diff --git a/C1_Browser-based-TF-JS/W2/assignment/C1_W2_Assignment.js b/C1_Browser-based-TF-JS/W2/assignment/C1_W2_Assignment.js index 8c7d1557..d127a2b9 100755 --- a/C1_Browser-based-TF-JS/W2/assignment/C1_W2_Assignment.js +++ b/C1_Browser-based-TF-JS/W2/assignment/C1_W2_Assignment.js @@ -1,11 +1,12 @@ -import {FMnistData} from './fashion-data.js'; +import { FMnistData } from './fashion-data.js'; + var canvas, ctx, saveButton, clearButton; -var pos = {x:0, y:0}; +var pos = { x: 0, y: 0 }; var rawImage; var model; function getModel() { - + // In the space below create a convolutional neural network that can classify the // images of articles of clothing in the Fashion MNIST dataset. Your convolutional // neural network should only use the following layers: conv2d, maxPooling2d, @@ -14,48 +15,94 @@ function getModel() { // many layers, filters, and neurons as you like. // HINT: Take a look at the MNIST example. model = tf.sequential(); - - // YOUR CODE HERE - - - // Compile the model using the categoricalCrossentropy loss, + + // Add the first convolutional layer + model.add(tf.layers.conv2d({ + inputShape: [28, 28, 1], + kernelSize: 3, + filters: 32, + activation: 'relu', + kernelInitializer: 'varianceScaling' + })); + + // Add a max pooling layer + model.add(tf.layers.maxPooling2d({ poolSize: [2, 2] })); + + // Add another convolutional layer + model.add(tf.layers.conv2d({ + kernelSize: 3, + filters: 64, + activation: 'relu' + })); + + // Add a max pooling layer + model.add(tf.layers.maxPooling2d({ poolSize: [2, 2] })); + + // Add a flatten layer + model.add(tf.layers.flatten()); + + // Add a dense layer + model.add(tf.layers.dense({ + units: 128, + activation: 'relu' + })); + + // Add the output layer + model.add(tf.layers.dense({ + units: 10, + activation: 'softmax' + })); + + // Compile the model using categoricalCrossentropy loss, // the tf.train.adam() optimizer, and `acc` for your metrics. - model.compile(// YOUR CODE HERE); - + model.compile({ + optimizer: tf.train.adam(), + loss: 'categoricalCrossentropy', + metrics: ['accuracy'] + }); + return model; } async function train(model, data) { - + // Set the following metrics for the callback: 'loss', 'val_loss', 'acc', 'val_acc'. - const metrics = // YOUR CODE HERE + const metrics = ['loss', 'val_loss', 'acc', 'val_acc']; - // Create the container for the callback. Set the name to 'Model Training' and // use a height of 1000px for the styles. - const container = // YOUR CODE HERE - - + const container = document.getElementById('main'); + // Use tfvis.show.fitCallbacks() to setup the callbacks. // Use the container and metrics defined above as the parameters. - const fitCallbacks = // YOUR CODE HERE - + const fitCallbacks = tfvis.show.fitCallbacks(container, metrics); + const BATCH_SIZE = 512; const TRAIN_DATA_SIZE = 6000; const TEST_DATA_SIZE = 1000; - + // Get the training batches and resize them. Remember to put your code // inside a tf.tidy() clause to clean up all the intermediate tensors. // HINT: Take a look at the MNIST example. - const [trainXs, trainYs] = // YOUR CODE HERE + const [trainXs, trainYs] = tf.tidy(() => { + const d = data.nextTrainBatch(TRAIN_DATA_SIZE); + return [ + d.xs.reshape([TRAIN_DATA_SIZE, 28, 28, 1]), + d.labels + ]; + }); - // Get the testing batches and resize them. Remember to put your code // inside a tf.tidy() clause to clean up all the intermediate tensors. // HINT: Take a look at the MNIST example. - const [testXs, testYs] = // YOUR CODE HERE + const [testXs, testYs] = tf.tidy(() => { + const d = data.nextTestBatch(TEST_DATA_SIZE); + return [ + d.xs.reshape([TEST_DATA_SIZE, 28, 28, 1]), + d.labels + ]; + }); - return model.fit(trainXs, trainYs, { batchSize: BATCH_SIZE, validationData: [testXs, testYs], @@ -65,13 +112,13 @@ async function train(model, data) { }); } -function setPosition(e){ - pos.x = e.clientX-100; - pos.y = e.clientY-100; +function setPosition(e) { + pos.x = e.clientX - 100; + pos.y = e.clientY - 100; } - + function draw(e) { - if(e.buttons!=1) return; + if (e.buttons != 1) return; ctx.beginPath(); ctx.lineWidth = 24; ctx.lineCap = 'round'; @@ -82,49 +129,49 @@ function draw(e) { ctx.stroke(); rawImage.src = canvas.toDataURL('image/png'); } - + function erase() { ctx.fillStyle = "black"; - ctx.fillRect(0,0,280,280); + ctx.fillRect(0, 0, 280, 280); } - + function save() { - var raw = tf.browser.fromPixels(rawImage,1); - var resized = tf.image.resizeBilinear(raw, [28,28]); + var raw = tf.browser.fromPixels(rawImage, 1); + var resized = tf.image.resizeBilinear(raw, [28, 28]); var tensor = resized.expandDims(0); - + var prediction = model.predict(tensor); var pIndex = tf.argMax(prediction, 1).dataSync(); - - var classNames = ["T-shirt/top", "Trouser", "Pullover", - "Dress", "Coat", "Sandal", "Shirt", - "Sneaker", "Bag", "Ankle boot"]; - - + + var classNames = ["T-shirt/top", "Trouser", "Pullover", + "Dress", "Coat", "Sandal", "Shirt", + "Sneaker", "Bag", "Ankle boot" + ]; + + alert(classNames[pIndex]); } - + function init() { canvas = document.getElementById('canvas'); rawImage = document.getElementById('canvasimg'); ctx = canvas.getContext("2d"); ctx.fillStyle = "black"; - ctx.fillRect(0,0,280,280); + ctx.fillRect(0, 0, 280, 280); canvas.addEventListener("mousemove", draw); canvas.addEventListener("mousedown", setPosition); canvas.addEventListener("mouseenter", setPosition); - saveButton = document.getElementById('sb'); + saveButton = document.getElementById('classifyBtn'); saveButton.addEventListener("click", save); - clearButton = document.getElementById('cb'); + clearButton = document.getElementById('clearBtn'); clearButton.addEventListener("click", erase); } - async function run() { const data = new FMnistData(); await data.load(); const model = getModel(); - tfvis.show.modelSummary({name: 'Model Architecture'}, model); + tfvis.show.modelSummary({ name: 'Model Architecture' }, model); await train(model, data); await model.save('downloads://my_model'); init(); @@ -132,6 +179,3 @@ async function run() { } document.addEventListener('DOMContentLoaded', run); - - - diff --git a/C1_Browser-based-TF-JS/W2/assignment/fashion-mnist.html b/C1_Browser-based-TF-JS/W2/assignment/fashion-mnist.html index 52f6254a..61d8c342 100755 --- a/C1_Browser-based-TF-JS/W2/assignment/fashion-mnist.html +++ b/C1_Browser-based-TF-JS/W2/assignment/fashion-mnist.html @@ -1,17 +1,93 @@ - + + + + + Fashion Classifier -

Fashion Classifier!

- - + + +
- +