-
Notifications
You must be signed in to change notification settings - Fork 1
/
demo.py
237 lines (193 loc) · 9.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import cv2
import numpy as np
import pandas as pd
import torch
import time
from models.with_mobilenet import PoseEstimationWithMobileNet
from modules.keypoints import extract_keypoints, group_keypoints
from modules.load_state import load_state
from modules.pose import Pose, propagate_ids
from modules.find_assault import Find_assault
from val import normalize, pad_width
from deep.feature_extractor import Extractor
class ImageReader(object):
def __init__(self, file_names):
self.file_names = file_names
self.max_idx = len(file_names)
def __iter__(self):
self.idx = 0
return self
def __next__(self):
if self.idx == self.max_idx:
raise StopIteration
img = cv2.imread(self.file_names[self.idx], cv2.IMREAD_COLOR)
if img.size == 0:
raise IOError('Image {} cannot be read'.format(self.file_names[self.idx]))
self.idx = self.idx + 1
return img
class VideoReader(object):
def __init__(self, file_name):
self.file_name = file_name
try: # OpenCV needs int to read from webcam
self.file_name = int(file_name)
except ValueError:
pass
def __iter__(self):
self.cap = cv2.VideoCapture(self.file_name)
if not self.cap.isOpened():
raise IOError('Video {} cannot be opened'.format(self.file_name))
return self
def __next__(self):
was_read, img = self.cap.read()
if not was_read:
raise StopIteration
return img
class VideoReader2(object):
def __init__(self, file_name):
self.file_name = file_name
def __iter__(self):
self.cap = cv2.VideoCapture(self.file_name)
if not self.cap.isOpened():
raise IOError('Video {} cannot be opened'.format(self.file_name))
return self
def __next__(self):
while (cap.isOpened()):
was_read, img = self.cap.read()
if not was_read:
raise StopIteration
return img
def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu,
pad_value=(0, 0, 0), img_mean=(128, 128, 128), img_scale=1 / 256):
height, width, _ = img.shape
scale = net_input_height_size / height
scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
scaled_img = normalize(scaled_img, img_mean, img_scale)
min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)]
padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims)
tensor_img = torch.from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float()
if not cpu:
tensor_img = tensor_img.cuda()
stages_output = net(tensor_img)
stage2_heatmaps = stages_output[-1]
heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0))
heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
stage2_pafs = stages_output[-2]
pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0))
pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
return heatmaps, pafs, scale, pad
def run_demo(net, image_provider, height_size, cpu, track_ids): # , filename):
stride = 8
upsample_ratio = 4
num_keypoints = Pose.num_kpts # 18개
previous_poses = []
c = 0
ttt = 0
idxx = 0
csv_dict = {'frame_number': [], 'driver_index': [], 'is_driver_flag' : []}#,'state' : []}
driver_find_flag = False
weird_state_flag = False
extractor = Extractor('default_checkpoints/ckpt.t7', True)
find_class = Find_assault(extractor)
for img in image_provider:
is_driver_flag = False
t5 = time.time()
orig_img = img.copy()
heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio, cpu)
total_keypoints_num = 0
all_keypoints_by_type = []
for kpt_idx in range(num_keypoints): # 19th for bg
total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type,
total_keypoints_num)
pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs, demo=True)
for kpt_id in range(all_keypoints.shape[0]): ##사이즈 변환
all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
current_poses = []
for n in range(len(pose_entries)):
if len(pose_entries[n]) == 0:
continue
pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
for kpt_id in range(num_keypoints):
if pose_entries[n][kpt_id] != -1.0: # keypoint was found
pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
pose = Pose(pose_keypoints, pose_entries[n][18])
current_poses.append(pose)
pose.draw(img)
img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0)
# 운전자를 못 찾았으면 find_driver 에 들어감.
if driver_find_flag is False:
driver_find_flag, find_driver_count, find_state = find_class.find_driver(current_poses, orig_img)
cv2.putText(img, "Driver_find_count : " + str(find_driver_count), (0,20), cv2.FONT_HERSHEY_COMPLEX, 1,(0, 255, 0))
cv2.putText(img, "State : Find_Driver", (0, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0))
else:
# print("idxx : ", idxx)
is_driver_flag, driver_index, weird_state_count, weird_state_flag = find_class.is_driver(current_poses, orig_img)
cv2.putText(img, "Weird_State_Count : " + str(weird_state_count), (0,20), cv2.FONT_HERSHEY_COMPLEX, 1,(0, 255, 0))
if weird_state_flag:
cv2.putText(img, 'State : ABNORMAL', (0, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255))
else:
cv2.putText(img, "State : Driver_Found", (0, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0))
# print("Driver_index :", driver_index)
# print("Driver_Flag : ", is_driver_flag)
# csv_dict['frame_number'].append(idxx)
# csv_dict['driver_index'].append(driver_index)
# csv_dict['is_driver_flag'].append(is_driver_flag)
# csv_dict['state'].append(state)
if track_ids == True: ##Track Poses
propagate_ids(previous_poses, current_poses)
previous_poses = current_poses
index_counter = 0
for pose in current_poses:
cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
(pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0))
cv2.putText(img, 'id: {}'.format(pose.id), (pose.bbox[0], pose.bbox[1] - 16),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255))
if is_driver_flag and index_counter == driver_index:
cv2.putText(img, 'DRIVER', (pose.bbox[0] + 100, pose.bbox[1] - 16), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255))
index_counter += 1
tt = time.time()
fps = 1 / (tt - ttt)
print('fps=', fps)
ttt = time.time()
str_ = "FPS : %0.2f" % fps
cv2.putText(img, str_, (0, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
cv2.imshow('Lightweight Human Pose Estimation Python Demo', img)
# cv2_imshow(img)
cv2.imwrite('output/two_2/' + str(idxx) + '.png', img)
idxx += 1
key = cv2.waitKey(1)
if key == 27: # esc
return
df = pd.DataFrame(csv_dict)
# df.to_csv("output_csv/output_kinam_2.csv")
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='''Lightweight human pose estimation python demo.
This is just for quick results preview.
Please, consider c++ demo for the best performance.''')
parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint')
parser.add_argument('--height-size', type=int, default=256, help='network input layer height size')
parser.add_argument('--video', type=str, default='', help='path to video file or camera id')
parser.add_argument('--images', nargs='+', default='', help='path to input image(s)')
parser.add_argument('--cpu', action='store_true', help='run network inference on cpu')
parser.add_argument('--track-ids', default=True, help='track poses ids')
args = parser.parse_args()
if args.video == '' and args.images == '':
raise ValueError('Either --video or --image has to be provided')
net = PoseEstimationWithMobileNet()
checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
load_state(net, checkpoint)
frame_provider = ImageReader(args.images)
if args.video != '':
frame_provider = VideoReader(args.video)
# torch.cuda.synchronize()
t = time.time()
net = net.eval()
if not args.cpu:
net = net.cuda()
ta = time.time()
run_demo(net, frame_provider, args.height_size, args.cpu, args.track_ids) # , frame_provider.file_names)
tb = time.time()
print(tb - ta)