEfpmW3q4rV8UlOZGwq7kTuUrNctmkyobYWCW2e8ENtjvQkRzOKAdXTgXykAHOlz2sVpbNg64IoXC5k80MhqfTHTeIav10FeQCsZnzqsiUvi84MsSV1lmCqw38QJg6+MlkTAD77Og8ijRmA4cE4xW0gKBIwp7na7k7B/DXtRrCCBFLp/PzZlXhbZLHM7roFqvmC41f4Yj2L7lo49GmaAboLPHeGcMxfsLOa1CYD+E/FoZ0hEWwXc/d3scPL77Awq43nBHMqL6dIpHChkrlvttEo6MAkTYajc3W+8R8rGWRU0Lg1sJoxykBNbwZ9USTEMtoZky2sdxJ8g/i9m90DuLGXfke0yyCRCZSoETQs0VEE1YzcEELd4oduOOy9fv3y+ZU+fCwItq8yl5wOObrSfVKUoJ/xjxgaOUGcAYs2wudVeplmxCTAD6HPHvcQYzYMXawv5tsXF8sXl4sXs+UVSyeYOZu5EwtMFv4N+XTYxpPZZKAhLa6iIYot7+wl6Taq6/yaJvRk2W4TKtuuXku5BjtHv4Mh4wBecxBwUO0PXLVYzVmSRQoQIbZj0jy0M7U4n0E8o2GpB1rhDQsQ5NQ2KoaH67CODHTZsuaUBVW3fc5oOjDin5kr2+0Yt/BqMIDZE+7h1Tx78P/+L//Lz3/jF9hY94ff/fDl+YxpJV+HvTc9cQ+8HPVjdsx49Xr7XbXGxwrracLqNZAzHbHblZGjj2578slTvLkQ6cSePVYcgwkgUPQQeqUSuwD+0E5QBLMdXWWTHySUVqSQW8Ra9jm0KC1MlbDadMClO1m1Cnq2nMNp7OgFE1UaW3A1WijONAoo2DOEBUsZa+iRbuaVScy42YXZG7r7nW+B0xDRLxSiDpqMzs0IpK9vUK5tGOBpLaWUWR4AGdiu1lPNNcJdEShAmiukt4tBMYxuVu0SkxKk7GaQxfasaAXQ4MCeBe/+HE9GZGY41KXjHg6rSVUkJ5CsAzT84mkUEg+Y4nlVNxxiPjpEu6cbx/eW/QBMZZALhZkiFAV9z98AluILO2kvVh0ozphgDtKUJgOlKkKnCsU8BQxpUIXAN9kCVOgE3j9USyEANoHiimizr8TmyA4TjKKj9eESHz5HsMpR5wLweeJrsXoSERWXssVD3kVH2TeDVIMP7VzVURWCwCPEkvM2OFvjeslLKNvL+DdeXWI7z7Cdr0mjOmaJkCml8r40opsQOGHVQ1Y102gNUfXHWQwdB7ypxNn4mn0KGpFY0Tg42DZwtVrl1USO/+eEWwhWlhrEIIUtDPYDOAaT1S0ILImoX30aDkt4vKiVWvh0PeJJ5+PWhomyLu4pEkqA4opbFTAt29M24MzvTkEn8ce9AEIozBrpydYAqusVJwvbMbbOR16/fm33OBoen02xdGAl37oHUZ66i5am4+1TdDO762GVwq+e5ykdTI7IdxuJTL6IjX5cb+brNUf3vqapFttnV7PzxerZbPlspu/4158v/tzp4fbVRweTycFoggtuNJpgxZREgh8gyWZb8Ikg+ZU3fakCiwMzlZoR33j0QpdTR5Uky0a0JQ4LTXsXE+w25o5Yc4vXIsDJgOomFfEotevMwN7fBBohoqTxniSbha5do1MpaNJvlGnLggY1UjMV2hEP3fEOGz948oT9vMdjXh2cPXv+Yjy9P2ETtPLC0GQbo/CIQITe/kBBfcSiEFEI8bn9l5GP70Q56sBqpnjsq6UrQSUCSUVKENzJNMCIBpVsgxcoaOQSQYzxJ8ZwmytQIb6Jy343A3KfMVNuAxSxQH7gMwXIKe0Z1QSSFHqIsAxysgyfVsuYAt840eL6yg+EoxjKljI3xzwNh70Fc5E16xzwvOMwEaqC7eRBwJBJ/90MbRuZKmKt/FQubm0PKIFxTI8sv+UoaQC6p2+5Pjs9RcC4KcWZDALiOWVb/B1wlH3y2QOM2A8IuUhDbilS02f6Cr0D/UUpJj6oW/JSjJwpVArURAJS4IMgAR6VKOYJbnDxX0TRRNNp63pqsTaYrg2hOrPBC0E+J2XNVo588EKq+pYsqCSPOd2M5K4ftfHUvxwuxj09Q9Vbof1NH2kxCR7U4ARLABhwsKjHG4O8N3h+cXl+cfX64tXFxTmWEFNIQPLnyK4itJVjMrv4kBgyRzQ1Ublypsa2+8pyLWKkgCUiZN7vzLJFUReHM1/qJhOhQRYW0HwYMbH59GdQqV2dGHrZBXZUcIxlTGmsCPQ1jWapYGV34A9UhNOCzR34t63SsMafn1pBWwnVQTeoqhIeHfMJZlbDLi7cWTHjON7j04dnwwM8cIwt6gW6gitmdCOtGPQyupJmoNfDMv5ii7mhQX2tyNLihxxLgcR7FPdihUZ+MZs/vVo8XWxe8Cb+evv8av3CDXW9f/s//jv/i3/5L/7335tcX577Kt12fdF7dXp2hl+FWkCWGgm8VY25xXQkEm0ipgTPmy3KaOMILlUzPlcTwV+akSrUJJEIroyqTQNqiTqcIiIKDcISDWTLENqOQXHejoFdjBBUym2FytzIUJtIuYp2DalupivKbo0jPqU37Y9X0+O/8/f+9p/5tb9wMj35zd/4jePjExQntjvFUVXsG3A4xOh2x6XuC4SG6pAZWowfevqAnXqMEdxDMAQMh09enmuARndLoX0WmugtYKBqQT7hGqsHJNrbXKPiAdhxbQiQ7hRWIMEhWaLPUorHDmHKKziALn9OQ6Kd5S3oAbgekDkjCqCtBBGJeypXq6McTjPys29SsQFq2zIQVK2PpS/RaLRolPBfcmEvatrqO9QbCqL12jg5zRGbjjRR5i8tp7QQATXNMad6bBY9u3/P1/TkGBiRAfUI10qfh1Mt5IakADQ3gQKwkn9qXtOoGBqZkhInI02AHKLzpIIFathFRjJTCY/U/10zgGd0ga3YJHaSRvadbDazBTeENKgFiPVj0xReVO9bcwwNNgHLlSABdvRmJzRkRR7YsIrLj2lxzk/lfNPRdmmNHBeiNJKdCT/sqlpsTrENatbU1s2vTePub3s/O+kwny+ucW5cXVzyoTcMaGaKChY5bVeDsxgGRR2+xJwbOeegXqaz1JAqi3rocdai/mEZELNvseFYD9cG6Zxu5akeCgoGqqAumsAaNYoJ9B7He9YZ1NSuuGs4I7eIMXMIGglZS6cwRQuai303BANnF4Bq2CW0sc+qoHd8a0vyC9oQyS+zLlYGEHVMeswuXEMMcajD8XT68Ow+24qO3aSZnsz0grVYu+4BtjB2DU2LJoZ1qYIHJdC8bamPWGeG3o8ei6uocfZFvJqtzuer57P1J1frT5abV+vN6/nylYsGWtAfLA/+zf/H3/w//PV/7a/9wnuji9f4RDA0nz17RhdlJwPcIw+MQLZgBi3IS5xggLZkIY82ATX0LKGjN42JEKiXKWULgS1vUsgHpkpg661DC9iiN5nU1fS5tQHNmEDONEEoJHeVDT5axGhL95OkZi5KbNNglWhxBYzze7BpEXT2OUPB8FvPXzz4wueZYH38g48YYHB2YmjhWEYWECIkFdlBhOAsbiF8eBzOw7YS2oNtHGhdXGpGG8OWmdpgeXD0g6cveFOeGxCBUxCGSaS6gD9S6mw6YzIy5wZY/FWwFT5Qx94b88HftpZyCkkrxTVhogMikqQye2a80Zdu5oxbpKrrDUGBzhD9CBCIz0gF1PDVWmAmwj8csX2NmZbNoh2QQDbnp9DFKYZYPgRaKDLQNYG9Tf11O2BS3E6K6UQimUGNf2LoTyxZJ9m9B2f38S8pV1h9tnaBpoQR8itEqDJJk2feyxy7QDa+kxb6GwLJIxYMrC454rrzPW4SamqDR9sIFFsqE/HGv24hg+DU4LRz6cSMiHkkvxMJeFkeykwzZhl1KjQgbw7zBAnVIcCsA78ggkCL8a/EGdZz1ie9A+KY6+MUxIg+1tvnCK/SZMYMLIaVBheZEB5SqeNWE0jOEAtceEI/vl5s6PjnV9fnVxwMg+3HufwzzB0W4UAyh3WrhLGVVYU0OU1CRXLbNSci1kTIuIeHhZGP9uG1FCbGdn+UDEchejweR3ywOdZjcaAf+iykCBuAhLSoi7O2TOVxtUMYWptH2kCJ0L1wFdjPLMP8UtUtv4USVIry4NSglviNS6sRgsGNJ7kp5G6l2xQoOEn2D2zYFZDXotYXr158/HrB+UPD4eTxvVO+ccebazgt6V20MW5oylo6vZANZdWo4AwTSIQNmwVrsk750N2YAogBLi0MbAzni/n6xRy9vHy93Hx/tvzoevl8vnrFMMqUROeRfFxcnveO7/3b/9Hfu/jLf/av/8WvzQZHjBXwA/P51atXKiwa9GiAXQxpF5cX9BiIIF1jUcXDTnh9iMACG37Au8gHPacy6AY7U9NmiEKwprPQN+AyrnI/to10A59g0yTUrSKYFqLGSqlbOrM5AafPUTxASyYnNAjg0Ts48nQxx+fD8cGQdev54dFv/NY3v/FLv3Q8Gv3md749HJ3AM775yiEPYIBMUCMj2+XiClZy8Ai14DF/fcnmDTb9sEwgyjDk+OQeYqoS3PT+4IMPtsPJiiaLG1fbLETgu5Vd0sh4po7GL8CSIwZKlEVY6esyDcckLX2PSrFGwAcRpcURHFtaq1DKRFG+ggk8pog0e8tGBNSsj5Q1fh3jU1RvdAqbs6mihL83nXBeEks8zpYI8JKy9ihcjpkANan2lKbLFXvbVq27IFH4NQmmUIS7alPR9i8IENmssJLundw7nYyZV4CtXRatnfpqbAECxLSirhSBHsHRLvkKJeCTSEUNcEjnKwtoQ8jBXaBjBg29pFchxoydyA3Z4V1aMPjhuknXKoRbkkC+aRp4UolSbeAW6NBYf1Iub/mfS+GiZNKV7bY9nPoYzZwqTWSJxYDvGf8Am0tpZ/SpjYvgrecD7THXEN3CnAp0vUkZ64dYnYVGi2eDXiVqJ2kYoaB5vWvDjBzXMyexsHmU7Ru8R4Lq5oUPsZdF0Zmaz8oMN2hrqHTSrnIUJKjbp50wsRFRcYMQ+ru+DHTIGr+zx0lzHp6Dq7vCINj8UFXalaaBLjQawFHN2mLUhaqObUy9NDleRwVVq0VRoVJF2ASudDEQafSHOEUI89C7/SDrMSKpfD+14p+eCFYQAO688T/mpShOsz3q8+LWk6cvWcSjb987vcd72ng7JyDrHAX/sc2DglYS6WR4LajJgb7UMizjwzLwa8XKCC3tBGOL5555B+sD7LDp8e2i5/P1D68WH5zPX6wPPppdP9UhNV9ezlQVUpHG5nWVg83l5vBv/IN/9i/9yjcmF89weQOXDATQzr6ra04GpA0xq8uag0vMQFEC2ZxkX/H9cJ7RgC177FhyNpoh2hO5EKipMUmSkwSIomHCIpRRhJx2JR1lEcOtmrkaQA4wI+WVWeyEjUatIG0aW5c8yDJ5ql30t/iFqj5rrJP+eDM6+Vv/6B995StfO+4PZhcv3338eEsiZ5Isr5998ir7B3grc0S9DEu8vAY4TEkunMGIokDNgR4WxOHJvd/5+MkPnjzFpJhw8r2Gx5zTppgqMrxi8/AaDedO6SHRz6AFIX967EZiXMFicOdQYIdYzKmE6tqKma5qg8SoYgmVwJOkc59C6mwgOQ5YLJyFKdxVURuAjiWUVEUyTBJFNbZpxTSbEolSO0u0ddA/s5fRJoPDVFHcrWdWdiNYI41l8zaB24pVxJvdw96ov31w/2zM8hENrXWm0OEMcNy3Pskjza4ausBAFcCPOeGmv8b2QyqkOoenBKXDLHh0FSl0tP4/0QCQi3G+GxC0yA5Egs8qoljtYZyK4ElDFWKWdxGVO8XZf3K55RLNTdNrECqQrLxx5eNnvFbeW9B4VsRcikGbPJ5+ohtky5Y1nAXs5xhhv7hcSSZUM6rL2YDko95ApGVtcNq70IL0I5QNi+4o6NeXmM/Xl/ThGat37N8vY5aOjKcXw4sdVQSuaGutD1JyVUAiMV5Awjdt9JRr/zHlyta9FS+7+e44L3GR5PzAExlgatCTC7AUQKhfa6E/0A8jexo6tdijgkYX6vpIT1E4qyCcV0FTLf/a4LNQriHzRqhH+wq6Ut7I+EYCFgod/pQvjHrY6vb564vvP33Jm/+zde+Ir9ezBqRkK3OcOwaiiqi+/riYY4/51CGVgRYfBjaf7cAgxgXPlcegsFzLaVWLDW92XODWWGxezud4nD9e9H7v5TkKWocHuhhf8XxzOM/SUEjtL3TLLTZX310d/O/+g//nf/i//OuHW1/mJtDYyCq4EMGeQmjheck70sWt/qPIH5LM4L3ElnUoaWQaHpKHsrp/lcbU1zKH2Wn6Qnoa3xBW9UscVqMZKVZdkPzJRyKtzJWhXExQebEXkqsg2Z9o1/0uhcQxqoEJ/RTh+vji6XYy5gXus8noD3/v24jXqjdjAjripY/D/pRp9mjcCrHdYMh7BMz7xEhDCFFDriZHp7/9re9+cn3NJhXMDphEg5APu0WbiCVDlAoW3OEcPwbqWjdiDq4ljh9Krzy+NjknS7jyAcSSN+gmxef5jZqUpAR+IEQaCTRDRcwfVZtyPIE3+FZ4xUJFwaMaHqgNPMlc2WAaLSkgOrwWjWcbeAKfnlBHSqGooBudxS3NxbjTlLcksEV0P+TpPvv3H+7HJeT+8YSdZfjLlI2gp4dWMUfm1iAf2aGxbdHCxysc878aS4aYbQe50OPa9XOKQBE6w2mpXZ4N5MgoZayKtoAkoACCNigWVV1C5n4PeFNNPfYG/2SNhPReRYSk5ppI8CTRPwohEKA6OsJB3GdCiiYcspHYMyORGRBEFjlTL1b/ZsPOZdQy4oTKBvGDgwm9kV0EeKWpBYpkg9y4gZ89KAoaNyTvj3im6JU7N3Io/xzSByM+PEnNGM2oYpSyOhOHg+Ytrmf0dRwReM7CwIYckcemAxUmgr4y7n5nPkTpic+8pcH5W3mNzskJbHW+KjdQzKp7gWcA0GBhkOJMlQQsBOKNaqYA7Cn/inJLf6HKUtB0FsBWUKL9Q1vK7VuhmI+Fno4jKjDEPFzYeMB8lgdMBPgjeKHlt6vxYHB6b3p2POXM4u999PT3P3n1X3/zW7/5wyff/PBjzmadTk84gPhf/MY3/uKX3v/Lv/iFe0fz/uiQ5fMRh/d2YonPGeJByi3NHJBkV+O9dxQDb3BerzjRfMuuvJe6MnqvrnofX6w+WW4/ni+erJavVpxchSd/3Z9zKrvHW7CuhzdEq6omsIsZXmfRv15+vOr9+//Vb/+v/we/NNrOr/Cd9A5Gyy1Hc87dC8XXf+CdXQLmwSYm/4z6njG8dQunPzACbVwKFAlCH6muMXd5UH+oKjUy/7KBRwodcfGosG+GTicqyh9kVgvQWrQPKqPcze6cdhsy+HOOD+flR93RnjILa4ROZ0dBNmwC36Q6wG3U21z1p+PV+Ow3f+sff/3rv3joJ9OseqLqZR8fojnidEj00XjsiW4qYjSxdTvf548EdMpkOL5cbP7p937AQMgLQ+hAJuTYAnz3SLZwG7clvKUMsgcpIE9zoRDAGXDsLny5vJhwzoBvGzn1o6/QKOktehVYLrNpqBxpgpRIGLyLiEXF2FtgcwI5HNlJMlTH8Cm2EoaQ/VAvC5l4o4UjohjUHQSrHdEYVsHxI3CKQcw3V6kGPOEm0AQtK6DC4RIRIZEIt6lbz1UXeEScgQo9RxOKuj3JZhcORUAZtvCSN95zWHqwXVy4Jc5WUl0aqcwFVbs2STQAfwUfDNIa6KbmeAMRy1DVLNNlZg7voJIhR9gsLeiFYv8WZMgq0UHQtD/AVG7QeGCoY5oqIQR0wlMaFJVO1eJnslH2vSEXQCiGFJox9hiY4Zy8C39sQCjgYvki0Q9rMXiiDe08TvbpyKvlJTw5mMyW/Xx/nQ4jl5bz2WHP7Ya4NeABbYAtgFyBJUcrgq7CZ2u6naZaBiXB672LtUdiXejDxNa97HHmIpsyOXYDh92Qr07yXYbB0djlEj75qzGricBryfToNZ8TYp3SK10jTYmawLbZ+HkZkN/iTmVvAe8hc9TaFQoacdGxYR8OrfDMJoKldCJ8uUDHRmIYkOpDIippGgT9zOBGH6F2c1PYW68E2EVKhchvcwNDDdHdFd2/VkPtWdAt00ukbG0UhE2kalBUjpjSbk4fTP/T/8/f/nf+L//uy+9973p0sp6ecnpY7/isPz1brAfP0YKD49/71gf/1XsP//W/9Gv/k1/7pS+ejgfHpxwMCdOt0ouuBhphzobmvE3MOyp4M64P1hc046rH1o9X14uns+33F+sfzJcfXc3xNb+4OHdDM+uJ13jfghxqlHV5F81t71LQ9KogjdTyvubiP/t7/+Bf/fOf/8qY47s3zHZ0ETgfd1e9nEkICyUz78xF9piiylFknKN1zWZmqoiwItkyPcXD0HCeOX/gmZLHlOGXsjKwIqaTIgt04xECuoGfxqSLWsCdbE5dKWEzIyUJeDbA36/GDI//wT/+9ePTEw6yZh7DvhF0pA/p8tDmHmG0pI0bAWvEjLahR7D1kFOnJmf3v/f8nCF2xZyMjWhcMY3VsJEqDQcAqcihXIiIUXBQa1OJHMwitdiz95VRlUFpO8NOZ3rJUjidgu/AipV7xhFz6Q0rKFwBnZreDj+h1D+f2xQGavOaPyKoY1KsOSH5YaaNIath7O6hmId8Iy4zpwGJE6o4WIeaVJGKGrgN8KYaW898pgaILQYfUJawwT7JWFdjipofJKi47XGqHRMNVTh6E/8dCSr+HjoFsYOmWuATeFNxCjWXDkibWLTnKv1KlCiChw4soHADoaq7cLGgkpU7qiDALy7hW4DuYtYPl2R1XUM/twAzkZLSayl5w4lc+HG2qq3VYLMY8vau7zZztlx/zvcjjty4hu8uG1Q90sCZvvRuN34hGLnyU3ROCBgqqFQE3ZYaolClLt/xzRQOLpizvM07JDggcG7g/kQXqh5Z4xqPmCn6VTvcqq4v4ZhjEOD7C7qhs16nypRwBjGGmQzLDGjutcWR4buCS98bBLzbyUCWPgiNITwMVGoYDdjnDG3IVfcSCiobyNSFcUBPsWukq0EIcsYjAozqrm9G5ONesGnaUJn3FHT7gF8n7NFkxBtTGlLGh//pf/Gf/1v/539veHafY1jXj7/YH08cpplQX71cPP2ELaej08c4xZaH0xcH4+/NDn/7gyfTL31uvJ4PjxaoOzUTGiiBKEdMLOdr9xyiTrYHbHl/fb14vtl8cqGj+cl28OHl7OlsdskJuBgdaEqGXLYs8mIY2hAu0mP1FSMgamrlUVyWKFe0G69soI4vtqv/29/4j/+9/83/fHTxlH3unM9PL9f31UkqRZDfCgq1XMDOkq9wFhPQ5yAesym8hvU7LprCHY0kJ+0RWl5pXroLtjM4Ay0hAJmZKeD05NSrmQY/0oZkgtlR3DerICegHJ97fMJnuOmPf+sPPvjODz7+C//irz1+cIroffDB91gYQ0rYao7/DSQYghBVWISQ6n/QOYY6RJ2wgtsbn5z83gc/YLn1YHxy5OAGVktXN9QWh5xFrXs6mhqWZJqRzqoysRfxX8Gkt254W8xzciAD+Xe7EfsXCTaBehHLasxBWIORVksCxSrCFf8YrJAbBq/0B34qQ/jjA7K45kWH5lCerGuSAQxtEu16IGD/2rnJ0gGnINqT5OgDgN14RDZBt3VVpMvTpZMLBgDaBhGGIyv74KkH4tFQeMFwBvGIXfVkxhZm4kxW43YMLpLjHMsgcTXiwkkUGQoDBHUiJYjAHp4psrsI9EbgFgJVzxSK8V3OYCWSdlTrR7JU0JHgICYQUUlQ2xJMSAAQEIMD1/C0qbKMem4iAk0JFtvQAIgyhqTvArHkFHln+YK/K1/Gw3twQOeHLe6VWruUjxaEHfQtpnLj7QgIbPQcOnErZ5rscvroeQ9sPOJkUc7cMKBRFS42kni6Mj4Gxn9V5qg/wNtKjBcwsKExMliJdD5Ht8zKSUhWiKiW3kmnY/bFYpfrW3NfTWQ3ly/fgqItjDBr5jn6st8BwxlAql7FmyVOzOSoY+7pV27js01xfdrLInJpqWiTkm15qxjJ54afYfePvtytoOkl2JmgyPTbKcnBwdVq/b/93/8fP37y/PDew0teaEOmxlM8FLKB8y5oSzZlQfPrj9gHPNjcW3787A/GH365v2Wp8POP1veP0F2MiKLoNEJLlnPBmVmsznlHSJFn0nHw4nL1O7PNd88vP7hePGPTG63p6VUc1ODnTnsceWEHcGMcekxnLMLpiix2tDMXYdqRwb3H4jEOS0z/b378+m/+F3//f/ZXf2WIi8ANQ/ZpmKRajJjaJRr9o9j5KApR5kEXo4ESS+birL2sJJjMkW5lnf8Fzrb1gQ2jJgMvUiiczETxYzAYIwqkK9CoQD11ZIltobVnS5Lfpk6g1YWAKCAOw9Ef/PCTf/I733rvvfc5FA3hwqBmUyMlmHfRCygELmwKFqIihOQoQCSzI+5oOGGD0rc/+GDBmD8a43NDgyN7lMX6GPF+PNuGaHIqAx0xweSxsLqzAu2kHaRq4WPUKkFQdh8fssR0Vuqs2iIuC2NEDY9Zy/dt8iIkNHkBjmhJWnRB4p27g15kxQ0f6OKw1iPs6AaMHdxIlNsVGL8tqapBSyWQk2AVVJq1wV1zW3Mx2IYjQxJssiZi1LhXNSAhFh0zBLaQLRbnTLSd0qZjgF6KuZNfaId4e9AdtCx1TPREGPYI19hwHwNftGl9vhj56R3OAfT+3dTSHTIgSqlIRYOzqMFnxUO7E4y5858aRHRsQpgbgFhdinIsgMAMkFbIvBGWv02N/Bpt2EhytI+DtxmTFdHhsX3bDoyzwVknq8mLAdt7DgeLI991QnvMe5c44mrBkFXsBcYTe7PwOB6c5A0RTm8HT7wbDnv2B0d8VDPdxI3JsW1db1QGaFDU86Ento45tXDK6YBsBJiOOXYGC5oNTtllQUdxpQRWqzXFONKhrbWNDZE9CxrOOs2pBSMfw7whGImijPrY3Z8aOYB2Nug2MLqJBpmebzefxqiB4WlTBFHDJvLfSpmNlPrFoenLaSZuK/C0eE2+Ynj75O0vqoArvMdNiSa7WC3+nX////7Bk9ff/oPvaDqM9OqgC/2g1NGQI99h5WYz623mfNRi9eT7Uzygp71vf7jmpOPxvfFmtpmfsGhm50GzMuvRbEQP0qp8T2TTfzFfvVwtrg4OP5kt/5uPLi7w1ftSM2YYlskcu0mdxVecmfCw3qIJSleB6xr6eDkVCgfd0pCo6YZY14E4Zezknf/w//Wf/9Vf/bNfPcUxtaTBQL6QKS5QCUWMG9kFMtKcdBnZ24bdY2LhKzgYRQkWFDWJUpBuoywTNwheJQdYWhdboHlksrk1hACoPrXLm5ZQ/Z+o1sC4/3w2/yff/N2j0eSdRw/QpMeDye9++zuYDg75IIzVtl1yahoQaBLqglpgEUcP47r9+MWr7zx5eTg+xmcxONweT3HUlihyZEcfgCM2V6PSIlziXkcN0Qelz6kVpEbiJZD+SO9HIGNt88zNYPCMgRO9TU+JWme055GsqECcQFKxDoBWowhrFHcB1MnPrQomDIGvs+vrk8loOj6b80q91inWGZmsIUa6+StzRXyY4gWqTay0XU64XY/2rxSJOpR9PdaMxZfhdT4cwQaMP0xgdLE9AVZ4yo52ISNIviGPY5XUHbgGMXW9XmhnVQGbxi/aIS+MMinDfQ0qXHnSQaqYuKkjqQM+++oq82u6qt0TLeeTytjIEk2DclNEY15ASf7M10GueHcVfJ6RQkAVK5r+mZ5hW8ZXljWOHcdIanXdjPMVsGdRbMMjZxEUhnEYvwxvEMnhthrRrB5ppDF2jyB3zSuYuC2GLCPoLda54SO+0eG+Ll8eKe0MdCQQzzPuBuYgvJnMvn63HFEXbmJ8Gv45GeQvCNtuMDRM1bWKc4MTjNkhtuK8B50bnsdPt3HrBvaRNhWNK52c35V1QawCoGUqqg8QHYKByp8rSH5C0DGSKMMV3OCWUDMvIzz1h/+2SPVuIvvhlvSBaffU1ac3A4JPFtrWCcBm861PPvz13/+d733wCYbu4djz1UYcdXRyyndOEYg5nxxYXLJDDvOCWfh4enj9yQe+4XrU+50PPno4Pbv//nvr11hqWj0xdAHjzIh9Guw5xi/1fHX4ndcXH62XT2Z8/uuI83r5lhFnRZe/iNEZtYO+saPIP98iRS7U327N0/qIf0Oq0grsNUJUBrEV+ovz5eRLv/h//Rv/yb/7v/o3pqvnjIsHDCr4VwSneMFZWo/XstAIt1ghc2mpJNuwYbP2qIWasY5xwgn9jqeNWBcy3bWDzEAPp5h5gIATLYK2rSqGcQuRJqc1BaCDiU2PuGuUXfcO/tFv/zbe5YcP7h1jqh0cXl/Nr6/ZDI2+ZSIGXTjqD1ARy9kKmaIgQB3tWTE7PPzo5asXV7N33nkXSwSwbOqgTegGVMWuSOSeEQyY0KvmQ/YUAXdoBPnInTEcj+Ci7mJfl1U417ITwn6KoKYQH+oGJ05xYoqF4aktcjNYMIufJMsDbm0bg7cAdRDX/mV6ZFGecun1rq6uXh8ezK5e8ZCjVenV9NzUDg7KcxW3SIIQW5hdGrna+B2/QKAIjIB0LHQaJyuUNJTGSUw8M8CZTHA1tw7HfCuHl10dmWgNurEhPZYKdihFg/IQ7jl5osmpy5ngXmhxK31dChrRdyEQHdjhJktAzS1JVMlw6wDhGEp7hYMRV6yXAs24ioztVdP0l45+oaWIkSbIgorWb5o9ysd2x37UUKP5cQXQYnYD+onvzTOzUiYYPuha4IMDGrsLSjGIOVgD1wXqGgUwX07X65PQfzAZ6c6GTGBjlfkFWM6TQ4eihfQ+0F3o6Y5uyDNnrU3Y4zthl++IneceJV9uDdzimBqcjw4SSi4cQwDhtFNsrigdMMyGjfVlXnfBxQF6DAeyWhvXF1Ggmo6jE0M/BsuD2lU0q24TPvmIQMMLZr9IqKLSMoyxJZzRv9GmdRw2cpfcwTSfJFTEnAl3K2gy01QuVKlCD/7Nf+v/9JqtLrNL2MKghoZiSnB1eM2hGCqXxYzPIvWh0EntEa5QvoGzmb3q9abL/tV3Tl88PD3+5XvHx25L8D13Th+BTTTC5fzwyWL50ezqh/Pl9168ZrsOLBxccm4OBnk+5clZRJzRskQEorIw0BzioASZ87vyxOpPClWgBH+KCfAIEtACHB37zZfP//Y//o1/7Ve+yNqEri9cOPqH5aF6OlNjzcMEmigcEw7cd/aIpyMuFJ5XAxRPLZ4OQy/QeGiKs9WNVWlmrsGrYBVoOtDhIcJB8ypueT8FxepoaHcMKsnp2B/hoLeTGang2bc++MEPnz0/efT5+6dn434fS/m73/8+T8GJL3SwHoO2QlCRZIhCYRd6THQwQD75+Mn8iNXS8WZ5NXU9kb2E7qFFMbNKiDrEcMZ7DeohA9WifiRozyAOGgbOKWAJRjkCqSDDGdHmUcs7FLozG4RUlqiH3EqB2Gti0WqZFEoh/YZuChaUlU3qhvIaA9F/VG1foBOgEIAfuXdMXq2fPH9+yIfilgteWR1O+ILK1KNq/ApPjbW0axojsIEjsWmpDksx6Kqum2RL1NJ0OQgEd1Qg7lROkWG1hOJYbVir9HCKi5m5zEtT6p7A6afHD6mFgTDLqgkSmMC9hIZdiLX6mcYKB+TCXiC7qqW4A+P4p+rLWGW92GtqRBthQJMAQtUG4nCKYvI8Ex5+0l+opPgoq5X5sAjTuxCrikROPjTcFtOwLldFwNYoI9DWhTc8cY4mB7gCjHGLYRnhRUE6V0AY6fJ6i/lbjAa8/nd1dTmfM84OcSszqoGNJ8CIUz6W6fFcruChoNkYxnFImrYErENNjQ2rLGO3kOJg4zMf+FXcXIGzkM2YaFTEmMmi2rN8MXDNiUV0Di+y4U117xj79rAFl2ypZgCID8UtCNG0VAJMJkDqYvwYKH5euAMlLHzpQvzpDdrR7tygJzi3iIKOSIRjcdnJyjbQsD4gtL91112r5X1uTjOld+y5ODoQahpe/11PkZDp+Oj3n71YHExffPRcpc2iE7gwVC8uoc4ei9JkiGS2oo6DKzCSo9P7m/OXw+G9xezVR6+e/7MnxydHm6+dnGJ8XLFz42i0nh+eX6+erdbf3hz8zstLTnRmgwin7WMHYBIzA8E1K1sRXhXGQmUm0koyrGbO7B2GNt2YTsAgQjroKf1II/0KxNQNeEAPeNsJ9TM9/g/+1t/9F770P/2zZ/jKOCapzum38SLPgNM7nN6WzqVhAGVCZq0W0acnwCJttQip7EOdRebV9KCFrhYtWQwnQDl6haHokOVQRzqH3QPkzq7B2XjIEnUbFGtIio1okk2POay6cW2UmRxH+r+4uPr2t75zb3L24PjBvfEJJ08x+Xv6+gWbUWX4Nu+Y8LG7Q443wmqmWmnEGfL89SVnazClGMpACXNTIBxQjB2GMeQQZvz73kGn4qX/FwZCTVQlhpBFtCXSayFBmz8ro2kpXz4u7iHPdHNqInDmqof1usEjgzJqhu2OEEwE/ZIhER4q+QxCRHTLUKmyrWlse5rXpAyQcJCFCRb/UU4IHaft8RrS/TGro760ypF9DEVMV3ndQNubhgHtLb2LjzXh/EFpQTx6hG1Y+HZoPCcxtpujlXqMemlmtpBDy5y3Spl5+3IauPKiIEi6bVF4mFIrDt1nlxWKSLthxYjBl+JVnR4/y2Zw1MSMjf5wgfk7kKkYWiDIjR708Vi6tgh4hVkyLA46I8X6KEjwdZooT4r5csgb2sOs7EVTEQKJPWUZ5ImiXBBavIEUoYG0YkGFRq6GCQjApAXkbkKq0y4GPeTcYcCOZF9ydpU6uexCNl5aFMbmORCgNP2TL9giLazrDtneejCl4Y6O5ki25v7B9fXVsjfDmkWKqMcT0A4OTw/7pyvmKlDjagqfan09v75kjQrFqnphM+L6cOghxnx2ks+3jceHk8HBCUdmsipIW6A0N75pqSdH4WQ3QNO5aQHE2NdqYkGzEexqeXh5iY52j7aOF+Z8dHTXA2lt96Xbd9xkYufCZ0IVNDseD3S03istFkRMac0dklpdppk7wBPYxNUWgvFlHyhikW951jwiAjDalz9lxGs9tfjbLOhAOWD9dP5PfuM3vvCFL373d/+QRkO8LY8njvoACwaKie80WI2tzZ+dwFd/rs97vfHs/N7Hz15874Qj5YfvjIYIEAuxbNXF/H5yef0xS6jXGOB8TQ99p/p3V0ahiBdKoTJ5VavT4g9o/NhcFbS0A/qMVMrEuFAtiwSYiZJ8ATLjyCHv0fydv/8P/9z/+K8Vr3ik7Sm2EGs/Iru8zJCLiJAB1hdFxKjOBPWSvYcMldPEPAXUrSBIaQFP1Tqf9LqaXUs9VbPZLWDIQRCuwUq9jW+BTq3z6+jwkvcl56tvffu7HKzJOQ/3zzirDv1+8NFHn4xPT2EPC+DuArYkazR8yHzN0Si+qzWcfueHnzx9+Xp6fMKqETgoWEgVAaakyohjzIBmioB45AEX6AlO/GC7kb8SuIayHmc9AsnFEvDMadeoxFezK66IhIMfKIVChNwy9l4QcNVFHcAIh85Ll2jYbfsWn2n3eNVR7+RLYdDQPCCLWq53fDK9dzx+eHpy7+yE127pLbxUqv2UPdOoZvzCaGvKgg+Sy0gAe4SPImTQBDXizlIZT1HLGMvb4/Hk/mhyzBLrYe9yvWCSFzMq/VDi2eeprUCLotuYrKCjnWOtmBXNqIAXekYT9nuNp7yVj9vDD0eAgqtbOOli/0IAGtO6IBkcHEEifmFVJJqKilkyz1DtQQZo61JEwgwOK5FZofgdtQwKLLABwwaIVCux/Cc7lRb0FpBU3QwKIxKBtWjFWjqODBHOwiSCcLNMe0dZslKDnA36XoQAGCH5KGjP5pdqy7VeaT0YvM+AicTW/azrMXCyAY5XhXk/Ja9eaz1APtLCnjrWwDl8jU2c+PsRJdYMaQYkwBWmBsVmKApr1cu0t4uNWXi8vObAjSUfefBzdJwjz6DqK+EIppIJQAKvIxLUzkg3bw+aqlNLveyfNBVlTSSjmiS3KljW7zilAuEPUWxZpRCpT8MNf+tOCZVnlfNuBY1VWSod3+d/8+u/8dvf/KZHbVSXs9H17aCjrV7ZqF1ubkpAe+GfZvucuy8Wl7wa0lvOri/n3355eTw6dv/gwRE+KHZazA+Wz1erZ5eXeuxzYAl46XWgnwRZuIDGxZBGT0eQpSA1qjRhkJRpiMCmEG8ncusWF6WAB3Y87G393eDMLOrLX/vakK/VXbyiMdRRCeoRAIQrjr2Kj0JPoLXj/Ei11R5R0FXQHG0jUd8dwb5HcGrKgjNvP+LrYjcQ9haCSYun/zC+OJ2h2pIuIkAFE6aKKD92o/Dt9w9+8PGz15ePPvf5e/fv35uybY1uuPr46dPB8QOYiuqhQ0EF0sNrI6vlXPPzYPC73/7+1YY90/d4n4cVbebgVGFWc7aiVkyVYTAOVtmRnR3KRf4bIfjORv452DXyyTAzgVmgzjbVxdLjPqCLtxQMql8VKnJNlQyDpGB9pNG00ulLZAJpTSq6l/XTwNRBixYA604uIRV7YSVtwy2mF12ZjuquDloXkVAc0MnulnXQUPXz5e8D9lDBUlito2Xr5wvQxbwUhY3LKqf79rCY/MSeu1B4D+jR8ZRNBkghVhvbA+inWFHaHvYczm2jHymS0GdfVRgZ2Tw2m6MPZKyWGKOk70qQa837R0f5qKbjBWtfMToUCsUsiMkpYxUqiv2B8GsThQPwS7Wu8ik+8GOOQNH7xnghevZtvHcxYWwnBFBLRluibd6UE9EEyOh4Wyl1paUI5PKPRorMmGKnqX6olPJgv5RxqYAg01GyMJr/rPKxTYJPC7FfwqZQhzCtQitvr101oYcE+c0h1lv0o4SgTDmU+TofNWGkJReKEhXNcSucT3uM14TJGoaB+NhdixQKChuS2fzlHBiJZDcIOtrlFrdtcP5ldtXhbEFj06ZwKiHGstuo+WNgVlu7xw4xYXMI95p0MDXcgCEOWm2IthGHm0G+J2ggJIBak6Vtv8hmIwyk8UdW8mQ4v/MsDvhrZ6dLsX+t/+rykmOGttfXDN6pvxyRxG12hZPXN9EXSAA9AFW6SJeEpsXsoH+9vXy5Xr378mrz7Hp9fDA77W/PmJvzrh2f4T7kNSHfFlIvY5dY2jPYJAY9Tf2cqEqvxhHJa9cIm+MC7KSf6fpAm/hySrQvA4MmJIHOYe9pJB5QkoJ4X1711rNf+9Vf4Qg4ht3ZlW+rF6dAly8fL9Z8tiqbt0hF0DPQNVJKRQh5TGbyuPekbY8mGxNM/GzhDhwhsdoNqcAxCrzRdIRYcAYXAhZDX6Eil64MsUaSNKuJFUAtBfb8sy0KJb7p/f53vsOW0tOze/cfPkD/HrMJ//Do448/Pjk94/UnFvvQVwxMlJ+4yeto64cQT3/nDz9YoP10lcgcEKMq+ptWABGHAec8+jhE3f5mN9Syg1bRskgiIqbQ0AL1D3rXuAhf+/UyTKUUsKwvsKPMLAXkAAQt/kUmUDhCBl1ugZm3fiUbXaYyQvDASpUsKwiJkNT0hC6RdLRvdfHZnBfU8EpCCp4Lj1rTBYdDSTcsYsU09iXLHmyDwwFxNj3jtfh7x/eppIEGXZDMNnwWHte8oraF1cdHbA50z5DeI+gCjntv1VjMx2ouwqgib/A3I6x8/4HRiROEBswR4cmEhoMMd0LbjfEP0UdgXW8AXjqrWUuhqZUTuMOopooKvdU5YQK3xXzei4AtUTk2WeJ2YIIwoJp+ARKwlWSn8jwAlhdDCKWgprs5rAYgRgxE2oxBhsaMaJQ8WArAcAsI1SyJCLS5DxQBBSZXu4e9wD/aCIzQj56d4Z42oi6QSC97qlbwanh9fYlQgASTy9lyStPAdOVyw3FL+KC1a9hcSw2wnL11Y/aWjf3iB+vmMjnyouzA7rbrqYsS4BA14memYvfSbdFkc77GQgJbn0HFCdzAnThUipkMz7WdeWXcgYIxvNm2gXjR7jS5U790dQWnESI4iIzIg6q0rsnVKCJ4FYaopuVPkneZgy2aTJlogTCqkeFuCzqtamUQ/OL8knGnmZHb2tSh9CCZ3Li3EqbwXwkDd+cszLSQaKyHQ17Kxn5hqsJX8s6vj2lq9scwkPF+M0f3MoCyv3++xDmE48OexU5dPtkEJGQkI5f7DIStgBDX4kKpqbXx88ZgAEmOLmN+BN0E+oL9BfS49Y8SK7ZkjQd/5uzdx6cTTv2eHp8yZqIumR/RHvAOrhEw/7jSMdFCEtiky/iKC9842Mnguq0rcOBsl1gRP60Nx3j/1fO/F6PhhLLUof2aYoVi8GyAURGgkA0o4OWdq4vr7/7goxmqZrv94hc+j9p7fDYd+l2ww9fnl4PRyemwtzz0k04BeDCfzR+cPbh///i7z16+8vVCZK2cBmhk245OiqjR/XM+AcVIpU7/UynpgIIO3fHKar1RyUM/rUbTYnTQsiCM2oJG1lKgmqciUIEWyOdLoi0Am95DHrcl2c/T1ZV1KlXarZlgw8rU4sseZ0FNZV8SQD74nz+EjqZlUoIv+fLQU9tBGAvJg+yYwAFZnKiBbOvzy4uXl1cMgmzRfXz/lPPX8AI3ldiW1s2Yx1kyK85DdFMsKp3saSfqI0NMUU1V14zhpSzjivsMHwaVYqhABnrGnujYwIANamEPSyE6wTe8r8lj/pzI5PunwSH0K7Dpu/u0F725VjLlzNYGqoRn8Mf+gfzbDmRgMHDGQzfQmIpUI2lkkdS2yr16mqh4NDWCY1rOHqnGzh1XcgaSjUDgak9pQzhFDrqSs2JGRMUeNykHXLhbjjGMgc75B6pHTNQc+jfwc/LZX0YtVgxdhHBUlCA+F+4mZbZE8wyUXLRzPdDBESNG/czRBu76ctJADlhho0UbyiSUAyXdee3IgDmIBX11fe25P/gDYnXp1EAfe3XWk1mRKgbpQQ2oq90hg7tQQRQ+UxQaKoqFCojTClbJ4wToqEgJc7UVrEIxF/EhHNTkQAXVMsE5kDjXA6og7S0K2palI/I3YE8MLBlxFhKrck5daGYGfDVC8MxEQjvWJAWFswbtUMmB2l1eb2dXy+PTZ1fn4wlwOVWd0F/wViAsgha203kgB2dHadhh09stEAowwOdPHGUlw3x5CE7x2v2U77OwDR3F64E0fAVnfsFsBQNJwADRpoFaECXg/4N/h1fnf/kv/dqU6Tj9DsV2coJYwBcZ68zFAdy5ENo9bWBJCSQU0yrBNDsXSs/QtASpqhpA17a5skAouV7j1aF9z1+/wraCe4hFBnx7UoG2RlfGdoIOMjzGLnp9fv3/a+9eYj1ftsOu9+793ruf53Efvg72NXHAthycEIFECHlAEJIBhYAUIANMAIkREgyYMIsQjBggwYRBpmHAgBFhECRDQkLAAUJ849i5177X9n2ee849p/t0737u5vNd9f//e3efPr7XIQEhuXr371+/+lWtWrVq1apVq17feO8DOjJm+Qd+6HOEyy2HB+5du3F8/Le//LXTk9t2uZ44zuzgOFGHXu0ePDGjcu97H/3ae989vX374uHD08MTuJKDgKJlzDj2nfKoAcsXAWp7GrbGXjsn67xPc8TcVh+Z91a1nJL6HxDTYwnACCR8+WrTCYmU9Cg1n1aqlZdMJZ/4k2scv/IBRA00jJ+Mywj4lV1ZFj239Wm+OHHP+Ld7Uph4H7nAm0x9YMZNvU5TZpmAWZf5OG7xhQmA+w8/evDhu09u3zo5TQkAdCuxwD1klNt74XAvLPLIQTxIKv1gJ1/6niGnyV7iENQaG32NvCGgXZXXIi1GJNkmzRDsSdd8o7pMkGG6JTyCCma/JzBZ3iGdUKDqpOWIJ4s+vnRLOdgw84iCqLT+tpwpDriThuzro0dsLELMNb71fRFQ1J3nZVY7Eg8GFXyks0pIk+zrpPJTHm90hfsvRw2BDNSetHESdtZjTN+5JGMNx3rEQzw1TSYNYyW9MNRAeIyCdrFXF7lSnxVGSxIYGxcbt88a22fCYRrtmptctCAasIRGKml/rM+05boqmxLh06KRmH/4mAaNm80npCwnprNm4GFCe4za5Vh7kCKZSUo0dZKsSxcc0Vz7oQksokT+ccWefyukypiu60qFrIgqf+ORsr+pglk0+WkCGv3Q59qeo1Fj98Zxa0VUNCi53+GsxVhk06py7Vv9zUxfsaBk3LL35IIl+qOHJMnc0DVjMqyp9aTglVGNnJZlmtaRa95r/AijoqKYY33aqnZy/cD458b+8R2jnI5YePTR48f3n5omPjDpwxLOIToKTjF7BVx16ob3Hz/8o//Yz5hTNgNEilsWfPftt77zrW9jPtFCZYlpJNzQt19l2Mj6HV8KzEXGbcwywjVoxFPoQMBMFgHp57/7/veYy6rWvT1Ds4ePrNPHUWAHvkoml6LWYjpq3BFq2q3znY/uXzx+cnh04hzLG9Z5Xntxfmwf9uWv//o3pkffJ3+PzL2yXxjp0Fyv7+uxfvmXfqVZ0fPbDmZ8++a5BZ9J/FkpQcQnW7W3RIZqWFpkdTfFr9vgoNZSSDpPsw5tFjcMxM9TNtg6vJQhQ2sJ4Wg8jldNVqR0nCJvGG2AW2TnV5UijoQYXJFj2MqdUAdjvFcfwV0gJ4erETaoGrtqs9Lbs2sAvce8APOUnJazSKWMNp25uJPx+fz0prkhw2MK3en+qZxWS+AhF62mtlbcEgHnpMkpozZS1HfqvEmDCtR6CyyWaKzaCJdlqUists6nAla31ygpz4/rfrB2ZNE4ITNiRVPZjD9UhA7RdzpkhlASILZQKZv2WvGFzs8ilAg7BxMdx5L4FWTEotFj0p6fcEpRQXYwlvhrHLPcjtgBr3hV3qIHoEEerOHP5zluE2thsgH06g80Kvz0DASkU9otYqNA06ObnyMsMwXXiwCCrWA4ApoAdShPM3liI2LDu1giESCy7SzyacKD7lWRjVaQHiHTkKZTi3C4UeSFK2uJuqmCOmKwdQlNQzpxCanTjBvDYA1snCbuP418v81c5Ur2wGHkctU3RJ5Sm7uQRVdDqKGh5WDQ5EeRhhjV93JCBE0XWUAs4x/PuE2k+cEd1eC4VZW8k/pTBLS2w0AKYYtk908PX9z/+IUtwFoWNBJ/0yblXnY57T28ComhDKuQiV5h6QtGubx4eO3i3vOjg48enZ1cf3b3nUP7Ay0fcyx2Mwj9Xe4fajDMwzYaXz/u7+DG8YHDBDum6vnl+erL9Fymec2DJUOeXzik2K7G/esW7FiWzp/DUS2SwZsBhxLR7bSen/6Rz3/xM7foVGCwONVIDo/Ob958cP++7ljLsA3JUqkKEV2nGDWuGRcswJVsZAoOg3F9UrN8GsNQAttRwYiehu+afq1479q9jz82OoKUKgcAZDhIC7dkepQrOSBQcp/RCcvO/sGHT5785of3nLN68fT52+eHd25a6HvNGlELPy8u7K20LvfU4M0G18cvnjoT6thKzbMbv/irX334wij+tIGHBc7HJ6bF6SmkIoqYMbK2DCclz9IARg5EhzhVN6ZFtV+r5YO4t5k+a/2uHx6rz2p3+uCYt3PHLJBrI8xQDqQk2ogfBItEZtIkL0zR/UU5nyqlrItDPocJF42xW/0/18faxPgTLnLfsbzAiDUunPb33r9/z5SRxtfWM+d+0GBbft6SuFlHYjRgAHNtDuTBq02hUhZsOgMnCsTQZQJoW5IFXF4zHulXVvpKtZPxjMrXtCy6qEEN3zMJGDKpbv4ae3QkG2J2yLgmy7x6vlqxbGKs/nF8Mqrs1DQzKrZ0Oi551hTS0sEaJSfRswQQFAOw8Cxr/YS8YLp0MnxWI2tg/cLSulnna2jKWgj3VHPF3nTF0XZcUnecxSvLs5CLFonnRfniVHvxrQQTU4dQLUwioSlsU56JRkUdmUipMzC2V9t9yg5ycE2d1RJd+trQAsXTgJ1R2vgYDZqyxQDtFGGbeoT7ms2dCaEY8cDOuIxpKX/tnLuQP6HhvlFStt6/slR1UdZPratKqz+gvDO0YIhUjQ29xFo6h9Ug2LkVIDG6DQHGlinRpHRtYrpbbQc/I666T0cZt/889bLWLuNx2sxQYX2faq6mI25V7rf/4682c5uf8UMtkk+jFGnCVpv4FAG9Yng6GvvevfvWcj199DEzH4w0JuGhVhZweCWnXpWoAYta0IZwSquknUJIACDZvSePv/3xx3dOKZLWII61Rh2RdDbin15aDPbu6dFto/eToxusA0C0EkdjiXXty7cLPtXmuS0DWqj1AkyHZsxIdSu3Q0xdpqWVvUQp4wnrp89+7k//qVunrvmeA0Ud0EnxurZnHxolVGWbHGjqn5O41vrSKc16GTq/8kn4jvbQm2hRqOq49uKmBXDXrz98/NhpWwZVE9rX9Co//sio8A1l77gj9fbo2D3y79/7aEbtF7Ztfv6tmzdbOU8PPH38+MXXfv3ruk1H0JgsMfPluJfTW29946OPvvRLf/3IDNit29RvPYKeQ0eh/PoFEnrWITUoQZa4etSiEcvx+iP7AeLg9hw2kExyrjipuiL7N1WaZpW0XWXQDoALe0+lSOZqHxR6nvFPwsXDvL+Fm9griVh5ArVxy+eZx7f5qpNwsdL//KVf/ML3Pnibbnyy/46bLxsFwzC9NLmVApGpcQxbDQXUMFJnlLS+o8FVMFF/uso6Aq+rjoPQMJYqynaZCOmVOBZnJLMK9QqjPL6OIwmsx44YK/BKKbalqWTTKdccy5qwtmKbRumOVYt2AAd2WukMybBvbXeT0WQtN/gIn3xTRryQxXTEvNpcAiqUgYlc4QkCOPzLrVKGQcw3LlYcnHpUrf1MWhHiqE209TNP9hrxFsP3XZYZ4FtxnHR2QYlT6PqjQ9PHFG4M0JVo4yYTvSus5VBGQoYCQcZf8f6h7RHXDDwXVUUjPjuuX2+8+HKbiooNDCwYMOtItQ9rN7xvcI77szl2Vimoem8Ln3vV9MBcj9SXKifyokMYesHeWygz3TBoVuYa1IqyyaTI/oYq63c+ALcF0Hv+yptT8qqmrrTiX3WfYoNeUexYf/LUov1vPn6sYxnwiSFVPZVSJPAwN/aqDCtVykT9rA9xjRkbyzkePbaFALT7119888E1x/RcPHl+po/VER3vXzs7eOv85IdvnX/hrds3jww+r5861HXswpbmuNzQOjPkSfXrSQeuMBOUIvLiOOlA0+N/5+ikXSGX10ysObRpEG1L0N/55rf+8X/w3UPNQWdXzHiCOHrrnbc/cJNIkqcaqmLSXT7VRfbKesVNM9Bi4qdcOrRFdXK5eGTpywFTQYoVITA0moorXvyYq56ItMTK9QPHtX5w/56xoctPSdjf9dm337l5fJ7gOWZL/+rXviY+k5w1Hs5dJHhvvPWZv/mrX/+/fv0rz0+Pf+z2HQajqO42ZYqcAtGp0hE6qYBFreFETF1PoLuzjwsHN/Vizrqzz+3CyCGPOKhdKx3pW6mm1OHdSIpbQkSbHmUjaaYvUCu2zAyBhx2mTgBE1leJdoV+vNXHOORYHu8ryhIau+jrqyel+ONHj+8/fPi//uLf+vC73zo9fP4v/4mfPTx41xpk9Ri7TpeJXEyV9NVZHwXFlIzHBSELRbpWWU7Qn+FgdVSD2TgzGy2sU7A2O+FmxG2QHRpL2OP/mUKoGqcFVtZt1SZoXnWKVQ5DEPHws9dkKS1PaxkIiDAUTtCI61E7mjbf0T6NN8SESAm0jKZySCWJwy+xIhVoK+c4K5fNfvqjFbx5jgCaMgvYMHBhyldADzj48VxwZLFJu/lRAjZfCyJSbBmaXjx6etkdJXaAuIY13bkZOnpAiGXsqVWu6o2MUaQ3mCsSNayfqi38+2KB1dN9g3FHXz5Nqh7j/jGBqIDYedATV6+n/JL3n8JBosoLVdLTLWeyPKNtJ4lmf61h7/SEubRzjBwNLjOpRqSIOCiGybgd6RLTGw1kY7maIoi045oSTMIKMp5dSJ5POrgJHDLM40qMVvBcec3bO7lJn9ojVzvlTz9lMYXxr3DFiBEWMipk0VESbTq0yMqUFIRWRqcAEidqz1kyl48fWeBm8GnxxnsP7lkQzcJ8erj/7PrJZ2/f+OKtsx85O3nn2Fma1k43XGyelZ2EJYsoqRe0pBVoG3ro4laXmm00Hrl25OIdu8ZcxDeYWCdsREOsm6l92MSA5QhH9NC/8ytffvYHf8a9Di3OsQmM4UqHzFB5dGz12r2PPtSxag+aqxUhiLTotEoXUTbkW3SPPUZvqe0suqppnbZZOiHnt26hiyHCGvGpJXpD0/pb+kieOKeKwaAOjhAwFscDe9/7+J5Vu7W+x48/+/adz9y5bSiH5sTgV77ya40z9l/cOJ2yHp5+dLn3F37+Lz8Aqr0VZ/bYEU724TuxSBfmGHRcua5Sn+VDwW+bq1kSea8FyFmkLTbg5Nq5NjM/U3+FPxcf+mZSIaNHrFGJR/EEDRNgfQyBmImcoIIw3Lb4apERuwdu3Ar5pP+1ELE3EHzYpuUVCALH9oWmP/sH//D9p0//6l//a//9z/93T//Ciz/zs//Cu7fu2MsjnlaJMEuUYll+zDO5hDL9qsPVnLpj6t4qvf2sIOWzCgljTGYK2sBsRhzWRSg8OCCMxhQkgGqCg4+veKCa1fHrjifYU9jVFrahochRWMVqKabIrDodpmqmWsZVBLcWJpkKkFWiq2F7WMkiiTyDSyyEsfCLv3SiSEQ/wlehNWDCeXCcAo4fYvPplcfEKck2YV93fhmtCDCICcYRftDpPSZn1rBU47nrkLqs7rnrkKgZplHs1W6WryYwaEnwBgQWyGb+KiuIdU1K+SRrNTq+ePrIZAhJ7Wn2LkNJVYOGKBy8qb3pB1CmAlYW0VgGmfya+SOj2x3ueCVAOqBOJ41bqT+NG5V1MbGeprt49Hmu6axHV/eNYxZNUfUNOlyoLppsqLx5kabmolIX9WrsV6g65BUjVMeF9npZlP8tNWgmjiwADc9JS+nJeXWxWNUrEBomvshNzuU9tVdY3CuV45sJxMf79nd3FYIO8fqFmqQ8HDz77K3zW5eXP/722++csWm0CgobqBsDSUe/y/veY3ZYmwae6/EMHdlhcTyjiWMX2rL94vmJA1Evrzl68PmZvenX3jo/tAjNOo+nj/ZObp3fuX3r3bs337pz6/O2dj25ML3lckvrRzQQBEU83Q9bhDmMi4cPlIbTzHBIHFeherzmhM3HHsvLYwwMQXqC2lcZLa4XNCpOPXn6zXpJWOvGkS7xsQVUDV0/YE22HIVcxw5vn5198d13TuvwT6ggX/6yqT/9XRHNd52c3vyrf+NLX/7Ody01Z8I4vPb85vWDrPj0cIL+cO/kmpM62mXlFPPsjMbAZq7mwA3MHatN9S0m2BUQawgZIdKP/5kMhgb1ukLiH4jTxXqCSXLEXwUVtUV9iibHgb+DvEI2gYthdt8+xRMm4wjHso5xh60yXRnOPz93Rvvdu7J75w/9UxbafvU7v/lLf+fLt37m9zMUaX0jY03cu36soQkP8WZBzGEWTmRiOjPktlu8C5tQBnCsJUN1n7gbzRV/LwdHEl9BE0db/Ff9LybBNmKmj08a1KqqtORPcFDUURRu2rxoBljtqOnM+0OD1gQeHWiEtacFCeO1WrUT76ezD3kshcVSOGvyy5Uq2KPKyABKmy/1pipo8/oyfCdWVsJJsk0jafW9IMTt1WL/+pCQvUbu6jAQq26jBQHdIOr6UGsLHjykRrfQjlY92skWt5VF1Qmyx1RsxMgigbnSgLFrKrA/I+cE0AzTGFm1+6a5W2ZbbdRgK9cq5swNw67RNtXQtxblpVg0ImTcOGpWkE2DBt2ocS3awxyJbogApXCrOOhaXc8avmF77K9+xZBXEV9xL+kCm82QRQS4qIJ6tl1s0KfMBUzZg5fnqrvy+n0ENPk1xTxA+8FqKmdg1Va3nsWytddovmNgRDfoQC7lfHLNWXdP/R0bLV5g4oMXN4/3Pnd69Jn9vc+fH9w87jQJ/SYzFRWYUPb30BCpnT7Pzw4v3zo5PL1+cOs4Aa3WG8qTRRocNE7c4KHZhdCP3Tq5eXJ86/jwC2/ffefO3bNDkLUta7FM/sClLlkd6Plro9ecm3zGQPbWW299i175pMXwESsps2HETSGv/MSmXBwly+WjmKdBM2rTo777wQeeqK6CuQgAZqbPVJ9WdaKHBfour6qusg2ofdz80LFTbt2++Pj60/2f+t0/Rnm2ve3R02t/61d+7ei0853x0O133n3/waP/9n/4+Sct57o8dS/BtefWiNy2pY6y5mSfg+tn16kJJhSTGe1ngygsrL5onEeEbKTOGDE2whTwmse4eCp5FNaDH6oleqJBc1oxk/JoFrwrSf1L+lu8K9XWbVlkUNgGein993ULsqeYV/2wF+DcZQOo6w7/3L9+6+j6v/LH/rlvf3zv9OwZQimIxoiXqJv+nItzcOICPDPTz23aIZFpfZvaNRthir9tibMlQbedeS4JsdAjBqpgKBPL0qzncFqhr5YitNBlnChlEokKWtB6ijRvQvtLODeoXrffHBJJz0+cE4bBxV1aEf4EQIfUWgjbBEZw0HDAV1KqNJiLPokmEEfYTB2W2VBrIoXNBoVFVS/zucDlNnR+rWDzLTZOhobYeLLJWBGR+RvC2c5b0cygp+US0Ba0OefInJ49AIZtGF5CyEwWG4+qTHgRfBTkxHxqBF5VrDZG2AWOIHS57nqLW2PDEctVU16CtwHKJrBhSaceoKY7mpiW21DgrR3MJnc6BnauXvGrsSD9yPBVZrluG3Ndnu5hzgPppvsh2pLJq4VMzUaUHRmv+keBna9mlaN+5NrFhGr1VdL5Nr/LW5pxV1/fIKADGTH7uXfxSNfbCdtEbTtDhHmkYMZnSrJl5TLytRhI1pCWU6oitBfc9IWna3/1/AeW3GgRt1x7Yq/dsZOAnj7KPNUJ/RcOW3v6vCOhzTUYOtOOD6+9fXr47q3TM/aiVDb69b4zkBhcnliZ4DgbA94bdua3cOqP//SP3719+ywxbvBj8pdtxlJJCtQwiK15dXEUjFgWelhBdTKnvPvuu1//zd+Ihxc1t7W1o+Sqvyl3TbX2VZFj2UrOmHB8Zvj1ne++jx2Uho7jVR1lv+DEiUCOQyNOfb927/79GESFYTWD7nZaOaP26enh0Rd/+POuIDWt/PGzy1/+ytfa13p9zxbva8c3/49f+covfOlL+6dnRr7nJ8dPHjwgkkj6M6eFHSSCbx8f30g1wIBVkKISnW3DIFzjk5BN2VM74YPzpy3Dbipw07AjAhwTIgvtmlJCeMVbDAfCzDX0jO8kiXo8wwj8FXjjVpgPRVhh6/OCKe4K9Zyse90IlPWhNFL0Iie9eLZgIZcvbjt68tmeAxMf7t03A4Rj1TkL9Ve+/Y1vfe/9H//ij36BFq2uU8ZI7DZyeE04ul3H0Kbq1GeGtuAkX9j0OmHzXdB0cv1uy+BDDSF05Uly2tLdEjFUp+PVN69eLbwrdtBJk6WAxciBx6XpePi0odXhi466WtIs5pSEmFZQm2fcof5k7bpt7D3Y1JoSsjGQOoDzyiU2LjsZyjv8OKhDM1Tiu/VxJikrARyLo1FUP5Omwg2rTz0gqkzHxBKGGR2TpAlmklqD9omxmbZsYty2hDl2xqsvjR4j6bgyifgDebAtQ/gMB4k3EgNwS+91V9Yr6ozswBgAi2dDExMPFzfPoiJZlbQiatKpJc1iGVcyXGGGuWtlDM6kcrOB9roKTdJLT/whBRppkWPGUMgMBpWQnPF/5J1vYTX0kfUsvfEy2E9ZeiEex21oG+SxY0F2xew57QTUTVDlQAj/p0iLQgI3tPL+BgEttCW9ozB1yfajDsegZyDCJmG8NlVXK56aBnBgbj4oQiOQjLzKTn3uqirlxfD+k428rX/DMOr5yF6MOmZHOmRufmptmWE+4p4eXj87vH73+ODO6d5dVyYgpfiiOs6iRnVtX9i1wzs3zs9Oj26MgP6xH7qLy2W9mFs2FnbJEqKRRStKaKUmLaJVWIAYsW3IPj42YojU800d9bUIpYx1pa0fEbJYmI5sMNXZGpk8Dw+/9d53nOJSNVkEXdcLUkDULgA4EF2mcVn95tbtc8XWV/mHI9Dg8OTks7dsozh6yxrDvRfvXzz4jW9/gJs6F+b85MGzi7/0v/zC1779/sHJDSikPjq4wJBib//WzRs3zk+PLp+9ZQHMOdV5zktTCsw0bBZ1tcUuUJ22oNrUUG22ks1/m6amKnt7yS6LFBMFxZAxdgOLh5vVzbG4NFFoCYFhuQV1mIK3LkFeCBM7Bj+3KiHBMPACMDIrWR8W66eY3iuB38nfs/lPvNcZk50KdX5AcXMm4uW3H75/z3l+j578yq999T/7L/7zy5Pjf+Pf+3f/5O/9R89uHtIyKMy4riEvW8cMRTvAYLD0FkEmr6Q47FScGtfTRrz+ecXSlDp45OAjDV1gJDnG1AGo0xaDHpxQRiyPD/tgRqLlgK4ouZhS8GzTtXuTzDl4Rml3/mL8uImWNcOx6WzmZlvIxUYGlSEEQ3dIhsIlqHENUH3DGE8rUTK37jWKTpp+VhUscvoCPTMXXgNYrHDOgTcSSyDOhYuTnUOI1PTU35loabrIurpLjbeLo5zLoh21QXtOOSpN0PobwF5wGgQisizCrrLq51tyDqz4mrmdbHYJd9szmgqc8EVFiZOrmLih3YHJrg5SN7/UgbkkM9uyIw/8OX3dyVdZRmdIOdvG6NTp3qnXcl+toDa7EcsJ5+jrkcu0u6gBe/Fhr8hSKoPX3usfRy2NQVaF9MW32ltRFoQoMEqu0m4pXPJePXcxV3xPIW8W0LsYxEcz/oQorTCYvz2nfPLuiXGaWtQl6hjNezuGwZjFLa721bof5xrO019lq7ZY8pLR4vD8+Nqdo8O7J8d3zo9s0LhxckwcWoPRPCujfnd/UFrdcnPoKgbGVroy5LA4bEnnpMbrLj55PezKu/vIjSKpvWtoGdkH+SpK4bdJKxJ/ockm3Clv+vsH73+gqgxDadCgygycAbBJjtz1HE7vIiu16bgO89MENeQDR9S98/ZbVl/obQ6OT7597943vvvB2fW9t26eUK+enJz8/P/0Nz589OT8xi3LloiNWIzQN665fP7O7TudR8FG7wRGTQ2hZFDVx0Yjd4a7ZS+VLyavhGobMUpdCOd1eZY6vPy7J1pMnIBKNPxUWw5Kbj5ufZtUK3gH4lVPWGibg82CVgCMtyC3EHvnXxU6ObzMbOoixHxVwq//xrf+yz/3X7lY/vDp5S//7b/lEBnbKe8/uOdEcTFmUGsKusFV0/mkpxqcbqm+l6GzyVv14UgOy/SrQSLXl1Fly8XX8hpeEAEp/RNCSM+n2tksyWnqtWNXK1Cw/Rv6xYBTZInKsR9MS9BoIv5N1VmWaqpGuCrq8yhyugAcM0TAfXIZGTI1WH3JBifEEvFYVJJgfqkEQ0GyQ6oAyqvx8KKqBX7kYwoEMw+tXnD/RQtzHpETzURxk5baaQptm6eFdacfl/o8iu4ceeHwk7UxZeT2RsxtSlpxgrxxu7qGc6XwsOIwDIowOTM2WLWH4XPbdP0SnFoNEax4dBQhoU32oj17xqm5QCfTWK7BoNH1KySFOZm0aG5E84IG7KoIBeGZfArhRNhlylay4pfRtgjTBMs3SV8VFKdSDAFrn8MB6zXshqbb1CVcTl47zy4XcIR/HwENoqXQmPnJ4wvbiHeJf0BPjLkcdoqjOGK6ab0We3ew/6VO17IJfWR2qms2xCTf7tw8tavkjr/jw9suLDu2UOzoheVl+02TEcnNf3Ucme6SArIqc5QOpR/3A2J4Ndr5+fkjZyA6Tbx9w8MviCTGVNq2JKWoHOWZV53L8LvvfVcChKLhYFYMLwq+rksd7Pxqy6BaljINXKeSSdjX1JvrB2/dPLtjdrna3X//w3vffP+7lr7ZM0lFeO/xk5//a3/pcu/cuYr0ErpAC1w01+mQbx4e3Tkz2Lh2+/icGV07x4HdmzYWjQ2XpPvSULLSlSkpNAFQ0worR1yzbTiVbtMYdnw5kkiayIull6dCFVDCfsYzhIk829eAD7eLNjQrIIedNyIeGKC2cHy6kpZ3i2HejQvZvHIxWrJtX4k6yeXW8a1/+Hf9mOWav/abX3Ua2o0vfuYf+fHf4/gzIsSsvbsgJGB7dLFXrZo0bWyzgI3gq5nZnZO5jGuYTX9b2iKZmFzM+OmTvCdKD/1MCv2iWjQZadN51MXzf2mFYmIlzLESDk1WcvaBMeOa6zRJ7PSKCzv2qWrFNB5kUGjgNtOcuLwBVzK6PklFtV0q7bezUP3UOzcaUNvNGIRrdAcgvqxuveCyId8YriJ9MluFrG4kYNmtJiFdEq9Zc2/Ttjkhe/2eMcR1LBzZSeFKXlOlE9zCG0O0Zy/pXF5DqKDtShsym3DMV6+0HJRwKe5UXstYkhar5TnxAeINva8CKeYAp6+RyPa0WaLheEN156oV0+jOJBXK8kxUE9Rmy0mWWb6BqV9KWzCXUzU809ZrteU/cjPyXXGIgnUQbIRylBpYPMllSK1U+aerK+q4CF5ZX8LyspygnWf3WQgcXgpocHffaoGqB5VevKBX3p/hf9z2qpOZRCshcOujVy4Cq222heD0LWbCyYolV9LZ6rvHFy+a0MJHz07Ik4Pr7n80tL99duxEzZtH128eXL95xILhJmvTt/vsHYxJEYaqMBrgyhGXjOcl0a+iuUOsAi/c+LbYXo2pblgKcBgBLaLaZAirqXUz0wsnYE1k72kccY9mZ4Xb4dGDhw+j3ahg2LrlWw1lmnqGrJ6ZJBAXK+PabMMNr2zPLpGbUCS/e+vm7U55t+rx8v6Dh87mv3V2fsp+dnT+le985xd+9VcdZ356cqj52mMpZ3u2Z0DIfLn3xR/+QkfcOYKU2K05guym+vRBdrg0qrhINUA5DQ1fDwFaVx4GW465SpNt2ObjfKr6Vmylko5TD55V95YTdFEqfdF5omwexcgtcbEJHIAlT7vdRBjUpqamAb7k6BVhPk+gFmKf49EJ41s2iBmAv3Pn1h/7I3/k43vfu3Hn1o/+5O85ffCZn/szP/eTX/hhMxTGHA+Nl69348+J2VQaQZuD6g9hEyE2PIvP0mejjHC5tNFHLIPd5OWYqaYsK8YwuY7PUFjBQZ1qL+7HF9anOmo+YoCEZ9S/KuhvJwv6hMiJBfbatEV6nF72uflqecXYTGVlCiNHJrLy+q6wgNTBVJkm1PyTVWOEZG8w6/3ZZrGZMgrCrGGB9SL1UuzqQ7UjVsDpMwYtSbPuImg2D7mmcNiqQwrvMTy6ESkZbY+rXSjJ4IaBHGGMz8ebR5HLZJ48AW0ksJUgIzQ2aCz616YbqVtNTeA+s/TLXtC4WaNGOqBfgan902kMGp0+ozs9OD63t/bw9Mbh2fmc5J905hxI6k4s2ooD8HBmh3cnOZKk1coQf3lkvV4XthDkQTjh4ZnDDBsR3NBi+rjNWZTzYdusFHTF9yz+coBvfVsiDE08fJLRehNnG9yvGnwpoK9+GP+wjkMhPv4YxVWQbuoTcT49YHKqhFMZdfIxfUymn9SBnTIeX7t+4+jwrVOTWgc3zzveD/+c7h3cODu4eXJwdpx01vchtFsS6BFIXEk0H9JGMUMw5z1m/n5u1cR6vkaIlRQj2rV0dvOG9v7hhx+aUpJ7ba7msHdGkj54QDKrsQGidVgX6AqfBnSDRrMlkdT68YsLIyoYwlle4qttZpm67naNOkzNus5OoUInJyjevXVOy6KQuITtvY++d3DmUleK3OEvfePrv/qd9w9Pb55r209dkzqaUyhcNgv47MXn3n33jnM6mh/QB860scYVNpbJVPeH5kU3vb3GmyzoAXdEixmussuGOfx8kj50Ha5P89dLNbCtg/qBTXJVVF3vvkxMPf78vvJYmC76rA/qtyp+EwJXUm5AIaYWeH3v+MGDjx88eijZrZunn/2Rz9y+vHv7xq0/9aM/9O7b73z27t3zk/pXguZUH+ZgX3e+Npui+Caht1BTnL0QXAnqrSrVmqI4t+ardlJRkHREXQnj7dWwWQ+sjTRiSnRq021cJmJ09otVJl3eom/z9Luhswrdho6GncHAV7vz59lZ0wnrF08ycqed0uvVnAFozWy1b746liwbSSBGWb9W96puQrg8R6i00qewhIcQJw6gNy9BCPvUES+ApEawOVbG5CbOtHnK0dqPnnSC/pOnHshhD9lGsiWcdf+Z7EBU0jK8Igcn/7DghHM7j8grxFMLGQDGOtpRZ5UIY/ioXqJ9HFcfw55nzSmV+ejMDcgHZhiOzk7cTujuJpPmadAUac33wM33FtfZm6IlogPctDlg5D84hs/CNujjhESUwbMGe/W1jgFKITy6T9EKyG1KsRIWkITwFuvD23OVWdByRRm382w+XAn8LQR0iVHdMEFpFsZX038/vxqKD4q2aiva5sxZWJ/Abn9+fHLz+MS277fPjiy8gIoEZwdnZyf75yfs/XuuzNDtzdRr7ac6arAFKytvRln0TlYF2GNT2snkzY9tFfS7YlwlDb+OiPXkc5/7nIV397kPP8SheE8gdvRsbmTm1uvorzFAPzUmZVIwxA7o8LJi6MClgpDWFOnCPYVaFqS0miTUi252/tFF5hrj6JbNXXvw5LlLqrrIeP/4r/7iL77/6NHbb797RMUx87Lnsid4K6n23LDzzq2bn3nLykNHASFD7bTmP20dKI07yeTIeAjg8Qi2ZjwaWQ6zhOFVCmxpcqW7C+AC+QaSviSjihj9CDQYjkJWI9hVyRXvSzgrd5927aGKRDd8/UrqkmxQ3qZeo6hpbdU/yidMDp7/6I9+wXDr3IDX0dsvXtw4Ob106bzTRPe7n74VV2bP1KktpTKKJ82BD/wlA2REbJGDVE5iaey/qrKqjZFFRdFNsXrZOhIlzqwDzJLgz0qT0JYkAbQafDoRciYEs0UkTFPYRxCHRCYKVWKOJpzwo6cBW57On3/WiVzdSOAYX9oA204s5HMyogSpvH68ji1Wvy2HlFP9PbGEzovanpyaFQwBomuMhQbvKOq82LYFhqljPI0cbDJ7YreJE9yfPHj4qHv8rCfJIkmio0qz5x7EH/6mieheqvppJrWW8cBuucm47yhTWcf1aTzwhSXviD345mgz0bCaqZSJ2q4mZNA4S3dOcXaBtZtszjNu2Ingmkon0cyGFGdHK5MkFa0ixZ7yir7jthW4CD5UXLRcmL36hExFHOz4vCEgMCvW/G78hcQtm9cKO25l+trTl9dCdq8x8e5l51EUaBi0nZ/ewJwqzRa1R3Z4FEN8nvguv3iTLMExDs6UCPjoRjWEGrcRCmRnnuba5VMrFd86Pf3MyeHnbtjb3VplpowbdNE2FhrUm/1rO+b5DXnGOJVUW5FXqvN0WfE9jWKDjp+hxBsKAqOl+sE4OOM0DFGHXIUstHum5rZWBu8RpLdvWx5y84IB4uEDdnJiwGSgCR3707FtNjbajLMXjo89dadT/p5atWwLiR1oYTTlww6CscVv37bHmjvFRWJ5quvbt+48ePbUCVGaoXuK7XLXCv7mL3/56x/e1wju3f+aQ0TevnXXQRtagHUfjrc0pmANeevWrY7nN/rMaJJo4DwiWpqPasjWzNivaD7V6ms4xVAfGKx69o2LmJGihrxqNIoUtAgYdYrmN898DNrGIxQv0MKi3SZMHgmmQAva0Pll2soOgDgSP1fXPCRpYqsxVnp4rXMi9QA1DPCRyFavtPxizP1EF33L0sZWtdsW356mgxMFRD0mgcpkDwXDmgsirAhwfKv3DgAMpc6vgLo+xROVyqV+1m/Bi8kG6WTuYDCfJqK42buCN7Uf9TDoRpDM+SoVbyE+YjTZUJmC6L/yKTjE4ICfMhVkSbYgIvgtaiiz58xGuhfXNuuJO78XO7pRTjc+R9pLy42MNZMf+aNblgpSqWAqjlxAQmJflBMKQGtNxnemzMgaDMUAwCYmqDk0mqyKYNzrZpP2B1pSoRE43NIy52w1KbrKHcDVKrP4hciUSz3JCIQpqKA+rNLkAxWtGw4OjFhHq4EUoBpLR5IAy+iRXkFg1FHFD+nUht7H1GcXx7JmHJ7cyHN+q4sgubVTkEWj61Ys47B0AJgoLqMZPsqqfi8uj/HCCY5+wnT39LYpWPHq8SppnVnRdCJTLo+NkzBiBCS4KzSke/Gvsgd+PbaeybHAracPi0wqqzr8lGV2wRx61mywjqmABlXqePGh79E7KoMxGW/ByoygiAnKCrssEhAFLqxvi9f1t49OP3t+43PnJ5+7dfbW6ZHDN24c7t9wFcjBdcYM/ffc10vJxjygBSRY3NBxfLWC8azHK+W7Ev66dxphskpJdnVzNdJCVvuUOwlssb2VQ+aA7crTR2TNcHoqu8H1vfNbt7/93ncwAfmr1lYrHRQzp8V+02ZG2qUvZ30+PDJGZEUh62GfcDeSsC7v5LRZIc1AHvv7X/vmt77yG19/fnhkbR2b32NnGV1cfPNh1yDfuXv7plEFlfvF5bm7UzBNXLGtAr81D7zomau+5rPqmMmY3mQdHRrkq570t6GlL2lAG2rEsbmR6aUZzlxQt3Fq4S/9K37PIeKV15fovQyceFcSbyBr0nUfIK9yhaV/m4j9xO0i6OrQ3FXDBiLJBQOtGlRMg2P37TqqG16uVV6688v2e4wbntx8XJJL8EjoLXtPuWSX6FrOZN0sedqAqJSL+WN27o1DUSOXlWONbeD0ugUJX971rKWMYM+QkmIcJjNcRAprni7dB3vgXr0nD58/ejC2BocsWwFrsgEDii5+cn9qtnpJ0qY1WnRqbqzWRIwqrHCQa1P1f22zY/MRT6NTaPycc7iWMxdpJKkBGYBtNbl40lpsR24QpLr9yQ2geHDLHC0zbPyQCrDEg998KKmkw4q70uOwtIQYlACWRyKDQq4gIxA1Iqiq5s5Dsyw1AMyEeq3rx27ctG/tnIH55OSmWUH98r5pQRODzY9X2szNFXdx9BBzmsUifwp5FVhlJmCmLWy5bIfhKlbkip5TWcvAAfGwET4ylL8CKuYqY20wNyiLNa7orztxXg/qfRO4ft7IV2Wm79Pc37p1s0XdFMCuLfiB3NQIZCu/ZsZ5EA+6b4O0d85vfP78xg+d3Xj3/PjdG1YpHNwgoI/Iqbp5+98OT2wciU+WFtNoedcmfqD8PzXSVTBwU76poJfxr1JLBLpVUtWSVKrBLBJo2sFZqNeuf/s771mF8pnPfMZqfOc7a1SzigAA7JmdZAQ0QUhvthVSXhoA0+chiA8vZnMm+7VDQw9NLndcybXL4/cvPv6NDz/4yte/YYPk3Tt3P/jwo4QnKd/9lee33Z1iF4MG+eAh5fHGjVsYZrQPpeCrcKkjGSsTBhse2QqIK4UMyeFOGgzMBrt6vpZ2rmgblt3Sq9DaRirYMN4m2npdSa4+d58hfzX8E35I1hqFx8qb3OtiBsOGaTWO1NaSLlhiFn9mb8CvYmaHSVJlTky1ooCNdgETIbBbNFZzknyXR9VkY312pxQtkTe5TMMTs3AQwq72BuDI8fEMFQfXgkESn+NdHs+lWs5rEHj6IYcmKEHmbSYWFQSzKYxNeNZzWGZc5Cl0BvNOD6VgPj/ae3R0+WDv6UOXYDxzMsDcuWwDiyLHpWpxlJmwpj9jnZafttCMG006UywkVrOaQtsoZoMBMe3EzUtH05w4iuiABHQgUVurE5pdGNYJG53UlDg2FTJlHJoMhSrWctPowS8Koau/7elvva5nZkOUTI4ruOcIaL8KQHTok51ttQzNJw6aJAPswZIRiuo0jhidoZkdg52ZDYNBy/x6ZyApKhHNQWYhNpR+/eHrCpLjoK3W+l2BE7JJDpf5MByiL/ICDaUfphB/RZ6EM1wYJtlAWOBeffr0asCnvq2YbxTQsIVDkG7d0CmZKz+0NA4VPxXYlQ+Reet2wftHx3RDZPxd79z9kbPbn7tx9tbZPulsgzLrszViTbjq+mxoNqhSf6mSzepWYUO8Haj/J54tXv0ObV9pTjvaqWCHcBlHyiuuTyLUyS+6o8wP//APa073Pr7fFYDX9x+4TgmrwRVT4C+YL12mfSj2+tDsNgfF+SRLjcR657NTmot2tP/x06e/8o33v/yN33zKGH1OEB89fPSMIc1eWTx+4/z87Tt3pQLe0FJ74v3e/XvmpW/fuAGWVp0GQDQ01bPkSUNmIarwFX5IgqNmE/dTxeR6cP3flV2q0k1yvsBx2tsMV/NHjSVhJuUKuvLcgVo4XPnyCe8w+oQubOUVOqiXBg2LFLWN5Ft8PQVKGG6M+wnEbDUiqyDCKIEt46m11Zh82qYtKznVwipREhD9FcdTpe/KtagmFY0pG8s0x2RJVAA+Co3iIKfe/I2aPvAn63wFvmwyoTFlkSKfLWBbTTN0RkDTQG3btcu57QIyWbxXp5t0Zt86eO6whItrjz++vLj//MFD+6ndeu1Q/BnasdWMJgRh0BPRY7RwGC9r7LE1QUQYI2L7veLTGeGRa7TT+AoNnK5+fPzY5M/BuX0dFFtTcDZ+YBgrji5aLqNqSgj71AKVUS0FDWGE5xT6qotHopz2shSdZHHdqoFCM6gvE0bIKKnSiUN2rA4qcqZK/QF+q13R3K7bvjar6BoXmOo5tbQruzNl/5jqPLW5SrcgV3fjQN741vsgzwt/aICPXJsvVc78i1IxmzhLd16F1aHwcBJGhPWnWWTf2jSKFWEB/LTn5NtHkT8ZZwW+SUBjW4SLUC/eunPjmnU1Fy5Iz8DB7YC+BnGXxyqR2vOnGoyRcQoLiTMTvnD39o9/7p3PXmfY33/37tnbx/s3zw/dsadpdD4V8h7ssXYtyNIuzw7yb5H7a8i88RUN1MG22t4QZVc0jb+Z8oaNm/rjX7UOGcQkeNUphdpeKcuyr984t3udOYSZHp/aekPXwJA2bTOLASV4PlbV1tXZ2xTHYdT9AyfKfPW997768YPDW3dOquAGqk3bXz4701xu3UrlURewNwI1lMEwI7gcCvjU6RMOHmG3t/5aDHwPT4r0CFBPNdjfcJIiKA/lxIxkw9JkQnNS0yT6Cbn+OKKr9pc4L9v+L5hT/MWXyzvRS5JDwGg4Lc3nxvU7twCDtPXMlw0Q9cLVhpu1YC6wey1wEGmh8iSxpCkPwUCeDjablsNoOsKo8Po/l5ob9aM/qZIxm2JcvzhZA+E3I0LCcVSeMDJoy4HgsxoUUkkw/TygIrmAEiZWk6jTB2x8IjZHMm7IvLz1AcvtCi1gEy9PQEKy1sY+kPC37UgyAk9CQtNziOguCVvGXOmwT6U07bBvqy1r2+OHjgB7/MAp69pNXQZMqlbJ6lrUNaF2/PzxYdcOMY0dHb9IlrEbDE2MDmeDstI+lp39YvTVE7cHWPBCkz595Faq6yfZwvf2nbRvTpCNHJ+wjKmCNueEnDFAl+EheayL7GvBIP5kGR1Sx5eEe5OPkEPF9qTxD7NU0kIiMK5rihVMNlF2rD2mRRZWk5dtUCOvHU15zsSR9dkSr2wdY9VIdLenFChO1ccJOsiUKsSIc8pt1GG5kP9ltppVpPK9kvgZFxBVhn8TY8ndzQdoyIMsL8bIk+UROKzV2/Bmnm1ryl9u4zTInQN05/80z5sEdHHRy8Y0N7O9uHPr/JtOOfjoPor9gE4z8i/KcONBWZLm933uh37q7bethLD37zM3T9+yO7vT/3BRoM2NOwpTu55kf38fO3q9MZua79JutpSdlhuSVRQmSnRMQ6odYOAaAp548eCBoxWNGU2u1M7TFS7ZxiwZ5TGhR6bTBvA7LjW2Nhn06++9960PPzIHzbp20hlsKbhOD7ESZARshsJdpcbGsSEkGvkD71BT409MypYt12EmZGRDb8A+3LThjJBPYqaW4dYBUmsbE0KrYtQaBg66f8moeLa6CQC/oDJ+I8UKXAmHYiV+NeZLJN6UvmItDu6ZSJY1+nmZgNLAM+zDhK6QuTxK8A/1R2YnYMk8REDdDEeoWVOvuyMZkKuB80QK7hAzGUlt1aQlI97r5oq65MVI4w3GJOD0adOr1VPE5P30W07LSb3x+QjhCS/Wotw22i7OeBR1oqSaaer+KWWl5RbdUyL10EkldyyeXDx2jOf+yTO92v7z8+NH7IeuMBmkw5+s5iKOdvW4+iYD21Ai0tOWeR4eOOWi6VFDgiXAIIqBEefJoeVr154cPz88dVjO3v7JpcO3rU1GGYs6ugrK8qWYXkoHn0myegSbpORPOZmjgmklY98bbLQmvwnm5s+nCwkjOQ/GEB3Uh6hh2vagLFe1BYWWFxs0/Z8cpj6zcRDTRtwUmA6dEVodR7EpUFns2K9VX1FCSHkpo34YMiIsSbpiem5cLFbymClXk+Bbfz5N+wMv5/POE6avugBt3c6368hXPtvvm98QHWz9LuCfJqDjVNSD5Be/+CPf/LDJsmtPHr4G7tNfK1c4bbiyUv3Uj3zxD/34T9x+9sAKoLvv3r11dkj7m0VPBEbjIvUVS3060L+HX4Z7X4e3I/fiJ3GWm/ANhZWqBk79xUU6e72xz9Sbp+Tv4bXz88zM19wwMMtmx0hilbRep9WCxy0taDa+kwEJw/2vv/fdjx65a/rsNtXY9nRfU+M6oRk/0+kEapOJicnfxTPDNejJVyTv1uBdaJ0PL51NekbxoW2set4wvapeJYWs2q/xpgi0hc4HYcqkDF0xJCAlIw16QhOLayJB/vNXxA1nXyWfwF43GQ24FbKNVN6f7mCVeuNnEyexNq9BWVA3z2kHdSea+iBDr9X7dVC2elEGjW9dEm/9Rpm2yUJEWhWASJpupYnqqJSIlFZddK4RKqvFipaqV/4qGC03pep9sEIj6HLATlhRVegny0eircCNwE1LJeE2ABf+hLGVGUklHbGFdO7MI/1m9KirKbnoklQBVRLmcLnC6eOjx89ol8cxYQLTzfEJyvgrBx/cUQ6ZboarbCaw8sXhs2i3ph8HdMe+U1flZNlLcxmZvx+5AIPZ+YVD1w/Onu+d4FWb362tbw+mZRUK7rhfi/4sahp5Z2TRSqe2gDuCrsXajWCmNnxCH36eLW4C6tKQbf7Fg9GwTrPUgIk5JY6X6c1qLSU5I/MJe6l/1GnbtcYiruKVST+LfWofk912/B2AyLi6vFXFUbWeRdwh7moAvcw/nhHPPSJkZNQueWI88FdoMKeCJkqCe5wIy5MGsHW7mKkDW/cy5jYkimyTr69vEND1GZeHLxzxpiKfX/6zf+iP/u2vffMb3/y6asHqWLx5FcglM2CwQWLzEqd23HgCl2Z3dOaEF3cK3r55+w//vp92rKirEayHefsO28b+s1lF1EKmgZFBdIfo3ztP/fTWGZdhnQJ0vBjLxo4xMSaIYmj1vFEHYnSd3TTClXrrTxuZFoMXUM+0tldVbSBmHduL9gJePicrHz59Srmz1Q2lTP3IkgZ2YcL9+aGdYA+fPP7O9z6ECol6RrYEJZRStIatyRJcEuOR1LCJGdxeh/mi16gUG7aS46aBvbj2yN0zL2yLd19yq004MDExlDHVtvIzIFCk48dhyLLJk22WuFeechleaVg7nKI9YcaYs0ttKBRsKamt0SKUvIIR+rYzyrcGJqAkOfESG76/5OnRTIoTJDqxiVYan5hLW5c2RBSdSKVaqqux2dtPZ14/U8/kAjHw2a7SBwXnuhAPwZMgm+qHInv/dazZBs5iVsw8YnOEWUI5hHMrcHk9J/hlorSy3KRcXtVz9W0T6ITbbelDcoi8IYiXKnSck7W6BcdCzJEv6GTWeOAvJMMHYSw3W6cCmS5mdn16/PjaUzPMl6SXQxgek1f1Q7U8mFmB5+nfmH9SPc2WmE9SllaCT9VUoVXgIkP0XeGBeO4GXugw5tnE6nw4GsYJ/fMZVK8fEgNsIwvZJsGbUU8K05kdrkOLrtvT55nwxMzxgkhjVNJn1O4EySIZnL6QSF1CABeycNDyrZyMZ+XLMjOkMvA0e8nSbHLdIScuIdVDmDxdlG90I/GoTFmTp7+vaEYeTUXrd/a6CWSyruOackeATurn9DjYEHWGBIOQhPHwOBGGC8TdKDHzjmM2nyPC1h88buw/y6s6N+yhVRd1MdgVNtvEuxJSAyQUNh+u/mhE2vUwPlb86Z/8qQcffnj77u0n3/1ACjrdYJpki9O3GQOwMrbFRykapqKOm8GuPzs5P/6Tf/if+Jkvfu7k4sMbt28e2zWoVx82upot/5DqtbC/H68v89lQqoIkGrwqILekydW8Ud/rir/8V79CHT0SXjRqGhFDx8kRqdK+WJfR1uKczGgBJuPhtY8efvzIAJz1OtYU29A7SyoVoQqXhyNK6yBadGRIYcZGGKYuX5iOeVcAhOAsJUxUR+ylW0xDr+FaM5W2qO+Znnwkf1W+FaaVRZNLdK2yq0rsLl41GyIAEnSYOqQED09KkBjvdZqQfKOMTAKO0UNy3PJ4cmG70q9vn3jWYifOai99L7vS5sfs80t2vOtMqdPT9z/80I1ixha1xj2n1NE8kQgSw5UZzTZoyHgg9CGAZfASyUF6vidE8lx129wLq5gDyR6QFWeQ2+Syze1l6oSIVjK5l2u+9W+K5pV+BqcqWcYjRVbnkZipD+gzhyyZgMYrUDqitDmxo2dHTshwqq0TDQnf5rQX64pEYo0rVVLOJKh9BvROt4Vhs6EO1Nc05oobt0wfZREJaeo+bmKOCp5547oj11kwxmbt9pk9tulWg5DMkW0joJsST3eO5eG1UFjSeXDhVVzlndZFVFfsqmuVL5kJUrsondFdSZ0lMif9NTaqddaFCDHGTJGKYkJ1zArFwXVjtR+lvjKmU0bjVWFLcgk3qvBtRdhwBSIVnSvfyXzD2Cu0AlTHu2qYugzhCQnaeADdOYEvw176dt9/EM+bBLR0SNHpg9b2c3s/+8/8sb/8C//bL3/w/pRpgxPEEHjDs5MVFPwRQC1cqnfU/RJDF3/in/4n/6U/+Ptv7z+7+7k7VtqZ6XDJgrY0kiGQ/287/LB1G/puCNnwcORzfO7TVOImKkII8f2NVnLKZATRzWece+E6iWeuq7zc++jBBV3YtklNBLHsAP7w4f2mzxgzTIFYzdEU+awUk09LyMdk0mreRKccudgAnWjsNaHYMakk+rAgu1+EH7SSqboFX6BSA6AVpGOA7b9Gn2+0lEgQL1YPqkpUJU8Ob5xP2XknYT/1DiLieI2l5lLbHbU2ZLR79Bn860KWQ0zxy8W/QRU2q115veoCW0sCdwTZ5CuCcO5KTP49Z1pZUvXuZz5rWfr9hw88HZ9m4DCTZ4bniJaKdCXVKnRyIXBIiaSt68/t4CvBDPRjBbUZRXWNy1w08dZXXiiWctwuOeS3YS9/Q3frhG4jb4i8iSdSvFYl56un6s/XzXMLedg2EkVwa1FbxlDPbdONy+KHJailo0vWWWXt9DHOqHYapFuMJpq5wmGkCtiGxK0TjReVrK2zupp/rBRPLMZPIcXhsQ/T84E/ozYM1qTfSOgs4GYLR0Br3a+0olSxYbOiRl5Y8eHG/FhelYUL4BCYRd0uyRtxTCIT2Ene+LpzF6YWh68qH1DOzFl3tvW6uKgCT1miYc2gtSfxp3PRh+j8XIeNpWPMkSxat2qdP3Ak90jdL36En0qIliAWYf76JqOJIeQ1V8g2dJK/9v0Hev0UAR21SBxbmd3QePBv/uv/2q999Sv3P//577z3Hmv0ZBzqW8ou9EeIRJk901tMXS4lZbf+vT/1D/37/86f3n/86MhCNXPFB4ythnMdHtElff9fOMRSBFX7WuaLO3HRVPNrH6dqhrGqkepv56ogbj2xouSMFpaBkGVMo99z+tHx07dvnmHmR48fnp+fuqsNt3TKPru0FXgvXjxgn9MamkRxoGpmic2sB7CBJjxiFV5AyizBO7JMi+ngpFhhCkUal5y5wNxQliYXJiWyuXbc8QzPLYFfqtEmMy5iZCJ2MgMkcSuZ8KImlbTRZBMbSCerjP6srC59gb9i0lmHMPXNERcfR+FaAJi+B+V1N6QLiVqsZ1HHveKR73xU8jYyvdhzmxJ0Hb1wbLrs0aOP7Mm/526JR+yjpW7vKwBRZdzmt9JNYaS1Z25922XEIDLkKDhsB5FKtXW7mNuAV3gIEV6Gf8KHFCs5qoA4lCkST/5EWFScd3U2/h2QYddUzepaCZ0qRnPi99THKxN0D92EGOuqHnkFaoYia+QRRzVOanfdGAlQADSYODRh5Z3cGWmboafPKaSMkJ1RRwo8vehk5vakE8o9CTwj7QxN9SaryVC8cXE9hPcmTiqJjxkfQK/3afLGj38qlZKRWjPly1+JQbXz67Ldr5BjqVNetniWiufPiA6KvAtn6kjGwCh+B/yibRzbTwtM5egFGw7NM5jpPXxQ/e3rx8lGyDIWtn+Jo1JQYDhVLfRqBem+ABk4YTccHqJy6X3cfI18E7SL69tL/9X4m2Q/2M8bBDQOalNwvGw61yoxtwod/Ef/wX/4pa985a//wi98+1vf+s3f+M3vfPvbTg4yANGvOk3+1q2bViTWM1sTZhv0w49/+f/8hYfvf/DH//l/8c/+x//p5cMP2WKf4MH2I++7dGj0NbWcmvB36V6W/RUAu+CdZ0eaDUkTIOqvWkwYTa0sEEKM0TAQCTunx9RVontR1O22RgBcL3mChleXFaEKwSVYJQbsK7sZEUcbZijecyAjkWK5kgW3xpvNS2s2aa97VBvDyCZWtAp8KTMzAGmFmtYSbfJs5BnGQE9L2KINs3BcPKLmuBFQeYalRuSnqrfvxmRarCyN3DFuDU0szU6VK+y0bq2i7xvlumLFwT3KKzVieWfFtxUttiNHh9azJdvKWH0nnSGLROhUWNnuXN+ThI30h1ZT0hVnQrbxIz2/Ml23VAxQLcqWTnoaNdLSsbt32j/mVC8HCZZG/lNZU3NlV2HndxOyyjGIVLJxie8Vq9dqlpsizOe+jQQJ1CZJeG3ZYrqQiXnlAc+dUyL+HQFWAYUU3l9CrfU3VNckVJFZ0CdCSqavyFTFDcvNbzMRdeXYJZFKkU4wAYbvUhsnEmyRTjxRsnT434I15Z6qqeo3ODTVinE10M2hW9LURmoPopni0zYYKBK7I9adRTMC2ru200OmHi34EwMfp/AmwpFOOf2OSBbFK2afXmD6wvRpJNzwtm8IohKUrg/NeFjua9Rw7BatvVMtotahH03grA412kbu8onxlC/qwRZQCfodgnjCCrloJLgSWX0UsZD4fwEK1oAL4ERYqYGoHOtzcXK6wUq0/J4Lht+S/nbcSrtSxGZpSG9w6scUQeVxMxUbp0MNXKv7Mz/xk7//J36KBh0TMFQ4P+jZ5d/80i/9+f/6z/+Vv/gX2/4Uj7W88cY7t/70v/qnfu7f+rf33QR7ePjs4n4SuUKlpSGLf0bHb8j5Bw9S8ujw23JRawmDIXqVplIGRJ9aeJFbrWLIXYKc39+a1BNn84hXMY2CJoubRjfyu3Z8dErcIoDplwZlgcV/Gr38GKOliENay7FPUpPFIrfqaob/FFqMB7fJg1/1bORFsg0Q3OBHGH5p1sn0CW/QPfPbrahnmGJ0mYhKsIE4dR2mTXeKV8whSF7oTZAGtHHVXFRX/UKQZPUvAmCXlNCmfJ+x5IK3JZtWlte/SdhbrraRQ/RYOZj+Nm5TR7XPcEIbEcB37Q6SPnYd4ZNHLnAkmtsuf3YDdk8f3kcjWUiyBROtdv6dp8K96jYE3AUOLldTVrhXXQXa4qv46+MrBdzGr74gP4Xc0iTEuKTJCDWTFMyvTZGhxsxDjqAx8FEm4gj8WADxUVu/TolOj0j8VCFTJanPnGw1Lzkq5n6LLkY80xOSaKo7G45qFXOkYx6u8dv0AjDCdDQKFQNxU85L0IoHm7AVN/krUaJg+aYoxd8amQuokOL3u3DjF2E+zRJsBIQlSBMsDoArVaD8p9FT6xLpkD6ysEQxDi3vY+8LaXCnrivrcJDXRbcJqAKmighRMh7B8BJg3UPiwxCVHiT/DEcrSaDGbWtv8zthQ1vVXm6LwtUsmPo8IfCZaJPna+l/u69DmTcIaF1eJ3OhQcMZ6q7bhi9d2PGou0KO6VxHzFlGiMncy5/5mZ/4A3/gP3n27M/SaMjujvWzwN3Q67Kbqxz657Ahc+6tbVjIVzbdJTnk2P6lG/52ES/+3z0BFHvouIEy3LzajNU9yeeOAx2BdgUvRN9EvBJ41bvqa8FZYijyMuftt2r16cWTToDCowZpcfxhFrsRPSNA0SbGaYNGczjt6sqopxOjjthXVkxVrzUu9XcYNgCRYQwcJN+gkz5cCR3mBiAJW6vMn8ZUncXSY+dOQGulgmu+IgMQzkuED5fFgBguQRzN/PM7KlcyemR8hJpGPv3M1OfLjndDtFg27MtiYRmqYb9BWnEkKv8h4xREhC3Fg78+zvDCrjkDjr3jQ2dRII6dlBr9DVfauPfs4NpDAztUuwIIqgviDqACxY9XkNlk+RK7TcDVn11ymC+3C/G6C9x+7HcHb8UcOrwkjwjJLpgkgWdeuvek82YZ3FAAqr4uCPw84OxcVUd8KzECQ2L9DRIr9VT+VDEffWBRRmQVuZFueTgwa/sEZLNpxkZZ27pIYE5r0gHoJWRfd5wGIq9kaBlnTxhjSirF0sUCBKBYPfsVkL9yNl7YDGCLXXCzlxGsh6c/8rfC9rREZN946diZet0q6iam68/XNcqhMemRaCX1qqDAe07qhjHAyX1EdGMs8slCa5lohtjDqO/FOo/JN24Azu9A3z7mWw8YeU6jCPXxaw8RlF90+U4gam8Sr/AtpB/oVxLOrOgmNqDLJ8BhQeNnj1DjNrxFxQ5UvHzKjAGBtmlQ+ZpiNePafEuC+cbGWm/ljQo2mnr6+IEhCDZop5FkNW8JddDMG9uMJ6fdA07Lv8On1y1u0XjrthG37/PbUO9Vh5CvBajLGeAEQOwy0sitmKO+YEN2GwmSUzHKkliiDD7xDUMbTbRhnH5zlcscjcp+/sxiZ+eMKWCzzcbvJjBevLijgzs3OrPCj8jNiootKAVxIUJCwpRgVr14Om9r9eIvWPpuCYjcw7WSlCf/MnvwhGDLpseDcWgDSWPrQ7AIwPSNdPmZ7K1xghW4rQPRGpAKGVuLWyP3WTY1jHAc8kFg05mWWHx2T4xvHB2b+hvsKoxmYIQ+IVQSkckbTlkW8MowuUsmzzhQwZbkEEBjGmBFSbFKsjivypGBBhSIqIRWKFqScH54eGPv5HvpnHuPLl+cPHt2qic6OT2/vn/x8CHBrQKnrF1PzK9ctdEp2jynnKv2wwRWPZergJOcZxtWqTf+LQEn2sDUIOfbVdoK8G2FrJjLL3AiTxsum5gvNuuciqiVMhxjRgxPG0xGgjNQGaRqjem1w7lVmpwRke4nKk85Bh4zRXF8jkKsICLECanMotXJirDWPMgCldWC5RcgqNapGtv4WsyoCo7h0yJzKy47e+nRLLFIIqRx0u8Vq0PoRtASikbb0kUu6UYOgzptntBIwKc3LGZr1NKGF0gRu4P2sNaUhFQhIxou2DRncbStOHuPGaDd2Og0p2vdM01fNFQIgQgIOj7eVEoMPC46ilI8p0quHhCCmKUldgqVKq47uq5dS4vfuC2ThioAr7kIiEY1sRzCZiXXhJFbWkRGLthrP0MHcUJx3M7zCsyIt3EDskyNi+RCfG4wmFrZRdpGX7+iyOnVMG8bHv9E+HyaPF7K0xiu8C2iV7Nbn157KuouBNI7//J8MmQTHmXe7FbWEi7IXvkJkTU7Z1bt1WRvhrPQn8YLAM6MLVUKqKdnZ7YRdvSN+sN4nIVuJK2MklETk2glkUrZ6GTlqHBjDxNcTWYFwk469WRkPCVaTZIbpGS2XAESxwTzF9dXOlUrU0jhE3+J6TzYB9fEKwa4FaFGLCw6VALPycWjfiAhPfAn5w1/jX/yFfBqrRTQH/gVtUFymJewiAMgsOOZ95D0SnDI/2VtV+xYK2KIH9Q6rKkpi8vYNPSCpwqq12g61Jmizy4Q3cDE12MbNvftl3jmMBV72667RhRGFX2TcR5ef0PNbYm+729Qxu08u1chyuvJfV84O7IVeZIkYYZDdGSVWfkH2QXNV009t43Eu9G4y25AyHVgzGtBNtdBaYNMcrsvihxM4LfNZMXx5NhzfcV+GYkIfMuRCQj9R5bejBq4GWfYjA49bDYKdKWJe6rJ1bHUKah4cIJWK546X7w0PJlOmwxueFcFDZMWFJ/TMLD8mKfrVcEM+dDWF9vAsrdv4YKA/RenOJ0hMAVnyANqDDeR7WFZxJ1KrtSy81xuShB/D9aOEc/GLXc8JQJgA6bHyn08W2LWmcCq1oIDp4A6SaBo1iGszwBWQVabkhZM0QP3Ke6NX8si/WWbMp6YehwgsH3VvUmg1oK/j9uhtfHssvv0dBuYSrWLUw84bhcYuC3mu2g8WXtfdbsk6IScQA3gAPKYFfR+tUpW6rhih/sVgBW5miXWTPBWT2RfF76MXeLxxw9BI/4AjCFxIWFZe7OF5PF+lmHzWpulcjuK1ljqd6vG+uEZfYQePk1Wpf/VSg3ly7v24LFyh6dsokQL9PI4xxdn0NPxVqI5G2TP6UW0zEq/VLMpFpIowbhgFAZM5ZsGNnF6TCPbvIXpJ6mzIVnzpQgEo+i7HPAFhukmpJ/Kp7gtKUxR8YBefUSKVvU0ANYKkevmq92ccnFx7+Lordunx+eWCWS8GVowTT26tF53X3WSJYp6en7+4uT0wlUrDx+sPENoke8KBr8tr1Jv4r/8zVfFzaeey7eFq9zL+2rwJqyf6ldNctkPol0h9aI+Lrbs4zbWksveXwroGXgFZKTAwlG2XkFYCKxqLbdxpOxmODTd+YomJrr1HXNDpDVoi883aDD/OfGr80HMZLZraCK3OiKOoZUwl/m3gVDlxofzbLRciXCBWCptqoTYT9qbL7e9sVvlxsnCHwSNJKkR3SwjA4WMLOx9JiYvrbOWD9kV5y652txNNVyvXbHFjvSefocUEIOMMCXVdEe6ag1OcuWeawSjF0eEXa0VudxzwpfH03y+zLw3pxSlaONqjjJe66r7qaviNKNS8W+gFPgG92qOm1obTHQ+O9UlCr4h8S6ourviqgnxtyy4Cn/l+yteLHflfQPnCryXsHc+SJdF1Xol6da7iyaAFrwNvvbk8esCulra5qTMZt+i9XDXWhAKc3LQZawjQ4Ik6/KcfHdpJwBr4faN4pxuYbVTZ4AlAz9+8MAxxOgpHQBrGl1Lit1sxLI7oB635BCQqedgFhUxRZ+we2aGIHDk9QFrB4GVbDZgLH513Wep4qQyClBSGwAZeGv0lqzr2IGOaAOnr5P5NNYtPYJDGiIHkH33I4eYun8rp1DhQq+K6/smYCVZb5tWkPkoIMPYwSil//KvcWDjAoa84bj0svT+ItWUXliYwZB+wdi4QWjmlObsN6eaPG9BImsHu84B3Zm93howzU2tPwa8tpZOFSWvXz+7ccP4lYxOI1u4y3Kwi9ZXqBBWZT6/3+8xMF6PpDCVJ+gvoRC0i+5XA7cpl1Y1VJUk+TOG5sRTUETbENzPOIXzi8I+rWfBE3NFXrVW2jDJ4QZ0QPDhNzSeCtlCVikSJphij5efJMjoUjaY1dIfywQ6eAAbmrDU3JJGNvFl9qg2lcSP+s3goCSp35VOKNDWhqwBoErTpZpRyYpI7KRD1DKM8TrdgCwl2CKDpRVPlpkkkccyYWZSKYZI+02iMmvtXdrZWLug2QtJgGYcK2Ozp/qRylTTGrbCYPmGJlok5bYmglchM5wpX3vnREuzqkz+am5DhZK2rmaKNESe4aUc1FX2DXDSgdBKArOwk0P8u6kdUK5wxcAfzCYjDzlNRgUuuvFk4kDi//3L3/TCwWZ5PPUFy381cIpY8BSzyPiloozbxdx5Vvgnn7sIn/RcjQxREZbjv/qJ/2rIYlaBf+T3/e7Xov3O6+9Q4Hco8DsU+P8jBf7cf/M/knJ7f+UXf21hP/J5I6PfKKDJy105yU3+OvRd0NbzpjAyfSfHxdsk2sXcebYwNr/CX/u0e915riahJuxer0YYv0yT+Ddv3rT/igbNYkkZm3XvxiFZ+C3f2CV/g2f6BJ0BHVy/b1Ge6wTPWz1wfO/eh/Zu25linNdCEF29e5b176NHOKzHhtxSO77O8dCzn5ZSTLuAD2d00cA+7UanvBt9brQdfeCKg4bFvdJVDUZ6WvgXCp4fnS7dIdsK1yKcfOIEZ7L5RNFGU0jjrvj+w2VTQ1c6QmXzdfBtqBjwq6hciUk9+UQWqVUr7UpGNRhoWTuzxvhX2Wdg03b5TsakGrEk07FaJ2bTOVPhvjNrHZxjjPr85l1XWjrj+OR7Hz2wkwIN2Z/PnetuorY5sQYTfjrT/rG/J2N0r1gzlvOVcrOr7hC+OsbbFW3nuVoiBVmvq0TzNpt3tuGbr+lWeSvyVVptXgJiKO4iHftAXGP2/MmFUyyuz3nQ8Gfl8a+F+U/tSXV1lyPK7cVxfCFrmQt4LnxiZPe0Po8zlbLFB+QWu6lQaq/cKK4+tcBuKbEFIKSPuRUBMosBwnimY2xR8c+f/GRzgY487vN2tqlloBBzi63LKhokLqNu7CmQEu24XWCohbACIotsPO6KcfuTLdl1G8CBPWuzRcDppvZsZSTgynwytSS8YwvYNBpYgNpHaqqhE94wS3x55MRRZyepdpvRhbWX0jF93CqREorfs1HltIpNVTTa4eS1iTlDcDEL3Sq7ksgyu9k4ryu+GAucgDx2nBmpYt4Zq5RdrmkVy6tqiQN2AVkQdnB2r3On6GT+8qE5xz7/N9Y5ujcPDJuzAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": null,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "resized_image = resize_only(image=np.array(image))[\"image\"]\n",
+ "resized_image = Image.fromarray(resized_image)\n",
+ "draw = ImageDraw.Draw(resized_image)\n",
+ "\n",
+ "for score, label, box in zip(results[\"scores\"], results[\"labels\"], results[\"boxes\"]):\n",
+ " box = [round(i, 2) for i in box.tolist()]\n",
+ " x, y, x2, y2 = tuple(box)\n",
+ " draw.rectangle((x, y, x2, y2), outline=\"red\", width=1)\n",
+ " draw.text((x, y), model.config.id2label[label.item()], fill=\"white\")\n",
+ "\n",
+ "resized_image"
+ ]
}
- ],
- "source": [
- "import evaluate\n",
- "from tqdm import tqdm\n",
- "\n",
- "model = AutoModelForObjectDetection.from_pretrained(\"MariaK/detr-resnet-50_finetuned_cppe5\")\n",
- "module = evaluate.load(\"ybelkada/cocoevaluate\", coco=test_ds_coco_format.coco)\n",
- "val_dataloader = torch.utils.data.DataLoader(\n",
- " test_ds_coco_format, batch_size=8, shuffle=False, num_workers=4, collate_fn=collate_fn\n",
- ")\n",
- "\n",
- "with torch.no_grad():\n",
- " for idx, batch in enumerate(tqdm(val_dataloader)):\n",
- " pixel_values = batch[\"pixel_values\"]\n",
- " pixel_mask = batch[\"pixel_mask\"]\n",
- "\n",
- " labels = [\n",
- " {k: v for k, v in t.items()} for t in batch[\"labels\"]\n",
- " ] # these are in DETR format, resized + normalized\n",
- "\n",
- " # forward pass\n",
- " outputs = model(pixel_values=pixel_values, pixel_mask=pixel_mask)\n",
- "\n",
- " orig_target_sizes = torch.stack([target[\"orig_size\"] for target in labels], dim=0)\n",
- " results = im_processor.post_process(outputs, orig_target_sizes) # convert outputs of model to COCO api\n",
- "\n",
- " module.add(prediction=results, reference=labels)\n",
- " del batch\n",
- "\n",
- "results = module.compute()\n",
- "print(results)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "These results can be further improved by adjusting the hyperparameters in [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments). Give it a go!"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Inference"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Now that you have finetuned a DETR model, evaluated it, and uploaded it to the Hugging Face Hub, you can use it for inference.\n",
- "The simplest way to try out your finetuned model for inference is to use it in a [Pipeline](https://huggingface.co/docs/transformers/main/en/main_classes/pipelines#transformers.Pipeline). Instantiate a pipeline\n",
- "for object detection with your model, and pass an image to it:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from transformers import pipeline\n",
- "import requests\n",
- "\n",
- "url = \"https://i.imgur.com/2lnWoly.jpg\"\n",
- "image = Image.open(requests.get(url, stream=True).raw)\n",
- "\n",
- "obj_detector = pipeline(\"object-detection\", model=\"MariaK/detr-resnet-50_finetuned_cppe5\")\n",
- "obj_detector(image)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "You can also manually replicate the results of the pipeline if you'd like:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Detected Coverall with confidence 0.566 at location [1215.32, 147.38, 4401.81, 3227.08]\n",
- "Detected Mask with confidence 0.584 at location [2449.06, 823.19, 3256.43, 1413.9]"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "T4",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.9"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "0243eb259bea4f1aaa825fb36e53bc22": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "05c7ee4559594177b030aa75f34774d5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0656f883927647cd84f1d318c51dc14a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "069087db934b42e6a7ae2900359b178e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0c000d36bb4c4ce59891e7431d3fac8b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0c5a084ded69477cacb9d48c2ef3376d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "LabelModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cd5ba960e2e84917967d249898083889",
+ "placeholder": "​",
+ "style": "IPY_MODEL_c90cf719e0094b95a1cf75accc1c637a",
+ "value": "Your token has been saved in your configured git credential helpers (store)."
+ }
+ },
+ "0fd2b22688084796826f099b986054cb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_34bdca2e357b42dd84f97ee8e4755cb5",
+ "IPY_MODEL_d75b5bf883a34ab48f09d7a0377223b0",
+ "IPY_MODEL_3e385c3511e14f3a868b49c33df2512a"
+ ],
+ "layout": "IPY_MODEL_0243eb259bea4f1aaa825fb36e53bc22"
+ }
+ },
+ "110299bc39674932869cbb65e3a6c28a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bb9d93769f184c1fbc317dd9cd120d36",
+ "placeholder": "​",
+ "style": "IPY_MODEL_5aee6664343947af98d3cdfde796a2f1",
+ "value": " 174M/174M [00:01<00:00, 108MB/s]"
+ }
+ },
+ "17500008ad4e4fde95364aa00c0c909e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "20f021fc9c81452c8019773e5df0e703": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "22f95a8d7f8749e5a4f57c31f90bff69": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0c000d36bb4c4ce59891e7431d3fac8b",
+ "placeholder": "​",
+ "style": "IPY_MODEL_a8e07104dec243ada7868b4a52afce91",
+ "value": "model.safetensors: 100%"
+ }
+ },
+ "253eec35a9ee4c00aadbcc04d969e42a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2b3f8547ee8b439aaca0a5d0a155e304": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_05c7ee4559594177b030aa75f34774d5",
+ "placeholder": "​",
+ "style": "IPY_MODEL_0656f883927647cd84f1d318c51dc14a",
+ "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. "
+ }
+ },
+ "2f90864a2b40430483d2a40fcd350dac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "button_color": null,
+ "font_weight": ""
+ }
+ },
+ "2ffeccd270bf46ccbed3fdcf50625954": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "31b46db126a446df9497ebd3ad75da26": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "32fdb372aaa642dfbd037ebd001cc9d3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "LabelModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d620e57cb07d4e55b375e1ec79bce626",
+ "placeholder": "​",
+ "style": "IPY_MODEL_f483344a419840c4817a70c1f7798a72",
+ "value": "Token is valid (permission: write)."
+ }
+ },
+ "3466ebee7bc7404784d16688917317c4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c7ca987819fd4d1193198a8d1051e377",
+ "placeholder": "​",
+ "style": "IPY_MODEL_cb7ccedf851d42659daa69ed8be32e80",
+ "value": "
Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "
+ }
+ },
+ "34bdca2e357b42dd84f97ee8e4755cb5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_60187a3dd868428789865637ef208cb7",
+ "placeholder": "​",
+ "style": "IPY_MODEL_31b46db126a446df9497ebd3ad75da26",
+ "value": "config.json: 100%"
+ }
+ },
+ "3e385c3511e14f3a868b49c33df2512a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_86ddc390656c4c65992d45d30a82bf95",
+ "placeholder": "​",
+ "style": "IPY_MODEL_781fbb6b850e480b9ad0b5b5a3bcf730",
+ "value": " 4.43k/4.43k [00:00<00:00, 70.9kB/s]"
+ }
+ },
+ "411fad4476594b299f9f456f66c0aff0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "41fdd0d02f664fb19f2a7e8889f378fe": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "47b2e96d08934576a1edde215f54e5e1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "VBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_32fdb372aaa642dfbd037ebd001cc9d3",
+ "IPY_MODEL_0c5a084ded69477cacb9d48c2ef3376d",
+ "IPY_MODEL_58aaa700a4764376addcbfbd0f264c88",
+ "IPY_MODEL_92a6c51cbe96453384b8122ae6ec3df6"
+ ],
+ "layout": "IPY_MODEL_b391104614124e60804e0561ef729824"
+ }
+ },
+ "55114d54090f49b0945f916732a37bc4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "58aaa700a4764376addcbfbd0f264c88": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "LabelModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_64c34028e17f421faa4083abae6c252f",
+ "placeholder": "​",
+ "style": "IPY_MODEL_2ffeccd270bf46ccbed3fdcf50625954",
+ "value": "Your token has been saved to /root/.cache/huggingface/token"
+ }
+ },
+ "5aee6664343947af98d3cdfde796a2f1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "60187a3dd868428789865637ef208cb7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "612f0540907641a7912791625acdc090": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "64c34028e17f421faa4083abae6c252f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6b705c10967d40b885b4e97f8b3ce7df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8462927d0eb149d18ee45ae756e5ac0a",
+ "max": 174168748,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_069087db934b42e6a7ae2900359b178e",
+ "value": 174168748
+ }
+ },
+ "77653c36a821462dacba83d318a632f4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "781fbb6b850e480b9ad0b5b5a3bcf730": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "80a3d00c834d4135b3387876f3aa59fd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_93e814ab4f604337be1fd3f8ab8ad8cd",
+ "placeholder": "​",
+ "style": "IPY_MODEL_55114d54090f49b0945f916732a37bc4",
+ "value": " 102M/102M [00:03<00:00, 27.9MB/s]"
+ }
+ },
+ "8462927d0eb149d18ee45ae756e5ac0a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "86ddc390656c4c65992d45d30a82bf95": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "87ae078592ea468fb368173fd1778de6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c340b1ea57d549a99f1e8d5b262e3553",
+ "placeholder": "​",
+ "style": "IPY_MODEL_411fad4476594b299f9f456f66c0aff0",
+ "value": "model.safetensors: 100%"
+ }
+ },
+ "89f3af53f8f04b53aaae3c59536261a1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8fc95f9726374a3894ec11b5aea279b8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_22f95a8d7f8749e5a4f57c31f90bff69",
+ "IPY_MODEL_afe97344d1684598a879d18ad96b50fd",
+ "IPY_MODEL_80a3d00c834d4135b3387876f3aa59fd"
+ ],
+ "layout": "IPY_MODEL_ec3e3bf7419541c08dc962874aa68824"
+ }
+ },
+ "92a6c51cbe96453384b8122ae6ec3df6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "LabelModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_89f3af53f8f04b53aaae3c59536261a1",
+ "placeholder": "​",
+ "style": "IPY_MODEL_17500008ad4e4fde95364aa00c0c909e",
+ "value": "Login successful"
+ }
+ },
+ "93e814ab4f604337be1fd3f8ab8ad8cd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "96f43a7e5de64c0388f6e3566bdfc446": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ButtonView",
+ "button_style": "",
+ "description": "Login",
+ "disabled": false,
+ "icon": "",
+ "layout": "IPY_MODEL_20f021fc9c81452c8019773e5df0e703",
+ "style": "IPY_MODEL_2f90864a2b40430483d2a40fcd350dac",
+ "tooltip": ""
+ }
+ },
+ "9f9c2bd7f8924c59ba0add2ae0e0edb4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "CheckboxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "CheckboxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "CheckboxView",
+ "description": "Add token as git credential?",
+ "description_tooltip": null,
+ "disabled": false,
+ "indent": true,
+ "layout": "IPY_MODEL_41fdd0d02f664fb19f2a7e8889f378fe",
+ "style": "IPY_MODEL_a12a8449df514241a7fb82c38ceb47fa",
+ "value": true
+ }
+ },
+ "a12a8449df514241a7fb82c38ceb47fa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a8e07104dec243ada7868b4a52afce91": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "afe97344d1684598a879d18ad96b50fd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d7495a5ebc814a2db83bb58dc8b5e0d5",
+ "max": 102469840,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f7597fdbab9d4037a616eefa3dd37f96",
+ "value": 102469840
+ }
+ },
+ "b391104614124e60804e0561ef729824": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": "center",
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": "flex",
+ "flex": null,
+ "flex_flow": "column",
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "50%"
+ }
+ },
+ "bb9d93769f184c1fbc317dd9cd120d36": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bf45783d7be8449fa602b6cca55446ea": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c254617e902046f9b0ebbded332e043a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "PasswordModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "PasswordModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "PasswordView",
+ "continuous_update": true,
+ "description": "Token:",
+ "description_tooltip": null,
+ "disabled": false,
+ "layout": "IPY_MODEL_f5478edacd10404685d13dd39cf57d31",
+ "placeholder": "​",
+ "style": "IPY_MODEL_612f0540907641a7912791625acdc090",
+ "value": ""
+ }
+ },
+ "c340b1ea57d549a99f1e8d5b262e3553": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c7ca987819fd4d1193198a8d1051e377": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c90cf719e0094b95a1cf75accc1c637a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cb7ccedf851d42659daa69ed8be32e80": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cd5ba960e2e84917967d249898083889": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d620e57cb07d4e55b375e1ec79bce626": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d7495a5ebc814a2db83bb58dc8b5e0d5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d75b5bf883a34ab48f09d7a0377223b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_da0e6f2589ac4f68846236d0e05fd852",
+ "max": 4430,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_dbe84e298aa1425eb2e9af7f0a98384c",
+ "value": 4430
+ }
+ },
+ "da0e6f2589ac4f68846236d0e05fd852": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dbe84e298aa1425eb2e9af7f0a98384c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e0f2ccf5b4e647db9054affd76b66b35": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "LabelModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_77653c36a821462dacba83d318a632f4",
+ "placeholder": "​",
+ "style": "IPY_MODEL_253eec35a9ee4c00aadbcc04d969e42a",
+ "value": "Connecting..."
+ }
+ },
+ "e7013ee20ce14551a90e97e7795bed87": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_87ae078592ea468fb368173fd1778de6",
+ "IPY_MODEL_6b705c10967d40b885b4e97f8b3ce7df",
+ "IPY_MODEL_110299bc39674932869cbb65e3a6c28a"
+ ],
+ "layout": "IPY_MODEL_bf45783d7be8449fa602b6cca55446ea"
+ }
+ },
+ "ec3e3bf7419541c08dc962874aa68824": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f483344a419840c4817a70c1f7798a72": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f5478edacd10404685d13dd39cf57d31": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f7597fdbab9d4037a616eefa3dd37f96": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ }
+ }
}
- ],
- "source": [
- "image_processor = AutoImageProcessor.from_pretrained(\"MariaK/detr-resnet-50_finetuned_cppe5\")\n",
- "model = AutoModelForObjectDetection.from_pretrained(\"MariaK/detr-resnet-50_finetuned_cppe5\")\n",
- "\n",
- "with torch.no_grad():\n",
- " inputs = image_processor(images=image, return_tensors=\"pt\")\n",
- " outputs = model(**inputs)\n",
- " target_sizes = torch.tensor([image.size[::-1]])\n",
- " results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]\n",
- "\n",
- "for score, label, box in zip(results[\"scores\"], results[\"labels\"], results[\"boxes\"]):\n",
- " box = [round(i, 2) for i in box.tolist()]\n",
- " print(\n",
- " f\"Detected {model.config.id2label[label.item()]} with confidence \"\n",
- " f\"{round(score.item(), 3)} at location {box}\"\n",
- " )"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Let's plot the result:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "draw = ImageDraw.Draw(image)\n",
- "\n",
- "for score, label, box in zip(results[\"scores\"], results[\"labels\"], results[\"boxes\"]):\n",
- " box = [round(i, 2) for i in box.tolist()]\n",
- " x, y, x2, y2 = tuple(box)\n",
- " draw.rectangle((x, y, x2, y2), outline=\"red\", width=1)\n",
- " draw.text((x, y), model.config.id2label[label.item()], fill=\"white\")\n",
- "\n",
- "image"
- ]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "
\n",
- "
"
- ]
- }
- ],
- "metadata": {},
- "nbformat": 4,
- "nbformat_minor": 4
+ "nbformat": 4,
+ "nbformat_minor": 0
}