-
Notifications
You must be signed in to change notification settings - Fork 31
/
app_full.py
243 lines (205 loc) · 8.77 KB
/
app_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from flask import Flask, render_template, request, jsonify
import os
import cv2
import torch
import torchvision
import warnings
import numpy as np
from PIL import Image, ImageSequence
from moviepy.editor import VideoFileClip
import imageio
import uuid
from diffusers import (
TextToVideoSDPipeline,
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet3DConditionModel,
)
import time
from transformers import CLIPTokenizer, CLIPTextModel
from diffusers.utils import export_to_video
from gifs_filter import filter
from invert_utils import ddim_inversion as dd_inversion
from text2vid_modded_full import TextToVideoSDPipelineModded
# Flask app setup
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Environment setup
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1"
LORA_CHECKPOINT = "checkpoint-2500"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
# Helper functions
def cleanup_old_files(directory, age_in_seconds = 600):
"""
Deletes files older than a certain age in the specified directory.
Args:
directory (str): The directory to clean up.
age_in_seconds (int): The age in seconds; files older than this will be deleted.
"""
now = time.time()
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
# Only delete files (not directories)
if os.path.isfile(file_path):
file_age = now - os.path.getmtime(file_path)
if file_age > age_in_seconds:
try:
os.remove(file_path)
print(f"Deleted old file: {file_path}")
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
def load_frames(image: Image, mode='RGBA'):
return np.array([np.array(frame.convert(mode)) for frame in ImageSequence.Iterator(image)])
def save_gif(frames, path):
imageio.mimsave(path, [frame.astype(np.uint8) for frame in frames], format='GIF', duration=1/10)
def load_image(imgname, target_size=None):
pil_img = Image.open(imgname).convert('RGB')
if target_size:
if isinstance(target_size, int):
target_size = (target_size, target_size)
pil_img = pil_img.resize(target_size, Image.Resampling.LANCZOS)
return torchvision.transforms.ToTensor()(pil_img).unsqueeze(0) # Add batch dimension
def prepare_latents(pipe, x_aug):
with torch.cuda.amp.autocast():
batch_size, num_frames, channels, height, width = x_aug.shape
x_aug = x_aug.reshape(batch_size * num_frames, channels, height, width)
latents = pipe.vae.encode(x_aug).latent_dist.sample()
latents = latents.view(batch_size, num_frames, -1, latents.shape[2], latents.shape[3])
latents = latents.permute(0, 2, 1, 3, 4)
return pipe.vae.config.scaling_factor * latents
@torch.no_grad()
def invert(pipe, inv, load_name, device="cuda", dtype=torch.bfloat16):
input_img = [load_image(load_name, 256).to(device, dtype=dtype).unsqueeze(1)] * 5
input_img = torch.cat(input_img, dim=1)
latents = prepare_latents(pipe, input_img).to(torch.bfloat16)
inv.set_timesteps(25)
id_latents = dd_inversion(pipe, inv, video_latent=latents, num_inv_steps=25, prompt="")[-1].to(dtype)
return torch.mean(id_latents, dim=2, keepdim=True)
def load_primary_models(pretrained_model_path):
return (
DDPMScheduler.from_config(pretrained_model_path, subfolder="scheduler"),
CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer"),
CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder"),
AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae"),
UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet"),
)
def initialize_pipeline(model: str, device: str = "cuda"):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16),
vae=vae.to(device=device, dtype=torch.bfloat16),
unet=unet.to(device=device, dtype=torch.bfloat16),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe, pipe.scheduler
pipe_inversion, inv = initialize_pipeline(LORA_CHECKPOINT, device)
pipe = TextToVideoSDPipelineModded.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=pipe_inversion.scheduler,
tokenizer=pipe_inversion.tokenizer,
text_encoder=pipe_inversion.text_encoder,
vae=pipe_inversion.vae,
unet=pipe_inversion.unet,
).to(device)
@torch.no_grad()
def process(num_frames, num_seeds, generator, exp_dir, load_name, caption, lambda_):
pipe_inversion.to(device)
id_latents = invert(pipe_inversion, inv, load_name).to(device, dtype=dtype)
latents = id_latents.repeat(num_seeds, 1, 1, 1, 1)
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(num_seeds)]
video_frames = pipe(
prompt=caption,
negative_prompt="",
num_frames=num_frames,
num_inference_steps=25,
inv_latents=latents,
guidance_scale=9,
generator=generator,
lambda_=lambda_,
).frames
try:
load_name = load_name.split("/")[-1]
except:
pass
gifs = []
for seed in range(num_seeds):
vid_name = f"{exp_dir}/mp4_logs/vid_{load_name[:-4]}-rand{seed}.mp4"
gif_name = f"{exp_dir}/gif_logs/vid_{load_name[:-4]}-rand{seed}.gif"
video_path = export_to_video(video_frames[seed], output_video_path=vid_name)
VideoFileClip(vid_name).write_gif(gif_name)
with Image.open(gif_name) as im:
frames = load_frames(im)
frames_collect = np.empty((0, 1024, 1024), int)
for frame in frames:
frame = cv2.resize(frame, (1024, 1024))[:, :, :3]
frame = cv2.cvtColor(255 - frame, cv2.COLOR_RGB2GRAY)
_, frame = cv2.threshold(255 - frame, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
frames_collect = np.append(frames_collect, [frame], axis=0)
save_gif(frames_collect, gif_name)
gifs.append(gif_name)
return gifs
def generate_gifs(filepath, prompt, num_seeds=5, lambda_=0):
exp_dir = "static/app_tmp"
os.makedirs(exp_dir, exist_ok=True)
gifs = process(
num_frames=10,
num_seeds=num_seeds,
generator=None,
exp_dir=exp_dir,
load_name=filepath,
caption=prompt,
lambda_=lambda_
)
return gifs
@app.route('/')
def index():
return render_template('index.html')
@app.route('/generate', methods=['POST'])
def generate():
directories_to_clean = [
app.config['UPLOAD_FOLDER'],
'static/app_tmp/mp4_logs',
'static/app_tmp/gif_logs',
'static/app_tmp/png_logs'
]
# Perform cleanup
os.makedirs('static/app_tmp', exist_ok=True)
for directory in directories_to_clean:
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
cleanup_old_files(directory)
prompt = request.form.get('prompt', '')
num_gifs = int(request.form.get('seeds', 3))
lambda_value = 1 - float(request.form.get('lambda', 0.5))
selected_example = request.form.get('selected_example', None)
file = request.files.get('image')
if not file and not selected_example:
return jsonify({'error': 'No image file provided or example selected'}), 400
if selected_example:
# Use the selected example image
filepath = os.path.join('static', 'examples', selected_example)
unique_id = None # No need for unique ID
else:
# Save the uploaded image
unique_id = str(uuid.uuid4())
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{unique_id}_uploaded_image.png")
file.save(filepath)
generated_gifs = generate_gifs(filepath, prompt, num_seeds=num_gifs, lambda_=lambda_value)
unique_id = str(uuid.uuid4())
# Append unique id to each gif path
for i in range(len(generated_gifs)):
os.rename(generated_gifs[i], f"{generated_gifs[i].split('.')[0]}_{unique_id}.gif")
generated_gifs[i] = f"{generated_gifs[i].split('.')[0]}_{unique_id}.gif"
# Move the generated gifs to the static folder
filtered_gifs = filter(generated_gifs, filepath)
return jsonify({'gifs': filtered_gifs, 'prompt': prompt})
if __name__ == '__main__':
app.run(debug=True)