Skip to content

Latest commit

 

History

History
64 lines (46 loc) · 4.41 KB

README.j2.md

File metadata and controls

64 lines (46 loc) · 4.41 KB

All-About-the-GAN

GAN(Generative Adversarial Networks) are the models that used in unsupervised machine learning, implemented by a system of two neural networks competing against each other in a zero-sum game framework. It was introduced by Ian Goodfellow et al. in 2014.

The purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014.


(Word Cloud of Title)


(Word Cloud of Title)

Abbr. Name Word Cloud of GAN papers
(Word cloud of Abbr. name)

It provides a list that merged information from various GAN lists and repositories as below:

🔗 Reference repositories


You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.

Contributions are welcome. Please contact me at [email protected] or send a pull request. You can have to add links through pull requests or create an issue which something I missed or need to start a discussion.


{% set count = {'value': 1} %} {% for gan in gans %} {{count.value}}. {{ gan['Title'] }} - ([Search](http://www.google.com/search?q={{ gan['Title']|urlencode() }})) ([Scholar](http://scholar.google.com/scholar?q={{ gan['Title']|urlencode() }})) ([PDF]({{ gan['pdf'] }})) {%- if count.update({'value': (count.value + 1)}) -%} {% endif %} {%- if gan['Arxiv'] != '-' and gan['Arxiv'] != '' -%} ([arXiv]({{ gan['Arxiv'] }})) {% endif %} {%- if gan['Official_Code'] != '-' and gan['Official_Code'] != '' -%} ([github]({{ gan['Official_Code'] }})) {% endif %} {%- if gan['Tensorflow'] != '-' and gan['Tensorflow'] != '' -%} ([TensorFlow]({{ gan['Tensorflow'] }})) {% endif %} {%- if gan['PyTorch'] != '-' and gan['PyTorch'] != '' -%} ([PyTorch]({{ gan['PyTorch'] }})) {% endif %} {%- if gan['KERAS'] != '-' and gan['KERAS'] != '' -%} ([KERAS]({{ gan['KERAS'] }})) {% endif %} {%- if gan['Web'] != '-' and gan['Web'] != '' -%} ([Web]({{ gan['Web'] }})) {% endif %}

- {%- if gan['Citations'] | int > 50  %} :dart: {% endif %}

{%- if gan['Stars'] | int > 10 %} :octocat: {% endif %} {{ gan['Year'] }}/{{ gan['Month'] }} {# #} {%- if gan['Medical'] != '-' -%} Medical: {{ gan['Medical'] }} {% endif %} {%- if gan['Category'] != '-' -%} {{ gan['Category'] }} {% endif %}
{%- if gan['Abbr.'] != '-' and gan['Abbr.'] != '' %} {{ gan['Abbr.'] }} {% endif %} {%- if gan['Citations'] != '0' and gan['Citations'] != '' %} Citation: {{ gan['Citations'] }} {% endif %} {%- if gan['Stars'] != '-' and gan['Stars'] != '' %} Stars: {{ gan['Stars'] }} {% endif %}

{% endfor %}


GAN counter: {{ count.value-1 }}

Modified: {{ nowts.strftime('%A, %b %d %Y / %X') }}

MIT (c) 2017, 2018 Jonathan Jeon