From 4dde0ea421d1af21ac6d6e93691a7cb3d1473194 Mon Sep 17 00:00:00 2001 From: Sara Papi Date: Mon, 1 Jul 2024 11:43:21 +0200 Subject: [PATCH] [!216][RELEASE] SimulSeamless # Which work do we release? The SimulST submission of FBK to the IWSLT 2024 Shared Tasks: ["SimulSeamless: FBK at IWSLT 2024 Simultaneous Speech Translation"](http://arxiv.org/abs/2406.14177). # What changes does this release refer to? 11268e8da11c5d4664a20d63b5d0b8bbec516968 --- README.md | 1 + fbk_works/SIMULSEAMLESS.md | 143 +++++++++++++++++++++++++++++++++++++ 2 files changed, 144 insertions(+) create mode 100644 fbk_works/SIMULSEAMLESS.md diff --git a/README.md b/README.md index 0b16f88d..ad3ea41c 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,7 @@ Dedicated README for each work can be found in the `fbk_works` directory. ### 2024 + - [[IWSLT 2024] **SimulSeamless: FBK at IWSLT 2024 Simultaneous Speech Translation**](fbk_works/SIMULSEAMLESS.md) - [[ACL 2024] **StreamAtt: Direct Streaming Speech-to-Text Translation with Attention-based Audio History Selection**](fbk_works/STREAMATT_STREAMLAAL.md) - [[ACL 2024] **SBAAM! Eliminating Transcript Dependency in Automatic Subtitling**](fbk_works/SBAAM.md) - [[ACL 2024] **When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP**](fbk_works/BUGFREE_CONFORMER.md) diff --git a/fbk_works/SIMULSEAMLESS.md b/fbk_works/SIMULSEAMLESS.md new file mode 100644 index 00000000..c017cabc --- /dev/null +++ b/fbk_works/SIMULSEAMLESS.md @@ -0,0 +1,143 @@ +# SimulSeamless +![ACL Anthology](https://img.shields.io/badge/anthology-brightgreen?logo=data%3Aimage%2Fsvg%2Bxml%3Bbase64%2CPD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiIHN0YW5kYWxvbmU9Im5vIj8%2BCjwhLS0gQ3JlYXRlZCB3aXRoIElua3NjYXBlIChodHRwOi8vd3d3Lmlua3NjYXBlLm9yZy8pIC0tPgo8c3ZnCiAgIHhtbG5zOnN2Zz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciCiAgIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZyIKICAgdmVyc2lvbj0iMS4wIgogICB3aWR0aD0iNjgiCiAgIGhlaWdodD0iNjgiCiAgIGlkPSJzdmcyIj4KICA8ZGVmcwogICAgIGlkPSJkZWZzNCIgLz4KICA8cGF0aAogICAgIGQ9Ik0gNDEuOTc3NTUzLC0yLjg0MjE3MDllLTAxNCBDIDQxLjk3NzU1MywxLjc2MTc4IDQxLjk3NzU1MywxLjQ0MjExIDQxLjk3NzU1MywzLjAxNTggTCA3LjQ4NjkwNTQsMy4wMTU4IEwgMCwzLjAxNTggTCAwLDEwLjUwMDc5IEwgMCwzOC40Nzg2NyBMIDAsNDYgTCA3LjQ4NjkwNTQsNDYgTCA0OS41MDA4MDIsNDYgTCA1Ni45ODc3MDgsNDYgTCA2OCw0NiBMIDY4LDMwLjk5MzY4IEwgNTYuOTg3NzA4LDMwLjk5MzY4IEwgNTYuOTg3NzA4LDEwLjUwMDc5IEwgNTYuOTg3NzA4LDMuMDE1OCBDIDU2Ljk4NzcwOCwxLjQ0MjExIDU2Ljk4NzcwOCwxLjc2MTc4IDU2Ljk4NzcwOCwtMi44NDIxNzA5ZS0wMTQgTCA0MS45Nzc1NTMsLTIuODQyMTcwOWUtMDE0IHogTSAxNS4wMTAxNTUsMTcuOTg1NzggTCA0MS45Nzc1NTMsMTcuOTg1NzggTCA0MS45Nzc1NTMsMzAuOTkzNjggTCAxNS4wMTAxNTUsMzAuOTkzNjggTCAxNS4wMTAxNTUsMTcuOTg1NzggeiAiCiAgICAgc3R5bGU9ImZpbGw6I2VkMWMyNDtmaWxsLW9wYWNpdHk6MTtmaWxsLXJ1bGU6ZXZlbm9kZDtzdHJva2U6bm9uZTtzdHJva2Utd2lkdGg6MTIuODk1NDExNDk7c3Ryb2tlLWxpbmVjYXA6YnV0dDtzdHJva2UtbGluZWpvaW46bWl0ZXI7c3Ryb2tlLW1pdGVybGltaXQ6NDtzdHJva2UtZGFzaGFycmF5Om5vbmU7c3Ryb2tlLWRhc2hvZmZzZXQ6MDtzdHJva2Utb3BhY2l0eToxIgogICAgIHRyYW5zZm9ybT0idHJhbnNsYXRlKDAsIDExKSIKICAgICBpZD0icmVjdDIxNzgiIC8%2BCjwvc3ZnPgo%3D&label=ACL&labelColor=white&color=red) + +Code for the paper: ["SimulSeamless: FBK at IWSLT 2024 Simultaneous Speech Translation"](http://arxiv.org/abs/2406.14177) published at IWSLT 2024. + +## 📎 Requirements +To run the agent, please make sure that +[SimulEval v1.1.0](https://github.com/facebookresearch/SimulEval) +and [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) are installed. + +In the case of [💬 Inference using docker](#-inference-using-docker), use commit +`f1f5b9a69a47496630aa43605f1bd46e5484a2f4` for SimulEval. + +## 🤖 Inference using your environment +Please, set `--source`, and `--target` as described in the +[Fairseq Simultaneous Translation repository](https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/simulst_mustc_example.md#inference--evaluation): +`${LIST_OF_AUDIO}` is the list of audio paths and `${TGT_FILE}` the segment-wise references in the +target language. + +Set `${TGT_LANG}` as the target language code in 3 characters. The list of supported language +codes is +[available here](https://huggingface.co/facebook/hf-seamless-m4t-medium/blob/main/special_tokens_map.json). +For the source language, no language code has to be specified. + +Depending on the target language, set `${LATENCY_UNIT}` to either `word` (e.g., for German) or +`char` (e.g., for Japanese), and `${BLEU_TOKENIZER}` to either `13a` (i.e., the standard sacreBLEU +tokenizer used, for example, to evaluate German) or `char` (e.g., to evaluate character-level +languages such as Chinese or Japanese). + +The simultaneous inference of SimulSeamless is based on +[AlignAtt](ALIGNATT_SIMULST_AGENT_INTERSPEECH2023.md), thus the __f__ parameter (`${FRAME}`) and the +layer from which to extract the attention scores (`${LAYER}`) have to be set accordingly. + +### Instruction to replicate IWSLT 2024 results ↙️ + +To replicate the results obtained to achieve 2 seconds of latency (measured by AL) on the test sets +used by [the IWSLT 2024 Simultaneous track](https://iwslt.org/2024/simultaneous), use the following +values: +- **en-de**: `${TGT_LANG}=deu`, `${FRAME}=6`, `${LAYER}=3`, `${SEG_SIZE}=1000` +- **en-ja**: `${TGT_LANG}=jpn`, `${FRAME}=1`, `${LAYER}=0`, `${SEG_SIZE}=400` +- **en-zh**: `${TGT_LANG}=cmn`, `${FRAME}=1`, `${LAYER}=3`, `${SEG_SIZE}=800` +- **cs-en**: `${TGT_LANG}=eng`, `${FRAME}=9`, `${LAYER}=3`, `${SEG_SIZE}=1000` + +❗️Please notice that `${FRAME}` can be adjusted to achieve lower/higher latency. + + +The SimulSeamless can be run with: +```bash +simuleval \ + --agent-class examples.speech_to_text.simultaneous_translation.agents.v1_1.simul_alignatt_seamlessm4t.AlignAttSeamlessS2T \ + --source ${LIST_OF_AUDIO} \ + --target ${TGT_FILE} \ + --data-bin ${DATA_ROOT} \ + --model-size medium --target-language ${TGT_LANG} \ + --extract-attn-from-layer ${LAYER} --num-beams 5 \ + --frame-num ${FRAME} \ + --source-segment-size ${SEG_SIZE} \ + --quality-metrics BLEU --latency-metrics LAAL AL ATD --computation-aware \ + --eval-latency-unit ${LATENCY_UNIT} --sacrebleu-tokenizer ${BLEU_TOKENIZER} \ + --output ${OUT_DIR} \ + --device cuda:0 +``` +If not already stored in your system, the SeamlessM4T model will be downloaded automatically when +running the script. The output will be saved in `${OUT_DIR}`. + +We suggest to run the inference using a GPU to speed up the process but the system can be run on +any device (e.g., CPU) supported by SimulEval and HuggingFace. + +## 💬 Inference using docker +To run SimulSeamless using docker, as required by the IWSLT 2024 Simultaneous track, follow the +steps below: +1. Download the docker file [simulseamless.tar](https://fbk-my.sharepoint.com/:u:/g/personal/spapi_fbk_eu/EWcMkUFCB59PtmtncHUmkRABGw-AwJn5iJ5Q8zIihfvnag?e=k6DxM0) +2. Load the docker image: +```bash +docker load -i simulseamless.tar +``` +3. Start the SimulEval standalone with GPU enabled: +```bash +docker run -e TGTLANG=${TGT_LANG} -e FRAME=${FRAME} -e LAYER=${LAYER} \ + -e BLEU_TOKENIZER=${BLEU_TOKENIZER} -e LATENCY_UNIT=${LATENCY_UNIT} \ + -e DEV=cuda:0 --gpus all --shm-size 32G \ + -p 2024:2024 simulseamless:latest +``` +4. Start the remote evaluation with: +```bash +simuleval \ + --remote-eval --remote-port 2024 \ + --source ${LIST_OF_AUDIO} --target ${TGT_FILE} \ + --source-type speech --target-type text \ + --source-segment-size ${SEG_SIZE} \ + --eval-latency-unit ${LATENCY_UNIT} --sacrebleu-tokenizer ${BLEU_TOKENIZER} \ + --output ${OUT_DIR} +``` +To set, `${TGT_LANG}`, `${FRAME}`, `${LAYER}`, `${BLEU_TOKENIZER}`, `${LATENCY_UNIT}`, +`${LIST_OF_AUDIO}`, `${TGT_FILE}`, `${SEG_SIZE}`, and `${OUT_DIR}` refer to +[🤖 Inference using your environment](#-inference-using-your-environment). + +### Instruction to recreate the docker images + +To recreate the docker images, follow the steps below. + +1. Download SimulEval and this repository. +2. Create a `Dockerfile` with the following content: +``` +FROM python:3.9 +RUN pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 +ADD /SimulEval /SimulEval +WORKDIR /SimulEval +RUN pip install -e . +WORKDIR ../ +ADD /fbk-fairseq /fbk-fairseq +WORKDIR /fbk-fairseq +RUN pip install -e . +RUN pip install -r speech_requirements.txt +WORKDIR ../ +RUN pip install sentencepiece +RUN pip install transformers + +ENTRYPOINT simuleval --standalone --remote-port 2024 \ + --agent-class examples.speech_to_text.simultaneous_translation.agents.v1_1.simul_alignatt_seamlessm4t.AlignAttSeamlessS2T \ + --model-size medium --num-beams 5 --user-dir fbk-fairseq/examples \ + --target-language $TGTLANG --frame-num $FRAME --extract-attn-from-layer $LAYER --device $DEV \ + --sacrebleu-tokenizer ${BLEU_TOKENIZER} --eval-latency-unit ${LATENCY_UNIT} +``` +3. Build the docker image: +``` +docker build -t simulseamless . +``` +4. Save the docker image: +``` +docker save -o simulseamless.tar simulseamless:latest +``` + +## 📍Citation +```bibtex +@inproceedings{papi-et-al-2024-simulseamless, +title = "SimulSeamless: FBK at IWSLT 2024 Simultaneous Speech Translation", +author = {Papi, Sara and Gaido, Marco and Negri, Matteo and Bentivogli, Luisa}, +booktitle = "Proceedings of the 21th International Conference on Spoken Language Translation (IWSLT)", +year = "2024", +address = "Bangkok, Thailand", +} +```