like kaggle compete: https://www.kaggle.com/c/birdsong-recognition, use f1 as the metric, so can apply it as a loss func.
reference:
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
# https://gist.github.com/SuperShinyEyes/dcc68a08ff8b615442e3bc6a9b55a354
class F1_Loss(nn.Module):
'''Calculate F1 score. Can work with gpu tensors
The original implmentation is written by Michal Haltuf on Kaggle.
Returns
-------
torch.Tensor
`ndim` == 1. epsilon <= val <= 1
Reference
---------
- https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric
- https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
- https://discuss.pytorch.org/t/calculating-precision-recall-and-f1-score-in-case-of-multi-label-classification/28265/6
- http://www.ryanzhang.info/python/writing-your-own-loss-function-module-for-pytorch/
'''
def __init__(self, epsilon=1e-7):
super().__init__()
self.epsilon = epsilon
def forward(self, y_pred, y_true,):
assert y_pred.ndim == 2
assert y_true.ndim == 1
y_true = F.one_hot(y_true, 2).to(torch.float32)
y_pred = F.softmax(y_pred, dim=1)
tp = (y_true * y_pred).sum(dim=0).to(torch.float32)
tn = ((1 - y_true) * (1 - y_pred)).sum(dim=0).to(torch.float32)
fp = ((1 - y_true) * y_pred).sum(dim=0).to(torch.float32)
fn = (y_true * (1 - y_pred)).sum(dim=0).to(torch.float32)
precision = tp / (tp + fp + self.epsilon)
recall = tp / (tp + fn + self.epsilon)
f1 = 2* (precision*recall) / (precision + recall + self.epsilon)
f1 = f1.clamp(min=self.epsilon, max=1-self.epsilon)
return 1 - f1.mean()
f1_loss = F1_Loss().cuda()