Skip to content

Latest commit

 

History

History
87 lines (51 loc) · 1.3 KB

README.md

File metadata and controls

87 lines (51 loc) · 1.3 KB

Extractive summarizer

A simple nlp based app to generate short summaries of long texts based on their importace

Link

https://extractive-summarizer-h9du.onrender.com/

Installation

Install spacy

  pip install spacy

Install Textrank

  pip install pytextrank

Install Flask

  pip install Flask

Install pipeline pakage "en_core_web_sm"

  python -m spacy download en_core_web_sm

Tech Stack

Client: HTML CSS

Server: Flask

SETUP

ADD NLP WITH SPACY

  nlp=spacy.load("en_core_web_sm")

ADD A PIPELINE TO SUPPLY TEXTS USING TEXTRANK

 nlp.add_pipe('textrank')

USE SPACEY PIPELINE WITH TEXTRANK

doc=nlp(example text)

Iterate through each word and create summary using generator object:

for i in doc._.textrank.summary():
  print(i)

LESSONS

Learnt about nlp models and their working

Documentation

Screenshots of the application

App Screenshot

App Screenshot