-
Notifications
You must be signed in to change notification settings - Fork 14
/
labelmatch_1_10_40k.log
2955 lines (2948 loc) · 897 KB
/
labelmatch_1_10_40k.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2021-10-31 12:24:10,453 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56) [GCC 7.2.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM2-32GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.5.0+cu101
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v0.21.1 (Git Hash 7d2fd500bc78936d1d648ca713b901012f470dbc)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_INTERNAL_THREADPOOL_IMPL -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
TorchVision: 0.6.0+cu101
OpenCV: 4.5.2
MMCV: 1.2.7
MMCV Compiler: GCC 5.4
MMCV CUDA Compiler: 10.1
MMDetection: 2.10.0+unknown
------------------------------------------------------------
2021-10-31 12:24:13,299 - mmdet - INFO - Distributed training: True
2021-10-31 12:24:16,211 - mmdet - INFO - Config:
seed = 1
percent = 10
gpu = 8
score = 0.9
samples_per_gpu = 4
total_iter = 40000
update_interval = 1000
test_interval = 2000
save_interval = 10000
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
image_size = (1024, 1024)
pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AugmentationUT', use_re=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
pipeline_u_share = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RandomFlip', flip_ratio=0.5)
]
pipeline_u = [
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=[(1333, 500), (1333, 800)],
keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape',
'pad_shape', 'scale_factor', 'flip', 'flip_direction',
'img_norm_cfg', 'bbox_transform'))
]
pipeline_u_1 = [
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='AugmentationUT', use_re=True, use_box=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape',
'pad_shape', 'scale_factor', 'flip', 'flip_direction',
'img_norm_cfg', 'bbox_transform'))
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
dataset_type = 'CocoDataset'
data_root = './dataset/coco/'
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type='SemiCocoDataset',
ann_file=
'./dataset/coco/annotations/semi_supervised/[email protected]',
ann_file_u=
'./dataset/coco/annotations/semi_supervised/[email protected]',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AugmentationUT', use_re=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
],
pipeline_u_share=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RandomFlip', flip_ratio=0.5)
],
pipeline_u=[
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=[(1333, 500), (1333, 800)],
keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg', 'bbox_transform'))
],
pipeline_u_1=[
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='AugmentationUT', use_re=True, use_box=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg', 'bbox_transform'))
],
img_prefix='./dataset/coco/train2017/',
img_prefix_u='./dataset/coco/train2017/'),
val=dict(
type='CocoDataset',
ann_file='./dataset/coco/annotations/instances_val2017.json',
img_prefix='./dataset/coco/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CocoDataset',
ann_file='./dataset/coco/annotations/instances_val2017.json',
img_prefix='./dataset/coco/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=2000, metric='bbox', by_epoch=False, classwise=True)
learning_rate = 0.02
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[40000])
runner = dict(type='SemiIterBasedRunner', max_iters=40000)
checkpoint_config = dict(interval=10000)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
labelmatch_hook_cfg = dict(
samples_per_gpu=4,
workers_per_gpu=4,
label_file=
'./dataset/coco/annotations/semi_supervised/[email protected]',
evaluation=dict(interval=1000, metric='bbox', by_epoch=False),
data=dict(
type='TXTDataset',
img_prefix='./dataset/coco/train2017/',
ann_file=
'./dataset/coco/annotations/semi_supervised_txt/[email protected]',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
manual_length=10000))
custom_hooks = [
dict(type='NumClassCheckHook'),
dict(
type='LabelMatchHook',
cfg=dict(
samples_per_gpu=4,
workers_per_gpu=4,
label_file=
'./dataset/coco/annotations/semi_supervised/[email protected]',
evaluation=dict(interval=1000, metric='bbox', by_epoch=False),
data=dict(
type='TXTDataset',
img_prefix='./dataset/coco/train2017/',
ann_file=
'./dataset/coco/annotations/semi_supervised_txt/[email protected]',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
manual_length=10000)))
]
dist_params = dict(backend='nccl')
log_level = 'INFO'
resume_from = None
load_from = './pretrained_model/baseline/[email protected]'
workflow = [('train', 1)]
model = dict(
type='LabelMatch',
ema_config='./configs/baseline/baseline_base.py',
ema_ckpt='./pretrained_model/baseline/[email protected]',
cfg=dict(debug=False),
pretrained='./pretrained_model/backbone/resnet50-19c8e357.pth',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHeadLM',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHeadLM',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssignerLM',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_wrt_candidates=False,
ignore_iof_thr=0.5),
sampler=dict(
type='RandomSamplerLM',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
ig_weight=0.0,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.001,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)))
work_dir = './work_dirs/labelmatch_0.9_1_10_8'
gpu_ids = range(0, 8)
2021-10-31 12:24:16,536 - mmdet - INFO - load model from: ./pretrained_model/backbone/resnet50-19c8e357.pth
2021-10-31 12:24:16,536 - mmdet - INFO - Use load_from_local loader
2021-10-31 12:24:16,735 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
2021-10-31 12:24:17,961 - mmdet - INFO - load model from: ./pretrained_model/backbone/resnet50-19c8e357.pth
2021-10-31 12:24:17,962 - mmdet - INFO - Use load_from_local loader
2021-10-31 12:24:18,158 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
2021-10-31 12:24:42,112 - mmdet - INFO - Loading 107002 images, cost 0.10965704917907715
2021-10-31 12:24:46,418 - mmdet - INFO - boxes per image (label data): 7.374479397430217
2021-10-31 12:24:46,418 - mmdet - INFO - class ratio (label data): (0.3005-person) (0.0076-bicycle) (0.0526-car) (0.0093-motorcycle) (0.0056-airplane) (0.0063-bus) (0.0057-train) (0.0128-truck) (0.0132-boat) (0.0174-traffic light) (0.0020-fire hydrant) (0.0022-stop sign) (0.0015-parking meter) (0.0115-bench) (0.0128-bird) (0.0056-cat) (0.0058-dog) (0.0075-horse) (0.0111-sheep) (0.0099-cow) (0.0059-elephant) (0.0015-bear) (0.0058-zebra) (0.0055-giraffe) (0.0102-backpack) (0.0140-umbrella) (0.0143-handbag) (0.0065-tie) (0.0064-suitcase) (0.0029-frisbee) (0.0073-skis) (0.0029-snowboard) (0.0077-sports ball) (0.0100-kite) (0.0040-baseball bat) (0.0040-baseball glove) (0.0061-skateboard) (0.0082-surfboard) (0.0052-tennis racket) (0.0276-bottle) (0.0089-wine glass) (0.0273-cup) (0.0065-fork) (0.0093-knife) (0.0079-spoon) (0.0191-bowl) (0.0123-banana) (0.0075-apple) (0.0053-sandwich) (0.0090-orange) (0.0078-broccoli) (0.0094-carrot) (0.0029-hot dog) (0.0067-pizza) (0.0081-donut) (0.0069-cake) (0.0454-chair) (0.0066-couch) (0.0103-potted plant) (0.0045-bed) (0.0172-dining table) (0.0043-toilet) (0.0064-tv) (0.0059-laptop) (0.0026-mouse) (0.0070-remote) (0.0033-keyboard) (0.0082-cell phone) (0.0018-microwave) (0.0041-oven) (0.0003-toaster) (0.0061-sink) (0.0030-refrigerator) (0.0260-book) (0.0069-clock) (0.0085-vase) (0.0019-scissors) (0.0060-teddy bear) (0.0002-hair drier) (0.0022-toothbrush)
2021-10-31 12:24:46,419 - mmdet - INFO - load checkpoint from ./pretrained_model/baseline/[email protected]
2021-10-31 12:24:46,419 - mmdet - INFO - Use load_from_local loader
2021-10-31 12:24:47,061 - mmdet - INFO - Start running, host: root@train-rl-v100-3-0, work_dir: /data1/mmdet_ssod/work_dirs/labelmatch_0.9_1_10_8
2021-10-31 12:24:47,062 - mmdet - INFO - workflow: [('train', 1)], max: 40000 iters
2021-10-31 12:28:40,639 - mmdet - INFO - Iter [50/40000] lr: 1.978e-03, eta: 1 day, 12:57:58, time: 3.331, data_time: 0.022, memory: 23691, loss_rpn_cls: 0.0501, loss_rpn_bbox: 0.0564, loss_cls: 0.2534, acc: 91.8210, loss_bbox: 0.2825, loss_rpn_cls_unlabeled: 0.1880, loss_rpn_bbox_unlabeled: 0.1100, loss_cls_unlabeled: 0.2418, acc_unlabeled: 91.5310, loss_bbox_unlabeled: 0.1770, losses_cls_ig_unlabeled: 0.2062, pseudo_num: 1.5283, pseudo_num_ig: 5.3951, pseudo_num_mining: 0.7174, pseudo_num(acc): 0.8563, pseudo_num ig(acc): 0.4777, loss: 1.5653
2021-10-31 12:30:04,193 - mmdet - INFO - Iter [100/40000] lr: 3.976e-03, eta: 1 day, 3:46:02, time: 1.680, data_time: 0.037, memory: 24474, loss_rpn_cls: 0.0447, loss_rpn_bbox: 0.0557, loss_cls: 0.2528, acc: 91.8087, loss_bbox: 0.2837, loss_rpn_cls_unlabeled: 0.1249, loss_rpn_bbox_unlabeled: 0.1004, loss_cls_unlabeled: 0.2077, acc_unlabeled: 91.8385, loss_bbox_unlabeled: 0.1573, losses_cls_ig_unlabeled: 0.1958, pseudo_num: 1.4111, pseudo_num_ig: 5.4283, pseudo_num_mining: 0.7166, pseudo_num(acc): 0.8704, pseudo_num ig(acc): 0.4878, loss: 1.4229
2021-10-31 12:31:27,212 - mmdet - INFO - Iter [150/40000] lr: 5.974e-03, eta: 1 day, 0:37:18, time: 1.662, data_time: 0.029, memory: 24474, loss_rpn_cls: 0.0428, loss_rpn_bbox: 0.0546, loss_cls: 0.2590, acc: 91.4769, loss_bbox: 0.2905, loss_rpn_cls_unlabeled: 0.1183, loss_rpn_bbox_unlabeled: 0.1037, loss_cls_unlabeled: 0.2154, acc_unlabeled: 91.3409, loss_bbox_unlabeled: 0.1730, losses_cls_ig_unlabeled: 0.2008, pseudo_num: 1.3904, pseudo_num_ig: 5.4415, pseudo_num_mining: 0.6975, pseudo_num(acc): 0.8741, pseudo_num ig(acc): 0.4855, loss: 1.4581
2021-10-31 12:32:48,446 - mmdet - INFO - Iter [200/40000] lr: 7.972e-03, eta: 22:56:05, time: 1.625, data_time: 0.026, memory: 24474, loss_rpn_cls: 0.0405, loss_rpn_bbox: 0.0536, loss_cls: 0.2449, acc: 91.9807, loss_bbox: 0.2766, loss_rpn_cls_unlabeled: 0.1242, loss_rpn_bbox_unlabeled: 0.0993, loss_cls_unlabeled: 0.2066, acc_unlabeled: 91.7313, loss_bbox_unlabeled: 0.1603, losses_cls_ig_unlabeled: 0.1972, pseudo_num: 1.3876, pseudo_num_ig: 5.4663, pseudo_num_mining: 0.6914, pseudo_num(acc): 0.8787, pseudo_num ig(acc): 0.4868, loss: 1.4033
2021-10-31 12:34:10,609 - mmdet - INFO - Iter [250/40000] lr: 9.970e-03, eta: 21:57:03, time: 1.642, data_time: 0.026, memory: 25892, loss_rpn_cls: 0.0495, loss_rpn_bbox: 0.0553, loss_cls: 0.2625, acc: 91.4723, loss_bbox: 0.2925, loss_rpn_cls_unlabeled: 0.1113, loss_rpn_bbox_unlabeled: 0.0966, loss_cls_unlabeled: 0.2062, acc_unlabeled: 91.5459, loss_bbox_unlabeled: 0.1579, losses_cls_ig_unlabeled: 0.1945, pseudo_num: 1.3734, pseudo_num_ig: 5.4190, pseudo_num_mining: 0.6808, pseudo_num(acc): 0.8800, pseudo_num ig(acc): 0.4873, loss: 1.4263
2021-10-31 12:35:32,899 - mmdet - INFO - Iter [300/40000] lr: 1.197e-02, eta: 21:17:44, time: 1.646, data_time: 0.026, memory: 25892, loss_rpn_cls: 0.0433, loss_rpn_bbox: 0.0533, loss_cls: 0.2376, acc: 92.2499, loss_bbox: 0.2696, loss_rpn_cls_unlabeled: 0.1132, loss_rpn_bbox_unlabeled: 0.1020, loss_cls_unlabeled: 0.2091, acc_unlabeled: 91.6729, loss_bbox_unlabeled: 0.1709, losses_cls_ig_unlabeled: 0.1878, pseudo_num: 1.3797, pseudo_num_ig: 5.4171, pseudo_num_mining: 0.6822, pseudo_num(acc): 0.8812, pseudo_num ig(acc): 0.4878, loss: 1.3867
2021-10-31 12:36:56,076 - mmdet - INFO - Iter [350/40000] lr: 1.397e-02, eta: 20:50:44, time: 1.662, data_time: 0.028, memory: 26254, loss_rpn_cls: 0.0487, loss_rpn_bbox: 0.0575, loss_cls: 0.2665, acc: 91.5354, loss_bbox: 0.2869, loss_rpn_cls_unlabeled: 0.1141, loss_rpn_bbox_unlabeled: 0.0975, loss_cls_unlabeled: 0.2054, acc_unlabeled: 91.6764, loss_bbox_unlabeled: 0.1661, losses_cls_ig_unlabeled: 0.1929, pseudo_num: 1.3850, pseudo_num_ig: 5.4282, pseudo_num_mining: 0.6834, pseudo_num(acc): 0.8834, pseudo_num ig(acc): 0.4877, loss: 1.4355
2021-10-31 12:38:19,201 - mmdet - INFO - Iter [400/40000] lr: 1.596e-02, eta: 20:30:09, time: 1.662, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0503, loss_rpn_bbox: 0.0568, loss_cls: 0.2802, acc: 91.2325, loss_bbox: 0.2954, loss_rpn_cls_unlabeled: 0.1124, loss_rpn_bbox_unlabeled: 0.1018, loss_cls_unlabeled: 0.2179, acc_unlabeled: 91.3801, loss_bbox_unlabeled: 0.1719, losses_cls_ig_unlabeled: 0.2001, pseudo_num: 1.3816, pseudo_num_ig: 5.4360, pseudo_num_mining: 0.6866, pseudo_num(acc): 0.8837, pseudo_num ig(acc): 0.4884, loss: 1.4868
2021-10-31 12:39:42,417 - mmdet - INFO - Iter [450/40000] lr: 1.796e-02, eta: 20:14:04, time: 1.665, data_time: 0.028, memory: 26254, loss_rpn_cls: 0.0516, loss_rpn_bbox: 0.0591, loss_cls: 0.2911, acc: 90.9011, loss_bbox: 0.2990, loss_rpn_cls_unlabeled: 0.1168, loss_rpn_bbox_unlabeled: 0.0971, loss_cls_unlabeled: 0.2096, acc_unlabeled: 91.3223, loss_bbox_unlabeled: 0.1643, losses_cls_ig_unlabeled: 0.2095, pseudo_num: 1.3742, pseudo_num_ig: 5.4203, pseudo_num_mining: 0.6848, pseudo_num(acc): 0.8836, pseudo_num ig(acc): 0.4894, loss: 1.4982
2021-10-31 12:41:04,030 - mmdet - INFO - pseudo pos: 0.99(817.0-person) 1.00(22.0-bicycle) 0.95(148.0-car) 0.97(30.0-motorcycle) 0.97(29.0-airplane) 1.00(17.0-bus) 1.00(13.0-train) 0.90(31.0-truck) 0.70(27.0-boat) 0.83(48.0-traffic light) 1.00(8.0-fire hydrant) 1.00(10.0-stop sign) 1.00(3.0-parking meter) 0.74(35.0-bench) 0.87(31.0-bird) 0.93(14.0-cat) 1.00(18.0-dog) 0.90(21.0-horse) 0.89(46.0-sheep) 1.00(14.0-cow) 1.00(24.0-elephant) 1.00(9.0-bear) 1.00(14.0-zebra) 1.00(16.0-giraffe) 0.64(22.0-backpack) 0.89(36.0-umbrella) 0.47(55.0-handbag) 0.89(9.0-tie) 0.79(19.0-suitcase) 1.00(10.0-frisbee) 0.52(21.0-skis) 0.87(8.0-snowboard) 1.00(14.0-sports ball) 0.90(29.0-kite) 0.82(11.0-baseball bat) 0.91(11.0-baseball glove) 1.00(19.0-skateboard) 0.93(15.0-surfboard) 0.87(8.0-tennis racket) 0.87(54.0-bottle) 0.91(22.0-wine glass) 0.92(72.0-cup) 0.62(21.0-fork) 0.37(32.0-knife) 0.44(16.0-spoon) 0.94(31.0-bowl) 0.67(18.0-banana) 0.85(26.0-apple) 0.78(32.0-sandwich) 0.61(31.0-orange) 0.80(15.0-broccoli) 0.75(16.0-carrot) 1.00(6.0-hot dog) 0.96(26.0-pizza) 0.93(15.0-donut) 0.83(18.0-cake) 0.82(125.0-chair) 0.82(22.0-couch) 0.64(28.0-potted plant) 1.00(18.0-bed) 0.74(58.0-dining table) 0.93(14.0-toilet) 0.92(24.0-tv) 1.00(12.0-laptop) 1.00(6.0-mouse) 1.00(14.0-remote) 0.89(9.0-keyboard) 0.74(23.0-cell phone) 1.00(2.0-microwave) 0.50(6.0-oven) 0.00(0.0-toaster) 0.93(14.0-sink) 1.00(11.0-refrigerator) 0.63(35.0-book) 1.00(27.0-clock) 0.86(22.0-vase) 1.00(2.0-scissors) 0.94(17.0-teddy bear) 0.00(0.0-hair drier) 0.50(4.0-toothbrush)
2021-10-31 12:41:04,030 - mmdet - INFO - pseudo ig: 0.70(2968.0-person) 0.48(66.0-bicycle) 0.53(542.0-car) 0.54(124.0-motorcycle) 0.71(52.0-airplane) 0.70(73.0-bus) 0.76(41.0-train) 0.44(126.0-truck) 0.37(115.0-boat) 0.41(246.0-traffic light) 0.65(17.0-fire hydrant) 0.60(25.0-stop sign) 0.31(13.0-parking meter) 0.21(121.0-bench) 0.28(130.0-bird) 0.82(68.0-cat) 0.67(63.0-dog) 0.66(82.0-horse) 0.49(223.0-sheep) 0.71(95.0-cow) 0.74(90.0-elephant) 0.46(24.0-bear) 0.71(82.0-zebra) 0.90(58.0-giraffe) 0.31(112.0-backpack) 0.47(133.0-umbrella) 0.15(175.0-handbag) 0.46(56.0-tie) 0.45(87.0-suitcase) 0.54(24.0-frisbee) 0.35(78.0-skis) 0.41(34.0-snowboard) 0.45(107.0-sports ball) 0.52(156.0-kite) 0.33(27.0-baseball bat) 0.31(36.0-baseball glove) 0.40(73.0-skateboard) 0.40(105.0-surfboard) 0.45(85.0-tennis racket) 0.38(256.0-bottle) 0.45(106.0-wine glass) 0.29(302.0-cup) 0.26(103.0-fork) 0.15(128.0-knife) 0.15(106.0-spoon) 0.42(192.0-bowl) 0.39(88.0-banana) 0.34(35.0-apple) 0.30(66.0-sandwich) 0.18(145.0-orange) 0.51(119.0-broccoli) 0.25(95.0-carrot) 0.53(38.0-hot dog) 0.66(65.0-pizza) 0.50(126.0-donut) 0.36(75.0-cake) 0.32(496.0-chair) 0.45(78.0-couch) 0.29(128.0-potted plant) 0.74(43.0-bed) 0.34(185.0-dining table) 0.62(63.0-toilet) 0.60(83.0-tv) 0.66(71.0-laptop) 0.35(40.0-mouse) 0.34(79.0-remote) 0.57(40.0-keyboard) 0.31(99.0-cell phone) 0.45(11.0-microwave) 0.38(39.0-oven) 0.00(0.0-toaster) 0.39(80.0-sink) 0.50(26.0-refrigerator) 0.29(122.0-book) 0.53(86.0-clock) 0.31(98.0-vase) 0.36(11.0-scissors) 0.57(56.0-teddy bear) 0.00(0.0-hair drier) 0.21(14.0-toothbrush)
2021-10-31 12:41:04,030 - mmdet - INFO - pseudo gt: 4309.0 94.0 740.0 155.0 110.0 104.0 66.0 163.0 148.0 230.0 32.0 35.0 18.0 177.0 142.0 92.0 99.0 131.0 238.0 131.0 124.0 24.0 93.0 85.0 168.0 204.0 242.0 90.0 138.0 35.0 112.0 54.0 102.0 218.0 36.0 41.0 79.0 98.0 65.0 339.0 148.0 303.0 90.0 130.0 91.0 197.0 139.0 75.0 78.0 114.0 136.0 118.0 51.0 85.0 153.0 109.0 579.0 105.0 177.0 72.0 248.0 83.0 107.0 82.0 42.0 116.0 62.0 131.0 25.0 52.0 3.0 80.0 41.0 375.0 108.0 111.0 19.0 94.0 2.0 42.0
2021-10-31 12:41:04,030 - mmdet - INFO - pseudo mining: 751.0 2.0 60.0 8.0 9.0 11.0 10.0 4.0 2.0 29.0 3.0 9.0 0.0 0.0 4.0 10.0 7.0 11.0 38.0 24.0 34.0 0.0 30.0 32.0 0.0 3.0 0.0 7.0 0.0 5.0 0.0 0.0 32.0 52.0 0.0 1.0 4.0 4.0 8.0 15.0 8.0 12.0 0.0 0.0 0.0 8.0 1.0 0.0 0.0 3.0 12.0 10.0 0.0 5.0 21.0 0.0 1.0 0.0 3.0 0.0 0.0 15.0 23.0 8.0 5.0 1.0 7.0 4.0 0.0 0.0 0.0 3.0 1.0 1.0 33.0 3.0 0.0 6.0 0.0 0.0
2021-10-31 12:41:05,498 - mmdet - INFO - Iter [500/40000] lr: 1.996e-02, eta: 20:00:43, time: 1.662, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0523, loss_rpn_bbox: 0.0573, loss_cls: 0.2735, acc: 91.6093, loss_bbox: 0.2859, loss_rpn_cls_unlabeled: 0.1202, loss_rpn_bbox_unlabeled: 0.1047, loss_cls_unlabeled: 0.2166, acc_unlabeled: 91.6517, loss_bbox_unlabeled: 0.1666, losses_cls_ig_unlabeled: 0.2029, pseudo_num: 1.3610, pseudo_num_ig: 5.3975, pseudo_num_mining: 0.6860, pseudo_num(acc): 0.8838, pseudo_num ig(acc): 0.4899, loss: 1.4800
2021-10-31 12:42:29,109 - mmdet - INFO - Iter [550/40000] lr: 2.000e-02, eta: 19:49:58, time: 1.670, data_time: 0.025, memory: 26254, loss_rpn_cls: 0.0503, loss_rpn_bbox: 0.0580, loss_cls: 0.2888, acc: 91.1014, loss_bbox: 0.2934, loss_rpn_cls_unlabeled: 0.1111, loss_rpn_bbox_unlabeled: 0.1003, loss_cls_unlabeled: 0.2102, acc_unlabeled: 91.5177, loss_bbox_unlabeled: 0.1560, losses_cls_ig_unlabeled: 0.2104, pseudo_num: 1.3474, pseudo_num_ig: 5.3901, pseudo_num_mining: 0.6913, pseudo_num(acc): 0.8835, pseudo_num ig(acc): 0.4903, loss: 1.4785
2021-10-31 12:43:51,496 - mmdet - INFO - Iter [600/40000] lr: 2.000e-02, eta: 19:39:27, time: 1.645, data_time: 0.028, memory: 26254, loss_rpn_cls: 0.0529, loss_rpn_bbox: 0.0569, loss_cls: 0.2896, acc: 91.1042, loss_bbox: 0.2952, loss_rpn_cls_unlabeled: 0.1194, loss_rpn_bbox_unlabeled: 0.1033, loss_cls_unlabeled: 0.2149, acc_unlabeled: 91.2325, loss_bbox_unlabeled: 0.1651, losses_cls_ig_unlabeled: 0.2107, pseudo_num: 1.3365, pseudo_num_ig: 5.4007, pseudo_num_mining: 0.6956, pseudo_num(acc): 0.8838, pseudo_num ig(acc): 0.4907, loss: 1.5080
2021-10-31 12:45:16,442 - mmdet - INFO - Iter [650/40000] lr: 2.000e-02, eta: 19:33:13, time: 1.702, data_time: 0.033, memory: 26254, loss_rpn_cls: 0.0561, loss_rpn_bbox: 0.0564, loss_cls: 0.2881, acc: 91.2543, loss_bbox: 0.2886, loss_rpn_cls_unlabeled: 0.1194, loss_rpn_bbox_unlabeled: 0.1041, loss_cls_unlabeled: 0.2263, acc_unlabeled: 91.0587, loss_bbox_unlabeled: 0.1754, losses_cls_ig_unlabeled: 0.2167, pseudo_num: 1.3327, pseudo_num_ig: 5.4138, pseudo_num_mining: 0.7012, pseudo_num(acc): 0.8848, pseudo_num ig(acc): 0.4905, loss: 1.5312
2021-10-31 12:46:39,939 - mmdet - INFO - Iter [700/40000] lr: 2.000e-02, eta: 19:26:14, time: 1.671, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0535, loss_rpn_bbox: 0.0572, loss_cls: 0.2856, acc: 91.1659, loss_bbox: 0.2903, loss_rpn_cls_unlabeled: 0.1105, loss_rpn_bbox_unlabeled: 0.0972, loss_cls_unlabeled: 0.2040, acc_unlabeled: 91.3926, loss_bbox_unlabeled: 0.1593, losses_cls_ig_unlabeled: 0.2116, pseudo_num: 1.3265, pseudo_num_ig: 5.4272, pseudo_num_mining: 0.7076, pseudo_num(acc): 0.8843, pseudo_num ig(acc): 0.4910, loss: 1.4693
2021-10-31 12:48:02,538 - mmdet - INFO - Iter [750/40000] lr: 2.000e-02, eta: 19:19:04, time: 1.650, data_time: 0.028, memory: 26254, loss_rpn_cls: 0.0528, loss_rpn_bbox: 0.0578, loss_cls: 0.2856, acc: 91.2385, loss_bbox: 0.2890, loss_rpn_cls_unlabeled: 0.1122, loss_rpn_bbox_unlabeled: 0.1016, loss_cls_unlabeled: 0.2040, acc_unlabeled: 91.1833, loss_bbox_unlabeled: 0.1658, losses_cls_ig_unlabeled: 0.2181, pseudo_num: 1.3206, pseudo_num_ig: 5.4430, pseudo_num_mining: 0.7149, pseudo_num(acc): 0.8836, pseudo_num ig(acc): 0.4913, loss: 1.4868
2021-10-31 12:49:26,252 - mmdet - INFO - Iter [800/40000] lr: 2.000e-02, eta: 19:13:27, time: 1.671, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0492, loss_rpn_bbox: 0.0569, loss_cls: 0.2738, acc: 91.4360, loss_bbox: 0.2856, loss_rpn_cls_unlabeled: 0.1112, loss_rpn_bbox_unlabeled: 0.0981, loss_cls_unlabeled: 0.1998, acc_unlabeled: 91.5970, loss_bbox_unlabeled: 0.1628, losses_cls_ig_unlabeled: 0.1993, pseudo_num: 1.3144, pseudo_num_ig: 5.4453, pseudo_num_mining: 0.7177, pseudo_num(acc): 0.8833, pseudo_num ig(acc): 0.4912, loss: 1.4367
2021-10-31 12:50:50,381 - mmdet - INFO - Iter [850/40000] lr: 2.000e-02, eta: 19:08:51, time: 1.684, data_time: 0.033, memory: 26254, loss_rpn_cls: 0.0493, loss_rpn_bbox: 0.0561, loss_cls: 0.2845, acc: 91.1598, loss_bbox: 0.2975, loss_rpn_cls_unlabeled: 0.1078, loss_rpn_bbox_unlabeled: 0.1014, loss_cls_unlabeled: 0.2152, acc_unlabeled: 91.2775, loss_bbox_unlabeled: 0.1715, losses_cls_ig_unlabeled: 0.2102, pseudo_num: 1.3109, pseudo_num_ig: 5.4493, pseudo_num_mining: 0.7191, pseudo_num(acc): 0.8833, pseudo_num ig(acc): 0.4909, loss: 1.4936
2021-10-31 12:52:13,210 - mmdet - INFO - Iter [900/40000] lr: 2.000e-02, eta: 19:03:42, time: 1.659, data_time: 0.030, memory: 26254, loss_rpn_cls: 0.0479, loss_rpn_bbox: 0.0542, loss_cls: 0.2828, acc: 91.2864, loss_bbox: 0.2929, loss_rpn_cls_unlabeled: 0.1082, loss_rpn_bbox_unlabeled: 0.0991, loss_cls_unlabeled: 0.2050, acc_unlabeled: 91.3783, loss_bbox_unlabeled: 0.1710, losses_cls_ig_unlabeled: 0.2036, pseudo_num: 1.3072, pseudo_num_ig: 5.4488, pseudo_num_mining: 0.7209, pseudo_num(acc): 0.8831, pseudo_num ig(acc): 0.4913, loss: 1.4646
2021-10-31 12:53:37,437 - mmdet - INFO - Iter [950/40000] lr: 2.000e-02, eta: 18:59:44, time: 1.682, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0511, loss_rpn_bbox: 0.0584, loss_cls: 0.2845, acc: 91.1097, loss_bbox: 0.2988, loss_rpn_cls_unlabeled: 0.1127, loss_rpn_bbox_unlabeled: 0.0986, loss_cls_unlabeled: 0.2058, acc_unlabeled: 91.4060, loss_bbox_unlabeled: 0.1670, losses_cls_ig_unlabeled: 0.2037, pseudo_num: 1.3024, pseudo_num_ig: 5.4492, pseudo_num_mining: 0.7249, pseudo_num(acc): 0.8825, pseudo_num ig(acc): 0.4914, loss: 1.4807
2021-10-31 12:54:58,401 - mmdet - INFO - pseudo pos: 0.99(1555.0-person) 0.93(42.0-bicycle) 0.94(321.0-car) 0.98(62.0-motorcycle) 0.97(37.0-airplane) 1.00(42.0-bus) 1.00(23.0-train) 0.82(50.0-truck) 0.73(49.0-boat) 0.91(102.0-traffic light) 0.96(23.0-fire hydrant) 1.00(16.0-stop sign) 1.00(5.0-parking meter) 0.67(57.0-bench) 0.92(50.0-bird) 0.96(25.0-cat) 1.00(29.0-dog) 0.95(39.0-horse) 0.91(58.0-sheep) 0.96(24.0-cow) 1.00(33.0-elephant) 1.00(14.0-bear) 1.00(18.0-zebra) 1.00(22.0-giraffe) 0.63(38.0-backpack) 0.88(78.0-umbrella) 0.52(105.0-handbag) 0.91(23.0-tie) 0.78(51.0-suitcase) 1.00(17.0-frisbee) 0.58(52.0-skis) 0.89(9.0-snowboard) 1.00(26.0-sports ball) 0.93(54.0-kite) 0.93(27.0-baseball bat) 0.95(19.0-baseball glove) 1.00(37.0-skateboard) 0.89(44.0-surfboard) 0.96(24.0-tennis racket) 0.85(143.0-bottle) 0.95(42.0-wine glass) 0.92(143.0-cup) 0.61(36.0-fork) 0.47(66.0-knife) 0.42(43.0-spoon) 0.92(75.0-bowl) 0.76(54.0-banana) 0.67(46.0-apple) 0.79(56.0-sandwich) 0.67(61.0-orange) 0.83(23.0-broccoli) 0.82(22.0-carrot) 0.87(16.0-hot dog) 0.94(53.0-pizza) 0.97(31.0-donut) 0.85(33.0-cake) 0.80(255.0-chair) 0.77(39.0-couch) 0.67(60.0-potted plant) 0.96(27.0-bed) 0.72(130.0-dining table) 0.95(20.0-toilet) 0.95(38.0-tv) 1.00(34.0-laptop) 1.00(14.0-mouse) 1.00(20.0-remote) 0.89(18.0-keyboard) 0.80(50.0-cell phone) 1.00(5.0-microwave) 0.75(24.0-oven) 0.00(0.0-toaster) 0.91(32.0-sink) 1.00(22.0-refrigerator) 0.54(81.0-book) 1.00(44.0-clock) 0.83(48.0-vase) 1.00(3.0-scissors) 0.96(24.0-teddy bear) 0.00(0.0-hair drier) 0.60(5.0-toothbrush)
2021-10-31 12:54:58,401 - mmdet - INFO - pseudo ig: 0.71(6096.0-person) 0.45(134.0-bicycle) 0.49(1121.0-car) 0.58(211.0-motorcycle) 0.71(104.0-airplane) 0.67(163.0-bus) 0.68(103.0-train) 0.43(222.0-truck) 0.42(242.0-boat) 0.36(518.0-traffic light) 0.65(48.0-fire hydrant) 0.52(48.0-stop sign) 0.32(28.0-parking meter) 0.21(214.0-bench) 0.37(270.0-bird) 0.81(141.0-cat) 0.67(123.0-dog) 0.65(150.0-horse) 0.54(382.0-sheep) 0.66(222.0-cow) 0.75(175.0-elephant) 0.52(46.0-bear) 0.76(150.0-zebra) 0.90(131.0-giraffe) 0.31(212.0-backpack) 0.42(261.0-umbrella) 0.17(350.0-handbag) 0.47(137.0-tie) 0.39(172.0-suitcase) 0.56(59.0-frisbee) 0.33(186.0-skis) 0.46(50.0-snowboard) 0.34(263.0-sports ball) 0.46(279.0-kite) 0.28(87.0-baseball bat) 0.29(117.0-baseball glove) 0.39(140.0-skateboard) 0.33(212.0-surfboard) 0.49(166.0-tennis racket) 0.42(640.0-bottle) 0.46(208.0-wine glass) 0.31(679.0-cup) 0.22(181.0-fork) 0.14(221.0-knife) 0.18(205.0-spoon) 0.41(421.0-bowl) 0.37(231.0-banana) 0.25(150.0-apple) 0.23(150.0-sandwich) 0.23(298.0-orange) 0.49(232.0-broccoli) 0.30(162.0-carrot) 0.44(89.0-hot dog) 0.60(144.0-pizza) 0.49(213.0-donut) 0.41(142.0-cake) 0.33(983.0-chair) 0.39(144.0-couch) 0.31(247.0-potted plant) 0.74(62.0-bed) 0.35(330.0-dining table) 0.62(124.0-toilet) 0.62(178.0-tv) 0.58(146.0-laptop) 0.27(108.0-mouse) 0.33(125.0-remote) 0.52(88.0-keyboard) 0.26(222.0-cell phone) 0.61(31.0-microwave) 0.37(100.0-oven) 0.00(0.0-toaster) 0.40(169.0-sink) 0.51(53.0-refrigerator) 0.27(211.0-book) 0.55(207.0-clock) 0.32(191.0-vase) 0.35(17.0-scissors) 0.53(88.0-teddy bear) 0.00(0.0-hair drier) 0.21(19.0-toothbrush)
2021-10-31 12:54:58,402 - mmdet - INFO - pseudo gt: 8806.0 206.0 1457.0 308.0 192.0 227.0 151.0 307.0 364.0 461.0 68.0 57.0 41.0 358.0 324.0 185.0 189.0 248.0 393.0 299.0 220.0 43.0 172.0 171.0 312.0 439.0 466.0 229.0 277.0 77.0 241.0 82.0 186.0 357.0 82.0 98.0 155.0 196.0 146.0 839.0 297.0 625.0 160.0 257.0 163.0 408.0 300.0 203.0 130.0 240.0 272.0 214.0 100.0 192.0 263.0 195.0 1295.0 180.0 297.0 155.0 517.0 139.0 217.0 186.0 76.0 176.0 122.0 246.0 54.0 113.0 10.0 171.0 94.0 730.0 223.0 208.0 36.0 137.0 5.0 74.0
2021-10-31 12:54:58,402 - mmdet - INFO - pseudo mining: 1643.0 8.0 108.0 12.0 18.0 25.0 16.0 5.0 2.0 42.0 12.0 18.0 0.0 0.0 17.0 23.0 18.0 23.0 99.0 56.0 59.0 0.0 72.0 84.0 1.0 11.0 0.0 14.0 0.0 12.0 0.0 0.0 66.0 75.0 4.0 9.0 8.0 4.0 21.0 33.0 16.0 24.0 0.0 0.0 0.0 19.0 4.0 0.0 0.0 6.0 17.0 13.0 0.0 11.0 28.0 0.0 5.0 0.0 6.0 0.0 1.0 42.0 45.0 20.0 10.0 3.0 13.0 7.0 4.0 0.0 0.0 9.0 3.0 1.0 96.0 8.0 0.0 9.0 0.0 0.0
2021-10-31 12:56:30,749 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 12:56:30,749 - mmdet - INFO - Iter [1000/40000] lr: 2.000e-02, eta: 18:55:06, time: 1.653, data_time: 0.031, memory: 26254, loss_rpn_cls: 0.0519, loss_rpn_bbox: 0.0570, loss_cls: 0.2886, acc: 91.1576, loss_bbox: 0.2968, loss_rpn_cls_unlabeled: 0.1066, loss_rpn_bbox_unlabeled: 0.0995, loss_cls_unlabeled: 0.2114, acc_unlabeled: 91.1454, loss_bbox_unlabeled: 0.1729, losses_cls_ig_unlabeled: 0.2136, pseudo_num: 1.2997, pseudo_num_ig: 5.4554, pseudo_num_mining: 0.7271, pseudo_num(acc): 0.8826, pseudo_num ig(acc): 0.4911, loss: 1.4981
2021-10-31 12:57:54,729 - mmdet - INFO - Iter [1050/40000] lr: 2.000e-02, eta: 19:47:43, time: 3.496, data_time: 1.843, memory: 26254, loss_rpn_cls: 0.0503, loss_rpn_bbox: 0.0565, loss_cls: 0.2919, acc: 90.9067, loss_bbox: 0.2988, loss_rpn_cls_unlabeled: 0.1099, loss_rpn_bbox_unlabeled: 0.1038, loss_cls_unlabeled: 0.2163, acc_unlabeled: 91.2141, loss_bbox_unlabeled: 0.1758, losses_cls_ig_unlabeled: 0.1946, pseudo_num: 1.3036, pseudo_num_ig: 5.4580, pseudo_num_mining: 0.7255, pseudo_num(acc): 0.8825, pseudo_num ig(acc): 0.4912, loss: 1.4979
2021-10-31 12:59:20,130 - mmdet - INFO - Iter [1100/40000] lr: 2.000e-02, eta: 19:42:22, time: 1.700, data_time: 0.028, memory: 26254, loss_rpn_cls: 0.0480, loss_rpn_bbox: 0.0541, loss_cls: 0.2778, acc: 91.4005, loss_bbox: 0.2872, loss_rpn_cls_unlabeled: 0.1108, loss_rpn_bbox_unlabeled: 0.1065, loss_cls_unlabeled: 0.2146, acc_unlabeled: 91.1267, loss_bbox_unlabeled: 0.1824, losses_cls_ig_unlabeled: 0.1942, pseudo_num: 1.3139, pseudo_num_ig: 5.4601, pseudo_num_mining: 0.7202, pseudo_num(acc): 0.8816, pseudo_num ig(acc): 0.4903, loss: 1.4757
2021-10-31 13:00:42,759 - mmdet - INFO - Iter [1150/40000] lr: 2.000e-02, eta: 19:36:18, time: 1.662, data_time: 0.036, memory: 26254, loss_rpn_cls: 0.0508, loss_rpn_bbox: 0.0569, loss_cls: 0.2907, acc: 91.1038, loss_bbox: 0.2981, loss_rpn_cls_unlabeled: 0.1059, loss_rpn_bbox_unlabeled: 0.1030, loss_cls_unlabeled: 0.2154, acc_unlabeled: 91.0747, loss_bbox_unlabeled: 0.1824, losses_cls_ig_unlabeled: 0.1916, pseudo_num: 1.3234, pseudo_num_ig: 5.4604, pseudo_num_mining: 0.7160, pseudo_num(acc): 0.8801, pseudo_num ig(acc): 0.4896, loss: 1.4949
2021-10-31 13:02:06,565 - mmdet - INFO - Iter [1200/40000] lr: 2.000e-02, eta: 19:31:00, time: 1.676, data_time: 0.026, memory: 26254, loss_rpn_cls: 0.0487, loss_rpn_bbox: 0.0569, loss_cls: 0.2822, acc: 91.1257, loss_bbox: 0.3000, loss_rpn_cls_unlabeled: 0.1086, loss_rpn_bbox_unlabeled: 0.1018, loss_cls_unlabeled: 0.2151, acc_unlabeled: 91.3778, loss_bbox_unlabeled: 0.1842, losses_cls_ig_unlabeled: 0.1874, pseudo_num: 1.3306, pseudo_num_ig: 5.4587, pseudo_num_mining: 0.7130, pseudo_num(acc): 0.8793, pseudo_num ig(acc): 0.4888, loss: 1.4849
2021-10-31 13:03:30,243 - mmdet - INFO - Iter [1250/40000] lr: 2.000e-02, eta: 19:25:52, time: 1.670, data_time: 0.026, memory: 26254, loss_rpn_cls: 0.0539, loss_rpn_bbox: 0.0591, loss_cls: 0.2838, acc: 91.1134, loss_bbox: 0.3019, loss_rpn_cls_unlabeled: 0.1083, loss_rpn_bbox_unlabeled: 0.1049, loss_cls_unlabeled: 0.2155, acc_unlabeled: 91.2129, loss_bbox_unlabeled: 0.1842, losses_cls_ig_unlabeled: 0.1905, pseudo_num: 1.3402, pseudo_num_ig: 5.4555, pseudo_num_mining: 0.7095, pseudo_num(acc): 0.8785, pseudo_num ig(acc): 0.4875, loss: 1.5021
2021-10-31 13:04:54,950 - mmdet - INFO - Iter [1300/40000] lr: 2.000e-02, eta: 19:21:37, time: 1.695, data_time: 0.030, memory: 26254, loss_rpn_cls: 0.0459, loss_rpn_bbox: 0.0564, loss_cls: 0.2759, acc: 91.4534, loss_bbox: 0.2926, loss_rpn_cls_unlabeled: 0.1100, loss_rpn_bbox_unlabeled: 0.1056, loss_cls_unlabeled: 0.2152, acc_unlabeled: 91.1498, loss_bbox_unlabeled: 0.1813, losses_cls_ig_unlabeled: 0.1941, pseudo_num: 1.3484, pseudo_num_ig: 5.4569, pseudo_num_mining: 0.7061, pseudo_num(acc): 0.8775, pseudo_num ig(acc): 0.4867, loss: 1.4769
2021-10-31 13:06:19,127 - mmdet - INFO - Iter [1350/40000] lr: 2.000e-02, eta: 19:17:20, time: 1.684, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0478, loss_rpn_bbox: 0.0548, loss_cls: 0.2826, acc: 91.2113, loss_bbox: 0.2942, loss_rpn_cls_unlabeled: 0.1100, loss_rpn_bbox_unlabeled: 0.1085, loss_cls_unlabeled: 0.2147, acc_unlabeled: 91.0242, loss_bbox_unlabeled: 0.1834, losses_cls_ig_unlabeled: 0.1944, pseudo_num: 1.3576, pseudo_num_ig: 5.4691, pseudo_num_mining: 0.7039, pseudo_num(acc): 0.8766, pseudo_num ig(acc): 0.4858, loss: 1.4905
2021-10-31 13:07:40,923 - mmdet - INFO - Iter [1400/40000] lr: 2.000e-02, eta: 19:12:10, time: 1.637, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0481, loss_rpn_bbox: 0.0552, loss_cls: 0.2766, acc: 91.3989, loss_bbox: 0.2890, loss_rpn_cls_unlabeled: 0.1075, loss_rpn_bbox_unlabeled: 0.1092, loss_cls_unlabeled: 0.2172, acc_unlabeled: 91.0957, loss_bbox_unlabeled: 0.1828, losses_cls_ig_unlabeled: 0.1950, pseudo_num: 1.3674, pseudo_num_ig: 5.4744, pseudo_num_mining: 0.7003, pseudo_num(acc): 0.8758, pseudo_num ig(acc): 0.4851, loss: 1.4806
2021-10-31 13:09:03,902 - mmdet - INFO - Iter [1450/40000] lr: 2.000e-02, eta: 19:07:44, time: 1.658, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0485, loss_rpn_bbox: 0.0544, loss_cls: 0.2757, acc: 91.4329, loss_bbox: 0.2883, loss_rpn_cls_unlabeled: 0.1025, loss_rpn_bbox_unlabeled: 0.1026, loss_cls_unlabeled: 0.2128, acc_unlabeled: 91.1366, loss_bbox_unlabeled: 0.1857, losses_cls_ig_unlabeled: 0.1857, pseudo_num: 1.3754, pseudo_num_ig: 5.4701, pseudo_num_mining: 0.6956, pseudo_num(acc): 0.8744, pseudo_num ig(acc): 0.4846, loss: 1.4565
2021-10-31 13:10:26,136 - mmdet - INFO - pseudo pos: 0.99(2579.0-person) 0.89(65.0-bicycle) 0.94(487.0-car) 0.98(94.0-motorcycle) 0.98(44.0-airplane) 1.00(63.0-bus) 0.98(46.0-train) 0.80(81.0-truck) 0.75(71.0-boat) 0.89(142.0-traffic light) 0.96(25.0-fire hydrant) 1.00(23.0-stop sign) 1.00(11.0-parking meter) 0.67(92.0-bench) 0.95(83.0-bird) 0.97(39.0-cat) 1.00(47.0-dog) 0.97(64.0-horse) 0.92(73.0-sheep) 0.95(41.0-cow) 1.00(51.0-elephant) 1.00(24.0-bear) 1.00(27.0-zebra) 1.00(35.0-giraffe) 0.57(74.0-backpack) 0.86(119.0-umbrella) 0.49(144.0-handbag) 0.95(44.0-tie) 0.80(75.0-suitcase) 1.00(20.0-frisbee) 0.57(77.0-skis) 0.81(21.0-snowboard) 0.98(51.0-sports ball) 0.92(88.0-kite) 0.94(36.0-baseball bat) 0.89(38.0-baseball glove) 0.99(69.0-skateboard) 0.85(65.0-surfboard) 0.97(37.0-tennis racket) 0.87(246.0-bottle) 0.95(65.0-wine glass) 0.91(230.0-cup) 0.59(64.0-fork) 0.46(91.0-knife) 0.41(64.0-spoon) 0.87(131.0-bowl) 0.73(93.0-banana) 0.65(60.0-apple) 0.76(66.0-sandwich) 0.70(87.0-orange) 0.76(55.0-broccoli) 0.64(44.0-carrot) 0.83(24.0-hot dog) 0.96(70.0-pizza) 0.95(57.0-donut) 0.87(46.0-cake) 0.78(391.0-chair) 0.73(56.0-couch) 0.67(112.0-potted plant) 0.95(42.0-bed) 0.72(201.0-dining table) 0.90(31.0-toilet) 0.93(57.0-tv) 1.00(46.0-laptop) 1.00(21.0-mouse) 0.97(35.0-remote) 0.92(24.0-keyboard) 0.84(75.0-cell phone) 1.00(11.0-microwave) 0.80(41.0-oven) 0.00(0.0-toaster) 0.86(43.0-sink) 0.97(39.0-refrigerator) 0.45(173.0-book) 1.00(60.0-clock) 0.81(80.0-vase) 0.67(9.0-scissors) 0.97(33.0-teddy bear) 0.00(0.0-hair drier) 0.56(9.0-toothbrush)
2021-10-31 13:10:26,137 - mmdet - INFO - pseudo ig: 0.68(9571.0-person) 0.44(222.0-bicycle) 0.49(1781.0-car) 0.57(344.0-motorcycle) 0.72(159.0-airplane) 0.66(235.0-bus) 0.70(159.0-train) 0.40(342.0-truck) 0.37(350.0-boat) 0.35(724.0-traffic light) 0.68(68.0-fire hydrant) 0.56(86.0-stop sign) 0.31(49.0-parking meter) 0.23(324.0-bench) 0.36(374.0-bird) 0.80(204.0-cat) 0.64(169.0-dog) 0.65(244.0-horse) 0.55(456.0-sheep) 0.59(324.0-cow) 0.74(240.0-elephant) 0.47(59.0-bear) 0.76(221.0-zebra) 0.91(206.0-giraffe) 0.28(339.0-backpack) 0.44(365.0-umbrella) 0.18(505.0-handbag) 0.40(189.0-tie) 0.40(267.0-suitcase) 0.60(93.0-frisbee) 0.35(259.0-skis) 0.42(78.0-snowboard) 0.35(345.0-sports ball) 0.47(385.0-kite) 0.31(147.0-baseball bat) 0.33(163.0-baseball glove) 0.42(196.0-skateboard) 0.37(300.0-surfboard) 0.56(208.0-tennis racket) 0.39(998.0-bottle) 0.48(294.0-wine glass) 0.34(1026.0-cup) 0.23(248.0-fork) 0.18(320.0-knife) 0.16(294.0-spoon) 0.38(632.0-bowl) 0.31(386.0-banana) 0.23(212.0-apple) 0.29(205.0-sandwich) 0.24(431.0-orange) 0.46(315.0-broccoli) 0.24(272.0-carrot) 0.39(112.0-hot dog) 0.61(213.0-pizza) 0.49(293.0-donut) 0.39(211.0-cake) 0.33(1451.0-chair) 0.40(215.0-couch) 0.30(349.0-potted plant) 0.61(109.0-bed) 0.36(542.0-dining table) 0.67(149.0-toilet) 0.62(244.0-tv) 0.61(209.0-laptop) 0.27(138.0-mouse) 0.34(194.0-remote) 0.51(126.0-keyboard) 0.26(308.0-cell phone) 0.55(53.0-microwave) 0.39(165.0-oven) 0.00(0.0-toaster) 0.41(242.0-sink) 0.45(84.0-refrigerator) 0.22(510.0-book) 0.56(261.0-clock) 0.36(327.0-vase) 0.24(33.0-scissors) 0.47(172.0-teddy bear) 0.00(0.0-hair drier) 0.14(36.0-toothbrush)
2021-10-31 13:10:26,137 - mmdet - INFO - pseudo gt: 13427.0 327.0 2253.0 485.0 262.0 358.0 244.0 469.0 477.0 717.0 95.0 100.0 53.0 541.0 436.0 277.0 265.0 361.0 481.0 428.0 298.0 60.0 250.0 263.0 454.0 618.0 682.0 306.0 435.0 117.0 354.0 129.0 287.0 496.0 139.0 190.0 267.0 295.0 216.0 1299.0 426.0 995.0 254.0 404.0 273.0 631.0 445.0 298.0 192.0 369.0 389.0 352.0 139.0 275.0 414.0 287.0 1875.0 280.0 458.0 214.0 787.0 193.0 319.0 279.0 114.0 286.0 163.0 346.0 85.0 186.0 13.0 264.0 145.0 1223.0 304.0 335.0 48.0 195.0 6.0 104.0
2021-10-31 13:10:26,137 - mmdet - INFO - pseudo mining: 2282.0 9.0 174.0 18.0 22.0 41.0 20.0 7.0 5.0 70.0 21.0 42.0 0.0 0.0 18.0 30.0 23.0 28.0 105.0 59.0 81.0 0.0 107.0 128.0 1.0 16.0 0.0 14.0 1.0 26.0 1.0 0.0 99.0 99.0 7.0 23.0 12.0 9.0 38.0 58.0 19.0 43.0 0.0 0.0 0.0 27.0 5.0 0.0 1.0 6.0 18.0 13.0 0.0 22.0 29.0 0.0 8.0 0.0 9.0 0.0 1.0 56.0 58.0 31.0 18.0 5.0 15.0 9.0 5.0 0.0 0.0 15.0 3.0 1.0 134.0 24.0 0.0 11.0 0.0 0.0
2021-10-31 13:10:27,657 - mmdet - INFO - Iter [1500/40000] lr: 2.000e-02, eta: 19:03:51, time: 1.674, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0516, loss_rpn_bbox: 0.0581, loss_cls: 0.2888, acc: 91.0444, loss_bbox: 0.2990, loss_rpn_cls_unlabeled: 0.1056, loss_rpn_bbox_unlabeled: 0.1003, loss_cls_unlabeled: 0.2283, acc_unlabeled: 91.0502, loss_bbox_unlabeled: 0.1924, losses_cls_ig_unlabeled: 0.1918, pseudo_num: 1.3839, pseudo_num_ig: 5.4703, pseudo_num_mining: 0.6928, pseudo_num(acc): 0.8731, pseudo_num ig(acc): 0.4839, loss: 1.5159
2021-10-31 13:11:52,017 - mmdet - INFO - Iter [1550/40000] lr: 2.000e-02, eta: 19:00:26, time: 1.689, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0472, loss_rpn_bbox: 0.0544, loss_cls: 0.2756, acc: 91.3699, loss_bbox: 0.2909, loss_rpn_cls_unlabeled: 0.0985, loss_rpn_bbox_unlabeled: 0.1003, loss_cls_unlabeled: 0.2153, acc_unlabeled: 91.1617, loss_bbox_unlabeled: 0.1886, losses_cls_ig_unlabeled: 0.1859, pseudo_num: 1.3932, pseudo_num_ig: 5.4705, pseudo_num_mining: 0.6903, pseudo_num(acc): 0.8724, pseudo_num ig(acc): 0.4829, loss: 1.4566
2021-10-31 13:13:17,433 - mmdet - INFO - Iter [1600/40000] lr: 2.000e-02, eta: 18:57:25, time: 1.703, data_time: 0.030, memory: 26254, loss_rpn_cls: 0.0485, loss_rpn_bbox: 0.0550, loss_cls: 0.2874, acc: 91.0820, loss_bbox: 0.2996, loss_rpn_cls_unlabeled: 0.1092, loss_rpn_bbox_unlabeled: 0.1098, loss_cls_unlabeled: 0.2246, acc_unlabeled: 91.1279, loss_bbox_unlabeled: 0.1923, losses_cls_ig_unlabeled: 0.1875, pseudo_num: 1.4019, pseudo_num_ig: 5.4727, pseudo_num_mining: 0.6869, pseudo_num(acc): 0.8712, pseudo_num ig(acc): 0.4819, loss: 1.5139
2021-10-31 13:14:41,148 - mmdet - INFO - Iter [1650/40000] lr: 2.000e-02, eta: 18:54:02, time: 1.679, data_time: 0.033, memory: 26254, loss_rpn_cls: 0.0508, loss_rpn_bbox: 0.0564, loss_cls: 0.2813, acc: 91.1338, loss_bbox: 0.2946, loss_rpn_cls_unlabeled: 0.1086, loss_rpn_bbox_unlabeled: 0.1025, loss_cls_unlabeled: 0.2239, acc_unlabeled: 91.1554, loss_bbox_unlabeled: 0.1918, losses_cls_ig_unlabeled: 0.1888, pseudo_num: 1.4105, pseudo_num_ig: 5.4722, pseudo_num_mining: 0.6841, pseudo_num(acc): 0.8700, pseudo_num ig(acc): 0.4811, loss: 1.4987
2021-10-31 13:16:05,717 - mmdet - INFO - Iter [1700/40000] lr: 2.000e-02, eta: 18:50:59, time: 1.691, data_time: 0.026, memory: 26254, loss_rpn_cls: 0.0495, loss_rpn_bbox: 0.0567, loss_cls: 0.2856, acc: 91.1375, loss_bbox: 0.2932, loss_rpn_cls_unlabeled: 0.1086, loss_rpn_bbox_unlabeled: 0.1033, loss_cls_unlabeled: 0.2239, acc_unlabeled: 91.0032, loss_bbox_unlabeled: 0.1913, losses_cls_ig_unlabeled: 0.1874, pseudo_num: 1.4183, pseudo_num_ig: 5.4741, pseudo_num_mining: 0.6822, pseudo_num(acc): 0.8686, pseudo_num ig(acc): 0.4805, loss: 1.4996
2021-10-31 13:17:29,922 - mmdet - INFO - Iter [1750/40000] lr: 2.000e-02, eta: 18:47:55, time: 1.684, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0513, loss_rpn_bbox: 0.0577, loss_cls: 0.2850, acc: 91.1008, loss_bbox: 0.2960, loss_rpn_cls_unlabeled: 0.1116, loss_rpn_bbox_unlabeled: 0.1075, loss_cls_unlabeled: 0.2224, acc_unlabeled: 90.9277, loss_bbox_unlabeled: 0.1957, losses_cls_ig_unlabeled: 0.1877, pseudo_num: 1.4276, pseudo_num_ig: 5.4782, pseudo_num_mining: 0.6808, pseudo_num(acc): 0.8676, pseudo_num ig(acc): 0.4797, loss: 1.5149
2021-10-31 13:18:54,253 - mmdet - INFO - Iter [1800/40000] lr: 2.000e-02, eta: 18:44:56, time: 1.684, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0468, loss_rpn_bbox: 0.0546, loss_cls: 0.2712, acc: 91.4182, loss_bbox: 0.2862, loss_rpn_cls_unlabeled: 0.1072, loss_rpn_bbox_unlabeled: 0.1018, loss_cls_unlabeled: 0.2138, acc_unlabeled: 91.4125, loss_bbox_unlabeled: 0.1871, losses_cls_ig_unlabeled: 0.1872, pseudo_num: 1.4353, pseudo_num_ig: 5.4807, pseudo_num_mining: 0.6793, pseudo_num(acc): 0.8665, pseudo_num ig(acc): 0.4789, loss: 1.4560
2021-10-31 13:20:19,380 - mmdet - INFO - Iter [1850/40000] lr: 2.000e-02, eta: 18:42:22, time: 1.704, data_time: 0.030, memory: 26254, loss_rpn_cls: 0.0471, loss_rpn_bbox: 0.0575, loss_cls: 0.2881, acc: 91.0453, loss_bbox: 0.3006, loss_rpn_cls_unlabeled: 0.1060, loss_rpn_bbox_unlabeled: 0.1029, loss_cls_unlabeled: 0.2228, acc_unlabeled: 91.1262, loss_bbox_unlabeled: 0.1905, losses_cls_ig_unlabeled: 0.1922, pseudo_num: 1.4416, pseudo_num_ig: 5.4810, pseudo_num_mining: 0.6773, pseudo_num(acc): 0.8655, pseudo_num ig(acc): 0.4782, loss: 1.5077
2021-10-31 13:21:45,611 - mmdet - INFO - Iter [1900/40000] lr: 2.000e-02, eta: 18:40:16, time: 1.728, data_time: 0.030, memory: 26254, loss_rpn_cls: 0.0487, loss_rpn_bbox: 0.0542, loss_cls: 0.2725, acc: 91.5739, loss_bbox: 0.2827, loss_rpn_cls_unlabeled: 0.1106, loss_rpn_bbox_unlabeled: 0.1087, loss_cls_unlabeled: 0.2227, acc_unlabeled: 91.0537, loss_bbox_unlabeled: 0.1955, losses_cls_ig_unlabeled: 0.1874, pseudo_num: 1.4483, pseudo_num_ig: 5.4834, pseudo_num_mining: 0.6759, pseudo_num(acc): 0.8646, pseudo_num ig(acc): 0.4778, loss: 1.4831
2021-10-31 13:23:10,814 - mmdet - INFO - Iter [1950/40000] lr: 2.000e-02, eta: 18:37:49, time: 1.703, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0480, loss_rpn_bbox: 0.0525, loss_cls: 0.2806, acc: 91.2649, loss_bbox: 0.2915, loss_rpn_cls_unlabeled: 0.1071, loss_rpn_bbox_unlabeled: 0.1062, loss_cls_unlabeled: 0.2189, acc_unlabeled: 91.2095, loss_bbox_unlabeled: 0.1924, losses_cls_ig_unlabeled: 0.1879, pseudo_num: 1.4548, pseudo_num_ig: 5.4829, pseudo_num_mining: 0.6737, pseudo_num(acc): 0.8634, pseudo_num ig(acc): 0.4772, loss: 1.4852
2021-10-31 13:24:34,923 - mmdet - INFO - pseudo pos: 0.99(3556.0-person) 0.90(96.0-bicycle) 0.94(676.0-car) 0.98(129.0-motorcycle) 0.98(54.0-airplane) 1.00(81.0-bus) 0.98(65.0-train) 0.74(124.0-truck) 0.74(90.0-boat) 0.90(207.0-traffic light) 0.97(37.0-fire hydrant) 1.00(27.0-stop sign) 1.00(14.0-parking meter) 0.64(121.0-bench) 0.95(129.0-bird) 0.98(52.0-cat) 1.00(68.0-dog) 0.98(89.0-horse) 0.89(119.0-sheep) 0.96(75.0-cow) 1.00(86.0-elephant) 1.00(36.0-bear) 0.98(42.0-zebra) 1.00(50.0-giraffe) 0.46(153.0-backpack) 0.85(155.0-umbrella) 0.49(184.0-handbag) 0.96(71.0-tie) 0.76(99.0-suitcase) 1.00(23.0-frisbee) 0.58(93.0-skis) 0.71(34.0-snowboard) 0.99(72.0-sports ball) 0.91(114.0-kite) 0.93(46.0-baseball bat) 0.90(48.0-baseball glove) 0.98(94.0-skateboard) 0.84(87.0-surfboard) 0.98(43.0-tennis racket) 0.87(328.0-bottle) 0.93(88.0-wine glass) 0.90(317.0-cup) 0.66(86.0-fork) 0.46(151.0-knife) 0.45(94.0-spoon) 0.86(206.0-bowl) 0.70(136.0-banana) 0.67(67.0-apple) 0.75(71.0-sandwich) 0.69(121.0-orange) 0.74(99.0-broccoli) 0.45(126.0-carrot) 0.79(33.0-hot dog) 0.96(94.0-pizza) 0.93(73.0-donut) 0.83(70.0-cake) 0.77(557.0-chair) 0.76(91.0-couch) 0.68(148.0-potted plant) 0.93(60.0-bed) 0.71(290.0-dining table) 0.91(43.0-toilet) 0.95(76.0-tv) 1.00(66.0-laptop) 0.97(37.0-mouse) 0.91(47.0-remote) 0.95(38.0-keyboard) 0.86(103.0-cell phone) 1.00(15.0-microwave) 0.85(55.0-oven) 0.00(0.0-toaster) 0.84(63.0-sink) 0.96(53.0-refrigerator) 0.36(321.0-book) 0.98(93.0-clock) 0.83(98.0-vase) 0.73(15.0-scissors) 0.98(50.0-teddy bear) 0.00(0.0-hair drier) 0.60(10.0-toothbrush)
2021-10-31 13:24:34,924 - mmdet - INFO - pseudo ig: 0.67(12755.0-person) 0.45(287.0-bicycle) 0.49(2339.0-car) 0.55(464.0-motorcycle) 0.75(205.0-airplane) 0.65(309.0-bus) 0.72(195.0-train) 0.37(480.0-truck) 0.38(460.0-boat) 0.35(922.0-traffic light) 0.71(86.0-fire hydrant) 0.58(123.0-stop sign) 0.26(65.0-parking meter) 0.21(428.0-bench) 0.35(497.0-bird) 0.78(265.0-cat) 0.68(215.0-dog) 0.62(351.0-horse) 0.51(633.0-sheep) 0.56(465.0-cow) 0.75(309.0-elephant) 0.51(86.0-bear) 0.78(314.0-zebra) 0.90(271.0-giraffe) 0.24(510.0-backpack) 0.42(531.0-umbrella) 0.18(655.0-handbag) 0.37(279.0-tie) 0.38(333.0-suitcase) 0.64(129.0-frisbee) 0.37(319.0-skis) 0.38(124.0-snowboard) 0.38(433.0-sports ball) 0.50(529.0-kite) 0.31(206.0-baseball bat) 0.34(200.0-baseball glove) 0.47(257.0-skateboard) 0.39(361.0-surfboard) 0.59(267.0-tennis racket) 0.40(1306.0-bottle) 0.50(366.0-wine glass) 0.33(1359.0-cup) 0.24(313.0-fork) 0.19(485.0-knife) 0.15(408.0-spoon) 0.38(875.0-bowl) 0.31(573.0-banana) 0.20(281.0-apple) 0.29(237.0-sandwich) 0.24(564.0-orange) 0.43(431.0-broccoli) 0.20(492.0-carrot) 0.37(150.0-hot dog) 0.59(279.0-pizza) 0.49(363.0-donut) 0.37(273.0-cake) 0.30(1951.0-chair) 0.39(307.0-couch) 0.31(501.0-potted plant) 0.53(169.0-bed) 0.35(720.0-dining table) 0.68(199.0-toilet) 0.63(325.0-tv) 0.61(282.0-laptop) 0.27(175.0-mouse) 0.34(245.0-remote) 0.50(160.0-keyboard) 0.26(397.0-cell phone) 0.56(72.0-microwave) 0.36(214.0-oven) 0.00(0.0-toaster) 0.43(306.0-sink) 0.44(130.0-refrigerator) 0.20(836.0-book) 0.54(331.0-clock) 0.35(420.0-vase) 0.20(51.0-scissors) 0.49(212.0-teddy bear) 0.00(0.0-hair drier) 0.15(61.0-toothbrush)
2021-10-31 13:24:34,924 - mmdet - INFO - pseudo gt: 17789.0 445.0 3032.0 616.0 344.0 464.0 313.0 603.0 632.0 943.0 135.0 146.0 68.0 663.0 576.0 347.0 360.0 475.0 669.0 565.0 401.0 90.0 367.0 343.0 593.0 785.0 870.0 425.0 543.0 167.0 459.0 178.0 414.0 689.0 188.0 239.0 366.0 386.0 314.0 1713.0 548.0 1336.0 339.0 572.0 382.0 934.0 588.0 381.0 235.0 500.0 518.0 533.0 172.0 358.0 554.0 372.0 2511.0 394.0 627.0 288.0 1029.0 261.0 430.0 362.0 165.0 374.0 219.0 460.0 110.0 242.0 14.0 345.0 204.0 1677.0 404.0 418.0 70.0 252.0 10.0 138.0
2021-10-31 13:24:34,924 - mmdet - INFO - pseudo mining: 2921.0 11.0 241.0 21.0 26.0 53.0 26.0 7.0 10.0 90.0 28.0 62.0 0.0 0.0 22.0 37.0 28.0 42.0 141.0 62.0 96.0 3.0 149.0 160.0 1.0 29.0 0.0 15.0 1.0 35.0 1.0 0.0 140.0 139.0 9.0 31.0 24.0 11.0 55.0 85.0 22.0 50.0 0.0 0.0 0.0 34.0 6.0 0.0 1.0 7.0 18.0 13.0 0.0 33.0 29.0 0.0 8.0 0.0 11.0 0.0 4.0 72.0 79.0 44.0 28.0 6.0 17.0 13.0 7.0 1.0 0.0 23.0 4.0 1.0 178.0 27.0 0.0 12.0 0.0 0.0
2021-10-31 13:25:33,540 - mmdet - INFO - Evaluating bbox...
2021-10-31 13:26:43,382 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.411 | bicycle | 0.177 | car | 0.325 |
| motorcycle | 0.226 | airplane | 0.447 | bus | 0.473 |
| train | 0.395 | truck | 0.173 | boat | 0.136 |
| traffic light | 0.194 | fire hydrant | 0.476 | stop sign | 0.490 |
| parking meter | 0.329 | bench | 0.123 | bird | 0.209 |
| cat | 0.432 | dog | 0.353 | horse | 0.373 |
| sheep | 0.280 | cow | 0.355 | elephant | 0.390 |
| bear | 0.383 | zebra | 0.462 | giraffe | 0.447 |
| backpack | 0.073 | umbrella | 0.204 | handbag | 0.048 |
| tie | 0.179 | suitcase | 0.111 | frisbee | 0.461 |
| skis | 0.096 | snowboard | 0.141 | sports ball | 0.340 |
| kite | 0.269 | baseball bat | 0.140 | baseball glove | 0.238 |
| skateboard | 0.271 | surfboard | 0.139 | tennis racket | 0.280 |
| bottle | 0.254 | wine glass | 0.204 | cup | 0.271 |
| fork | 0.083 | knife | 0.031 | spoon | 0.045 |
| bowl | 0.288 | banana | 0.112 | apple | 0.076 |
| sandwich | 0.173 | orange | 0.223 | broccoli | 0.139 |
| carrot | 0.078 | hot dog | 0.097 | pizza | 0.355 |
| donut | 0.228 | cake | 0.170 | chair | 0.120 |
| couch | 0.219 | potted plant | 0.139 | bed | 0.225 |
| dining table | 0.155 | toilet | 0.376 | tv | 0.396 |
| laptop | 0.365 | mouse | 0.398 | remote | 0.093 |
| keyboard | 0.281 | cell phone | 0.200 | microwave | 0.312 |
| oven | 0.198 | toaster | 0.107 | sink | 0.204 |
| refrigerator | 0.303 | book | 0.046 | clock | 0.386 |
| vase | 0.239 | scissors | 0.089 | teddy bear | 0.252 |
| hair drier | 0.000 | toothbrush | 0.045 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 13:27:41,109 - mmdet - INFO - Evaluating bbox...
2021-10-31 13:28:53,084 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.435 | bicycle | 0.193 | car | 0.344 |
| motorcycle | 0.283 | airplane | 0.451 | bus | 0.484 |
| train | 0.410 | truck | 0.194 | boat | 0.158 |
| traffic light | 0.221 | fire hydrant | 0.518 | stop sign | 0.529 |
| parking meter | 0.393 | bench | 0.141 | bird | 0.232 |
| cat | 0.461 | dog | 0.425 | horse | 0.417 |
| sheep | 0.351 | cow | 0.407 | elephant | 0.490 |
| bear | 0.530 | zebra | 0.506 | giraffe | 0.541 |
| backpack | 0.085 | umbrella | 0.223 | handbag | 0.062 |
| tie | 0.184 | suitcase | 0.136 | frisbee | 0.503 |
| skis | 0.109 | snowboard | 0.140 | sports ball | 0.370 |
| kite | 0.290 | baseball bat | 0.156 | baseball glove | 0.259 |
| skateboard | 0.288 | surfboard | 0.175 | tennis racket | 0.299 |
| bottle | 0.292 | wine glass | 0.237 | cup | 0.311 |
| fork | 0.113 | knife | 0.053 | spoon | 0.051 |
| bowl | 0.319 | banana | 0.143 | apple | 0.095 |
| sandwich | 0.208 | orange | 0.238 | broccoli | 0.166 |
| carrot | 0.091 | hot dog | 0.132 | pizza | 0.386 |
| donut | 0.280 | cake | 0.199 | chair | 0.152 |
| couch | 0.256 | potted plant | 0.158 | bed | 0.258 |
| dining table | 0.154 | toilet | 0.437 | tv | 0.431 |
| laptop | 0.421 | mouse | 0.462 | remote | 0.127 |
| keyboard | 0.346 | cell phone | 0.235 | microwave | 0.330 |
| oven | 0.197 | toaster | 0.107 | sink | 0.229 |
| refrigerator | 0.350 | book | 0.053 | clock | 0.405 |
| vase | 0.276 | scissors | 0.089 | teddy bear | 0.287 |
| hair drier | 0.000 | toothbrush | 0.047 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 13:30:21,689 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 13:30:21,690 - mmdet - INFO - Iter [2000/40000] lr: 2.000e-02, eta: 18:35:39, time: 1.719, data_time: 0.029, memory: 26254, bbox_mAP: 0.2690, bbox_mAP_50: 0.4620, bbox_mAP_75: 0.2760, bbox_mAP_s: 0.1490, bbox_mAP_m: 0.2980, bbox_mAP_l: 0.3460, bbox_mAP_copypaste: 0.269 0.462 0.276 0.149 0.298 0.346, loss_rpn_cls: 0.0478, loss_rpn_bbox: 0.0557, loss_cls: 0.2719, acc: 91.4589, loss_bbox: 0.2906, loss_rpn_cls_unlabeled: 0.1024, loss_rpn_bbox_unlabeled: 0.1047, loss_cls_unlabeled: 0.2201, acc_unlabeled: 91.2985, loss_bbox_unlabeled: 0.1991, losses_cls_ig_unlabeled: 0.1812, pseudo_num: 1.4632, pseudo_num_ig: 5.4862, pseudo_num_mining: 0.6734, pseudo_num(acc): 0.8626, pseudo_num ig(acc): 0.4768, loss: 1.4735
2021-10-31 13:31:45,606 - mmdet - INFO - Iter [2050/40000] lr: 2.000e-02, eta: 20:19:18, time: 8.575, data_time: 6.926, memory: 26254, loss_rpn_cls: 0.0469, loss_rpn_bbox: 0.0539, loss_cls: 0.2657, acc: 91.6578, loss_bbox: 0.2817, loss_rpn_cls_unlabeled: 0.1049, loss_rpn_bbox_unlabeled: 0.1015, loss_cls_unlabeled: 0.1987, acc_unlabeled: 91.4097, loss_bbox_unlabeled: 0.1692, losses_cls_ig_unlabeled: 0.1958, pseudo_num: 1.4673, pseudo_num_ig: 5.4873, pseudo_num_mining: 0.6726, pseudo_num(acc): 0.8620, pseudo_num ig(acc): 0.4765, loss: 1.4182
2021-10-31 13:33:08,800 - mmdet - INFO - Iter [2100/40000] lr: 2.000e-02, eta: 20:13:44, time: 1.664, data_time: 0.030, memory: 26254, loss_rpn_cls: 0.0489, loss_rpn_bbox: 0.0556, loss_cls: 0.2820, acc: 91.1808, loss_bbox: 0.2958, loss_rpn_cls_unlabeled: 0.0988, loss_rpn_bbox_unlabeled: 0.1009, loss_cls_unlabeled: 0.2123, acc_unlabeled: 91.3134, loss_bbox_unlabeled: 0.1798, losses_cls_ig_unlabeled: 0.1960, pseudo_num: 1.4683, pseudo_num_ig: 5.4839, pseudo_num_mining: 0.6725, pseudo_num(acc): 0.8621, pseudo_num ig(acc): 0.4765, loss: 1.4700
2021-10-31 13:34:33,600 - mmdet - INFO - Iter [2150/40000] lr: 2.000e-02, eta: 20:08:50, time: 1.697, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0513, loss_rpn_bbox: 0.0560, loss_cls: 0.2798, acc: 91.2946, loss_bbox: 0.2912, loss_rpn_cls_unlabeled: 0.1034, loss_rpn_bbox_unlabeled: 0.0989, loss_cls_unlabeled: 0.2048, acc_unlabeled: 91.2838, loss_bbox_unlabeled: 0.1666, losses_cls_ig_unlabeled: 0.2011, pseudo_num: 1.4683, pseudo_num_ig: 5.4826, pseudo_num_mining: 0.6723, pseudo_num(acc): 0.8625, pseudo_num ig(acc): 0.4767, loss: 1.4532
2021-10-31 13:35:56,457 - mmdet - INFO - Iter [2200/40000] lr: 2.000e-02, eta: 20:03:32, time: 1.657, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0477, loss_rpn_bbox: 0.0561, loss_cls: 0.2789, acc: 91.2509, loss_bbox: 0.2901, loss_rpn_cls_unlabeled: 0.0979, loss_rpn_bbox_unlabeled: 0.1008, loss_cls_unlabeled: 0.2031, acc_unlabeled: 91.3987, loss_bbox_unlabeled: 0.1777, losses_cls_ig_unlabeled: 0.1928, pseudo_num: 1.4680, pseudo_num_ig: 5.4827, pseudo_num_mining: 0.6723, pseudo_num(acc): 0.8630, pseudo_num ig(acc): 0.4767, loss: 1.4450
2021-10-31 13:37:20,224 - mmdet - INFO - Iter [2250/40000] lr: 2.000e-02, eta: 19:58:35, time: 1.670, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0471, loss_rpn_bbox: 0.0520, loss_cls: 0.2668, acc: 91.5458, loss_bbox: 0.2849, loss_rpn_cls_unlabeled: 0.0992, loss_rpn_bbox_unlabeled: 0.0985, loss_cls_unlabeled: 0.2028, acc_unlabeled: 91.4929, loss_bbox_unlabeled: 0.1728, losses_cls_ig_unlabeled: 0.1872, pseudo_num: 1.4689, pseudo_num_ig: 5.4809, pseudo_num_mining: 0.6716, pseudo_num(acc): 0.8631, pseudo_num ig(acc): 0.4766, loss: 1.4113
2021-10-31 13:38:43,316 - mmdet - INFO - Iter [2300/40000] lr: 2.000e-02, eta: 19:53:41, time: 1.663, data_time: 0.031, memory: 26254, loss_rpn_cls: 0.0457, loss_rpn_bbox: 0.0534, loss_cls: 0.2689, acc: 91.5463, loss_bbox: 0.2866, loss_rpn_cls_unlabeled: 0.1019, loss_rpn_bbox_unlabeled: 0.0991, loss_cls_unlabeled: 0.2065, acc_unlabeled: 91.2682, loss_bbox_unlabeled: 0.1768, losses_cls_ig_unlabeled: 0.1938, pseudo_num: 1.4693, pseudo_num_ig: 5.4780, pseudo_num_mining: 0.6718, pseudo_num(acc): 0.8634, pseudo_num ig(acc): 0.4764, loss: 1.4326
2021-10-31 13:40:07,399 - mmdet - INFO - Iter [2350/40000] lr: 2.000e-02, eta: 19:49:11, time: 1.682, data_time: 0.033, memory: 26254, loss_rpn_cls: 0.0451, loss_rpn_bbox: 0.0550, loss_cls: 0.2700, acc: 91.4471, loss_bbox: 0.2889, loss_rpn_cls_unlabeled: 0.0995, loss_rpn_bbox_unlabeled: 0.0994, loss_cls_unlabeled: 0.1948, acc_unlabeled: 91.1968, loss_bbox_unlabeled: 0.1707, losses_cls_ig_unlabeled: 0.1983, pseudo_num: 1.4705, pseudo_num_ig: 5.4804, pseudo_num_mining: 0.6715, pseudo_num(acc): 0.8637, pseudo_num ig(acc): 0.4762, loss: 1.4218
2021-10-31 13:41:31,216 - mmdet - INFO - Iter [2400/40000] lr: 2.000e-02, eta: 19:44:49, time: 1.681, data_time: 0.033, memory: 26254, loss_rpn_cls: 0.0465, loss_rpn_bbox: 0.0562, loss_cls: 0.2765, acc: 91.3323, loss_bbox: 0.2922, loss_rpn_cls_unlabeled: 0.0987, loss_rpn_bbox_unlabeled: 0.0972, loss_cls_unlabeled: 0.2020, acc_unlabeled: 91.6450, loss_bbox_unlabeled: 0.1757, losses_cls_ig_unlabeled: 0.1885, pseudo_num: 1.4693, pseudo_num_ig: 5.4774, pseudo_num_mining: 0.6710, pseudo_num(acc): 0.8639, pseudo_num ig(acc): 0.4762, loss: 1.4334
2021-10-31 13:42:55,922 - mmdet - INFO - Iter [2450/40000] lr: 2.000e-02, eta: 19:40:42, time: 1.693, data_time: 0.028, memory: 26254, loss_rpn_cls: 0.0489, loss_rpn_bbox: 0.0551, loss_cls: 0.2654, acc: 91.6787, loss_bbox: 0.2789, loss_rpn_cls_unlabeled: 0.1001, loss_rpn_bbox_unlabeled: 0.0997, loss_cls_unlabeled: 0.2037, acc_unlabeled: 91.4342, loss_bbox_unlabeled: 0.1853, losses_cls_ig_unlabeled: 0.1909, pseudo_num: 1.4719, pseudo_num_ig: 5.4772, pseudo_num_mining: 0.6714, pseudo_num(acc): 0.8642, pseudo_num ig(acc): 0.4763, loss: 1.4281
2021-10-31 13:44:19,128 - mmdet - INFO - pseudo pos: 0.98(4555.0-person) 0.89(123.0-bicycle) 0.94(837.0-car) 0.99(161.0-motorcycle) 0.99(70.0-airplane) 0.99(99.0-bus) 0.98(83.0-train) 0.72(167.0-truck) 0.74(112.0-boat) 0.89(238.0-traffic light) 0.98(43.0-fire hydrant) 1.00(36.0-stop sign) 0.94(17.0-parking meter) 0.65(149.0-bench) 0.93(164.0-bird) 0.99(72.0-cat) 0.99(95.0-dog) 0.98(123.0-horse) 0.89(142.0-sheep) 0.94(100.0-cow) 1.00(93.0-elephant) 1.00(43.0-bear) 0.98(58.0-zebra) 1.00(66.0-giraffe) 0.47(176.0-backpack) 0.83(199.0-umbrella) 0.49(210.0-handbag) 0.96(95.0-tie) 0.77(110.0-suitcase) 1.00(35.0-frisbee) 0.62(113.0-skis) 0.71(41.0-snowboard) 0.99(98.0-sports ball) 0.92(125.0-kite) 0.93(61.0-baseball bat) 0.93(67.0-baseball glove) 0.98(109.0-skateboard) 0.85(103.0-surfboard) 0.98(61.0-tennis racket) 0.87(425.0-bottle) 0.93(121.0-wine glass) 0.90(395.0-cup) 0.65(107.0-fork) 0.47(174.0-knife) 0.46(108.0-spoon) 0.85(255.0-bowl) 0.71(170.0-banana) 0.68(85.0-apple) 0.78(95.0-sandwich) 0.67(136.0-orange) 0.69(127.0-broccoli) 0.51(153.0-carrot) 0.77(43.0-hot dog) 0.96(104.0-pizza) 0.92(109.0-donut) 0.80(92.0-cake) 0.77(683.0-chair) 0.74(106.0-couch) 0.70(190.0-potted plant) 0.91(74.0-bed) 0.74(361.0-dining table) 0.93(54.0-toilet) 0.94(88.0-tv) 0.99(84.0-laptop) 0.96(47.0-mouse) 0.87(55.0-remote) 0.96(47.0-keyboard) 0.87(120.0-cell phone) 1.00(20.0-microwave) 0.87(67.0-oven) 0.00(0.0-toaster) 0.87(76.0-sink) 0.97(61.0-refrigerator) 0.35(389.0-book) 0.98(122.0-clock) 0.85(111.0-vase) 0.76(17.0-scissors) 0.97(68.0-teddy bear) 0.00(0.0-hair drier) 0.44(18.0-toothbrush)
2021-10-31 13:44:19,129 - mmdet - INFO - pseudo ig: 0.67(15917.0-person) 0.42(360.0-bicycle) 0.49(2897.0-car) 0.55(593.0-motorcycle) 0.72(253.0-airplane) 0.66(367.0-bus) 0.67(281.0-train) 0.37(602.0-truck) 0.37(566.0-boat) 0.36(1085.0-traffic light) 0.70(118.0-fire hydrant) 0.59(138.0-stop sign) 0.33(86.0-parking meter) 0.20(559.0-bench) 0.35(631.0-bird) 0.77(324.0-cat) 0.68(283.0-dog) 0.60(454.0-horse) 0.49(859.0-sheep) 0.53(588.0-cow) 0.75(381.0-elephant) 0.54(99.0-bear) 0.76(395.0-zebra) 0.90(316.0-giraffe) 0.24(627.0-backpack) 0.42(701.0-umbrella) 0.18(798.0-handbag) 0.38(368.0-tie) 0.38(394.0-suitcase) 0.63(157.0-frisbee) 0.37(428.0-skis) 0.33(169.0-snowboard) 0.36(501.0-sports ball) 0.50(610.0-kite) 0.31(246.0-baseball bat) 0.36(236.0-baseball glove) 0.48(326.0-skateboard) 0.40(437.0-surfboard) 0.60(333.0-tennis racket) 0.40(1609.0-bottle) 0.50(464.0-wine glass) 0.33(1626.0-cup) 0.26(379.0-fork) 0.19(625.0-knife) 0.17(485.0-spoon) 0.39(1049.0-bowl) 0.31(675.0-banana) 0.21(326.0-apple) 0.29(284.0-sandwich) 0.24(602.0-orange) 0.43(532.0-broccoli) 0.22(581.0-carrot) 0.38(177.0-hot dog) 0.58(349.0-pizza) 0.46(525.0-donut) 0.35(355.0-cake) 0.31(2440.0-chair) 0.42(383.0-couch) 0.32(601.0-potted plant) 0.53(215.0-bed) 0.35(905.0-dining table) 0.69(245.0-toilet) 0.65(404.0-tv) 0.58(368.0-laptop) 0.30(218.0-mouse) 0.35(307.0-remote) 0.49(188.0-keyboard) 0.27(481.0-cell phone) 0.59(88.0-microwave) 0.35(264.0-oven) 0.00(0.0-toaster) 0.43(382.0-sink) 0.40(171.0-refrigerator) 0.19(1131.0-book) 0.56(390.0-clock) 0.39(498.0-vase) 0.23(69.0-scissors) 0.48(256.0-teddy bear) 0.00(0.0-hair drier) 0.15(93.0-toothbrush)
2021-10-31 13:44:19,129 - mmdet - INFO - pseudo gt: 22141.0 550.0 3762.0 792.0 409.0 581.0 399.0 761.0 770.0 1109.0 170.0 179.0 96.0 813.0 793.0 424.0 471.0 602.0 862.0 686.0 494.0 110.0 468.0 418.0 721.0 988.0 1033.0 541.0 640.0 216.0 594.0 219.0 496.0 820.0 248.0 307.0 474.0 473.0 405.0 2106.0 702.0 1618.0 440.0 751.0 499.0 1146.0 691.0 512.0 298.0 552.0 638.0 664.0 200.0 440.0 752.0 483.0 3200.0 507.0 783.0 349.0 1288.0 337.0 540.0 460.0 208.0 476.0 261.0 548.0 144.0 292.0 16.0 434.0 243.0 2105.0 512.0 544.0 88.0 309.0 13.0 166.0
2021-10-31 13:44:19,129 - mmdet - INFO - pseudo mining: 3579.0 11.0 323.0 33.0 29.0 65.0 31.0 7.0 12.0 113.0 43.0 74.0 1.0 1.0 27.0 48.0 35.0 50.0 177.0 68.0 117.0 6.0 176.0 193.0 1.0 41.0 0.0 24.0 4.0 52.0 3.0 0.0 147.0 164.0 10.0 45.0 32.0 14.0 74.0 117.0 29.0 69.0 0.0 1.0 0.0 39.0 9.0 0.0 1.0 7.0 19.0 14.0 0.0 37.0 41.0 2.0 12.0 2.0 15.0 0.0 9.0 88.0 105.0 58.0 45.0 6.0 20.0 14.0 10.0 1.0 0.0 40.0 5.0 1.0 223.0 35.0 0.0 13.0 0.0 0.0
2021-10-31 13:44:20,679 - mmdet - INFO - Iter [2500/40000] lr: 2.000e-02, eta: 19:36:44, time: 1.695, data_time: 0.028, memory: 26254, loss_rpn_cls: 0.0483, loss_rpn_bbox: 0.0576, loss_cls: 0.2787, acc: 91.2208, loss_bbox: 0.2929, loss_rpn_cls_unlabeled: 0.1006, loss_rpn_bbox_unlabeled: 0.0992, loss_cls_unlabeled: 0.2006, acc_unlabeled: 91.5745, loss_bbox_unlabeled: 0.1796, losses_cls_ig_unlabeled: 0.1850, pseudo_num: 1.4742, pseudo_num_ig: 5.4767, pseudo_num_mining: 0.6718, pseudo_num(acc): 0.8646, pseudo_num ig(acc): 0.4763, loss: 1.4425
2021-10-31 13:45:46,581 - mmdet - INFO - Iter [2550/40000] lr: 2.000e-02, eta: 19:33:09, time: 1.717, data_time: 0.029, memory: 26254, loss_rpn_cls: 0.0467, loss_rpn_bbox: 0.0550, loss_cls: 0.2713, acc: 91.4463, loss_bbox: 0.2867, loss_rpn_cls_unlabeled: 0.0990, loss_rpn_bbox_unlabeled: 0.0996, loss_cls_unlabeled: 0.1937, acc_unlabeled: 91.6697, loss_bbox_unlabeled: 0.1753, losses_cls_ig_unlabeled: 0.1803, pseudo_num: 1.4761, pseudo_num_ig: 5.4729, pseudo_num_mining: 0.6716, pseudo_num(acc): 0.8649, pseudo_num ig(acc): 0.4764, loss: 1.4077
2021-10-31 13:47:12,545 - mmdet - INFO - Iter [2600/40000] lr: 2.000e-02, eta: 19:29:41, time: 1.722, data_time: 0.030, memory: 26254, loss_rpn_cls: 0.0453, loss_rpn_bbox: 0.0559, loss_cls: 0.2673, acc: 91.5288, loss_bbox: 0.2844, loss_rpn_cls_unlabeled: 0.0941, loss_rpn_bbox_unlabeled: 0.0985, loss_cls_unlabeled: 0.2056, acc_unlabeled: 91.4814, loss_bbox_unlabeled: 0.1816, losses_cls_ig_unlabeled: 0.1857, pseudo_num: 1.4766, pseudo_num_ig: 5.4666, pseudo_num_mining: 0.6716, pseudo_num(acc): 0.8652, pseudo_num ig(acc): 0.4766, loss: 1.4183
2021-10-31 13:48:36,787 - mmdet - INFO - Iter [2650/40000] lr: 2.000e-02, eta: 19:25:52, time: 1.684, data_time: 0.026, memory: 26254, loss_rpn_cls: 0.0476, loss_rpn_bbox: 0.0572, loss_cls: 0.2723, acc: 91.2820, loss_bbox: 0.2937, loss_rpn_cls_unlabeled: 0.0974, loss_rpn_bbox_unlabeled: 0.0958, loss_cls_unlabeled: 0.2040, acc_unlabeled: 91.5334, loss_bbox_unlabeled: 0.1745, losses_cls_ig_unlabeled: 0.1850, pseudo_num: 1.4778, pseudo_num_ig: 5.4635, pseudo_num_mining: 0.6719, pseudo_num(acc): 0.8655, pseudo_num ig(acc): 0.4767, loss: 1.4275
2021-10-31 13:50:00,555 - mmdet - INFO - Iter [2700/40000] lr: 2.000e-02, eta: 19:22:02, time: 1.677, data_time: 0.027, memory: 26254, loss_rpn_cls: 0.0470, loss_rpn_bbox: 0.0546, loss_cls: 0.2688, acc: 91.5242, loss_bbox: 0.2843, loss_rpn_cls_unlabeled: 0.0971, loss_rpn_bbox_unlabeled: 0.0985, loss_cls_unlabeled: 0.1981, acc_unlabeled: 91.7062, loss_bbox_unlabeled: 0.1780, losses_cls_ig_unlabeled: 0.1793, pseudo_num: 1.4788, pseudo_num_ig: 5.4619, pseudo_num_mining: 0.6723, pseudo_num(acc): 0.8658, pseudo_num ig(acc): 0.4768, loss: 1.4057
2021-10-31 13:51:25,401 - mmdet - INFO - Iter [2750/40000] lr: 2.000e-02, eta: 19:18:32, time: 1.697, data_time: 0.026, memory: 26481, loss_rpn_cls: 0.0466, loss_rpn_bbox: 0.0545, loss_cls: 0.2693, acc: 91.4187, loss_bbox: 0.2882, loss_rpn_cls_unlabeled: 0.0972, loss_rpn_bbox_unlabeled: 0.0953, loss_cls_unlabeled: 0.2069, acc_unlabeled: 91.6525, loss_bbox_unlabeled: 0.1785, losses_cls_ig_unlabeled: 0.1836, pseudo_num: 1.4807, pseudo_num_ig: 5.4588, pseudo_num_mining: 0.6724, pseudo_num(acc): 0.8662, pseudo_num ig(acc): 0.4767, loss: 1.4202
2021-10-31 13:52:50,284 - mmdet - INFO - Iter [2800/40000] lr: 2.000e-02, eta: 19:15:07, time: 1.698, data_time: 0.026, memory: 26481, loss_rpn_cls: 0.0486, loss_rpn_bbox: 0.0568, loss_cls: 0.2721, acc: 91.3693, loss_bbox: 0.2934, loss_rpn_cls_unlabeled: 0.1036, loss_rpn_bbox_unlabeled: 0.0992, loss_cls_unlabeled: 0.1915, acc_unlabeled: 91.6743, loss_bbox_unlabeled: 0.1666, losses_cls_ig_unlabeled: 0.1841, pseudo_num: 1.4806, pseudo_num_ig: 5.4549, pseudo_num_mining: 0.6721, pseudo_num(acc): 0.8665, pseudo_num ig(acc): 0.4769, loss: 1.4159
2021-10-31 13:54:15,340 - mmdet - INFO - Iter [2850/40000] lr: 2.000e-02, eta: 19:11:48, time: 1.700, data_time: 0.025, memory: 26481, loss_rpn_cls: 0.0495, loss_rpn_bbox: 0.0587, loss_cls: 0.2747, acc: 91.3134, loss_bbox: 0.2915, loss_rpn_cls_unlabeled: 0.0985, loss_rpn_bbox_unlabeled: 0.0990, loss_cls_unlabeled: 0.1976, acc_unlabeled: 91.6167, loss_bbox_unlabeled: 0.1789, losses_cls_ig_unlabeled: 0.1863, pseudo_num: 1.4815, pseudo_num_ig: 5.4549, pseudo_num_mining: 0.6727, pseudo_num(acc): 0.8668, pseudo_num ig(acc): 0.4770, loss: 1.4346
2021-10-31 13:55:41,935 - mmdet - INFO - Iter [2900/40000] lr: 2.000e-02, eta: 19:08:51, time: 1.729, data_time: 0.027, memory: 26481, loss_rpn_cls: 0.0483, loss_rpn_bbox: 0.0561, loss_cls: 0.2717, acc: 91.3679, loss_bbox: 0.2917, loss_rpn_cls_unlabeled: 0.0992, loss_rpn_bbox_unlabeled: 0.0979, loss_cls_unlabeled: 0.1954, acc_unlabeled: 91.9529, loss_bbox_unlabeled: 0.1693, losses_cls_ig_unlabeled: 0.1801, pseudo_num: 1.4822, pseudo_num_ig: 5.4508, pseudo_num_mining: 0.6733, pseudo_num(acc): 0.8670, pseudo_num ig(acc): 0.4773, loss: 1.4098
2021-10-31 13:57:06,955 - mmdet - INFO - Iter [2950/40000] lr: 2.000e-02, eta: 19:05:40, time: 1.702, data_time: 0.031, memory: 26481, loss_rpn_cls: 0.0454, loss_rpn_bbox: 0.0557, loss_cls: 0.2730, acc: 91.3936, loss_bbox: 0.2902, loss_rpn_cls_unlabeled: 0.0978, loss_rpn_bbox_unlabeled: 0.0977, loss_cls_unlabeled: 0.2021, acc_unlabeled: 91.6981, loss_bbox_unlabeled: 0.1740, losses_cls_ig_unlabeled: 0.1799, pseudo_num: 1.4820, pseudo_num_ig: 5.4459, pseudo_num_mining: 0.6737, pseudo_num(acc): 0.8671, pseudo_num ig(acc): 0.4774, loss: 1.4159
2021-10-31 13:58:28,863 - mmdet - INFO - pseudo pos: 0.98(5600.0-person) 0.90(142.0-bicycle) 0.94(1041.0-car) 0.99(197.0-motorcycle) 0.99(85.0-airplane) 0.99(126.0-bus) 0.98(109.0-train) 0.70(224.0-truck) 0.73(157.0-boat) 0.90(278.0-traffic light) 0.98(44.0-fire hydrant) 1.00(40.0-stop sign) 0.95(22.0-parking meter) 0.66(190.0-bench) 0.93(196.0-bird) 0.99(93.0-cat) 0.99(115.0-dog) 0.98(157.0-horse) 0.90(168.0-sheep) 0.95(115.0-cow) 1.00(102.0-elephant) 1.00(48.0-bear) 0.98(94.0-zebra) 1.00(84.0-giraffe) 0.46(191.0-backpack) 0.83(237.0-umbrella) 0.49(239.0-handbag) 0.93(109.0-tie) 0.79(129.0-suitcase) 1.00(44.0-frisbee) 0.65(135.0-skis) 0.72(46.0-snowboard) 0.98(116.0-sports ball) 0.92(157.0-kite) 0.90(73.0-baseball bat) 0.93(76.0-baseball glove) 0.98(127.0-skateboard) 0.87(132.0-surfboard) 0.97(72.0-tennis racket) 0.87(481.0-bottle) 0.94(131.0-wine glass) 0.91(460.0-cup) 0.67(129.0-fork) 0.45(208.0-knife) 0.50(135.0-spoon) 0.86(321.0-bowl) 0.69(219.0-banana) 0.60(113.0-apple) 0.79(114.0-sandwich) 0.67(147.0-orange) 0.68(157.0-broccoli) 0.54(176.0-carrot) 0.78(49.0-hot dog) 0.97(120.0-pizza) 0.91(122.0-donut) 0.80(117.0-cake) 0.78(810.0-chair) 0.76(123.0-couch) 0.70(213.0-potted plant) 0.92(87.0-bed) 0.75(439.0-dining table) 0.93(68.0-toilet) 0.95(102.0-tv) 0.98(102.0-laptop) 0.96(51.0-mouse) 0.86(71.0-remote) 0.96(55.0-keyboard) 0.87(141.0-cell phone) 1.00(25.0-microwave) 0.89(79.0-oven) 0.00(0.0-toaster) 0.87(86.0-sink) 0.97(66.0-refrigerator) 0.36(440.0-book) 0.99(144.0-clock) 0.88(139.0-vase) 0.78(18.0-scissors) 0.96(84.0-teddy bear) 0.00(0.0-hair drier) 0.42(24.0-toothbrush)
2021-10-31 13:58:28,863 - mmdet - INFO - pseudo ig: 0.65(19371.0-person) 0.41(424.0-bicycle) 0.49(3519.0-car) 0.57(717.0-motorcycle) 0.69(323.0-airplane) 0.66(432.0-bus) 0.64(333.0-train) 0.36(781.0-truck) 0.37(718.0-boat) 0.37(1244.0-traffic light) 0.70(145.0-fire hydrant) 0.62(163.0-stop sign) 0.34(98.0-parking meter) 0.21(697.0-bench) 0.35(795.0-bird) 0.77(380.0-cat) 0.67(355.0-dog) 0.61(560.0-horse) 0.49(941.0-sheep) 0.53(679.0-cow) 0.72(459.0-elephant) 0.58(121.0-bear) 0.73(483.0-zebra) 0.90(362.0-giraffe) 0.26(698.0-backpack) 0.42(833.0-umbrella) 0.19(948.0-handbag) 0.38(420.0-tie) 0.37(448.0-suitcase) 0.64(186.0-frisbee) 0.38(501.0-skis) 0.34(196.0-snowboard) 0.35(596.0-sports ball) 0.51(688.0-kite) 0.32(290.0-baseball bat) 0.36(267.0-baseball glove) 0.49(398.0-skateboard) 0.42(518.0-surfboard) 0.61(383.0-tennis racket) 0.41(1866.0-bottle) 0.50(562.0-wine glass) 0.35(1904.0-cup) 0.27(437.0-fork) 0.19(726.0-knife) 0.18(567.0-spoon) 0.39(1249.0-bowl) 0.29(860.0-banana) 0.20(425.0-apple) 0.33(334.0-sandwich) 0.26(656.0-orange) 0.41(643.0-broccoli) 0.22(651.0-carrot) 0.38(203.0-hot dog) 0.58(412.0-pizza) 0.40(654.0-donut) 0.35(462.0-cake) 0.32(2865.0-chair) 0.41(453.0-couch) 0.33(696.0-potted plant) 0.50(283.0-bed) 0.36(1095.0-dining table) 0.68(288.0-toilet) 0.64(461.0-tv) 0.59(427.0-laptop) 0.31(243.0-mouse) 0.34(373.0-remote) 0.49(216.0-keyboard) 0.27(562.0-cell phone) 0.59(106.0-microwave) 0.36(303.0-oven) 0.00(0.0-toaster) 0.42(451.0-sink) 0.41(196.0-refrigerator) 0.20(1322.0-book) 0.56(452.0-clock) 0.40(580.0-vase) 0.26(78.0-scissors) 0.48(299.0-teddy bear) 0.00(0.0-hair drier) 0.14(125.0-toothbrush)
2021-10-31 13:58:28,864 - mmdet - INFO - pseudo gt: 26669.0 661.0 4568.0 985.0 487.0 694.0 483.0 947.0 946.0 1340.0 197.0 211.0 129.0 976.0 1035.0 502.0 574.0 763.0 971.0 797.0 562.0 138.0 576.0 508.0 868.0 1165.0 1255.0 636.0 716.0 262.0 716.0 250.0 578.0 980.0 288.0 362.0 577.0 564.0 469.0 2476.0 797.0 1999.0 525.0 891.0 622.0 1423.0 870.0 592.0 393.0 676.0 754.0 769.0 264.0 523.0 825.0 614.0 3914.0 610.0 952.0 425.0 1580.0 403.0 628.0 544.0 236.0 587.0 300.0 656.0 170.0 344.0 21.0 512.0 277.0 2508.0 611.0 669.0 109.0 372.0 15.0 202.0
2021-10-31 13:58:28,864 - mmdet - INFO - pseudo mining: 4283.0 12.0 410.0 49.0 36.0 81.0 34.0 7.0 17.0 142.0 56.0 92.0 2.0 1.0 31.0 54.0 42.0 68.0 196.0 71.0 146.0 16.0 195.0 223.0 1.0 48.0 0.0 29.0 5.0 64.0 3.0 0.0 170.0 186.0 11.0 54.0 40.0 15.0 88.0 147.0 39.0 101.0 0.0 1.0 0.0 47.0 12.0 0.0 1.0 7.0 23.0 14.0 0.0 41.0 43.0 4.0 13.0 2.0 19.0 0.0 13.0 96.0 121.0 70.0 54.0 10.0 21.0 19.0 12.0 2.0 0.0 52.0 6.0 2.0 257.0 40.0 0.0 14.0 0.0 0.0
2021-10-31 14:00:01,020 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 14:00:01,021 - mmdet - INFO - Iter [3000/40000] lr: 2.000e-02, eta: 19:02:15, time: 1.673, data_time: 0.027, memory: 26481, loss_rpn_cls: 0.0459, loss_rpn_bbox: 0.0546, loss_cls: 0.2712, acc: 91.4120, loss_bbox: 0.2888, loss_rpn_cls_unlabeled: 0.0952, loss_rpn_bbox_unlabeled: 0.0980, loss_cls_unlabeled: 0.1955, acc_unlabeled: 91.6869, loss_bbox_unlabeled: 0.1735, losses_cls_ig_unlabeled: 0.1857, pseudo_num: 1.4831, pseudo_num_ig: 5.4433, pseudo_num_mining: 0.6735, pseudo_num(acc): 0.8672, pseudo_num ig(acc): 0.4773, loss: 1.4085
2021-10-31 14:01:25,033 - mmdet - INFO - Iter [3050/40000] lr: 2.000e-02, eta: 19:17:14, time: 3.490, data_time: 1.837, memory: 26481, loss_rpn_cls: 0.0467, loss_rpn_bbox: 0.0556, loss_cls: 0.2717, acc: 91.2531, loss_bbox: 0.2988, loss_rpn_cls_unlabeled: 0.0970, loss_rpn_bbox_unlabeled: 0.1036, loss_cls_unlabeled: 0.1942, acc_unlabeled: 91.4004, loss_bbox_unlabeled: 0.1727, losses_cls_ig_unlabeled: 0.1918, pseudo_num: 1.4831, pseudo_num_ig: 5.4462, pseudo_num_mining: 0.6746, pseudo_num(acc): 0.8672, pseudo_num ig(acc): 0.4773, loss: 1.4321
2021-10-31 14:02:48,893 - mmdet - INFO - Iter [3100/40000] lr: 2.000e-02, eta: 19:13:38, time: 1.674, data_time: 0.027, memory: 26481, loss_rpn_cls: 0.0465, loss_rpn_bbox: 0.0550, loss_cls: 0.2632, acc: 91.6123, loss_bbox: 0.2849, loss_rpn_cls_unlabeled: 0.1016, loss_rpn_bbox_unlabeled: 0.1022, loss_cls_unlabeled: 0.1990, acc_unlabeled: 91.4655, loss_bbox_unlabeled: 0.1745, losses_cls_ig_unlabeled: 0.1901, pseudo_num: 1.4831, pseudo_num_ig: 5.4509, pseudo_num_mining: 0.6763, pseudo_num(acc): 0.8675, pseudo_num ig(acc): 0.4772, loss: 1.4169
2021-10-31 14:04:13,216 - mmdet - INFO - Iter [3150/40000] lr: 2.000e-02, eta: 19:10:15, time: 1.690, data_time: 0.030, memory: 26481, loss_rpn_cls: 0.0473, loss_rpn_bbox: 0.0544, loss_cls: 0.2731, acc: 91.2666, loss_bbox: 0.2942, loss_rpn_cls_unlabeled: 0.0943, loss_rpn_bbox_unlabeled: 0.1036, loss_cls_unlabeled: 0.1932, acc_unlabeled: 91.3777, loss_bbox_unlabeled: 0.1723, losses_cls_ig_unlabeled: 0.1901, pseudo_num: 1.4824, pseudo_num_ig: 5.4542, pseudo_num_mining: 0.6776, pseudo_num(acc): 0.8677, pseudo_num ig(acc): 0.4773, loss: 1.4226
2021-10-31 14:05:37,873 - mmdet - INFO - Iter [3200/40000] lr: 2.000e-02, eta: 19:06:58, time: 1.692, data_time: 0.027, memory: 26481, loss_rpn_cls: 0.0477, loss_rpn_bbox: 0.0565, loss_cls: 0.2614, acc: 91.6619, loss_bbox: 0.2827, loss_rpn_cls_unlabeled: 0.1006, loss_rpn_bbox_unlabeled: 0.1003, loss_cls_unlabeled: 0.1897, acc_unlabeled: 91.8267, loss_bbox_unlabeled: 0.1690, losses_cls_ig_unlabeled: 0.1806, pseudo_num: 1.4820, pseudo_num_ig: 5.4585, pseudo_num_mining: 0.6791, pseudo_num(acc): 0.8677, pseudo_num ig(acc): 0.4772, loss: 1.3885
2021-10-31 14:07:02,455 - mmdet - INFO - Iter [3250/40000] lr: 2.000e-02, eta: 19:03:43, time: 1.691, data_time: 0.029, memory: 26481, loss_rpn_cls: 0.0453, loss_rpn_bbox: 0.0539, loss_cls: 0.2675, acc: 91.4653, loss_bbox: 0.2856, loss_rpn_cls_unlabeled: 0.1000, loss_rpn_bbox_unlabeled: 0.1028, loss_cls_unlabeled: 0.2013, acc_unlabeled: 91.1401, loss_bbox_unlabeled: 0.1760, losses_cls_ig_unlabeled: 0.1933, pseudo_num: 1.4822, pseudo_num_ig: 5.4595, pseudo_num_mining: 0.6798, pseudo_num(acc): 0.8678, pseudo_num ig(acc): 0.4770, loss: 1.4258
2021-10-31 14:08:27,660 - mmdet - INFO - Iter [3300/40000] lr: 2.000e-02, eta: 19:00:38, time: 1.704, data_time: 0.031, memory: 26481, loss_rpn_cls: 0.0466, loss_rpn_bbox: 0.0540, loss_cls: 0.2661, acc: 91.4950, loss_bbox: 0.2872, loss_rpn_cls_unlabeled: 0.0984, loss_rpn_bbox_unlabeled: 0.1001, loss_cls_unlabeled: 0.1997, acc_unlabeled: 91.4795, loss_bbox_unlabeled: 0.1747, losses_cls_ig_unlabeled: 0.1858, pseudo_num: 1.4821, pseudo_num_ig: 5.4620, pseudo_num_mining: 0.6805, pseudo_num(acc): 0.8679, pseudo_num ig(acc): 0.4768, loss: 1.4126
2021-10-31 14:11:10,744 - mmdet - INFO - Iter [3350/40000] lr: 2.000e-02, eta: 19:11:50, time: 3.263, data_time: 0.029, memory: 26481, loss_rpn_cls: 0.0441, loss_rpn_bbox: 0.0528, loss_cls: 0.2659, acc: 91.5897, loss_bbox: 0.2842, loss_rpn_cls_unlabeled: 0.0935, loss_rpn_bbox_unlabeled: 0.1016, loss_cls_unlabeled: 0.1892, acc_unlabeled: 91.5833, loss_bbox_unlabeled: 0.1732, losses_cls_ig_unlabeled: 0.1813, pseudo_num: 1.4825, pseudo_num_ig: 5.4657, pseudo_num_mining: 0.6818, pseudo_num(acc): 0.8678, pseudo_num ig(acc): 0.4767, loss: 1.3859
2021-10-31 14:12:34,671 - mmdet - INFO - Iter [3400/40000] lr: 2.000e-02, eta: 19:08:24, time: 1.677, data_time: 0.028, memory: 26481, loss_rpn_cls: 0.0444, loss_rpn_bbox: 0.0543, loss_cls: 0.2549, acc: 91.7469, loss_bbox: 0.2776, loss_rpn_cls_unlabeled: 0.0932, loss_rpn_bbox_unlabeled: 0.0985, loss_cls_unlabeled: 0.1930, acc_unlabeled: 91.6705, loss_bbox_unlabeled: 0.1728, losses_cls_ig_unlabeled: 0.1837, pseudo_num: 1.4823, pseudo_num_ig: 5.4656, pseudo_num_mining: 0.6830, pseudo_num(acc): 0.8679, pseudo_num ig(acc): 0.4766, loss: 1.3725
2021-10-31 14:13:58,247 - mmdet - INFO - Iter [3450/40000] lr: 2.000e-02, eta: 19:04:58, time: 1.673, data_time: 0.030, memory: 26481, loss_rpn_cls: 0.0453, loss_rpn_bbox: 0.0582, loss_cls: 0.2687, acc: 91.3501, loss_bbox: 0.2954, loss_rpn_cls_unlabeled: 0.0964, loss_rpn_bbox_unlabeled: 0.0999, loss_cls_unlabeled: 0.1996, acc_unlabeled: 91.6611, loss_bbox_unlabeled: 0.1772, losses_cls_ig_unlabeled: 0.1840, pseudo_num: 1.4827, pseudo_num_ig: 5.4673, pseudo_num_mining: 0.6837, pseudo_num(acc): 0.8680, pseudo_num ig(acc): 0.4765, loss: 1.4247
2021-10-31 14:15:21,410 - mmdet - INFO - pseudo pos: 0.98(6557.0-person) 0.90(168.0-bicycle) 0.94(1183.0-car) 0.99(237.0-motorcycle) 0.99(99.0-airplane) 0.99(142.0-bus) 0.99(136.0-train) 0.71(256.0-truck) 0.76(180.0-boat) 0.90(305.0-traffic light) 0.96(48.0-fire hydrant) 1.00(47.0-stop sign) 0.97(30.0-parking meter) 0.68(228.0-bench) 0.93(227.0-bird) 0.99(120.0-cat) 0.99(139.0-dog) 0.98(175.0-horse) 0.91(206.0-sheep) 0.95(132.0-cow) 1.00(124.0-elephant) 1.00(54.0-bear) 0.98(106.0-zebra) 0.99(105.0-giraffe) 0.49(232.0-backpack) 0.81(275.0-umbrella) 0.50(274.0-handbag) 0.91(129.0-tie) 0.78(144.0-suitcase) 1.00(51.0-frisbee) 0.66(166.0-skis) 0.72(60.0-snowboard) 0.98(129.0-sports ball) 0.92(183.0-kite) 0.89(91.0-baseball bat) 0.94(87.0-baseball glove) 0.98(150.0-skateboard) 0.89(150.0-surfboard) 0.96(84.0-tennis racket) 0.85(584.0-bottle) 0.94(142.0-wine glass) 0.90(531.0-cup) 0.69(140.0-fork) 0.46(246.0-knife) 0.50(151.0-spoon) 0.85(368.0-bowl) 0.69(254.0-banana) 0.59(125.0-apple) 0.80(138.0-sandwich) 0.71(174.0-orange) 0.69(176.0-broccoli) 0.55(190.0-carrot) 0.77(64.0-hot dog) 0.97(145.0-pizza) 0.92(154.0-donut) 0.81(134.0-cake) 0.77(950.0-chair) 0.80(157.0-couch) 0.71(245.0-potted plant) 0.93(101.0-bed) 0.75(511.0-dining table) 0.92(80.0-toilet) 0.96(116.0-tv) 0.98(118.0-laptop) 0.97(59.0-mouse) 0.79(92.0-remote) 0.97(62.0-keyboard) 0.86(166.0-cell phone) 0.97(36.0-microwave) 0.88(95.0-oven) 0.00(0.0-toaster) 0.86(104.0-sink) 0.97(78.0-refrigerator) 0.36(515.0-book) 0.99(161.0-clock) 0.89(175.0-vase) 0.64(25.0-scissors) 0.96(104.0-teddy bear) 0.00(0.0-hair drier) 0.44(32.0-toothbrush)
2021-10-31 14:15:21,411 - mmdet - INFO - pseudo ig: 0.65(23091.0-person) 0.43(504.0-bicycle) 0.50(4015.0-car) 0.57(833.0-motorcycle) 0.68(383.0-airplane) 0.66(494.0-bus) 0.63(393.0-train) 0.37(899.0-truck) 0.37(827.0-boat) 0.38(1374.0-traffic light) 0.68(173.0-fire hydrant) 0.62(195.0-stop sign) 0.34(119.0-parking meter) 0.21(806.0-bench) 0.34(862.0-bird) 0.77(440.0-cat) 0.68(433.0-dog) 0.61(613.0-horse) 0.49(1018.0-sheep) 0.51(788.0-cow) 0.74(529.0-elephant) 0.60(141.0-bear) 0.74(523.0-zebra) 0.89(399.0-giraffe) 0.26(829.0-backpack) 0.43(987.0-umbrella) 0.19(1086.0-handbag) 0.37(467.0-tie) 0.38(533.0-suitcase) 0.64(217.0-frisbee) 0.36(619.0-skis) 0.32(235.0-snowboard) 0.37(668.0-sports ball) 0.52(750.0-kite) 0.35(338.0-baseball bat) 0.38(333.0-baseball glove) 0.50(498.0-skateboard) 0.41(584.0-surfboard) 0.61(447.0-tennis racket) 0.40(2231.0-bottle) 0.49(649.0-wine glass) 0.35(2227.0-cup) 0.27(499.0-fork) 0.19(848.0-knife) 0.18(644.0-spoon) 0.39(1475.0-bowl) 0.29(999.0-banana) 0.19(508.0-apple) 0.33(429.0-sandwich) 0.26(775.0-orange) 0.42(720.0-broccoli) 0.21(765.0-carrot) 0.37(240.0-hot dog) 0.57(493.0-pizza) 0.39(690.0-donut) 0.36(522.0-cake) 0.31(3428.0-chair) 0.41(528.0-couch) 0.33(817.0-potted plant) 0.47(331.0-bed) 0.35(1295.0-dining table) 0.70(352.0-toilet) 0.63(545.0-tv) 0.58(507.0-laptop) 0.33(265.0-mouse) 0.34(450.0-remote) 0.47(252.0-keyboard) 0.27(638.0-cell phone) 0.60(126.0-microwave) 0.36(363.0-oven) 0.00(0.0-toaster) 0.42(520.0-sink) 0.42(225.0-refrigerator) 0.19(1617.0-book) 0.57(534.0-clock) 0.40(693.0-vase) 0.25(105.0-scissors) 0.49(355.0-teddy bear) 0.00(0.0-hair drier) 0.14(158.0-toothbrush)
2021-10-31 14:15:21,411 - mmdet - INFO - pseudo gt: 31223.0 794.0 5210.0 1140.0 561.0 812.0 565.0 1096.0 1105.0 1518.0 227.0 251.0 161.0 1166.0 1154.0 587.0 698.0 845.0 1086.0 878.0 673.0 165.0 649.0 575.0 1050.0 1380.0 1455.0 731.0 848.0 301.0 841.0 304.0 683.0 1140.0 364.0 443.0 701.0 631.0 558.0 2899.0 907.0 2323.0 609.0 1062.0 725.0 1648.0 1045.0 669.0 499.0 779.0 883.0 871.0 316.0 613.0 889.0 698.0 4593.0 723.0 1053.0 476.0 1856.0 475.0 727.0 641.0 268.0 677.0 340.0 765.0 205.0 406.0 25.0 621.0 321.0 2885.0 727.0 809.0 122.0 435.0 20.0 222.0
2021-10-31 14:15:21,411 - mmdet - INFO - pseudo mining: 5131.0 16.0 492.0 59.0 41.0 97.0 40.0 7.0 23.0 160.0 67.0 111.0 2.0 2.0 31.0 62.0 51.0 75.0 210.0 71.0 183.0 20.0 223.0 242.0 1.0 56.0 0.0 33.0 7.0 81.0 4.0 0.0 194.0 210.0 13.0 69.0 50.0 17.0 105.0 185.0 44.0 120.0 0.0 1.0 0.0 53.0 14.0 0.0 2.0 10.0 28.0 14.0 0.0 51.0 46.0 4.0 15.0 3.0 22.0 0.0 16.0 120.0 144.0 80.0 60.0 13.0 24.0 23.0 15.0 4.0 0.0 59.0 8.0 2.0 310.0 46.0 0.0 18.0 0.0 0.0
2021-10-31 14:15:23,343 - mmdet - INFO - Iter [3500/40000] lr: 2.000e-02, eta: 19:01:51, time: 1.701, data_time: 0.029, memory: 26481, loss_rpn_cls: 0.0439, loss_rpn_bbox: 0.0525, loss_cls: 0.2636, acc: 91.6005, loss_bbox: 0.2823, loss_rpn_cls_unlabeled: 0.0985, loss_rpn_bbox_unlabeled: 0.1000, loss_cls_unlabeled: 0.2006, acc_unlabeled: 91.5502, loss_bbox_unlabeled: 0.1743, losses_cls_ig_unlabeled: 0.1876, pseudo_num: 1.4833, pseudo_num_ig: 5.4699, pseudo_num_mining: 0.6851, pseudo_num(acc): 0.8680, pseudo_num ig(acc): 0.4763, loss: 1.4033
2021-10-31 14:16:47,157 - mmdet - INFO - Iter [3550/40000] lr: 2.000e-02, eta: 18:58:35, time: 1.679, data_time: 0.030, memory: 26481, loss_rpn_cls: 0.0466, loss_rpn_bbox: 0.0535, loss_cls: 0.2741, acc: 91.3793, loss_bbox: 0.2884, loss_rpn_cls_unlabeled: 0.0944, loss_rpn_bbox_unlabeled: 0.1016, loss_cls_unlabeled: 0.2044, acc_unlabeled: 91.3081, loss_bbox_unlabeled: 0.1759, losses_cls_ig_unlabeled: 0.1888, pseudo_num: 1.4830, pseudo_num_ig: 5.4732, pseudo_num_mining: 0.6866, pseudo_num(acc): 0.8681, pseudo_num ig(acc): 0.4763, loss: 1.4277
2021-10-31 14:18:12,444 - mmdet - INFO - Iter [3600/40000] lr: 2.000e-02, eta: 18:55:36, time: 1.706, data_time: 0.029, memory: 26481, loss_rpn_cls: 0.0490, loss_rpn_bbox: 0.0560, loss_cls: 0.2643, acc: 91.4918, loss_bbox: 0.2905, loss_rpn_cls_unlabeled: 0.0976, loss_rpn_bbox_unlabeled: 0.0977, loss_cls_unlabeled: 0.1919, acc_unlabeled: 91.7340, loss_bbox_unlabeled: 0.1747, losses_cls_ig_unlabeled: 0.1852, pseudo_num: 1.4828, pseudo_num_ig: 5.4753, pseudo_num_mining: 0.6881, pseudo_num(acc): 0.8680, pseudo_num ig(acc): 0.4763, loss: 1.4068
2021-10-31 14:19:36,207 - mmdet - INFO - Iter [3650/40000] lr: 2.000e-02, eta: 18:52:25, time: 1.675, data_time: 0.029, memory: 26481, loss_rpn_cls: 0.0471, loss_rpn_bbox: 0.0547, loss_cls: 0.2650, acc: 91.5630, loss_bbox: 0.2840, loss_rpn_cls_unlabeled: 0.0985, loss_rpn_bbox_unlabeled: 0.1037, loss_cls_unlabeled: 0.2066, acc_unlabeled: 91.2582, loss_bbox_unlabeled: 0.1846, losses_cls_ig_unlabeled: 0.1872, pseudo_num: 1.4830, pseudo_num_ig: 5.4785, pseudo_num_mining: 0.6892, pseudo_num(acc): 0.8681, pseudo_num ig(acc): 0.4764, loss: 1.4313
2021-10-31 14:21:02,204 - mmdet - INFO - Iter [3700/40000] lr: 2.000e-02, eta: 18:49:37, time: 1.718, data_time: 0.027, memory: 26481, loss_rpn_cls: 0.0450, loss_rpn_bbox: 0.0532, loss_cls: 0.2712, acc: 91.4380, loss_bbox: 0.2876, loss_rpn_cls_unlabeled: 0.1012, loss_rpn_bbox_unlabeled: 0.0996, loss_cls_unlabeled: 0.1987, acc_unlabeled: 91.5001, loss_bbox_unlabeled: 0.1802, losses_cls_ig_unlabeled: 0.1863, pseudo_num: 1.4836, pseudo_num_ig: 5.4828, pseudo_num_mining: 0.6910, pseudo_num(acc): 0.8682, pseudo_num ig(acc): 0.4764, loss: 1.4230
2021-10-31 14:22:25,615 - mmdet - INFO - Iter [3750/40000] lr: 2.000e-02, eta: 18:46:29, time: 1.670, data_time: 0.033, memory: 26481, loss_rpn_cls: 0.0445, loss_rpn_bbox: 0.0541, loss_cls: 0.2575, acc: 91.7704, loss_bbox: 0.2802, loss_rpn_cls_unlabeled: 0.0959, loss_rpn_bbox_unlabeled: 0.0994, loss_cls_unlabeled: 0.1970, acc_unlabeled: 91.6501, loss_bbox_unlabeled: 0.1730, losses_cls_ig_unlabeled: 0.1841, pseudo_num: 1.4838, pseudo_num_ig: 5.4872, pseudo_num_mining: 0.6925, pseudo_num(acc): 0.8682, pseudo_num ig(acc): 0.4762, loss: 1.3857
2021-10-31 14:23:50,469 - mmdet - INFO - Iter [3800/40000] lr: 2.000e-02, eta: 18:43:34, time: 1.694, data_time: 0.028, memory: 26481, loss_rpn_cls: 0.0447, loss_rpn_bbox: 0.0572, loss_cls: 0.2731, acc: 91.2592, loss_bbox: 0.2993, loss_rpn_cls_unlabeled: 0.0999, loss_rpn_bbox_unlabeled: 0.1004, loss_cls_unlabeled: 0.1960, acc_unlabeled: 91.4154, loss_bbox_unlabeled: 0.1739, losses_cls_ig_unlabeled: 0.1894, pseudo_num: 1.4838, pseudo_num_ig: 5.4886, pseudo_num_mining: 0.6935, pseudo_num(acc): 0.8683, pseudo_num ig(acc): 0.4762, loss: 1.4340
2021-10-31 14:25:16,393 - mmdet - INFO - Iter [3850/40000] lr: 2.000e-02, eta: 18:40:54, time: 1.720, data_time: 0.030, memory: 26481, loss_rpn_cls: 0.0453, loss_rpn_bbox: 0.0563, loss_cls: 0.2740, acc: 91.3400, loss_bbox: 0.2942, loss_rpn_cls_unlabeled: 0.1014, loss_rpn_bbox_unlabeled: 0.1008, loss_cls_unlabeled: 0.2043, acc_unlabeled: 91.3273, loss_bbox_unlabeled: 0.1820, losses_cls_ig_unlabeled: 0.1900, pseudo_num: 1.4848, pseudo_num_ig: 5.4902, pseudo_num_mining: 0.6940, pseudo_num(acc): 0.8684, pseudo_num ig(acc): 0.4760, loss: 1.4483
2021-10-31 14:26:41,508 - mmdet - INFO - Iter [3900/40000] lr: 2.000e-02, eta: 18:38:08, time: 1.702, data_time: 0.028, memory: 26481, loss_rpn_cls: 0.0446, loss_rpn_bbox: 0.0537, loss_cls: 0.2621, acc: 91.5729, loss_bbox: 0.2856, loss_rpn_cls_unlabeled: 0.0986, loss_rpn_bbox_unlabeled: 0.1060, loss_cls_unlabeled: 0.2075, acc_unlabeled: 91.4608, loss_bbox_unlabeled: 0.1912, losses_cls_ig_unlabeled: 0.1844, pseudo_num: 1.4866, pseudo_num_ig: 5.4932, pseudo_num_mining: 0.6949, pseudo_num(acc): 0.8685, pseudo_num ig(acc): 0.4759, loss: 1.4336
2021-10-31 14:28:06,123 - mmdet - INFO - Iter [3950/40000] lr: 2.000e-02, eta: 18:35:20, time: 1.693, data_time: 0.030, memory: 26481, loss_rpn_cls: 0.0452, loss_rpn_bbox: 0.0536, loss_cls: 0.2584, acc: 91.7507, loss_bbox: 0.2779, loss_rpn_cls_unlabeled: 0.0968, loss_rpn_bbox_unlabeled: 0.1019, loss_cls_unlabeled: 0.2081, acc_unlabeled: 91.4327, loss_bbox_unlabeled: 0.1902, losses_cls_ig_unlabeled: 0.1782, pseudo_num: 1.4889, pseudo_num_ig: 5.4951, pseudo_num_mining: 0.6961, pseudo_num(acc): 0.8686, pseudo_num ig(acc): 0.4758, loss: 1.4102
2021-10-31 14:29:28,765 - mmdet - INFO - pseudo pos: 0.98(7523.0-person) 0.91(187.0-bicycle) 0.94(1372.0-car) 0.99(268.0-motorcycle) 0.99(116.0-airplane) 0.99(149.0-bus) 0.99(151.0-train) 0.73(297.0-truck) 0.75(213.0-boat) 0.91(379.0-traffic light) 0.96(57.0-fire hydrant) 1.00(52.0-stop sign) 0.94(36.0-parking meter) 0.67(263.0-bench) 0.94(267.0-bird) 0.99(136.0-cat) 0.99(153.0-dog) 0.99(207.0-horse) 0.91(241.0-sheep) 0.95(156.0-cow) 1.00(147.0-elephant) 1.00(56.0-bear) 0.98(123.0-zebra) 0.99(126.0-giraffe) 0.47(287.0-backpack) 0.81(316.0-umbrella) 0.52(311.0-handbag) 0.92(152.0-tie) 0.79(165.0-suitcase) 1.00(59.0-frisbee) 0.66(191.0-skis) 0.73(66.0-snowboard) 0.98(154.0-sports ball) 0.93(215.0-kite) 0.88(108.0-baseball bat) 0.94(99.0-baseball glove) 0.98(174.0-skateboard) 0.88(171.0-surfboard) 0.97(104.0-tennis racket) 0.85(653.0-bottle) 0.95(158.0-wine glass) 0.90(616.0-cup) 0.70(153.0-fork) 0.46(265.0-knife) 0.50(175.0-spoon) 0.85(423.0-bowl) 0.70(284.0-banana) 0.61(140.0-apple) 0.82(152.0-sandwich) 0.70(222.0-orange) 0.71(190.0-broccoli) 0.56(209.0-carrot) 0.75(96.0-hot dog) 0.96(180.0-pizza) 0.93(177.0-donut) 0.83(157.0-cake) 0.77(1182.0-chair) 0.81(178.0-couch) 0.73(278.0-potted plant) 0.91(115.0-bed) 0.74(589.0-dining table) 0.94(101.0-toilet) 0.96(140.0-tv) 0.99(138.0-laptop) 0.97(65.0-mouse) 0.76(107.0-remote) 0.97(74.0-keyboard) 0.85(190.0-cell phone) 0.98(43.0-microwave) 0.87(108.0-oven) 0.00(0.0-toaster) 0.86(120.0-sink) 0.98(87.0-refrigerator) 0.36(581.0-book) 0.99(177.0-clock) 0.88(191.0-vase) 0.71(41.0-scissors) 0.97(128.0-teddy bear) 0.00(0.0-hair drier) 0.47(49.0-toothbrush)
2021-10-31 14:29:28,765 - mmdet - INFO - pseudo ig: 0.65(26750.0-person) 0.43(598.0-bicycle) 0.50(4653.0-car) 0.57(940.0-motorcycle) 0.65(441.0-airplane) 0.67(552.0-bus) 0.62(437.0-train) 0.37(1037.0-truck) 0.39(968.0-boat) 0.39(1559.0-traffic light) 0.69(195.0-fire hydrant) 0.61(223.0-stop sign) 0.36(132.0-parking meter) 0.23(924.0-bench) 0.34(982.0-bird) 0.77(475.0-cat) 0.68(492.0-dog) 0.62(695.0-horse) 0.51(1114.0-sheep) 0.52(883.0-cow) 0.75(566.0-elephant) 0.62(153.0-bear) 0.76(573.0-zebra) 0.89(441.0-giraffe) 0.25(971.0-backpack) 0.44(1130.0-umbrella) 0.19(1232.0-handbag) 0.37(535.0-tie) 0.39(613.0-suitcase) 0.61(249.0-frisbee) 0.38(737.0-skis) 0.30(275.0-snowboard) 0.37(764.0-sports ball) 0.53(861.0-kite) 0.36(386.0-baseball bat) 0.39(387.0-baseball glove) 0.52(561.0-skateboard) 0.42(642.0-surfboard) 0.63(494.0-tennis racket) 0.40(2567.0-bottle) 0.49(775.0-wine glass) 0.34(2542.0-cup) 0.27(558.0-fork) 0.19(936.0-knife) 0.19(743.0-spoon) 0.39(1696.0-bowl) 0.27(1164.0-banana) 0.20(559.0-apple) 0.33(480.0-sandwich) 0.25(931.0-orange) 0.42(807.0-broccoli) 0.22(869.0-carrot) 0.35(313.0-hot dog) 0.56(566.0-pizza) 0.38(791.0-donut) 0.37(593.0-cake) 0.30(4214.0-chair) 0.41(610.0-couch) 0.33(931.0-potted plant) 0.47(392.0-bed) 0.34(1513.0-dining table) 0.68(420.0-toilet) 0.63(613.0-tv) 0.58(601.0-laptop) 0.35(287.0-mouse) 0.33(518.0-remote) 0.46(292.0-keyboard) 0.27(724.0-cell phone) 0.59(145.0-microwave) 0.35(421.0-oven) 0.00(0.0-toaster) 0.43(593.0-sink) 0.43(261.0-refrigerator) 0.19(1880.0-book) 0.58(612.0-clock) 0.39(783.0-vase) 0.20(150.0-scissors) 0.47(482.0-teddy bear) 0.00(0.0-hair drier) 0.15(193.0-toothbrush)
2021-10-31 14:29:28,765 - mmdet - INFO - pseudo gt: 35866.0 912.0 6033.0 1299.0 631.0 912.0 621.0 1290.0 1284.0 1760.0 265.0 281.0 178.0 1381.0 1332.0 647.0 787.0 958.0 1235.0 1006.0 755.0 182.0 754.0 640.0 1196.0 1583.0 1680.0 837.0 963.0 341.0 974.0 337.0 804.0 1316.0 441.0 529.0 799.0 716.0 640.0 3352.0 1077.0 2652.0 681.0 1190.0 820.0 1901.0 1218.0 757.0 551.0 885.0 1016.0 1002.0 393.0 760.0 1009.0 804.0 5449.0 818.0 1229.0 538.0 2183.0 570.0 817.0 741.0 318.0 751.0 397.0 908.0 235.0 462.0 31.0 730.0 374.0 3273.0 818.0 890.0 154.0 542.0 22.0 257.0
2021-10-31 14:29:28,766 - mmdet - INFO - pseudo mining: 6028.0 22.0 599.0 71.0 43.0 116.0 44.0 7.0 34.0 186.0 74.0 132.0 3.0 3.0 33.0 69.0 55.0 88.0 237.0 75.0 198.0 24.0 258.0 268.0 1.0 60.0 0.0 41.0 9.0 90.0 6.0 0.0 226.0 253.0 17.0 81.0 61.0 19.0 122.0 213.0 54.0 146.0 0.0 1.0 0.0 67.0 17.0 0.0 2.0 10.0 35.0 14.0 0.0 62.0 68.0 4.0 15.0 5.0 24.0 0.0 19.0 143.0 172.0 95.0 65.0 14.0 29.0 25.0 17.0 6.0 0.0 69.0 11.0 2.0 361.0 50.0 0.0 25.0 0.0 0.0
2021-10-31 14:30:26,066 - mmdet - INFO - Evaluating bbox...
2021-10-31 14:31:37,466 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.428 | bicycle | 0.177 | car | 0.328 |
| motorcycle | 0.268 | airplane | 0.442 | bus | 0.487 |
| train | 0.436 | truck | 0.207 | boat | 0.139 |
| traffic light | 0.214 | fire hydrant | 0.503 | stop sign | 0.523 |
| parking meter | 0.393 | bench | 0.138 | bird | 0.229 |
| cat | 0.451 | dog | 0.387 | horse | 0.373 |
| sheep | 0.322 | cow | 0.337 | elephant | 0.475 |
| bear | 0.521 | zebra | 0.491 | giraffe | 0.525 |
| backpack | 0.082 | umbrella | 0.209 | handbag | 0.055 |
| tie | 0.188 | suitcase | 0.135 | frisbee | 0.523 |
| skis | 0.126 | snowboard | 0.135 | sports ball | 0.348 |
| kite | 0.275 | baseball bat | 0.148 | baseball glove | 0.261 |
| skateboard | 0.304 | surfboard | 0.187 | tennis racket | 0.298 |
| bottle | 0.269 | wine glass | 0.211 | cup | 0.296 |
| fork | 0.109 | knife | 0.051 | spoon | 0.047 |
| bowl | 0.318 | banana | 0.139 | apple | 0.083 |
| sandwich | 0.211 | orange | 0.236 | broccoli | 0.140 |
| carrot | 0.100 | hot dog | 0.134 | pizza | 0.341 |
| donut | 0.247 | cake | 0.178 | chair | 0.141 |
| couch | 0.241 | potted plant | 0.130 | bed | 0.274 |
| dining table | 0.156 | toilet | 0.424 | tv | 0.401 |
| laptop | 0.401 | mouse | 0.433 | remote | 0.127 |
| keyboard | 0.303 | cell phone | 0.224 | microwave | 0.330 |
| oven | 0.187 | toaster | 0.220 | sink | 0.207 |
| refrigerator | 0.324 | book | 0.040 | clock | 0.403 |
| vase | 0.232 | scissors | 0.092 | teddy bear | 0.289 |
| hair drier | 0.000 | toothbrush | 0.037 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 14:32:33,419 - mmdet - INFO - Evaluating bbox...
2021-10-31 14:33:47,751 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.448 | bicycle | 0.208 | car | 0.354 |
| motorcycle | 0.305 | airplane | 0.478 | bus | 0.517 |
| train | 0.455 | truck | 0.214 | boat | 0.168 |
| traffic light | 0.232 | fire hydrant | 0.521 | stop sign | 0.548 |
| parking meter | 0.414 | bench | 0.148 | bird | 0.249 |
| cat | 0.495 | dog | 0.441 | horse | 0.439 |
| sheep | 0.379 | cow | 0.416 | elephant | 0.506 |
| bear | 0.566 | zebra | 0.521 | giraffe | 0.542 |
| backpack | 0.091 | umbrella | 0.242 | handbag | 0.064 |
| tie | 0.197 | suitcase | 0.167 | frisbee | 0.535 |
| skis | 0.133 | snowboard | 0.153 | sports ball | 0.383 |
| kite | 0.300 | baseball bat | 0.151 | baseball glove | 0.273 |
| skateboard | 0.334 | surfboard | 0.213 | tennis racket | 0.322 |
| bottle | 0.298 | wine glass | 0.260 | cup | 0.321 |
| fork | 0.137 | knife | 0.054 | spoon | 0.061 |
| bowl | 0.343 | banana | 0.153 | apple | 0.101 |
| sandwich | 0.230 | orange | 0.250 | broccoli | 0.176 |
| carrot | 0.100 | hot dog | 0.128 | pizza | 0.400 |
| donut | 0.300 | cake | 0.203 | chair | 0.164 |
| couch | 0.278 | potted plant | 0.155 | bed | 0.271 |
| dining table | 0.162 | toilet | 0.464 | tv | 0.445 |
| laptop | 0.447 | mouse | 0.482 | remote | 0.157 |
| keyboard | 0.351 | cell phone | 0.243 | microwave | 0.371 |
| oven | 0.213 | toaster | 0.095 | sink | 0.239 |
| refrigerator | 0.347 | book | 0.055 | clock | 0.408 |
| vase | 0.276 | scissors | 0.134 | teddy bear | 0.317 |
| hair drier | 0.000 | toothbrush | 0.074 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 14:35:17,276 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 14:35:17,276 - mmdet - INFO - Iter [4000/40000] lr: 2.000e-02, eta: 18:32:30, time: 1.685, data_time: 0.030, memory: 26481, bbox_mAP: 0.2850, bbox_mAP_50: 0.4810, bbox_mAP_75: 0.2970, bbox_mAP_s: 0.1630, bbox_mAP_m: 0.3150, bbox_mAP_l: 0.3660, bbox_mAP_copypaste: 0.285 0.481 0.297 0.163 0.315 0.366, loss_rpn_cls: 0.0435, loss_rpn_bbox: 0.0524, loss_cls: 0.2571, acc: 91.7325, loss_bbox: 0.2822, loss_rpn_cls_unlabeled: 0.0944, loss_rpn_bbox_unlabeled: 0.1036, loss_cls_unlabeled: 0.2036, acc_unlabeled: 91.6245, loss_bbox_unlabeled: 0.1829, losses_cls_ig_unlabeled: 0.1836, pseudo_num: 1.4906, pseudo_num_ig: 5.4972, pseudo_num_mining: 0.6972, pseudo_num(acc): 0.8685, pseudo_num ig(acc): 0.4757, loss: 1.4034
2021-10-31 14:36:40,672 - mmdet - INFO - Iter [4050/40000] lr: 2.000e-02, eta: 19:20:54, time: 8.607, data_time: 6.968, memory: 26481, loss_rpn_cls: 0.0441, loss_rpn_bbox: 0.0532, loss_cls: 0.2495, acc: 91.9269, loss_bbox: 0.2738, loss_rpn_cls_unlabeled: 0.0976, loss_rpn_bbox_unlabeled: 0.0975, loss_cls_unlabeled: 0.1972, acc_unlabeled: 91.6708, loss_bbox_unlabeled: 0.1849, losses_cls_ig_unlabeled: 0.1861, pseudo_num: 1.4919, pseudo_num_ig: 5.4987, pseudo_num_mining: 0.6981, pseudo_num(acc): 0.8684, pseudo_num ig(acc): 0.4757, loss: 1.3840
2021-10-31 14:38:05,847 - mmdet - INFO - Iter [4100/40000] lr: 2.000e-02, eta: 19:17:34, time: 1.703, data_time: 0.027, memory: 26481, loss_rpn_cls: 0.0456, loss_rpn_bbox: 0.0555, loss_cls: 0.2576, acc: 91.7130, loss_bbox: 0.2848, loss_rpn_cls_unlabeled: 0.0978, loss_rpn_bbox_unlabeled: 0.0997, loss_cls_unlabeled: 0.1933, acc_unlabeled: 91.6610, loss_bbox_unlabeled: 0.1705, losses_cls_ig_unlabeled: 0.1892, pseudo_num: 1.4926, pseudo_num_ig: 5.5008, pseudo_num_mining: 0.6993, pseudo_num(acc): 0.8684, pseudo_num ig(acc): 0.4758, loss: 1.3941
2021-10-31 14:39:31,229 - mmdet - INFO - Iter [4150/40000] lr: 2.000e-02, eta: 19:14:19, time: 1.706, data_time: 0.028, memory: 26481, loss_rpn_cls: 0.0430, loss_rpn_bbox: 0.0534, loss_cls: 0.2574, acc: 91.6937, loss_bbox: 0.2824, loss_rpn_cls_unlabeled: 0.0931, loss_rpn_bbox_unlabeled: 0.1040, loss_cls_unlabeled: 0.1924, acc_unlabeled: 91.7816, loss_bbox_unlabeled: 0.1711, losses_cls_ig_unlabeled: 0.1835, pseudo_num: 1.4922, pseudo_num_ig: 5.4997, pseudo_num_mining: 0.7003, pseudo_num(acc): 0.8684, pseudo_num ig(acc): 0.4759, loss: 1.3802
2021-10-31 14:40:57,603 - mmdet - INFO - Iter [4200/40000] lr: 2.000e-02, eta: 19:11:15, time: 1.727, data_time: 0.031, memory: 26481, loss_rpn_cls: 0.0467, loss_rpn_bbox: 0.0553, loss_cls: 0.2660, acc: 91.5188, loss_bbox: 0.2854, loss_rpn_cls_unlabeled: 0.0967, loss_rpn_bbox_unlabeled: 0.0983, loss_cls_unlabeled: 0.1930, acc_unlabeled: 91.7488, loss_bbox_unlabeled: 0.1731, losses_cls_ig_unlabeled: 0.1836, pseudo_num: 1.4919, pseudo_num_ig: 5.4994, pseudo_num_mining: 0.7011, pseudo_num(acc): 0.8685, pseudo_num ig(acc): 0.4761, loss: 1.3982
2021-10-31 14:42:22,226 - mmdet - INFO - Iter [4250/40000] lr: 2.000e-02, eta: 19:08:00, time: 1.695, data_time: 0.031, memory: 26481, loss_rpn_cls: 0.0438, loss_rpn_bbox: 0.0536, loss_cls: 0.2514, acc: 91.9067, loss_bbox: 0.2754, loss_rpn_cls_unlabeled: 0.1007, loss_rpn_bbox_unlabeled: 0.1020, loss_cls_unlabeled: 0.1937, acc_unlabeled: 91.7596, loss_bbox_unlabeled: 0.1778, losses_cls_ig_unlabeled: 0.1846, pseudo_num: 1.4921, pseudo_num_ig: 5.5014, pseudo_num_mining: 0.7029, pseudo_num(acc): 0.8686, pseudo_num ig(acc): 0.4763, loss: 1.3831
2021-10-31 14:43:48,686 - mmdet - INFO - Iter [4300/40000] lr: 2.000e-02, eta: 19:05:02, time: 1.729, data_time: 0.030, memory: 26482, loss_rpn_cls: 0.0439, loss_rpn_bbox: 0.0566, loss_cls: 0.2611, acc: 91.6353, loss_bbox: 0.2838, loss_rpn_cls_unlabeled: 0.0921, loss_rpn_bbox_unlabeled: 0.0985, loss_cls_unlabeled: 0.1925, acc_unlabeled: 91.9619, loss_bbox_unlabeled: 0.1722, losses_cls_ig_unlabeled: 0.1804, pseudo_num: 1.4928, pseudo_num_ig: 5.5026, pseudo_num_mining: 0.7047, pseudo_num(acc): 0.8685, pseudo_num ig(acc): 0.4765, loss: 1.3812
2021-10-31 14:45:13,530 - mmdet - INFO - Iter [4350/40000] lr: 2.000e-02, eta: 19:01:52, time: 1.696, data_time: 0.029, memory: 26482, loss_rpn_cls: 0.0447, loss_rpn_bbox: 0.0544, loss_cls: 0.2645, acc: 91.4420, loss_bbox: 0.2894, loss_rpn_cls_unlabeled: 0.0945, loss_rpn_bbox_unlabeled: 0.1003, loss_cls_unlabeled: 0.1949, acc_unlabeled: 91.5886, loss_bbox_unlabeled: 0.1766, losses_cls_ig_unlabeled: 0.1835, pseudo_num: 1.4922, pseudo_num_ig: 5.5017, pseudo_num_mining: 0.7058, pseudo_num(acc): 0.8687, pseudo_num ig(acc): 0.4765, loss: 1.4027
2021-10-31 14:46:40,209 - mmdet - INFO - Iter [4400/40000] lr: 2.000e-02, eta: 18:59:00, time: 1.734, data_time: 0.029, memory: 26482, loss_rpn_cls: 0.0470, loss_rpn_bbox: 0.0541, loss_cls: 0.2627, acc: 91.5956, loss_bbox: 0.2818, loss_rpn_cls_unlabeled: 0.0945, loss_rpn_bbox_unlabeled: 0.1009, loss_cls_unlabeled: 0.1944, acc_unlabeled: 91.4669, loss_bbox_unlabeled: 0.1803, losses_cls_ig_unlabeled: 0.1860, pseudo_num: 1.4920, pseudo_num_ig: 5.5018, pseudo_num_mining: 0.7068, pseudo_num(acc): 0.8687, pseudo_num ig(acc): 0.4766, loss: 1.4017
2021-10-31 14:48:04,641 - mmdet - INFO - Iter [4450/40000] lr: 2.000e-02, eta: 18:55:52, time: 1.688, data_time: 0.030, memory: 26482, loss_rpn_cls: 0.0451, loss_rpn_bbox: 0.0553, loss_cls: 0.2646, acc: 91.5302, loss_bbox: 0.2865, loss_rpn_cls_unlabeled: 0.0882, loss_rpn_bbox_unlabeled: 0.0971, loss_cls_unlabeled: 0.1994, acc_unlabeled: 91.5601, loss_bbox_unlabeled: 0.1774, losses_cls_ig_unlabeled: 0.1931, pseudo_num: 1.4920, pseudo_num_ig: 5.5036, pseudo_num_mining: 0.7081, pseudo_num(acc): 0.8688, pseudo_num ig(acc): 0.4767, loss: 1.4067
2021-10-31 14:49:28,722 - mmdet - INFO - pseudo pos: 0.98(8426.0-person) 0.91(205.0-bicycle) 0.94(1541.0-car) 0.99(295.0-motorcycle) 0.99(129.0-airplane) 0.99(166.0-bus) 0.99(175.0-train) 0.73(339.0-truck) 0.74(261.0-boat) 0.92(435.0-traffic light) 0.97(60.0-fire hydrant) 1.00(61.0-stop sign) 0.95(41.0-parking meter) 0.68(309.0-bench) 0.90(314.0-bird) 0.99(150.0-cat) 0.98(170.0-dog) 0.99(233.0-horse) 0.91(255.0-sheep) 0.95(197.0-cow) 1.00(163.0-elephant) 1.00(60.0-bear) 0.98(143.0-zebra) 0.99(152.0-giraffe) 0.49(319.0-backpack) 0.81(367.0-umbrella) 0.52(347.0-handbag) 0.93(162.0-tie) 0.79(182.0-suitcase) 1.00(66.0-frisbee) 0.67(217.0-skis) 0.75(77.0-snowboard) 0.98(168.0-sports ball) 0.93(231.0-kite) 0.88(114.0-baseball bat) 0.95(116.0-baseball glove) 0.98(192.0-skateboard) 0.89(194.0-surfboard) 0.97(117.0-tennis racket) 0.85(745.0-bottle) 0.96(181.0-wine glass) 0.90(699.0-cup) 0.70(171.0-fork) 0.47(296.0-knife) 0.49(200.0-spoon) 0.84(487.0-bowl) 0.70(300.0-banana) 0.56(167.0-apple) 0.82(172.0-sandwich) 0.71(248.0-orange) 0.71(224.0-broccoli) 0.53(251.0-carrot) 0.75(118.0-hot dog) 0.95(200.0-pizza) 0.93(199.0-donut) 0.85(181.0-cake) 0.78(1301.0-chair) 0.83(197.0-couch) 0.74(311.0-potted plant) 0.92(123.0-bed) 0.74(665.0-dining table) 0.95(111.0-toilet) 0.96(162.0-tv) 0.98(158.0-laptop) 0.96(77.0-mouse) 0.77(126.0-remote) 0.98(86.0-keyboard) 0.85(216.0-cell phone) 0.98(52.0-microwave) 0.87(124.0-oven) 0.00(0.0-toaster) 0.84(147.0-sink) 0.98(91.0-refrigerator) 0.36(654.0-book) 0.99(194.0-clock) 0.89(218.0-vase) 0.73(44.0-scissors) 0.95(152.0-teddy bear) 0.00(0.0-hair drier) 0.45(64.0-toothbrush)
2021-10-31 14:49:28,722 - mmdet - INFO - pseudo ig: 0.65(30152.0-person) 0.43(676.0-bicycle) 0.49(5223.0-car) 0.57(1046.0-motorcycle) 0.66(502.0-airplane) 0.66(606.0-bus) 0.61(496.0-train) 0.36(1169.0-truck) 0.37(1150.0-boat) 0.39(1779.0-traffic light) 0.69(218.0-fire hydrant) 0.61(253.0-stop sign) 0.38(156.0-parking meter) 0.22(1055.0-bench) 0.34(1137.0-bird) 0.77(547.0-cat) 0.68(570.0-dog) 0.60(769.0-horse) 0.50(1250.0-sheep) 0.52(1025.0-cow) 0.77(664.0-elephant) 0.64(174.0-bear) 0.76(666.0-zebra) 0.90(510.0-giraffe) 0.24(1075.0-backpack) 0.42(1265.0-umbrella) 0.20(1382.0-handbag) 0.38(614.0-tie) 0.39(667.0-suitcase) 0.62(292.0-frisbee) 0.37(830.0-skis) 0.29(312.0-snowboard) 0.37(829.0-sports ball) 0.53(981.0-kite) 0.37(430.0-baseball bat) 0.39(431.0-baseball glove) 0.53(627.0-skateboard) 0.42(746.0-surfboard) 0.63(547.0-tennis racket) 0.41(2969.0-bottle) 0.49(857.0-wine glass) 0.35(2860.0-cup) 0.28(658.0-fork) 0.19(1006.0-knife) 0.19(838.0-spoon) 0.39(1941.0-bowl) 0.28(1223.0-banana) 0.20(596.0-apple) 0.33(539.0-sandwich) 0.25(1016.0-orange) 0.41(928.0-broccoli) 0.23(979.0-carrot) 0.33(368.0-hot dog) 0.54(645.0-pizza) 0.39(896.0-donut) 0.38(692.0-cake) 0.30(4725.0-chair) 0.41(690.0-couch) 0.33(1057.0-potted plant) 0.47(431.0-bed) 0.35(1738.0-dining table) 0.67(467.0-toilet) 0.63(715.0-tv) 0.58(663.0-laptop) 0.35(320.0-mouse) 0.33(628.0-remote) 0.46(329.0-keyboard) 0.28(799.0-cell phone) 0.55(166.0-microwave) 0.36(463.0-oven) 0.00(0.0-toaster) 0.43(677.0-sink) 0.45(291.0-refrigerator) 0.19(2190.0-book) 0.58(674.0-clock) 0.38(872.0-vase) 0.21(160.0-scissors) 0.47(554.0-teddy bear) 0.00(0.0-hair drier) 0.15(224.0-toothbrush)
2021-10-31 14:49:28,722 - mmdet - INFO - pseudo gt: 40292.0 1023.0 6714.0 1450.0 724.0 990.0 693.0 1436.0 1465.0 2038.0 294.0 321.0 217.0 1529.0 1543.0 720.0 879.0 1051.0 1343.0 1169.0 878.0 206.0 874.0 741.0 1362.0 1730.0 1862.0 978.0 1029.0 394.0 1106.0 390.0 886.0 1480.0 486.0 587.0 903.0 806.0 721.0 3912.0 1204.0 3014.0 793.0 1325.0 925.0 2133.0 1342.0 818.0 648.0 982.0 1144.0 1128.0 431.0 861.0 1117.0 929.0 6104.0 917.0 1398.0 595.0 2449.0 623.0 921.0 809.0 350.0 882.0 437.0 1028.0 263.0 511.0 34.0 812.0 423.0 3682.0 916.0 1008.0 169.0 621.0 25.0 291.0
2021-10-31 14:49:28,722 - mmdet - INFO - pseudo mining: 6890.0 24.0 696.0 79.0 52.0 127.0 52.0 7.0 43.0 218.0 86.0 154.0 6.0 4.0 42.0 80.0 62.0 98.0 272.0 88.0 240.0 30.0 306.0 305.0 1.0 67.0 0.0 48.0 9.0 109.0 6.0 0.0 243.0 282.0 25.0 89.0 82.0 21.0 140.0 245.0 62.0 168.0 1.0 1.0 0.0 87.0 17.0 0.0 2.0 11.0 36.0 18.0 1.0 69.0 78.0 4.0 24.0 5.0 30.0 0.0 23.0 157.0 202.0 103.0 73.0 17.0 31.0 28.0 19.0 6.0 0.0 72.0 14.0 3.0 401.0 53.0 0.0 26.0 0.0 0.0
2021-10-31 14:49:30,252 - mmdet - INFO - Iter [4500/40000] lr: 2.000e-02, eta: 18:52:55, time: 1.713, data_time: 0.029, memory: 26482, loss_rpn_cls: 0.0420, loss_rpn_bbox: 0.0518, loss_cls: 0.2595, acc: 91.6217, loss_bbox: 0.2819, loss_rpn_cls_unlabeled: 0.1028, loss_rpn_bbox_unlabeled: 0.0978, loss_cls_unlabeled: 0.2045, acc_unlabeled: 91.5327, loss_bbox_unlabeled: 0.1855, losses_cls_ig_unlabeled: 0.1878, pseudo_num: 1.4923, pseudo_num_ig: 5.5027, pseudo_num_mining: 0.7093, pseudo_num(acc): 0.8688, pseudo_num ig(acc): 0.4767, loss: 1.4136
2021-10-31 14:50:54,035 - mmdet - INFO - Iter [4550/40000] lr: 2.000e-02, eta: 18:49:46, time: 1.676, data_time: 0.028, memory: 26482, loss_rpn_cls: 0.0425, loss_rpn_bbox: 0.0512, loss_cls: 0.2530, acc: 91.8373, loss_bbox: 0.2773, loss_rpn_cls_unlabeled: 0.0939, loss_rpn_bbox_unlabeled: 0.0925, loss_cls_unlabeled: 0.1892, acc_unlabeled: 91.9347, loss_bbox_unlabeled: 0.1724, losses_cls_ig_unlabeled: 0.1804, pseudo_num: 1.4924, pseudo_num_ig: 5.5003, pseudo_num_mining: 0.7102, pseudo_num(acc): 0.8689, pseudo_num ig(acc): 0.4768, loss: 1.3523
2021-10-31 14:52:19,548 - mmdet - INFO - Iter [4600/40000] lr: 2.000e-02, eta: 18:46:52, time: 1.707, data_time: 0.029, memory: 26482, loss_rpn_cls: 0.0446, loss_rpn_bbox: 0.0555, loss_cls: 0.2585, acc: 91.5730, loss_bbox: 0.2853, loss_rpn_cls_unlabeled: 0.0912, loss_rpn_bbox_unlabeled: 0.0975, loss_cls_unlabeled: 0.1904, acc_unlabeled: 91.9354, loss_bbox_unlabeled: 0.1784, losses_cls_ig_unlabeled: 0.1817, pseudo_num: 1.4924, pseudo_num_ig: 5.4976, pseudo_num_mining: 0.7107, pseudo_num(acc): 0.8690, pseudo_num ig(acc): 0.4769, loss: 1.3830
2021-10-31 14:53:44,087 - mmdet - INFO - Iter [4650/40000] lr: 2.000e-02, eta: 18:43:54, time: 1.694, data_time: 0.032, memory: 26482, loss_rpn_cls: 0.0422, loss_rpn_bbox: 0.0543, loss_cls: 0.2529, acc: 91.7969, loss_bbox: 0.2748, loss_rpn_cls_unlabeled: 0.0938, loss_rpn_bbox_unlabeled: 0.0991, loss_cls_unlabeled: 0.1981, acc_unlabeled: 91.8348, loss_bbox_unlabeled: 0.1810, losses_cls_ig_unlabeled: 0.1849, pseudo_num: 1.4923, pseudo_num_ig: 5.4976, pseudo_num_mining: 0.7119, pseudo_num(acc): 0.8690, pseudo_num ig(acc): 0.4770, loss: 1.3811
2021-10-31 14:55:09,531 - mmdet - INFO - Iter [4700/40000] lr: 2.000e-02, eta: 18:41:03, time: 1.705, data_time: 0.029, memory: 26482, loss_rpn_cls: 0.0441, loss_rpn_bbox: 0.0529, loss_cls: 0.2596, acc: 91.5880, loss_bbox: 0.2847, loss_rpn_cls_unlabeled: 0.0944, loss_rpn_bbox_unlabeled: 0.0960, loss_cls_unlabeled: 0.1972, acc_unlabeled: 91.7014, loss_bbox_unlabeled: 0.1790, losses_cls_ig_unlabeled: 0.1823, pseudo_num: 1.4929, pseudo_num_ig: 5.4986, pseudo_num_mining: 0.7131, pseudo_num(acc): 0.8691, pseudo_num ig(acc): 0.4770, loss: 1.3902
2021-10-31 14:56:36,226 - mmdet - INFO - Iter [4750/40000] lr: 2.000e-02, eta: 18:38:25, time: 1.738, data_time: 0.033, memory: 26482, loss_rpn_cls: 0.0463, loss_rpn_bbox: 0.0555, loss_cls: 0.2698, acc: 91.3717, loss_bbox: 0.2929, loss_rpn_cls_unlabeled: 0.0965, loss_rpn_bbox_unlabeled: 0.0992, loss_cls_unlabeled: 0.2086, acc_unlabeled: 91.3705, loss_bbox_unlabeled: 0.1877, losses_cls_ig_unlabeled: 0.1928, pseudo_num: 1.4931, pseudo_num_ig: 5.4979, pseudo_num_mining: 0.7142, pseudo_num(acc): 0.8694, pseudo_num ig(acc): 0.4772, loss: 1.4493
2021-10-31 14:58:01,133 - mmdet - INFO - Iter [4800/40000] lr: 2.000e-02, eta: 18:35:32, time: 1.691, data_time: 0.029, memory: 26482, loss_rpn_cls: 0.0433, loss_rpn_bbox: 0.0540, loss_cls: 0.2626, acc: 91.6460, loss_bbox: 0.2818, loss_rpn_cls_unlabeled: 0.0947, loss_rpn_bbox_unlabeled: 0.0989, loss_cls_unlabeled: 0.1860, acc_unlabeled: 91.8800, loss_bbox_unlabeled: 0.1676, losses_cls_ig_unlabeled: 0.1845, pseudo_num: 1.4937, pseudo_num_ig: 5.4990, pseudo_num_mining: 0.7155, pseudo_num(acc): 0.8695, pseudo_num ig(acc): 0.4772, loss: 1.3733
2021-10-31 14:59:26,584 - mmdet - INFO - Iter [4850/40000] lr: 2.000e-02, eta: 18:32:49, time: 1.714, data_time: 0.035, memory: 26482, loss_rpn_cls: 0.0451, loss_rpn_bbox: 0.0581, loss_cls: 0.2645, acc: 91.4580, loss_bbox: 0.2905, loss_rpn_cls_unlabeled: 0.0920, loss_rpn_bbox_unlabeled: 0.0999, loss_cls_unlabeled: 0.2010, acc_unlabeled: 91.7418, loss_bbox_unlabeled: 0.1811, losses_cls_ig_unlabeled: 0.1849, pseudo_num: 1.4937, pseudo_num_ig: 5.4986, pseudo_num_mining: 0.7166, pseudo_num(acc): 0.8696, pseudo_num ig(acc): 0.4772, loss: 1.4172
2021-10-31 15:00:50,438 - mmdet - INFO - Iter [4900/40000] lr: 2.000e-02, eta: 18:29:54, time: 1.675, data_time: 0.032, memory: 26482, loss_rpn_cls: 0.0440, loss_rpn_bbox: 0.0525, loss_cls: 0.2541, acc: 91.8442, loss_bbox: 0.2790, loss_rpn_cls_unlabeled: 0.0994, loss_rpn_bbox_unlabeled: 0.0989, loss_cls_unlabeled: 0.1896, acc_unlabeled: 91.9219, loss_bbox_unlabeled: 0.1764, losses_cls_ig_unlabeled: 0.1768, pseudo_num: 1.4945, pseudo_num_ig: 5.4978, pseudo_num_mining: 0.7176, pseudo_num(acc): 0.8697, pseudo_num ig(acc): 0.4773, loss: 1.3707
2021-10-31 15:02:15,613 - mmdet - INFO - Iter [4950/40000] lr: 2.000e-02, eta: 18:27:11, time: 1.704, data_time: 0.030, memory: 26482, loss_rpn_cls: 0.0443, loss_rpn_bbox: 0.0551, loss_cls: 0.2607, acc: 91.5616, loss_bbox: 0.2858, loss_rpn_cls_unlabeled: 0.1007, loss_rpn_bbox_unlabeled: 0.0990, loss_cls_unlabeled: 0.2012, acc_unlabeled: 91.6582, loss_bbox_unlabeled: 0.1849, losses_cls_ig_unlabeled: 0.1855, pseudo_num: 1.4955, pseudo_num_ig: 5.4971, pseudo_num_mining: 0.7183, pseudo_num(acc): 0.8697, pseudo_num ig(acc): 0.4773, loss: 1.4172
2021-10-31 15:03:39,460 - mmdet - INFO - pseudo pos: 0.98(9368.0-person) 0.92(225.0-bicycle) 0.94(1742.0-car) 0.99(322.0-motorcycle) 0.99(139.0-airplane) 0.99(192.0-bus) 0.99(194.0-train) 0.74(380.0-truck) 0.72(315.0-boat) 0.92(487.0-traffic light) 0.97(63.0-fire hydrant) 1.00(61.0-stop sign) 0.95(43.0-parking meter) 0.68(329.0-bench) 0.91(344.0-bird) 0.98(169.0-cat) 0.98(185.0-dog) 0.99(255.0-horse) 0.92(273.0-sheep) 0.95(224.0-cow) 1.00(173.0-elephant) 1.00(64.0-bear) 0.98(165.0-zebra) 0.99(182.0-giraffe) 0.50(349.0-backpack) 0.81(441.0-umbrella) 0.53(392.0-handbag) 0.93(180.0-tie) 0.78(198.0-suitcase) 1.00(71.0-frisbee) 0.68(246.0-skis) 0.76(84.0-snowboard) 0.98(178.0-sports ball) 0.91(274.0-kite) 0.89(128.0-baseball bat) 0.95(129.0-baseball glove) 0.98(204.0-skateboard) 0.89(216.0-surfboard) 0.98(132.0-tennis racket) 0.85(803.0-bottle) 0.96(210.0-wine glass) 0.90(789.0-cup) 0.70(181.0-fork) 0.48(314.0-knife) 0.48(230.0-spoon) 0.84(534.0-bowl) 0.69(339.0-banana) 0.52(192.0-apple) 0.83(192.0-sandwich) 0.72(259.0-orange) 0.72(268.0-broccoli) 0.55(291.0-carrot) 0.77(125.0-hot dog) 0.95(219.0-pizza) 0.94(220.0-donut) 0.85(197.0-cake) 0.78(1434.0-chair) 0.85(234.0-couch) 0.74(351.0-potted plant) 0.92(134.0-bed) 0.74(733.0-dining table) 0.95(118.0-toilet) 0.97(187.0-tv) 0.97(175.0-laptop) 0.97(91.0-mouse) 0.76(133.0-remote) 0.98(97.0-keyboard) 0.86(235.0-cell phone) 0.97(59.0-microwave) 0.88(140.0-oven) 0.00(0.0-toaster) 0.84(178.0-sink) 0.98(95.0-refrigerator) 0.35(736.0-book) 0.99(218.0-clock) 0.88(249.0-vase) 0.75(48.0-scissors) 0.94(167.0-teddy bear) 0.00(0.0-hair drier) 0.48(71.0-toothbrush)
2021-10-31 15:03:39,461 - mmdet - INFO - pseudo ig: 0.65(33389.0-person) 0.43(748.0-bicycle) 0.49(5882.0-car) 0.58(1143.0-motorcycle) 0.67(554.0-airplane) 0.66(704.0-bus) 0.60(576.0-train) 0.36(1319.0-truck) 0.36(1351.0-boat) 0.40(1939.0-traffic light) 0.71(242.0-fire hydrant) 0.60(278.0-stop sign) 0.39(166.0-parking meter) 0.23(1159.0-bench) 0.35(1217.0-bird) 0.77(594.0-cat) 0.68(622.0-dog) 0.60(844.0-horse) 0.50(1442.0-sheep) 0.52(1127.0-cow) 0.76(707.0-elephant) 0.63(195.0-bear) 0.77(727.0-zebra) 0.89(582.0-giraffe) 0.24(1175.0-backpack) 0.42(1438.0-umbrella) 0.20(1584.0-handbag) 0.40(678.0-tie) 0.40(734.0-suitcase) 0.60(316.0-frisbee) 0.37(894.0-skis) 0.30(338.0-snowboard) 0.37(938.0-sports ball) 0.52(1107.0-kite) 0.37(468.0-baseball bat) 0.39(492.0-baseball glove) 0.54(707.0-skateboard) 0.42(831.0-surfboard) 0.63(608.0-tennis racket) 0.41(3233.0-bottle) 0.49(940.0-wine glass) 0.35(3140.0-cup) 0.28(732.0-fork) 0.19(1075.0-knife) 0.18(926.0-spoon) 0.39(2179.0-bowl) 0.28(1368.0-banana) 0.20(706.0-apple) 0.34(626.0-sandwich) 0.26(1077.0-orange) 0.40(1082.0-broccoli) 0.22(1096.0-carrot) 0.33(390.0-hot dog) 0.54(718.0-pizza) 0.39(1036.0-donut) 0.38(784.0-cake) 0.30(5177.0-chair) 0.40(775.0-couch) 0.34(1176.0-potted plant) 0.47(468.0-bed) 0.35(1924.0-dining table) 0.67(525.0-toilet) 0.62(798.0-tv) 0.58(739.0-laptop) 0.34(355.0-mouse) 0.33(697.0-remote) 0.47(373.0-keyboard) 0.28(884.0-cell phone) 0.57(187.0-microwave) 0.35(511.0-oven) 0.00(0.0-toaster) 0.42(765.0-sink) 0.47(319.0-refrigerator) 0.18(2493.0-book) 0.58(779.0-clock) 0.38(990.0-vase) 0.22(173.0-scissors) 0.48(607.0-teddy bear) 0.00(0.0-hair drier) 0.15(234.0-toothbrush)
2021-10-31 15:03:39,461 - mmdet - INFO - pseudo gt: 44717.0 1167.0 7563.0 1640.0 792.0 1149.0 783.0 1631.0 1659.0 2301.0 327.0 348.0 232.0 1678.0 1685.0 787.0 953.0 1136.0 1563.0 1309.0 923.0 220.0 967.0 847.0 1512.0 1945.0 2069.0 1084.0 1159.0 432.0 1205.0 435.0 998.0 1662.0 537.0 653.0 997.0 888.0 812.0 4249.0 1343.0 3336.0 876.0 1415.0 1021.0 2380.0 1549.0 929.0 750.0 1104.0 1339.0 1228.0 493.0 938.0 1238.0 1024.0 6722.0 1022.0 1563.0 666.0 2708.0 708.0 1019.0 897.0 392.0 954.0 492.0 1126.0 289.0 577.0 38.0 900.0 463.0 4020.0 1038.0 1119.0 193.0 684.0 27.0 338.0
2021-10-31 15:03:39,461 - mmdet - INFO - pseudo mining: 7736.0 25.0 783.0 91.0 61.0 147.0 63.0 7.0 46.0 246.0 104.0 174.0 6.0 5.0 47.0 88.0 67.0 110.0 340.0 93.0 258.0 36.0 341.0 340.0 1.0 74.0 0.0 56.0 13.0 117.0 9.0 0.0 278.0 321.0 32.0 97.0 99.0 23.0 161.0 274.0 69.0 190.0 1.0 1.0 0.0 103.0 18.0 3.0 8.0 12.0 39.0 19.0 1.0 81.0 93.0 6.0 28.0 5.0 42.0 0.0 26.0 187.0 226.0 113.0 81.0 22.0 35.0 37.0 25.0 8.0 0.0 76.0 15.0 3.0 481.0 65.0 0.0 32.0 0.0 0.0
2021-10-31 15:05:10,677 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 15:05:10,677 - mmdet - INFO - Iter [5000/40000] lr: 2.000e-02, eta: 18:24:31, time: 1.709, data_time: 0.031, memory: 26482, loss_rpn_cls: 0.0456, loss_rpn_bbox: 0.0557, loss_cls: 0.2615, acc: 91.5739, loss_bbox: 0.2872, loss_rpn_cls_unlabeled: 0.0926, loss_rpn_bbox_unlabeled: 0.0996, loss_cls_unlabeled: 0.1962, acc_unlabeled: 91.7340, loss_bbox_unlabeled: 0.1776, losses_cls_ig_unlabeled: 0.1855, pseudo_num: 1.4959, pseudo_num_ig: 5.4974, pseudo_num_mining: 0.7193, pseudo_num(acc): 0.8696, pseudo_num ig(acc): 0.4772, loss: 1.4014
2021-10-31 15:06:34,880 - mmdet - INFO - Iter [5050/40000] lr: 2.000e-02, eta: 18:32:04, time: 3.475, data_time: 1.822, memory: 26482, loss_rpn_cls: 0.0478, loss_rpn_bbox: 0.0559, loss_cls: 0.2607, acc: 91.5756, loss_bbox: 0.2863, loss_rpn_cls_unlabeled: 0.0960, loss_rpn_bbox_unlabeled: 0.0957, loss_cls_unlabeled: 0.1904, acc_unlabeled: 91.6721, loss_bbox_unlabeled: 0.1710, losses_cls_ig_unlabeled: 0.1873, pseudo_num: 1.4954, pseudo_num_ig: 5.4962, pseudo_num_mining: 0.7199, pseudo_num(acc): 0.8696, pseudo_num ig(acc): 0.4773, loss: 1.3912
2021-10-31 15:08:00,338 - mmdet - INFO - Iter [5100/40000] lr: 2.000e-02, eta: 18:29:20, time: 1.710, data_time: 0.034, memory: 26482, loss_rpn_cls: 0.0436, loss_rpn_bbox: 0.0527, loss_cls: 0.2574, acc: 91.6890, loss_bbox: 0.2847, loss_rpn_cls_unlabeled: 0.0997, loss_rpn_bbox_unlabeled: 0.1050, loss_cls_unlabeled: 0.1909, acc_unlabeled: 91.6132, loss_bbox_unlabeled: 0.1741, losses_cls_ig_unlabeled: 0.1871, pseudo_num: 1.4951, pseudo_num_ig: 5.4974, pseudo_num_mining: 0.7207, pseudo_num(acc): 0.8696, pseudo_num ig(acc): 0.4773, loss: 1.3951
2021-10-31 15:09:25,105 - mmdet - INFO - Iter [5150/40000] lr: 2.000e-02, eta: 18:26:34, time: 1.698, data_time: 0.031, memory: 26482, loss_rpn_cls: 0.0427, loss_rpn_bbox: 0.0529, loss_cls: 0.2582, acc: 91.5916, loss_bbox: 0.2825, loss_rpn_cls_unlabeled: 0.0957, loss_rpn_bbox_unlabeled: 0.1001, loss_cls_unlabeled: 0.2043, acc_unlabeled: 91.4648, loss_bbox_unlabeled: 0.1818, losses_cls_ig_unlabeled: 0.1898, pseudo_num: 1.4950, pseudo_num_ig: 5.4996, pseudo_num_mining: 0.7220, pseudo_num(acc): 0.8698, pseudo_num ig(acc): 0.4773, loss: 1.4081
2021-10-31 15:10:52,360 - mmdet - INFO - Iter [5200/40000] lr: 2.000e-02, eta: 18:24:04, time: 1.741, data_time: 0.028, memory: 26482, loss_rpn_cls: 0.0433, loss_rpn_bbox: 0.0531, loss_cls: 0.2571, acc: 91.7914, loss_bbox: 0.2816, loss_rpn_cls_unlabeled: 0.0972, loss_rpn_bbox_unlabeled: 0.0972, loss_cls_unlabeled: 0.1913, acc_unlabeled: 91.7405, loss_bbox_unlabeled: 0.1728, losses_cls_ig_unlabeled: 0.1875, pseudo_num: 1.4951, pseudo_num_ig: 5.5020, pseudo_num_mining: 0.7237, pseudo_num(acc): 0.8699, pseudo_num ig(acc): 0.4774, loss: 1.3810
2021-10-31 15:12:18,508 - mmdet - INFO - Iter [5250/40000] lr: 2.000e-02, eta: 18:21:30, time: 1.727, data_time: 0.033, memory: 26482, loss_rpn_cls: 0.0425, loss_rpn_bbox: 0.0522, loss_cls: 0.2539, acc: 91.7246, loss_bbox: 0.2810, loss_rpn_cls_unlabeled: 0.1022, loss_rpn_bbox_unlabeled: 0.0967, loss_cls_unlabeled: 0.1824, acc_unlabeled: 91.7048, loss_bbox_unlabeled: 0.1686, losses_cls_ig_unlabeled: 0.1846, pseudo_num: 1.4945, pseudo_num_ig: 5.5028, pseudo_num_mining: 0.7246, pseudo_num(acc): 0.8701, pseudo_num ig(acc): 0.4774, loss: 1.3642
2021-10-31 15:13:43,670 - mmdet - INFO - Iter [5300/40000] lr: 2.000e-02, eta: 18:18:49, time: 1.700, data_time: 0.028, memory: 26482, loss_rpn_cls: 0.0427, loss_rpn_bbox: 0.0549, loss_cls: 0.2617, acc: 91.5343, loss_bbox: 0.2890, loss_rpn_cls_unlabeled: 0.0938, loss_rpn_bbox_unlabeled: 0.0980, loss_cls_unlabeled: 0.1841, acc_unlabeled: 91.8761, loss_bbox_unlabeled: 0.1717, losses_cls_ig_unlabeled: 0.1786, pseudo_num: 1.4939, pseudo_num_ig: 5.5029, pseudo_num_mining: 0.7257, pseudo_num(acc): 0.8703, pseudo_num ig(acc): 0.4774, loss: 1.3744
2021-10-31 15:15:08,141 - mmdet - INFO - Iter [5350/40000] lr: 2.000e-02, eta: 18:16:06, time: 1.692, data_time: 0.031, memory: 26482, loss_rpn_cls: 0.0440, loss_rpn_bbox: 0.0529, loss_cls: 0.2546, acc: 91.6947, loss_bbox: 0.2831, loss_rpn_cls_unlabeled: 0.0978, loss_rpn_bbox_unlabeled: 0.1034, loss_cls_unlabeled: 0.1944, acc_unlabeled: 91.5463, loss_bbox_unlabeled: 0.1773, losses_cls_ig_unlabeled: 0.1852, pseudo_num: 1.4938, pseudo_num_ig: 5.5058, pseudo_num_mining: 0.7270, pseudo_num(acc): 0.8705, pseudo_num ig(acc): 0.4774, loss: 1.3926
2021-10-31 15:16:32,583 - mmdet - INFO - Iter [5400/40000] lr: 2.000e-02, eta: 18:13:24, time: 1.686, data_time: 0.029, memory: 26482, loss_rpn_cls: 0.0425, loss_rpn_bbox: 0.0523, loss_cls: 0.2500, acc: 91.8688, loss_bbox: 0.2756, loss_rpn_cls_unlabeled: 0.0922, loss_rpn_bbox_unlabeled: 0.0986, loss_cls_unlabeled: 0.1897, acc_unlabeled: 91.9044, loss_bbox_unlabeled: 0.1788, losses_cls_ig_unlabeled: 0.1746, pseudo_num: 1.4939, pseudo_num_ig: 5.5062, pseudo_num_mining: 0.7278, pseudo_num(acc): 0.8705, pseudo_num ig(acc): 0.4773, loss: 1.3542
2021-10-31 15:17:59,616 - mmdet - INFO - Iter [5450/40000] lr: 2.000e-02, eta: 18:11:00, time: 1.743, data_time: 0.033, memory: 26482, loss_rpn_cls: 0.0430, loss_rpn_bbox: 0.0538, loss_cls: 0.2616, acc: 91.5475, loss_bbox: 0.2868, loss_rpn_cls_unlabeled: 0.0930, loss_rpn_bbox_unlabeled: 0.1011, loss_cls_unlabeled: 0.1979, acc_unlabeled: 91.6274, loss_bbox_unlabeled: 0.1838, losses_cls_ig_unlabeled: 0.1817, pseudo_num: 1.4940, pseudo_num_ig: 5.5068, pseudo_num_mining: 0.7285, pseudo_num(acc): 0.8707, pseudo_num ig(acc): 0.4774, loss: 1.4027
2021-10-31 15:19:23,875 - mmdet - INFO - pseudo pos: 0.98(10299.0-person) 0.92(259.0-bicycle) 0.94(1874.0-car) 0.99(339.0-motorcycle) 0.99(159.0-airplane) 1.00(203.0-bus) 0.99(214.0-train) 0.74(414.0-truck) 0.73(353.0-boat) 0.92(533.0-traffic light) 0.97(67.0-fire hydrant) 1.00(70.0-stop sign) 0.95(44.0-parking meter) 0.68(365.0-bench) 0.90(391.0-bird) 0.98(179.0-cat) 0.98(194.0-dog) 0.99(279.0-horse) 0.93(316.0-sheep) 0.95(250.0-cow) 1.00(189.0-elephant) 1.00(73.0-bear) 0.98(181.0-zebra) 0.99(211.0-giraffe) 0.51(372.0-backpack) 0.81(489.0-umbrella) 0.54(420.0-handbag) 0.93(206.0-tie) 0.80(215.0-suitcase) 1.00(74.0-frisbee) 0.68(271.0-skis) 0.75(88.0-snowboard) 0.98(208.0-sports ball) 0.92(317.0-kite) 0.89(136.0-baseball bat) 0.96(138.0-baseball glove) 0.98(231.0-skateboard) 0.90(230.0-surfboard) 0.98(155.0-tennis racket) 0.85(909.0-bottle) 0.96(251.0-wine glass) 0.90(874.0-cup) 0.70(196.0-fork) 0.47(345.0-knife) 0.49(251.0-spoon) 0.85(573.0-bowl) 0.69(347.0-banana) 0.53(206.0-apple) 0.84(215.0-sandwich) 0.73(276.0-orange) 0.72(288.0-broccoli) 0.55(324.0-carrot) 0.78(138.0-hot dog) 0.94(236.0-pizza) 0.94(245.0-donut) 0.85(222.0-cake) 0.79(1550.0-chair) 0.85(259.0-couch) 0.75(382.0-potted plant) 0.92(144.0-bed) 0.73(800.0-dining table) 0.96(135.0-toilet) 0.97(197.0-tv) 0.97(190.0-laptop) 0.97(97.0-mouse) 0.75(149.0-remote) 0.98(102.0-keyboard) 0.85(264.0-cell phone) 0.97(61.0-microwave) 0.89(150.0-oven) 0.00(0.0-toaster) 0.85(205.0-sink) 0.97(106.0-refrigerator) 0.35(810.0-book) 0.99(231.0-clock) 0.88(268.0-vase) 0.76(55.0-scissors) 0.94(188.0-teddy bear) 0.00(0.0-hair drier) 0.47(75.0-toothbrush)
2021-10-31 15:19:23,875 - mmdet - INFO - pseudo ig: 0.65(36987.0-person) 0.43(851.0-bicycle) 0.49(6449.0-car) 0.58(1248.0-motorcycle) 0.67(615.0-airplane) 0.67(767.0-bus) 0.60(621.0-train) 0.37(1424.0-truck) 0.36(1527.0-boat) 0.40(2101.0-traffic light) 0.72(261.0-fire hydrant) 0.59(309.0-stop sign) 0.36(185.0-parking meter) 0.22(1300.0-bench) 0.32(1524.0-bird) 0.76(665.0-cat) 0.68(703.0-dog) 0.60(922.0-horse) 0.52(1617.0-sheep) 0.52(1232.0-cow) 0.76(779.0-elephant) 0.64(212.0-bear) 0.76(799.0-zebra) 0.90(646.0-giraffe) 0.23(1290.0-backpack) 0.41(1733.0-umbrella) 0.20(1747.0-handbag) 0.40(775.0-tie) 0.42(810.0-suitcase) 0.60(356.0-frisbee) 0.36(992.0-skis) 0.29(372.0-snowboard) 0.38(1034.0-sports ball) 0.52(1234.0-kite) 0.37(515.0-baseball bat) 0.40(553.0-baseball glove) 0.54(776.0-skateboard) 0.42(913.0-surfboard) 0.64(676.0-tennis racket) 0.41(3521.0-bottle) 0.47(1064.0-wine glass) 0.35(3443.0-cup) 0.29(804.0-fork) 0.19(1195.0-knife) 0.18(1012.0-spoon) 0.39(2371.0-bowl) 0.28(1487.0-banana) 0.20(772.0-apple) 0.34(695.0-sandwich) 0.26(1166.0-orange) 0.40(1184.0-broccoli) 0.22(1207.0-carrot) 0.33(424.0-hot dog) 0.54(771.0-pizza) 0.39(1100.0-donut) 0.36(894.0-cake) 0.31(5697.0-chair) 0.39(885.0-couch) 0.34(1322.0-potted plant) 0.48(524.0-bed) 0.35(2117.0-dining table) 0.68(564.0-toilet) 0.62(854.0-tv) 0.57(810.0-laptop) 0.35(387.0-mouse) 0.33(775.0-remote) 0.47(406.0-keyboard) 0.27(993.0-cell phone) 0.58(199.0-microwave) 0.35(549.0-oven) 0.00(0.0-toaster) 0.42(827.0-sink) 0.46(357.0-refrigerator) 0.18(2782.0-book) 0.58(849.0-clock) 0.38(1064.0-vase) 0.21(197.0-scissors) 0.47(672.0-teddy bear) 0.00(0.0-hair drier) 0.16(251.0-toothbrush)
2021-10-31 15:19:23,876 - mmdet - INFO - pseudo gt: 49112.0 1323.0 8272.0 1762.0 873.0 1239.0 846.0 1770.0 1852.0 2496.0 362.0 379.0 247.0 1874.0 1940.0 854.0 1054.0 1269.0 1799.0 1421.0 1010.0 247.0 1052.0 950.0 1636.0 2229.0 2237.0 1232.0 1279.0 478.0 1298.0 492.0 1143.0 1858.0 580.0 711.0 1081.0 977.0 933.0 4617.0 1476.0 3707.0 961.0 1520.0 1103.0 2601.0 1673.0 1008.0 862.0 1211.0 1469.0 1371.0 530.0 1023.0 1313.0 1141.0 7409.0 1131.0 1725.0 729.0 2983.0 777.0 1113.0 973.0 424.0 1042.0 526.0 1212.0 321.0 633.0 43.0 986.0 504.0 4447.0 1131.0 1224.0 213.0 747.0 27.0 371.0
2021-10-31 15:19:23,876 - mmdet - INFO - pseudo mining: 8655.0 30.0 847.0 97.0 71.0 167.0 68.0 7.0 52.0 266.0 115.0 190.0 6.0 5.0 57.0 101.0 78.0 126.0 383.0 103.0 292.0 42.0 374.0 379.0 1.0 102.0 0.0 64.0 17.0 136.0 11.0 0.0 308.0 361.0 36.0 120.0 112.0 24.0 190.0 298.0 75.0 212.0 1.0 1.0 0.0 126.0 21.0 10.0 8.0 15.0 39.0 22.0 1.0 88.0 96.0 9.0 33.0 5.0 46.0 2.0 27.0 203.0 252.0 121.0 91.0 23.0 42.0 40.0 29.0 10.0 0.0 80.0 17.0 3.0 529.0 72.0 0.0 35.0 0.0 0.0
2021-10-31 15:19:25,472 - mmdet - INFO - Iter [5500/40000] lr: 2.000e-02, eta: 18:08:29, time: 1.715, data_time: 0.030, memory: 26482, loss_rpn_cls: 0.0437, loss_rpn_bbox: 0.0538, loss_cls: 0.2609, acc: 91.5520, loss_bbox: 0.2853, loss_rpn_cls_unlabeled: 0.0977, loss_rpn_bbox_unlabeled: 0.0978, loss_cls_unlabeled: 0.1950, acc_unlabeled: 91.5262, loss_bbox_unlabeled: 0.1702, losses_cls_ig_unlabeled: 0.1887, pseudo_num: 1.4940, pseudo_num_ig: 5.5084, pseudo_num_mining: 0.7295, pseudo_num(acc): 0.8708, pseudo_num ig(acc): 0.4773, loss: 1.3931
2021-10-31 15:20:52,515 - mmdet - INFO - Iter [5550/40000] lr: 2.000e-02, eta: 18:06:07, time: 1.742, data_time: 0.033, memory: 26482, loss_rpn_cls: 0.0413, loss_rpn_bbox: 0.0530, loss_cls: 0.2469, acc: 91.8892, loss_bbox: 0.2764, loss_rpn_cls_unlabeled: 0.0958, loss_rpn_bbox_unlabeled: 0.1009, loss_cls_unlabeled: 0.1938, acc_unlabeled: 91.6447, loss_bbox_unlabeled: 0.1744, losses_cls_ig_unlabeled: 0.1898, pseudo_num: 1.4941, pseudo_num_ig: 5.5101, pseudo_num_mining: 0.7306, pseudo_num(acc): 0.8710, pseudo_num ig(acc): 0.4773, loss: 1.3724
2021-10-31 15:22:16,085 - mmdet - INFO - Iter [5600/40000] lr: 2.000e-02, eta: 18:03:26, time: 1.674, data_time: 0.031, memory: 26482, loss_rpn_cls: 0.0438, loss_rpn_bbox: 0.0536, loss_cls: 0.2518, acc: 91.9055, loss_bbox: 0.2727, loss_rpn_cls_unlabeled: 0.1013, loss_rpn_bbox_unlabeled: 0.0995, loss_cls_unlabeled: 0.1954, acc_unlabeled: 91.6805, loss_bbox_unlabeled: 0.1824, losses_cls_ig_unlabeled: 0.1850, pseudo_num: 1.4945, pseudo_num_ig: 5.5107, pseudo_num_mining: 0.7318, pseudo_num(acc): 0.8712, pseudo_num ig(acc): 0.4774, loss: 1.3856
2021-10-31 15:23:40,628 - mmdet - INFO - Iter [5650/40000] lr: 2.000e-02, eta: 18:00:49, time: 1.683, data_time: 0.030, memory: 26482, loss_rpn_cls: 0.0416, loss_rpn_bbox: 0.0524, loss_cls: 0.2521, acc: 91.7367, loss_bbox: 0.2812, loss_rpn_cls_unlabeled: 0.1001, loss_rpn_bbox_unlabeled: 0.1019, loss_cls_unlabeled: 0.1879, acc_unlabeled: 91.5234, loss_bbox_unlabeled: 0.1715, losses_cls_ig_unlabeled: 0.1846, pseudo_num: 1.4949, pseudo_num_ig: 5.5133, pseudo_num_mining: 0.7328, pseudo_num(acc): 0.8713, pseudo_num ig(acc): 0.4774, loss: 1.3733
2021-10-31 15:25:06,244 - mmdet - INFO - Iter [5700/40000] lr: 2.000e-02, eta: 17:58:23, time: 1.718, data_time: 0.037, memory: 26482, loss_rpn_cls: 0.0428, loss_rpn_bbox: 0.0540, loss_cls: 0.2541, acc: 91.7545, loss_bbox: 0.2836, loss_rpn_cls_unlabeled: 0.0963, loss_rpn_bbox_unlabeled: 0.1028, loss_cls_unlabeled: 0.1998, acc_unlabeled: 91.4885, loss_bbox_unlabeled: 0.1847, losses_cls_ig_unlabeled: 0.1832, pseudo_num: 1.4951, pseudo_num_ig: 5.5157, pseudo_num_mining: 0.7335, pseudo_num(acc): 0.8715, pseudo_num ig(acc): 0.4774, loss: 1.4013
2021-10-31 15:26:31,579 - mmdet - INFO - Iter [5750/40000] lr: 2.000e-02, eta: 17:55:55, time: 1.707, data_time: 0.030, memory: 26482, loss_rpn_cls: 0.0443, loss_rpn_bbox: 0.0554, loss_cls: 0.2608, acc: 91.5239, loss_bbox: 0.2892, loss_rpn_cls_unlabeled: 0.0967, loss_rpn_bbox_unlabeled: 0.1015, loss_cls_unlabeled: 0.1929, acc_unlabeled: 91.5485, loss_bbox_unlabeled: 0.1754, losses_cls_ig_unlabeled: 0.1874, pseudo_num: 1.4953, pseudo_num_ig: 5.5165, pseudo_num_mining: 0.7341, pseudo_num(acc): 0.8717, pseudo_num ig(acc): 0.4774, loss: 1.4037
2021-10-31 15:27:55,093 - mmdet - INFO - Iter [5800/40000] lr: 2.000e-02, eta: 17:53:17, time: 1.668, data_time: 0.031, memory: 26482, loss_rpn_cls: 0.0420, loss_rpn_bbox: 0.0524, loss_cls: 0.2582, acc: 91.7578, loss_bbox: 0.2793, loss_rpn_cls_unlabeled: 0.0928, loss_rpn_bbox_unlabeled: 0.1012, loss_cls_unlabeled: 0.2001, acc_unlabeled: 91.4562, loss_bbox_unlabeled: 0.1852, losses_cls_ig_unlabeled: 0.1855, pseudo_num: 1.4954, pseudo_num_ig: 5.5170, pseudo_num_mining: 0.7348, pseudo_num(acc): 0.8717, pseudo_num ig(acc): 0.4774, loss: 1.3968
2021-10-31 15:29:19,516 - mmdet - INFO - Iter [5850/40000] lr: 2.000e-02, eta: 17:50:47, time: 1.691, data_time: 0.032, memory: 26482, loss_rpn_cls: 0.0422, loss_rpn_bbox: 0.0535, loss_cls: 0.2580, acc: 91.6506, loss_bbox: 0.2849, loss_rpn_cls_unlabeled: 0.0975, loss_rpn_bbox_unlabeled: 0.0973, loss_cls_unlabeled: 0.1929, acc_unlabeled: 91.7450, loss_bbox_unlabeled: 0.1726, losses_cls_ig_unlabeled: 0.1881, pseudo_num: 1.4955, pseudo_num_ig: 5.5177, pseudo_num_mining: 0.7356, pseudo_num(acc): 0.8719, pseudo_num ig(acc): 0.4775, loss: 1.3869
2021-10-31 15:30:44,471 - mmdet - INFO - Iter [5900/40000] lr: 2.000e-02, eta: 17:48:20, time: 1.697, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0412, loss_rpn_bbox: 0.0508, loss_cls: 0.2499, acc: 91.8658, loss_bbox: 0.2778, loss_rpn_cls_unlabeled: 0.0954, loss_rpn_bbox_unlabeled: 0.1011, loss_cls_unlabeled: 0.1886, acc_unlabeled: 91.6018, loss_bbox_unlabeled: 0.1744, losses_cls_ig_unlabeled: 0.1872, pseudo_num: 1.4952, pseudo_num_ig: 5.5194, pseudo_num_mining: 0.7369, pseudo_num(acc): 0.8719, pseudo_num ig(acc): 0.4775, loss: 1.3665
2021-10-31 15:32:10,293 - mmdet - INFO - Iter [5950/40000] lr: 2.000e-02, eta: 17:45:58, time: 1.714, data_time: 0.033, memory: 26484, loss_rpn_cls: 0.0419, loss_rpn_bbox: 0.0519, loss_cls: 0.2516, acc: 91.8132, loss_bbox: 0.2796, loss_rpn_cls_unlabeled: 0.0988, loss_rpn_bbox_unlabeled: 0.1036, loss_cls_unlabeled: 0.1992, acc_unlabeled: 91.4508, loss_bbox_unlabeled: 0.1829, losses_cls_ig_unlabeled: 0.1936, pseudo_num: 1.4949, pseudo_num_ig: 5.5219, pseudo_num_mining: 0.7387, pseudo_num(acc): 0.8720, pseudo_num ig(acc): 0.4777, loss: 1.4033
2021-10-31 15:33:36,019 - mmdet - INFO - pseudo pos: 0.98(11332.0-person) 0.92(288.0-bicycle) 0.94(2017.0-car) 0.99(366.0-motorcycle) 0.99(183.0-airplane) 1.00(218.0-bus) 0.99(231.0-train) 0.75(445.0-truck) 0.74(398.0-boat) 0.92(573.0-traffic light) 0.97(69.0-fire hydrant) 1.00(76.0-stop sign) 0.94(48.0-parking meter) 0.68(404.0-bench) 0.90(420.0-bird) 0.98(192.0-cat) 0.99(204.0-dog) 0.99(301.0-horse) 0.93(348.0-sheep) 0.95(296.0-cow) 1.00(206.0-elephant) 1.00(77.0-bear) 0.98(203.0-zebra) 0.99(225.0-giraffe) 0.51(385.0-backpack) 0.81(523.0-umbrella) 0.52(480.0-handbag) 0.94(224.0-tie) 0.81(236.0-suitcase) 1.00(86.0-frisbee) 0.68(309.0-skis) 0.76(90.0-snowboard) 0.96(236.0-sports ball) 0.92(339.0-kite) 0.90(154.0-baseball bat) 0.95(151.0-baseball glove) 0.98(254.0-skateboard) 0.90(263.0-surfboard) 0.98(168.0-tennis racket) 0.85(1001.0-bottle) 0.97(277.0-wine glass) 0.90(961.0-cup) 0.71(207.0-fork) 0.48(390.0-knife) 0.50(280.0-spoon) 0.85(619.0-bowl) 0.69(393.0-banana) 0.53(209.0-apple) 0.84(235.0-sandwich) 0.73(292.0-orange) 0.72(318.0-broccoli) 0.56(350.0-carrot) 0.78(145.0-hot dog) 0.95(256.0-pizza) 0.94(267.0-donut) 0.85(252.0-cake) 0.79(1660.0-chair) 0.85(279.0-couch) 0.74(423.0-potted plant) 0.92(147.0-bed) 0.73(885.0-dining table) 0.95(151.0-toilet) 0.97(214.0-tv) 0.96(200.0-laptop) 0.97(105.0-mouse) 0.75(168.0-remote) 0.98(115.0-keyboard) 0.85(287.0-cell phone) 0.97(66.0-microwave) 0.88(163.0-oven) 0.00(0.0-toaster) 0.85(226.0-sink) 0.98(122.0-refrigerator) 0.34(875.0-book) 0.99(244.0-clock) 0.89(282.0-vase) 0.75(64.0-scissors) 0.93(214.0-teddy bear) 0.00(0.0-hair drier) 0.47(79.0-toothbrush)
2021-10-31 15:33:36,019 - mmdet - INFO - pseudo ig: 0.64(40513.0-person) 0.43(932.0-bicycle) 0.49(6975.0-car) 0.58(1342.0-motorcycle) 0.67(667.0-airplane) 0.68(815.0-bus) 0.59(689.0-train) 0.37(1557.0-truck) 0.36(1648.0-boat) 0.40(2279.0-traffic light) 0.74(280.0-fire hydrant) 0.59(341.0-stop sign) 0.36(216.0-parking meter) 0.22(1447.0-bench) 0.32(1628.0-bird) 0.76(744.0-cat) 0.68(783.0-dog) 0.61(995.0-horse) 0.53(1736.0-sheep) 0.53(1380.0-cow) 0.76(848.0-elephant) 0.64(231.0-bear) 0.76(875.0-zebra) 0.89(707.0-giraffe) 0.24(1419.0-backpack) 0.41(1864.0-umbrella) 0.20(1961.0-handbag) 0.41(832.0-tie) 0.41(880.0-suitcase) 0.61(389.0-frisbee) 0.35(1116.0-skis) 0.30(398.0-snowboard) 0.39(1108.0-sports ball) 0.52(1313.0-kite) 0.37(558.0-baseball bat) 0.42(604.0-baseball glove) 0.54(850.0-skateboard) 0.42(1013.0-surfboard) 0.64(725.0-tennis racket) 0.41(3859.0-bottle) 0.47(1146.0-wine glass) 0.35(3836.0-cup) 0.29(882.0-fork) 0.19(1334.0-knife) 0.18(1120.0-spoon) 0.40(2594.0-bowl) 0.28(1685.0-banana) 0.21(822.0-apple) 0.34(749.0-sandwich) 0.26(1225.0-orange) 0.40(1284.0-broccoli) 0.22(1307.0-carrot) 0.33(448.0-hot dog) 0.55(830.0-pizza) 0.38(1219.0-donut) 0.36(999.0-cake) 0.31(6202.0-chair) 0.39(981.0-couch) 0.34(1483.0-potted plant) 0.50(574.0-bed) 0.35(2311.0-dining table) 0.69(615.0-toilet) 0.62(918.0-tv) 0.58(859.0-laptop) 0.37(410.0-mouse) 0.33(839.0-remote) 0.47(446.0-keyboard) 0.27(1084.0-cell phone) 0.59(211.0-microwave) 0.36(598.0-oven) 0.00(0.0-toaster) 0.42(913.0-sink) 0.45(391.0-refrigerator) 0.18(3046.0-book) 0.60(930.0-clock) 0.39(1143.0-vase) 0.22(222.0-scissors) 0.49(747.0-teddy bear) 0.00(0.0-hair drier) 0.16(271.0-toothbrush)
2021-10-31 15:33:36,019 - mmdet - INFO - pseudo gt: 53679.0 1428.0 8925.0 1881.0 953.0 1317.0 917.0 1940.0 2024.0 2665.0 388.0 421.0 266.0 2030.0 2056.0 949.0 1144.0 1363.0 1979.0 1621.0 1097.0 274.0 1156.0 1026.0 1801.0 2387.0 2427.0 1332.0 1358.0 532.0 1421.0 531.0 1237.0 2007.0 628.0 791.0 1189.0 1080.0 999.0 5053.0 1595.0 4098.0 1072.0 1668.0 1244.0 2869.0 1851.0 1092.0 927.0 1285.0 1620.0 1508.0 558.0 1127.0 1402.0 1264.0 8095.0 1233.0 1919.0 792.0 3281.0 851.0 1224.0 1036.0 464.0 1134.0 576.0 1326.0 346.0 691.0 51.0 1077.0 560.0 4802.0 1239.0 1325.0 229.0 865.0 29.0 389.0
2021-10-31 15:33:36,019 - mmdet - INFO - pseudo mining: 9588.0 31.0 921.0 111.0 77.0 186.0 75.0 8.0 56.0 286.0 128.0 204.0 7.0 5.0 58.0 118.0 90.0 140.0 406.0 119.0 323.0 47.0 407.0 416.0 1.0 109.0 0.0 69.0 20.0 149.0 16.0 0.0 345.0 395.0 41.0 142.0 124.0 29.0 211.0 336.0 82.0 245.0 2.0 1.0 0.0 146.0 26.0 12.0 8.0 18.0 43.0 23.0 1.0 97.0 112.0 11.0 37.0 5.0 54.0 2.0 32.0 223.0 283.0 128.0 103.0 24.0 49.0 43.0 34.0 11.0 0.0 87.0 17.0 3.0 592.0 78.0 0.0 37.0 0.0 0.0
2021-10-31 15:34:32,823 - mmdet - INFO - Evaluating bbox...
2021-10-31 15:35:45,755 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.433 | bicycle | 0.198 | car | 0.338 |
| motorcycle | 0.284 | airplane | 0.428 | bus | 0.463 |
| train | 0.419 | truck | 0.213 | boat | 0.148 |
| traffic light | 0.214 | fire hydrant | 0.485 | stop sign | 0.519 |
| parking meter | 0.379 | bench | 0.140 | bird | 0.232 |
| cat | 0.452 | dog | 0.412 | horse | 0.392 |
| sheep | 0.346 | cow | 0.396 | elephant | 0.467 |
| bear | 0.532 | zebra | 0.501 | giraffe | 0.547 |
| backpack | 0.073 | umbrella | 0.232 | handbag | 0.064 |
| tie | 0.184 | suitcase | 0.150 | frisbee | 0.505 |
| skis | 0.118 | snowboard | 0.139 | sports ball | 0.352 |
| kite | 0.285 | baseball bat | 0.147 | baseball glove | 0.256 |
| skateboard | 0.329 | surfboard | 0.198 | tennis racket | 0.308 |
| bottle | 0.290 | wine glass | 0.247 | cup | 0.309 |
| fork | 0.126 | knife | 0.071 | spoon | 0.053 |
| bowl | 0.324 | banana | 0.145 | apple | 0.112 |
| sandwich | 0.228 | orange | 0.209 | broccoli | 0.145 |
| carrot | 0.068 | hot dog | 0.119 | pizza | 0.380 |
| donut | 0.284 | cake | 0.195 | chair | 0.159 |
| couch | 0.259 | potted plant | 0.154 | bed | 0.262 |
| dining table | 0.164 | toilet | 0.429 | tv | 0.427 |
| laptop | 0.427 | mouse | 0.447 | remote | 0.151 |
| keyboard | 0.323 | cell phone | 0.224 | microwave | 0.372 |
| oven | 0.177 | toaster | 0.103 | sink | 0.228 |
| refrigerator | 0.316 | book | 0.040 | clock | 0.406 |
| vase | 0.268 | scissors | 0.125 | teddy bear | 0.291 |
| hair drier | 0.000 | toothbrush | 0.060 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 15:36:45,202 - mmdet - INFO - Evaluating bbox...
2021-10-31 15:37:57,718 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.454 | bicycle | 0.209 | car | 0.363 |
| motorcycle | 0.315 | airplane | 0.492 | bus | 0.524 |
| train | 0.466 | truck | 0.220 | boat | 0.181 |
| traffic light | 0.231 | fire hydrant | 0.543 | stop sign | 0.557 |
| parking meter | 0.407 | bench | 0.155 | bird | 0.259 |
| cat | 0.496 | dog | 0.441 | horse | 0.435 |
| sheep | 0.372 | cow | 0.427 | elephant | 0.514 |
| bear | 0.555 | zebra | 0.542 | giraffe | 0.552 |
| backpack | 0.093 | umbrella | 0.251 | handbag | 0.071 |
| tie | 0.211 | suitcase | 0.183 | frisbee | 0.539 |
| skis | 0.139 | snowboard | 0.169 | sports ball | 0.389 |
| kite | 0.303 | baseball bat | 0.175 | baseball glove | 0.275 |
| skateboard | 0.342 | surfboard | 0.221 | tennis racket | 0.335 |
| bottle | 0.306 | wine glass | 0.262 | cup | 0.327 |
| fork | 0.153 | knife | 0.076 | spoon | 0.067 |
| bowl | 0.349 | banana | 0.166 | apple | 0.110 |
| sandwich | 0.241 | orange | 0.253 | broccoli | 0.168 |
| carrot | 0.100 | hot dog | 0.143 | pizza | 0.400 |
| donut | 0.327 | cake | 0.213 | chair | 0.171 |
| couch | 0.294 | potted plant | 0.162 | bed | 0.298 |
| dining table | 0.174 | toilet | 0.464 | tv | 0.448 |
| laptop | 0.455 | mouse | 0.483 | remote | 0.163 |
| keyboard | 0.364 | cell phone | 0.251 | microwave | 0.403 |
| oven | 0.220 | toaster | 0.154 | sink | 0.254 |
| refrigerator | 0.373 | book | 0.055 | clock | 0.418 |
| vase | 0.291 | scissors | 0.113 | teddy bear | 0.323 |
| hair drier | 0.000 | toothbrush | 0.067 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 15:39:25,251 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 15:39:25,251 - mmdet - INFO - Iter [6000/40000] lr: 2.000e-02, eta: 17:43:49, time: 1.755, data_time: 0.034, memory: 26484, bbox_mAP: 0.2930, bbox_mAP_50: 0.4930, bbox_mAP_75: 0.3100, bbox_mAP_s: 0.1670, bbox_mAP_m: 0.3220, bbox_mAP_l: 0.3790, bbox_mAP_copypaste: 0.293 0.493 0.310 0.167 0.322 0.379, loss_rpn_cls: 0.0398, loss_rpn_bbox: 0.0513, loss_cls: 0.2500, acc: 91.9197, loss_bbox: 0.2759, loss_rpn_cls_unlabeled: 0.0970, loss_rpn_bbox_unlabeled: 0.0987, loss_cls_unlabeled: 0.1818, acc_unlabeled: 92.0612, loss_bbox_unlabeled: 0.1730, losses_cls_ig_unlabeled: 0.1789, pseudo_num: 1.4949, pseudo_num_ig: 5.5234, pseudo_num_mining: 0.7401, pseudo_num(acc): 0.8720, pseudo_num ig(acc): 0.4777, loss: 1.3463
2021-10-31 15:40:52,274 - mmdet - INFO - Iter [6050/40000] lr: 2.000e-02, eta: 18:14:06, time: 8.688, data_time: 6.979, memory: 26484, loss_rpn_cls: 0.0418, loss_rpn_bbox: 0.0510, loss_cls: 0.2490, acc: 91.8405, loss_bbox: 0.2769, loss_rpn_cls_unlabeled: 0.0933, loss_rpn_bbox_unlabeled: 0.1001, loss_cls_unlabeled: 0.1935, acc_unlabeled: 91.5870, loss_bbox_unlabeled: 0.1794, losses_cls_ig_unlabeled: 0.1867, pseudo_num: 1.4949, pseudo_num_ig: 5.5242, pseudo_num_mining: 0.7412, pseudo_num(acc): 0.8721, pseudo_num ig(acc): 0.4778, loss: 1.3718
2021-10-31 15:42:17,531 - mmdet - INFO - Iter [6100/40000] lr: 2.000e-02, eta: 18:11:27, time: 1.706, data_time: 0.034, memory: 26484, loss_rpn_cls: 0.0409, loss_rpn_bbox: 0.0529, loss_cls: 0.2505, acc: 91.8400, loss_bbox: 0.2759, loss_rpn_cls_unlabeled: 0.0893, loss_rpn_bbox_unlabeled: 0.0934, loss_cls_unlabeled: 0.1933, acc_unlabeled: 91.7898, loss_bbox_unlabeled: 0.1755, losses_cls_ig_unlabeled: 0.1775, pseudo_num: 1.4944, pseudo_num_ig: 5.5243, pseudo_num_mining: 0.7423, pseudo_num(acc): 0.8723, pseudo_num ig(acc): 0.4779, loss: 1.3492
2021-10-31 15:43:43,955 - mmdet - INFO - Iter [6150/40000] lr: 2.000e-02, eta: 18:08:54, time: 1.729, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0411, loss_rpn_bbox: 0.0521, loss_cls: 0.2529, acc: 91.7583, loss_bbox: 0.2794, loss_rpn_cls_unlabeled: 0.0971, loss_rpn_bbox_unlabeled: 0.0942, loss_cls_unlabeled: 0.1976, acc_unlabeled: 91.6005, loss_bbox_unlabeled: 0.1757, losses_cls_ig_unlabeled: 0.1903, pseudo_num: 1.4939, pseudo_num_ig: 5.5246, pseudo_num_mining: 0.7433, pseudo_num(acc): 0.8724, pseudo_num ig(acc): 0.4779, loss: 1.3804
2021-10-31 15:45:07,657 - mmdet - INFO - Iter [6200/40000] lr: 2.000e-02, eta: 18:06:08, time: 1.674, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0434, loss_rpn_bbox: 0.0543, loss_cls: 0.2533, acc: 91.8173, loss_bbox: 0.2791, loss_rpn_cls_unlabeled: 0.0977, loss_rpn_bbox_unlabeled: 0.1006, loss_cls_unlabeled: 0.1987, acc_unlabeled: 91.4978, loss_bbox_unlabeled: 0.1820, losses_cls_ig_unlabeled: 0.1862, pseudo_num: 1.4938, pseudo_num_ig: 5.5264, pseudo_num_mining: 0.7445, pseudo_num(acc): 0.8724, pseudo_num ig(acc): 0.4780, loss: 1.3953
2021-10-31 15:46:32,001 - mmdet - INFO - Iter [6250/40000] lr: 2.000e-02, eta: 18:03:26, time: 1.686, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0431, loss_rpn_bbox: 0.0522, loss_cls: 0.2523, acc: 91.8228, loss_bbox: 0.2804, loss_rpn_cls_unlabeled: 0.0927, loss_rpn_bbox_unlabeled: 0.0964, loss_cls_unlabeled: 0.1985, acc_unlabeled: 91.9160, loss_bbox_unlabeled: 0.1886, losses_cls_ig_unlabeled: 0.1780, pseudo_num: 1.4940, pseudo_num_ig: 5.5270, pseudo_num_mining: 0.7455, pseudo_num(acc): 0.8724, pseudo_num ig(acc): 0.4781, loss: 1.3821
2021-10-31 15:47:55,598 - mmdet - INFO - Iter [6300/40000] lr: 2.000e-02, eta: 18:00:42, time: 1.674, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0412, loss_rpn_bbox: 0.0530, loss_cls: 0.2538, acc: 91.7406, loss_bbox: 0.2815, loss_rpn_cls_unlabeled: 0.0956, loss_rpn_bbox_unlabeled: 0.1000, loss_cls_unlabeled: 0.1948, acc_unlabeled: 91.7751, loss_bbox_unlabeled: 0.1796, losses_cls_ig_unlabeled: 0.1852, pseudo_num: 1.4939, pseudo_num_ig: 5.5272, pseudo_num_mining: 0.7467, pseudo_num(acc): 0.8723, pseudo_num ig(acc): 0.4781, loss: 1.3847
2021-10-31 15:49:20,453 - mmdet - INFO - Iter [6350/40000] lr: 2.000e-02, eta: 17:58:05, time: 1.695, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0381, loss_rpn_bbox: 0.0512, loss_cls: 0.2443, acc: 91.9399, loss_bbox: 0.2712, loss_rpn_cls_unlabeled: 0.0912, loss_rpn_bbox_unlabeled: 0.0991, loss_cls_unlabeled: 0.1905, acc_unlabeled: 91.6692, loss_bbox_unlabeled: 0.1831, losses_cls_ig_unlabeled: 0.1878, pseudo_num: 1.4939, pseudo_num_ig: 5.5283, pseudo_num_mining: 0.7477, pseudo_num(acc): 0.8724, pseudo_num ig(acc): 0.4782, loss: 1.3565
2021-10-31 15:50:47,613 - mmdet - INFO - Iter [6400/40000] lr: 2.000e-02, eta: 17:55:42, time: 1.744, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0444, loss_rpn_bbox: 0.0554, loss_cls: 0.2524, acc: 91.6838, loss_bbox: 0.2839, loss_rpn_cls_unlabeled: 0.0923, loss_rpn_bbox_unlabeled: 0.0944, loss_cls_unlabeled: 0.1916, acc_unlabeled: 92.0354, loss_bbox_unlabeled: 0.1763, losses_cls_ig_unlabeled: 0.1846, pseudo_num: 1.4937, pseudo_num_ig: 5.5290, pseudo_num_mining: 0.7492, pseudo_num(acc): 0.8726, pseudo_num ig(acc): 0.4782, loss: 1.3752
2021-10-31 15:52:14,885 - mmdet - INFO - Iter [6450/40000] lr: 2.000e-02, eta: 17:53:21, time: 1.745, data_time: 0.032, memory: 26484, loss_rpn_cls: 0.0406, loss_rpn_bbox: 0.0525, loss_cls: 0.2557, acc: 91.6484, loss_bbox: 0.2830, loss_rpn_cls_unlabeled: 0.0939, loss_rpn_bbox_unlabeled: 0.0973, loss_cls_unlabeled: 0.1927, acc_unlabeled: 91.6414, loss_bbox_unlabeled: 0.1724, losses_cls_ig_unlabeled: 0.1900, pseudo_num: 1.4932, pseudo_num_ig: 5.5291, pseudo_num_mining: 0.7502, pseudo_num(acc): 0.8727, pseudo_num ig(acc): 0.4783, loss: 1.3780
2021-10-31 15:53:38,480 - mmdet - INFO - pseudo pos: 0.98(12278.0-person) 0.92(320.0-bicycle) 0.94(2134.0-car) 0.99(383.0-motorcycle) 1.00(204.0-airplane) 1.00(251.0-bus) 0.99(248.0-train) 0.75(474.0-truck) 0.74(453.0-boat) 0.92(605.0-traffic light) 0.97(74.0-fire hydrant) 1.00(85.0-stop sign) 0.94(54.0-parking meter) 0.69(433.0-bench) 0.90(458.0-bird) 0.99(203.0-cat) 0.99(222.0-dog) 0.99(319.0-horse) 0.94(401.0-sheep) 0.94(321.0-cow) 1.00(223.0-elephant) 1.00(82.0-bear) 0.98(227.0-zebra) 0.99(242.0-giraffe) 0.51(411.0-backpack) 0.81(562.0-umbrella) 0.53(510.0-handbag) 0.93(245.0-tie) 0.81(260.0-suitcase) 1.00(95.0-frisbee) 0.68(329.0-skis) 0.77(101.0-snowboard) 0.96(246.0-sports ball) 0.91(366.0-kite) 0.90(164.0-baseball bat) 0.95(157.0-baseball glove) 0.99(267.0-skateboard) 0.90(289.0-surfboard) 0.98(183.0-tennis racket) 0.85(1062.0-bottle) 0.97(296.0-wine glass) 0.90(1039.0-cup) 0.71(227.0-fork) 0.48(396.0-knife) 0.51(308.0-spoon) 0.85(672.0-bowl) 0.69(436.0-banana) 0.53(219.0-apple) 0.83(248.0-sandwich) 0.72(312.0-orange) 0.71(334.0-broccoli) 0.56(367.0-carrot) 0.77(150.0-hot dog) 0.95(271.0-pizza) 0.94(293.0-donut) 0.85(265.0-cake) 0.79(1811.0-chair) 0.85(301.0-couch) 0.76(445.0-potted plant) 0.93(163.0-bed) 0.73(959.0-dining table) 0.95(165.0-toilet) 0.97(229.0-tv) 0.97(218.0-laptop) 0.97(113.0-mouse) 0.73(185.0-remote) 0.98(128.0-keyboard) 0.85(316.0-cell phone) 0.97(70.0-microwave) 0.89(170.0-oven) 0.00(0.0-toaster) 0.86(242.0-sink) 0.96(130.0-refrigerator) 0.34(951.0-book) 0.99(266.0-clock) 0.89(304.0-vase) 0.74(72.0-scissors) 0.94(227.0-teddy bear) 0.00(0.0-hair drier) 0.47(89.0-toothbrush)
2021-10-31 15:53:38,480 - mmdet - INFO - pseudo ig: 0.64(44070.0-person) 0.43(1033.0-bicycle) 0.50(7507.0-car) 0.58(1441.0-motorcycle) 0.68(735.0-airplane) 0.66(883.0-bus) 0.60(743.0-train) 0.37(1700.0-truck) 0.35(1800.0-boat) 0.40(2424.0-traffic light) 0.72(320.0-fire hydrant) 0.58(366.0-stop sign) 0.37(243.0-parking meter) 0.22(1580.0-bench) 0.32(1739.0-bird) 0.76(800.0-cat) 0.68(850.0-dog) 0.61(1067.0-horse) 0.53(1888.0-sheep) 0.53(1524.0-cow) 0.76(918.0-elephant) 0.64(257.0-bear) 0.76(951.0-zebra) 0.90(765.0-giraffe) 0.24(1543.0-backpack) 0.41(2117.0-umbrella) 0.20(2124.0-handbag) 0.41(910.0-tie) 0.41(949.0-suitcase) 0.60(436.0-frisbee) 0.35(1183.0-skis) 0.30(440.0-snowboard) 0.39(1174.0-sports ball) 0.51(1412.0-kite) 0.38(599.0-baseball bat) 0.43(646.0-baseball glove) 0.56(908.0-skateboard) 0.42(1096.0-surfboard) 0.64(782.0-tennis racket) 0.42(4113.0-bottle) 0.48(1249.0-wine glass) 0.35(4167.0-cup) 0.29(960.0-fork) 0.20(1434.0-knife) 0.18(1210.0-spoon) 0.40(2788.0-bowl) 0.28(1844.0-banana) 0.21(874.0-apple) 0.36(826.0-sandwich) 0.26(1334.0-orange) 0.40(1341.0-broccoli) 0.23(1377.0-carrot) 0.32(484.0-hot dog) 0.56(902.0-pizza) 0.38(1351.0-donut) 0.35(1070.0-cake) 0.31(6770.0-chair) 0.39(1042.0-couch) 0.35(1600.0-potted plant) 0.50(612.0-bed) 0.35(2516.0-dining table) 0.69(691.0-toilet) 0.62(1000.0-tv) 0.57(927.0-laptop) 0.38(427.0-mouse) 0.33(886.0-remote) 0.47(479.0-keyboard) 0.27(1163.0-cell phone) 0.59(223.0-microwave) 0.36(628.0-oven) 0.00(0.0-toaster) 0.43(984.0-sink) 0.44(429.0-refrigerator) 0.18(3286.0-book) 0.60(1010.0-clock) 0.39(1272.0-vase) 0.23(242.0-scissors) 0.46(849.0-teddy bear) 0.00(0.0-hair drier) 0.15(305.0-toothbrush)
2021-10-31 15:53:38,481 - mmdet - INFO - pseudo gt: 58202.0 1557.0 9639.0 2026.0 1050.0 1425.0 1000.0 2101.0 2203.0 2837.0 426.0 453.0 289.0 2180.0 2217.0 1015.0 1233.0 1445.0 2181.0 1768.0 1193.0 304.0 1265.0 1123.0 1925.0 2587.0 2607.0 1449.0 1483.0 583.0 1529.0 594.0 1328.0 2118.0 715.0 859.0 1287.0 1168.0 1107.0 5449.0 1759.0 4454.0 1186.0 1785.0 1340.0 3078.0 2060.0 1202.0 1027.0 1422.0 1713.0 1631.0 614.0 1228.0 1530.0 1339.0 8881.0 1324.0 2098.0 854.0 3538.0 930.0 1314.0 1113.0 497.0 1213.0 629.0 1442.0 372.0 740.0 54.0 1169.0 593.0 5158.0 1339.0 1454.0 271.0 935.0 33.0 422.0
2021-10-31 15:53:38,481 - mmdet - INFO - pseudo mining: 10492.0 39.0 1019.0 119.0 98.0 198.0 83.0 11.0 58.0 299.0 147.0 222.0 7.0 6.0 59.0 130.0 94.0 155.0 424.0 136.0 357.0 55.0 456.0 457.0 1.0 125.0 0.0 73.0 27.0 167.0 18.0 0.0 371.0 423.0 46.0 156.0 137.0 32.0 235.0 369.0 94.0 267.0 2.0 1.0 0.0 158.0 26.0 12.0 13.0 20.0 46.0 26.0 1.0 109.0 132.0 14.0 40.0 5.0 65.0 3.0 35.0 255.0 317.0 135.0 112.0 26.0 51.0 46.0 37.0 13.0 0.0 104.0 19.0 3.0 640.0 94.0 0.0 44.0 0.0 0.0
2021-10-31 15:53:40,174 - mmdet - INFO - Iter [6500/40000] lr: 2.000e-02, eta: 17:50:50, time: 1.706, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0424, loss_rpn_bbox: 0.0529, loss_cls: 0.2487, acc: 91.9565, loss_bbox: 0.2779, loss_rpn_cls_unlabeled: 0.0936, loss_rpn_bbox_unlabeled: 0.0940, loss_cls_unlabeled: 0.1840, acc_unlabeled: 91.9432, loss_bbox_unlabeled: 0.1672, losses_cls_ig_unlabeled: 0.1844, pseudo_num: 1.4925, pseudo_num_ig: 5.5302, pseudo_num_mining: 0.7513, pseudo_num(acc): 0.8728, pseudo_num ig(acc): 0.4783, loss: 1.3452
2021-10-31 15:55:05,288 - mmdet - INFO - Iter [6550/40000] lr: 2.000e-02, eta: 17:48:19, time: 1.702, data_time: 0.032, memory: 26484, loss_rpn_cls: 0.0419, loss_rpn_bbox: 0.0530, loss_cls: 0.2515, acc: 91.7646, loss_bbox: 0.2856, loss_rpn_cls_unlabeled: 0.0922, loss_rpn_bbox_unlabeled: 0.0968, loss_cls_unlabeled: 0.1926, acc_unlabeled: 91.9124, loss_bbox_unlabeled: 0.1762, losses_cls_ig_unlabeled: 0.1813, pseudo_num: 1.4919, pseudo_num_ig: 5.5302, pseudo_num_mining: 0.7523, pseudo_num(acc): 0.8728, pseudo_num ig(acc): 0.4785, loss: 1.3711
2021-10-31 15:56:30,828 - mmdet - INFO - Iter [6600/40000] lr: 2.000e-02, eta: 17:45:51, time: 1.710, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0415, loss_rpn_bbox: 0.0513, loss_cls: 0.2569, acc: 91.7859, loss_bbox: 0.2825, loss_rpn_cls_unlabeled: 0.0945, loss_rpn_bbox_unlabeled: 0.0989, loss_cls_unlabeled: 0.1959, acc_unlabeled: 91.5448, loss_bbox_unlabeled: 0.1753, losses_cls_ig_unlabeled: 0.1898, pseudo_num: 1.4915, pseudo_num_ig: 5.5309, pseudo_num_mining: 0.7531, pseudo_num(acc): 0.8729, pseudo_num ig(acc): 0.4786, loss: 1.3866
2021-10-31 15:57:54,768 - mmdet - INFO - Iter [6650/40000] lr: 2.000e-02, eta: 17:43:16, time: 1.678, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0422, loss_rpn_bbox: 0.0551, loss_cls: 0.2555, acc: 91.6833, loss_bbox: 0.2825, loss_rpn_cls_unlabeled: 0.0941, loss_rpn_bbox_unlabeled: 0.1014, loss_cls_unlabeled: 0.1928, acc_unlabeled: 91.4852, loss_bbox_unlabeled: 0.1792, losses_cls_ig_unlabeled: 0.1905, pseudo_num: 1.4913, pseudo_num_ig: 5.5322, pseudo_num_mining: 0.7539, pseudo_num(acc): 0.8731, pseudo_num ig(acc): 0.4785, loss: 1.3933
2021-10-31 16:00:39,421 - mmdet - INFO - Iter [6700/40000] lr: 2.000e-02, eta: 17:47:24, time: 3.295, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0407, loss_rpn_bbox: 0.0520, loss_cls: 0.2499, acc: 91.7919, loss_bbox: 0.2788, loss_rpn_cls_unlabeled: 0.0943, loss_rpn_bbox_unlabeled: 0.0974, loss_cls_unlabeled: 0.1953, acc_unlabeled: 91.4941, loss_bbox_unlabeled: 0.1818, losses_cls_ig_unlabeled: 0.1934, pseudo_num: 1.4913, pseudo_num_ig: 5.5347, pseudo_num_mining: 0.7548, pseudo_num(acc): 0.8731, pseudo_num ig(acc): 0.4785, loss: 1.3836
2021-10-31 16:02:04,000 - mmdet - INFO - Iter [6750/40000] lr: 2.000e-02, eta: 17:44:50, time: 1.691, data_time: 0.028, memory: 26484, loss_rpn_cls: 0.0426, loss_rpn_bbox: 0.0528, loss_cls: 0.2545, acc: 91.7017, loss_bbox: 0.2860, loss_rpn_cls_unlabeled: 0.1008, loss_rpn_bbox_unlabeled: 0.0990, loss_cls_unlabeled: 0.1987, acc_unlabeled: 91.7025, loss_bbox_unlabeled: 0.1882, losses_cls_ig_unlabeled: 0.1805, pseudo_num: 1.4918, pseudo_num_ig: 5.5355, pseudo_num_mining: 0.7557, pseudo_num(acc): 0.8731, pseudo_num ig(acc): 0.4785, loss: 1.4030
2021-10-31 16:03:27,632 - mmdet - INFO - Iter [6800/40000] lr: 2.000e-02, eta: 17:42:13, time: 1.673, data_time: 0.028, memory: 26484, loss_rpn_cls: 0.0407, loss_rpn_bbox: 0.0529, loss_cls: 0.2493, acc: 91.8605, loss_bbox: 0.2777, loss_rpn_cls_unlabeled: 0.0999, loss_rpn_bbox_unlabeled: 0.1002, loss_cls_unlabeled: 0.1931, acc_unlabeled: 91.8571, loss_bbox_unlabeled: 0.1828, losses_cls_ig_unlabeled: 0.1856, pseudo_num: 1.4927, pseudo_num_ig: 5.5379, pseudo_num_mining: 0.7570, pseudo_num(acc): 0.8732, pseudo_num ig(acc): 0.4786, loss: 1.3822
2021-10-31 16:04:52,834 - mmdet - INFO - Iter [6850/40000] lr: 2.000e-02, eta: 17:39:45, time: 1.704, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0449, loss_rpn_bbox: 0.0566, loss_cls: 0.2613, acc: 91.4177, loss_bbox: 0.2914, loss_rpn_cls_unlabeled: 0.0948, loss_rpn_bbox_unlabeled: 0.0990, loss_cls_unlabeled: 0.1978, acc_unlabeled: 91.9307, loss_bbox_unlabeled: 0.1854, losses_cls_ig_unlabeled: 0.1776, pseudo_num: 1.4931, pseudo_num_ig: 5.5382, pseudo_num_mining: 0.7579, pseudo_num(acc): 0.8733, pseudo_num ig(acc): 0.4786, loss: 1.4088
2021-10-31 16:06:17,439 - mmdet - INFO - Iter [6900/40000] lr: 2.000e-02, eta: 17:37:15, time: 1.691, data_time: 0.028, memory: 26484, loss_rpn_cls: 0.0392, loss_rpn_bbox: 0.0505, loss_cls: 0.2484, acc: 91.9055, loss_bbox: 0.2758, loss_rpn_cls_unlabeled: 0.0971, loss_rpn_bbox_unlabeled: 0.1016, loss_cls_unlabeled: 0.2009, acc_unlabeled: 91.6688, loss_bbox_unlabeled: 0.1859, losses_cls_ig_unlabeled: 0.1839, pseudo_num: 1.4938, pseudo_num_ig: 5.5383, pseudo_num_mining: 0.7590, pseudo_num(acc): 0.8735, pseudo_num ig(acc): 0.4787, loss: 1.3833
2021-10-31 16:07:41,542 - mmdet - INFO - Iter [6950/40000] lr: 2.000e-02, eta: 17:34:44, time: 1.684, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0425, loss_rpn_bbox: 0.0537, loss_cls: 0.2508, acc: 91.7809, loss_bbox: 0.2781, loss_rpn_cls_unlabeled: 0.0941, loss_rpn_bbox_unlabeled: 0.0980, loss_cls_unlabeled: 0.1913, acc_unlabeled: 91.8969, loss_bbox_unlabeled: 0.1774, losses_cls_ig_unlabeled: 0.1830, pseudo_num: 1.4943, pseudo_num_ig: 5.5398, pseudo_num_mining: 0.7602, pseudo_num(acc): 0.8735, pseudo_num ig(acc): 0.4787, loss: 1.3689
2021-10-31 16:09:03,726 - mmdet - INFO - pseudo pos: 0.98(13221.0-person) 0.92(340.0-bicycle) 0.94(2272.0-car) 0.99(413.0-motorcycle) 1.00(218.0-airplane) 0.99(280.0-bus) 0.98(263.0-train) 0.75(503.0-truck) 0.74(517.0-boat) 0.92(671.0-traffic light) 0.98(84.0-fire hydrant) 1.00(86.0-stop sign) 0.90(62.0-parking meter) 0.70(463.0-bench) 0.90(522.0-bird) 0.99(211.0-cat) 0.98(242.0-dog) 0.99(344.0-horse) 0.94(438.0-sheep) 0.94(356.0-cow) 1.00(251.0-elephant) 1.00(86.0-bear) 0.98(245.0-zebra) 0.99(259.0-giraffe) 0.51(447.0-backpack) 0.82(606.0-umbrella) 0.52(546.0-handbag) 0.93(270.0-tie) 0.81(266.0-suitcase) 1.00(101.0-frisbee) 0.69(345.0-skis) 0.76(111.0-snowboard) 0.97(273.0-sports ball) 0.92(389.0-kite) 0.90(169.0-baseball bat) 0.93(168.0-baseball glove) 0.99(293.0-skateboard) 0.90(305.0-surfboard) 0.98(197.0-tennis racket) 0.86(1164.0-bottle) 0.96(317.0-wine glass) 0.90(1126.0-cup) 0.73(245.0-fork) 0.48(428.0-knife) 0.51(340.0-spoon) 0.85(724.0-bowl) 0.69(485.0-banana) 0.54(246.0-apple) 0.83(271.0-sandwich) 0.73(324.0-orange) 0.72(378.0-broccoli) 0.57(400.0-carrot) 0.78(155.0-hot dog) 0.95(287.0-pizza) 0.94(318.0-donut) 0.86(278.0-cake) 0.79(1950.0-chair) 0.84(316.0-couch) 0.76(478.0-potted plant) 0.93(176.0-bed) 0.73(1031.0-dining table) 0.95(183.0-toilet) 0.98(249.0-tv) 0.97(239.0-laptop) 0.97(122.0-mouse) 0.73(207.0-remote) 0.99(147.0-keyboard) 0.86(332.0-cell phone) 0.96(75.0-microwave) 0.89(174.0-oven) 0.00(0.0-toaster) 0.85(265.0-sink) 0.96(134.0-refrigerator) 0.34(1021.0-book) 0.99(287.0-clock) 0.90(324.0-vase) 0.75(76.0-scissors) 0.94(240.0-teddy bear) 0.00(0.0-hair drier) 0.49(96.0-toothbrush)
2021-10-31 16:09:03,726 - mmdet - INFO - pseudo ig: 0.64(47407.0-person) 0.43(1111.0-bicycle) 0.50(8204.0-car) 0.57(1565.0-motorcycle) 0.68(791.0-airplane) 0.66(965.0-bus) 0.60(800.0-train) 0.37(1828.0-truck) 0.34(1978.0-boat) 0.41(2620.0-traffic light) 0.71(347.0-fire hydrant) 0.59(393.0-stop sign) 0.36(269.0-parking meter) 0.22(1699.0-bench) 0.31(1879.0-bird) 0.77(857.0-cat) 0.67(916.0-dog) 0.61(1160.0-horse) 0.53(2007.0-sheep) 0.52(1636.0-cow) 0.77(991.0-elephant) 0.64(274.0-bear) 0.76(1014.0-zebra) 0.89(842.0-giraffe) 0.24(1675.0-backpack) 0.41(2324.0-umbrella) 0.20(2270.0-handbag) 0.41(995.0-tie) 0.41(975.0-suitcase) 0.60(463.0-frisbee) 0.35(1234.0-skis) 0.30(471.0-snowboard) 0.40(1243.0-sports ball) 0.51(1499.0-kite) 0.39(629.0-baseball bat) 0.42(685.0-baseball glove) 0.56(981.0-skateboard) 0.43(1158.0-surfboard) 0.65(818.0-tennis racket) 0.42(4455.0-bottle) 0.47(1342.0-wine glass) 0.35(4471.0-cup) 0.29(1024.0-fork) 0.21(1571.0-knife) 0.18(1298.0-spoon) 0.40(3000.0-bowl) 0.28(2028.0-banana) 0.21(987.0-apple) 0.36(915.0-sandwich) 0.27(1414.0-orange) 0.40(1439.0-broccoli) 0.23(1475.0-carrot) 0.32(529.0-hot dog) 0.56(981.0-pizza) 0.39(1442.0-donut) 0.35(1129.0-cake) 0.31(7332.0-chair) 0.40(1108.0-couch) 0.35(1692.0-potted plant) 0.51(663.0-bed) 0.35(2703.0-dining table) 0.69(750.0-toilet) 0.62(1076.0-tv) 0.58(988.0-laptop) 0.41(467.0-mouse) 0.33(963.0-remote) 0.47(529.0-keyboard) 0.27(1274.0-cell phone) 0.55(273.0-microwave) 0.36(667.0-oven) 0.00(0.0-toaster) 0.43(1063.0-sink) 0.44(457.0-refrigerator) 0.18(3561.0-book) 0.59(1103.0-clock) 0.39(1380.0-vase) 0.23(256.0-scissors) 0.47(938.0-teddy bear) 0.00(0.0-hair drier) 0.16(322.0-toothbrush)
2021-10-31 16:09:03,726 - mmdet - INFO - pseudo gt: 62507.0 1690.0 10410.0 2186.0 1135.0 1548.0 1055.0 2275.0 2444.0 3110.0 461.0 478.0 307.0 2333.0 2404.0 1093.0 1315.0 1574.0 2315.0 1874.0 1308.0 322.0 1344.0 1233.0 2074.0 2782.0 2823.0 1580.0 1561.0 617.0 1615.0 632.0 1462.0 2262.0 758.0 897.0 1393.0 1248.0 1183.0 5905.0 1870.0 4795.0 1265.0 1898.0 1442.0 3330.0 2241.0 1353.0 1120.0 1506.0 1868.0 1740.0 653.0 1319.0 1712.0 1422.0 9466.0 1406.0 2238.0 924.0 3785.0 1010.0 1414.0 1178.0 547.0 1317.0 694.0 1559.0 402.0 788.0 59.0 1279.0 634.0 5558.0 1444.0 1567.0 299.0 1063.0 40.0 444.0
2021-10-31 16:09:03,726 - mmdet - INFO - pseudo mining: 11380.0 43.0 1139.0 128.0 110.0 220.0 90.0 13.0 67.0 321.0 156.0 240.0 7.0 8.0 59.0 148.0 105.0 173.0 431.0 153.0 388.0 60.0 489.0 502.0 1.0 144.0 0.0 77.0 27.0 177.0 18.0 0.0 396.0 446.0 52.0 167.0 154.0 33.0 252.0 405.0 103.0 296.0 2.0 2.0 0.0 171.0 27.0 14.0 13.0 21.0 52.0 27.0 1.0 122.0 148.0 14.0 44.0 5.0 74.0 4.0 40.0 285.0 349.0 147.0 129.0 28.0 54.0 55.0 49.0 15.0 0.0 116.0 20.0 3.0 680.0 104.0 0.0 51.0 0.0 0.0
2021-10-31 16:10:33,773 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 16:10:33,774 - mmdet - INFO - Iter [7000/40000] lr: 2.000e-02, eta: 17:32:11, time: 1.672, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0453, loss_rpn_bbox: 0.0555, loss_cls: 0.2515, acc: 91.8003, loss_bbox: 0.2794, loss_rpn_cls_unlabeled: 0.0899, loss_rpn_bbox_unlabeled: 0.0964, loss_cls_unlabeled: 0.1942, acc_unlabeled: 91.8588, loss_bbox_unlabeled: 0.1823, losses_cls_ig_unlabeled: 0.1786, pseudo_num: 1.4949, pseudo_num_ig: 5.5406, pseudo_num_mining: 0.7612, pseudo_num(acc): 0.8734, pseudo_num ig(acc): 0.4787, loss: 1.3731
2021-10-31 16:11:59,039 - mmdet - INFO - Iter [7050/40000] lr: 2.000e-02, eta: 17:36:41, time: 3.477, data_time: 1.800, memory: 26484, loss_rpn_cls: 0.0411, loss_rpn_bbox: 0.0512, loss_cls: 0.2460, acc: 92.0161, loss_bbox: 0.2723, loss_rpn_cls_unlabeled: 0.0928, loss_rpn_bbox_unlabeled: 0.0980, loss_cls_unlabeled: 0.1861, acc_unlabeled: 92.1631, loss_bbox_unlabeled: 0.1680, losses_cls_ig_unlabeled: 0.1786, pseudo_num: 1.4950, pseudo_num_ig: 5.5401, pseudo_num_mining: 0.7620, pseudo_num(acc): 0.8735, pseudo_num ig(acc): 0.4788, loss: 1.3342
2021-10-31 16:13:22,292 - mmdet - INFO - Iter [7100/40000] lr: 2.000e-02, eta: 17:34:04, time: 1.663, data_time: 0.027, memory: 26484, loss_rpn_cls: 0.0399, loss_rpn_bbox: 0.0537, loss_cls: 0.2479, acc: 91.9729, loss_bbox: 0.2745, loss_rpn_cls_unlabeled: 0.0925, loss_rpn_bbox_unlabeled: 0.0962, loss_cls_unlabeled: 0.1959, acc_unlabeled: 91.8396, loss_bbox_unlabeled: 0.1771, losses_cls_ig_unlabeled: 0.1856, pseudo_num: 1.4946, pseudo_num_ig: 5.5405, pseudo_num_mining: 0.7630, pseudo_num(acc): 0.8736, pseudo_num ig(acc): 0.4788, loss: 1.3633
2021-10-31 16:14:45,075 - mmdet - INFO - Iter [7150/40000] lr: 2.000e-02, eta: 17:31:27, time: 1.657, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0416, loss_rpn_bbox: 0.0521, loss_cls: 0.2537, acc: 91.6390, loss_bbox: 0.2847, loss_rpn_cls_unlabeled: 0.0890, loss_rpn_bbox_unlabeled: 0.0950, loss_cls_unlabeled: 0.1921, acc_unlabeled: 91.8273, loss_bbox_unlabeled: 0.1779, losses_cls_ig_unlabeled: 0.1865, pseudo_num: 1.4943, pseudo_num_ig: 5.5408, pseudo_num_mining: 0.7641, pseudo_num(acc): 0.8736, pseudo_num ig(acc): 0.4790, loss: 1.3727
2021-10-31 16:16:10,589 - mmdet - INFO - Iter [7200/40000] lr: 2.000e-02, eta: 17:29:03, time: 1.712, data_time: 0.032, memory: 26484, loss_rpn_cls: 0.0409, loss_rpn_bbox: 0.0546, loss_cls: 0.2474, acc: 91.9324, loss_bbox: 0.2773, loss_rpn_cls_unlabeled: 0.0919, loss_rpn_bbox_unlabeled: 0.0984, loss_cls_unlabeled: 0.1874, acc_unlabeled: 91.9967, loss_bbox_unlabeled: 0.1779, losses_cls_ig_unlabeled: 0.1804, pseudo_num: 1.4942, pseudo_num_ig: 5.5411, pseudo_num_mining: 0.7650, pseudo_num(acc): 0.8737, pseudo_num ig(acc): 0.4791, loss: 1.3561
2021-10-31 16:17:34,975 - mmdet - INFO - Iter [7250/40000] lr: 2.000e-02, eta: 17:26:34, time: 1.684, data_time: 0.028, memory: 26484, loss_rpn_cls: 0.0400, loss_rpn_bbox: 0.0532, loss_cls: 0.2484, acc: 91.9270, loss_bbox: 0.2773, loss_rpn_cls_unlabeled: 0.0931, loss_rpn_bbox_unlabeled: 0.0965, loss_cls_unlabeled: 0.1936, acc_unlabeled: 91.9838, loss_bbox_unlabeled: 0.1787, losses_cls_ig_unlabeled: 0.1820, pseudo_num: 1.4946, pseudo_num_ig: 5.5406, pseudo_num_mining: 0.7657, pseudo_num(acc): 0.8738, pseudo_num ig(acc): 0.4791, loss: 1.3629
2021-10-31 16:19:01,369 - mmdet - INFO - Iter [7300/40000] lr: 2.000e-02, eta: 17:24:17, time: 1.732, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0432, loss_rpn_bbox: 0.0533, loss_cls: 0.2475, acc: 91.9049, loss_bbox: 0.2783, loss_rpn_cls_unlabeled: 0.1015, loss_rpn_bbox_unlabeled: 0.0995, loss_cls_unlabeled: 0.1893, acc_unlabeled: 91.7953, loss_bbox_unlabeled: 0.1764, losses_cls_ig_unlabeled: 0.1895, pseudo_num: 1.4945, pseudo_num_ig: 5.5413, pseudo_num_mining: 0.7667, pseudo_num(acc): 0.8739, pseudo_num ig(acc): 0.4791, loss: 1.3783
2021-10-31 16:20:26,433 - mmdet - INFO - Iter [7350/40000] lr: 2.000e-02, eta: 17:21:52, time: 1.697, data_time: 0.027, memory: 26484, loss_rpn_cls: 0.0427, loss_rpn_bbox: 0.0523, loss_cls: 0.2570, acc: 91.7168, loss_bbox: 0.2803, loss_rpn_cls_unlabeled: 0.0929, loss_rpn_bbox_unlabeled: 0.0916, loss_cls_unlabeled: 0.1909, acc_unlabeled: 91.9246, loss_bbox_unlabeled: 0.1740, losses_cls_ig_unlabeled: 0.1825, pseudo_num: 1.4943, pseudo_num_ig: 5.5424, pseudo_num_mining: 0.7679, pseudo_num(acc): 0.8739, pseudo_num ig(acc): 0.4791, loss: 1.3642
2021-10-31 16:21:50,452 - mmdet - INFO - Iter [7400/40000] lr: 2.000e-02, eta: 17:19:26, time: 1.685, data_time: 0.033, memory: 26484, loss_rpn_cls: 0.0415, loss_rpn_bbox: 0.0519, loss_cls: 0.2519, acc: 91.7616, loss_bbox: 0.2831, loss_rpn_cls_unlabeled: 0.0931, loss_rpn_bbox_unlabeled: 0.1004, loss_cls_unlabeled: 0.1908, acc_unlabeled: 91.5725, loss_bbox_unlabeled: 0.1749, losses_cls_ig_unlabeled: 0.1882, pseudo_num: 1.4939, pseudo_num_ig: 5.5443, pseudo_num_mining: 0.7690, pseudo_num(acc): 0.8740, pseudo_num ig(acc): 0.4792, loss: 1.3758
2021-10-31 16:23:14,515 - mmdet - INFO - Iter [7450/40000] lr: 2.000e-02, eta: 17:16:59, time: 1.679, data_time: 0.028, memory: 26484, loss_rpn_cls: 0.0419, loss_rpn_bbox: 0.0539, loss_cls: 0.2557, acc: 91.5015, loss_bbox: 0.2887, loss_rpn_cls_unlabeled: 0.0894, loss_rpn_bbox_unlabeled: 0.0928, loss_cls_unlabeled: 0.1896, acc_unlabeled: 91.8542, loss_bbox_unlabeled: 0.1775, losses_cls_ig_unlabeled: 0.1802, pseudo_num: 1.4940, pseudo_num_ig: 5.5448, pseudo_num_mining: 0.7698, pseudo_num(acc): 0.8741, pseudo_num ig(acc): 0.4793, loss: 1.3698
2021-10-31 16:24:37,557 - mmdet - INFO - pseudo pos: 0.98(14133.0-person) 0.93(362.0-bicycle) 0.94(2414.0-car) 0.99(442.0-motorcycle) 1.00(237.0-airplane) 0.99(294.0-bus) 0.99(277.0-train) 0.75(534.0-truck) 0.74(552.0-boat) 0.92(718.0-traffic light) 0.98(87.0-fire hydrant) 1.00(90.0-stop sign) 0.91(70.0-parking meter) 0.69(498.0-bench) 0.90(537.0-bird) 0.99(226.0-cat) 0.98(258.0-dog) 0.99(367.0-horse) 0.94(462.0-sheep) 0.94(373.0-cow) 1.00(273.0-elephant) 1.00(91.0-bear) 0.98(255.0-zebra) 0.99(282.0-giraffe) 0.51(475.0-backpack) 0.82(656.0-umbrella) 0.53(590.0-handbag) 0.92(289.0-tie) 0.82(278.0-suitcase) 0.99(106.0-frisbee) 0.69(357.0-skis) 0.76(124.0-snowboard) 0.97(293.0-sports ball) 0.92(409.0-kite) 0.89(178.0-baseball bat) 0.94(180.0-baseball glove) 0.99(310.0-skateboard) 0.90(349.0-surfboard) 0.99(216.0-tennis racket) 0.86(1258.0-bottle) 0.96(363.0-wine glass) 0.90(1185.0-cup) 0.74(260.0-fork) 0.48(454.0-knife) 0.51(356.0-spoon) 0.85(796.0-bowl) 0.69(530.0-banana) 0.56(276.0-apple) 0.83(281.0-sandwich) 0.72(369.0-orange) 0.71(419.0-broccoli) 0.57(418.0-carrot) 0.77(166.0-hot dog) 0.95(303.0-pizza) 0.94(335.0-donut) 0.85(290.0-cake) 0.79(2063.0-chair) 0.84(329.0-couch) 0.75(506.0-potted plant) 0.93(188.0-bed) 0.72(1102.0-dining table) 0.95(191.0-toilet) 0.98(255.0-tv) 0.96(251.0-laptop) 0.97(125.0-mouse) 0.72(242.0-remote) 0.99(152.0-keyboard) 0.86(359.0-cell phone) 0.96(81.0-microwave) 0.89(191.0-oven) 0.00(0.0-toaster) 0.85(290.0-sink) 0.96(142.0-refrigerator) 0.34(1062.0-book) 0.99(313.0-clock) 0.90(346.0-vase) 0.76(88.0-scissors) 0.94(264.0-teddy bear) 0.00(0.0-hair drier) 0.49(99.0-toothbrush)
2021-10-31 16:24:37,557 - mmdet - INFO - pseudo ig: 0.64(50689.0-person) 0.44(1171.0-bicycle) 0.50(8684.0-car) 0.56(1723.0-motorcycle) 0.69(837.0-airplane) 0.66(1031.0-bus) 0.60(842.0-train) 0.37(1927.0-truck) 0.35(2105.0-boat) 0.40(2765.0-traffic light) 0.70(362.0-fire hydrant) 0.58(408.0-stop sign) 0.36(292.0-parking meter) 0.22(1844.0-bench) 0.31(2028.0-bird) 0.77(921.0-cat) 0.67(973.0-dog) 0.61(1218.0-horse) 0.54(2112.0-sheep) 0.52(1761.0-cow) 0.77(1074.0-elephant) 0.65(289.0-bear) 0.77(1045.0-zebra) 0.89(907.0-giraffe) 0.24(1778.0-backpack) 0.40(2464.0-umbrella) 0.20(2447.0-handbag) 0.41(1061.0-tie) 0.42(1062.0-suitcase) 0.62(492.0-frisbee) 0.35(1280.0-skis) 0.31(514.0-snowboard) 0.40(1303.0-sports ball) 0.51(1556.0-kite) 0.38(679.0-baseball bat) 0.43(733.0-baseball glove) 0.56(1060.0-skateboard) 0.43(1274.0-surfboard) 0.65(878.0-tennis racket) 0.42(4834.0-bottle) 0.47(1486.0-wine glass) 0.35(4838.0-cup) 0.29(1115.0-fork) 0.21(1671.0-knife) 0.18(1393.0-spoon) 0.40(3224.0-bowl) 0.28(2132.0-banana) 0.20(1203.0-apple) 0.37(966.0-sandwich) 0.27(1543.0-orange) 0.39(1579.0-broccoli) 0.23(1567.0-carrot) 0.31(583.0-hot dog) 0.57(1057.0-pizza) 0.38(1516.0-donut) 0.36(1208.0-cake) 0.31(7826.0-chair) 0.40(1188.0-couch) 0.35(1784.0-potted plant) 0.51(721.0-bed) 0.36(2903.0-dining table) 0.69(817.0-toilet) 0.62(1157.0-tv) 0.57(1056.0-laptop) 0.41(500.0-mouse) 0.33(1059.0-remote) 0.46(576.0-keyboard) 0.27(1364.0-cell phone) 0.56(286.0-microwave) 0.36(703.0-oven) 0.00(0.0-toaster) 0.44(1136.0-sink) 0.45(493.0-refrigerator) 0.18(3913.0-book) 0.60(1193.0-clock) 0.39(1473.0-vase) 0.22(287.0-scissors) 0.48(997.0-teddy bear) 0.00(0.0-hair drier) 0.17(342.0-toothbrush)
2021-10-31 16:24:37,557 - mmdet - INFO - pseudo gt: 66781.0 1803.0 11011.0 2359.0 1213.0 1642.0 1111.0 2399.0 2638.0 3281.0 474.0 495.0 324.0 2462.0 2631.0 1163.0 1389.0 1637.0 2477.0 1996.0 1436.0 348.0 1401.0 1323.0 2224.0 2935.0 3051.0 1687.0 1716.0 663.0 1723.0 691.0 1568.0 2364.0 790.0 950.0 1496.0 1363.0 1269.0 6409.0 2049.0 5118.0 1351.0 2058.0 1550.0 3573.0 2402.0 1482.0 1184.0 1615.0 2008.0 1850.0 702.0 1424.0 1807.0 1540.0 10121.0 1507.0 2381.0 999.0 4049.0 1084.0 1498.0 1259.0 588.0 1430.0 734.0 1658.0 427.0 843.0 61.0 1368.0 684.0 6059.0 1572.0 1698.0 327.0 1145.0 43.0 473.0
2021-10-31 16:24:37,557 - mmdet - INFO - pseudo mining: 12279.0 47.0 1208.0 148.0 122.0 242.0 98.0 13.0 75.0 334.0 163.0 244.0 7.0 11.0 62.0 164.0 114.0 183.0 462.0 174.0 434.0 69.0 512.0 538.0 1.0 149.0 0.0 82.0 34.0 192.0 19.0 0.0 421.0 465.0 55.0 185.0 172.0 40.0 277.0 430.0 108.0 331.0 2.0 5.0 1.0 184.0 30.0 14.0 17.0 21.0 61.0 29.0 1.0 141.0 153.0 18.0 47.0 6.0 79.0 4.0 41.0 322.0 379.0 156.0 141.0 29.0 60.0 59.0 53.0 16.0 0.0 125.0 22.0 3.0 747.0 120.0 0.0 57.0 0.0 0.0
2021-10-31 16:24:39,091 - mmdet - INFO - Iter [7500/40000] lr: 2.000e-02, eta: 17:14:36, time: 1.691, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0407, loss_rpn_bbox: 0.0533, loss_cls: 0.2462, acc: 91.9968, loss_bbox: 0.2762, loss_rpn_cls_unlabeled: 0.0981, loss_rpn_bbox_unlabeled: 0.1029, loss_cls_unlabeled: 0.1910, acc_unlabeled: 91.7932, loss_bbox_unlabeled: 0.1763, losses_cls_ig_unlabeled: 0.1842, pseudo_num: 1.4937, pseudo_num_ig: 5.5461, pseudo_num_mining: 0.7706, pseudo_num(acc): 0.8741, pseudo_num ig(acc): 0.4793, loss: 1.3688
2021-10-31 16:26:03,603 - mmdet - INFO - Iter [7550/40000] lr: 2.000e-02, eta: 17:12:13, time: 1.693, data_time: 0.032, memory: 26484, loss_rpn_cls: 0.0421, loss_rpn_bbox: 0.0541, loss_cls: 0.2574, acc: 91.6395, loss_bbox: 0.2826, loss_rpn_cls_unlabeled: 0.0943, loss_rpn_bbox_unlabeled: 0.0970, loss_cls_unlabeled: 0.1845, acc_unlabeled: 91.9561, loss_bbox_unlabeled: 0.1731, losses_cls_ig_unlabeled: 0.1849, pseudo_num: 1.4938, pseudo_num_ig: 5.5469, pseudo_num_mining: 0.7717, pseudo_num(acc): 0.8741, pseudo_num ig(acc): 0.4794, loss: 1.3698
2021-10-31 16:27:28,825 - mmdet - INFO - Iter [7600/40000] lr: 2.000e-02, eta: 17:09:55, time: 1.705, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0405, loss_rpn_bbox: 0.0511, loss_cls: 0.2496, acc: 91.8934, loss_bbox: 0.2735, loss_rpn_cls_unlabeled: 0.0932, loss_rpn_bbox_unlabeled: 0.0975, loss_cls_unlabeled: 0.1853, acc_unlabeled: 91.8494, loss_bbox_unlabeled: 0.1707, losses_cls_ig_unlabeled: 0.1856, pseudo_num: 1.4934, pseudo_num_ig: 5.5473, pseudo_num_mining: 0.7726, pseudo_num(acc): 0.8742, pseudo_num ig(acc): 0.4793, loss: 1.3470
2021-10-31 16:28:54,339 - mmdet - INFO - Iter [7650/40000] lr: 2.000e-02, eta: 17:07:38, time: 1.710, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0397, loss_rpn_bbox: 0.0522, loss_cls: 0.2426, acc: 92.0292, loss_bbox: 0.2703, loss_rpn_cls_unlabeled: 0.0917, loss_rpn_bbox_unlabeled: 0.0980, loss_cls_unlabeled: 0.1902, acc_unlabeled: 91.7866, loss_bbox_unlabeled: 0.1757, losses_cls_ig_unlabeled: 0.1885, pseudo_num: 1.4928, pseudo_num_ig: 5.5466, pseudo_num_mining: 0.7735, pseudo_num(acc): 0.8743, pseudo_num ig(acc): 0.4794, loss: 1.3490
2021-10-31 16:30:18,150 - mmdet - INFO - Iter [7700/40000] lr: 2.000e-02, eta: 17:05:14, time: 1.676, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0402, loss_rpn_bbox: 0.0528, loss_cls: 0.2469, acc: 91.8427, loss_bbox: 0.2754, loss_rpn_cls_unlabeled: 0.0964, loss_rpn_bbox_unlabeled: 0.0966, loss_cls_unlabeled: 0.1894, acc_unlabeled: 91.8563, loss_bbox_unlabeled: 0.1748, losses_cls_ig_unlabeled: 0.1860, pseudo_num: 1.4927, pseudo_num_ig: 5.5469, pseudo_num_mining: 0.7746, pseudo_num(acc): 0.8743, pseudo_num ig(acc): 0.4794, loss: 1.3587
2021-10-31 16:31:42,981 - mmdet - INFO - Iter [7750/40000] lr: 2.000e-02, eta: 17:02:55, time: 1.695, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0406, loss_rpn_bbox: 0.0503, loss_cls: 0.2461, acc: 92.0747, loss_bbox: 0.2692, loss_rpn_cls_unlabeled: 0.0911, loss_rpn_bbox_unlabeled: 0.0949, loss_cls_unlabeled: 0.1928, acc_unlabeled: 91.9036, loss_bbox_unlabeled: 0.1806, losses_cls_ig_unlabeled: 0.1809, pseudo_num: 1.4925, pseudo_num_ig: 5.5465, pseudo_num_mining: 0.7755, pseudo_num(acc): 0.8744, pseudo_num ig(acc): 0.4794, loss: 1.3464
2021-10-31 16:33:06,922 - mmdet - INFO - Iter [7800/40000] lr: 2.000e-02, eta: 17:00:34, time: 1.681, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0388, loss_rpn_bbox: 0.0540, loss_cls: 0.2452, acc: 91.9198, loss_bbox: 0.2770, loss_rpn_cls_unlabeled: 0.0913, loss_rpn_bbox_unlabeled: 0.0954, loss_cls_unlabeled: 0.1900, acc_unlabeled: 91.9556, loss_bbox_unlabeled: 0.1819, losses_cls_ig_unlabeled: 0.1809, pseudo_num: 1.4925, pseudo_num_ig: 5.5466, pseudo_num_mining: 0.7764, pseudo_num(acc): 0.8745, pseudo_num ig(acc): 0.4795, loss: 1.3544
2021-10-31 16:34:31,536 - mmdet - INFO - Iter [7850/40000] lr: 2.000e-02, eta: 16:58:16, time: 1.693, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0382, loss_rpn_bbox: 0.0511, loss_cls: 0.2408, acc: 92.0812, loss_bbox: 0.2693, loss_rpn_cls_unlabeled: 0.0911, loss_rpn_bbox_unlabeled: 0.0954, loss_cls_unlabeled: 0.1884, acc_unlabeled: 91.8767, loss_bbox_unlabeled: 0.1781, losses_cls_ig_unlabeled: 0.1800, pseudo_num: 1.4927, pseudo_num_ig: 5.5471, pseudo_num_mining: 0.7774, pseudo_num(acc): 0.8745, pseudo_num ig(acc): 0.4796, loss: 1.3324
2021-10-31 16:35:55,645 - mmdet - INFO - Iter [7900/40000] lr: 2.000e-02, eta: 16:55:57, time: 1.680, data_time: 0.028, memory: 26484, loss_rpn_cls: 0.0423, loss_rpn_bbox: 0.0518, loss_cls: 0.2475, acc: 91.8588, loss_bbox: 0.2777, loss_rpn_cls_unlabeled: 0.0913, loss_rpn_bbox_unlabeled: 0.0908, loss_cls_unlabeled: 0.1920, acc_unlabeled: 92.1573, loss_bbox_unlabeled: 0.1828, losses_cls_ig_unlabeled: 0.1783, pseudo_num: 1.4928, pseudo_num_ig: 5.5461, pseudo_num_mining: 0.7783, pseudo_num(acc): 0.8746, pseudo_num ig(acc): 0.4796, loss: 1.3544
2021-10-31 16:37:19,834 - mmdet - INFO - Iter [7950/40000] lr: 2.000e-02, eta: 16:53:39, time: 1.685, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0398, loss_rpn_bbox: 0.0527, loss_cls: 0.2447, acc: 92.0826, loss_bbox: 0.2707, loss_rpn_cls_unlabeled: 0.0903, loss_rpn_bbox_unlabeled: 0.0958, loss_cls_unlabeled: 0.1899, acc_unlabeled: 91.9502, loss_bbox_unlabeled: 0.1789, losses_cls_ig_unlabeled: 0.1824, pseudo_num: 1.4927, pseudo_num_ig: 5.5454, pseudo_num_mining: 0.7793, pseudo_num(acc): 0.8747, pseudo_num ig(acc): 0.4796, loss: 1.3452
2021-10-31 16:38:43,899 - mmdet - INFO - pseudo pos: 0.98(15067.0-person) 0.93(382.0-bicycle) 0.94(2531.0-car) 0.99(463.0-motorcycle) 1.00(249.0-airplane) 0.99(315.0-bus) 0.98(295.0-train) 0.76(563.0-truck) 0.75(586.0-boat) 0.92(759.0-traffic light) 0.98(92.0-fire hydrant) 1.00(101.0-stop sign) 0.92(76.0-parking meter) 0.70(525.0-bench) 0.91(558.0-bird) 0.98(248.0-cat) 0.98(280.0-dog) 0.99(384.0-horse) 0.94(507.0-sheep) 0.94(402.0-cow) 1.00(287.0-elephant) 1.00(95.0-bear) 0.99(268.0-zebra) 0.99(295.0-giraffe) 0.52(500.0-backpack) 0.81(705.0-umbrella) 0.53(627.0-handbag) 0.92(317.0-tie) 0.82(298.0-suitcase) 0.99(119.0-frisbee) 0.69(377.0-skis) 0.77(136.0-snowboard) 0.96(313.0-sports ball) 0.91(430.0-kite) 0.89(187.0-baseball bat) 0.94(190.0-baseball glove) 0.99(323.0-skateboard) 0.89(373.0-surfboard) 0.99(228.0-tennis racket) 0.87(1358.0-bottle) 0.96(396.0-wine glass) 0.90(1276.0-cup) 0.74(274.0-fork) 0.49(469.0-knife) 0.50(371.0-spoon) 0.85(854.0-bowl) 0.69(571.0-banana) 0.56(295.0-apple) 0.84(295.0-sandwich) 0.71(392.0-orange) 0.71(433.0-broccoli) 0.58(436.0-carrot) 0.76(177.0-hot dog) 0.95(322.0-pizza) 0.94(367.0-donut) 0.86(306.0-cake) 0.79(2196.0-chair) 0.84(342.0-couch) 0.75(547.0-potted plant) 0.93(207.0-bed) 0.73(1185.0-dining table) 0.95(204.0-toilet) 0.98(272.0-tv) 0.96(266.0-laptop) 0.97(133.0-mouse) 0.72(253.0-remote) 0.99(163.0-keyboard) 0.85(374.0-cell phone) 0.97(86.0-microwave) 0.89(202.0-oven) 0.00(0.0-toaster) 0.85(311.0-sink) 0.97(147.0-refrigerator) 0.34(1117.0-book) 0.99(352.0-clock) 0.91(370.0-vase) 0.76(100.0-scissors) 0.94(286.0-teddy bear) 0.00(0.0-hair drier) 0.50(109.0-toothbrush)
2021-10-31 16:38:43,899 - mmdet - INFO - pseudo ig: 0.64(53877.0-person) 0.44(1263.0-bicycle) 0.50(9233.0-car) 0.57(1823.0-motorcycle) 0.69(895.0-airplane) 0.66(1101.0-bus) 0.60(906.0-train) 0.37(2046.0-truck) 0.36(2234.0-boat) 0.40(2943.0-traffic light) 0.71(381.0-fire hydrant) 0.57(428.0-stop sign) 0.35(311.0-parking meter) 0.22(1959.0-bench) 0.32(2139.0-bird) 0.76(992.0-cat) 0.66(1058.0-dog) 0.61(1313.0-horse) 0.54(2211.0-sheep) 0.52(1899.0-cow) 0.78(1136.0-elephant) 0.66(298.0-bear) 0.78(1132.0-zebra) 0.89(972.0-giraffe) 0.24(1862.0-backpack) 0.40(2636.0-umbrella) 0.20(2626.0-handbag) 0.41(1126.0-tie) 0.42(1136.0-suitcase) 0.62(514.0-frisbee) 0.36(1370.0-skis) 0.31(550.0-snowboard) 0.40(1395.0-sports ball) 0.51(1649.0-kite) 0.38(736.0-baseball bat) 0.43(790.0-baseball glove) 0.57(1129.0-skateboard) 0.42(1366.0-surfboard) 0.65(949.0-tennis racket) 0.42(5151.0-bottle) 0.46(1573.0-wine glass) 0.36(5217.0-cup) 0.29(1199.0-fork) 0.22(1765.0-knife) 0.18(1478.0-spoon) 0.39(3542.0-bowl) 0.28(2239.0-banana) 0.20(1290.0-apple) 0.37(1006.0-sandwich) 0.26(1696.0-orange) 0.39(1673.0-broccoli) 0.23(1659.0-carrot) 0.32(625.0-hot dog) 0.57(1158.0-pizza) 0.39(1601.0-donut) 0.36(1269.0-cake) 0.31(8317.0-chair) 0.41(1265.0-couch) 0.35(1896.0-potted plant) 0.51(790.0-bed) 0.36(3128.0-dining table) 0.69(869.0-toilet) 0.62(1224.0-tv) 0.57(1125.0-laptop) 0.42(537.0-mouse) 0.33(1122.0-remote) 0.45(619.0-keyboard) 0.27(1468.0-cell phone) 0.55(303.0-microwave) 0.36(776.0-oven) 0.00(0.0-toaster) 0.44(1211.0-sink) 0.46(526.0-refrigerator) 0.18(4184.0-book) 0.61(1281.0-clock) 0.39(1559.0-vase) 0.22(330.0-scissors) 0.48(1076.0-teddy bear) 0.00(0.0-hair drier) 0.19(377.0-toothbrush)
2021-10-31 16:38:43,899 - mmdet - INFO - pseudo gt: 70994.0 1958.0 11674.0 2471.0 1293.0 1733.0 1190.0 2548.0 2868.0 3466.0 506.0 523.0 347.0 2648.0 2755.0 1250.0 1481.0 1740.0 2665.0 2138.0 1513.0 363.0 1534.0 1401.0 2391.0 3113.0 3255.0 1792.0 1830.0 706.0 1829.0 737.0 1678.0 2501.0 848.0 994.0 1585.0 1435.0 1350.0 6844.0 2182.0 5521.0 1455.0 2218.0 1629.0 3841.0 2545.0 1562.0 1252.0 1718.0 2131.0 1947.0 760.0 1563.0 1963.0 1640.0 10677.0 1595.0 2531.0 1081.0 4351.0 1160.0 1615.0 1342.0 632.0 1507.0 783.0 1747.0 462.0 905.0 62.0 1470.0 730.0 6346.0 1720.0 1807.0 366.0 1236.0 44.0 510.0
2021-10-31 16:38:43,899 - mmdet - INFO - pseudo mining: 13212.0 48.0 1298.0 157.0 138.0 272.0 106.0 13.0 81.0 356.0 174.0 253.0 7.0 11.0 67.0 172.0 122.0 192.0 490.0 202.0 467.0 76.0 565.0 579.0 2.0 156.0 0.0 91.0 38.0 204.0 23.0 0.0 464.0 498.0 58.0 199.0 190.0 44.0 310.0 452.0 112.0 361.0 3.0 6.0 1.0 206.0 31.0 14.0 17.0 23.0 70.0 29.0 1.0 163.0 160.0 19.0 49.0 6.0 83.0 5.0 46.0 345.0 404.0 173.0 154.0 30.0 63.0 66.0 54.0 17.0 0.0 133.0 27.0 3.0 811.0 126.0 0.0 72.0 0.0 1.0
2021-10-31 16:39:41,903 - mmdet - INFO - Evaluating bbox...
2021-10-31 16:40:50,964 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.443 | bicycle | 0.188 | car | 0.354 |
| motorcycle | 0.283 | airplane | 0.446 | bus | 0.496 |
| train | 0.479 | truck | 0.221 | boat | 0.170 |
| traffic light | 0.206 | fire hydrant | 0.524 | stop sign | 0.519 |
| parking meter | 0.362 | bench | 0.150 | bird | 0.240 |
| cat | 0.450 | dog | 0.386 | horse | 0.400 |
| sheep | 0.318 | cow | 0.407 | elephant | 0.494 |
| bear | 0.501 | zebra | 0.507 | giraffe | 0.546 |
| backpack | 0.081 | umbrella | 0.235 | handbag | 0.064 |
| tie | 0.168 | suitcase | 0.147 | frisbee | 0.501 |
| skis | 0.113 | snowboard | 0.145 | sports ball | 0.360 |
| kite | 0.283 | baseball bat | 0.145 | baseball glove | 0.247 |
| skateboard | 0.295 | surfboard | 0.208 | tennis racket | 0.331 |
| bottle | 0.283 | wine glass | 0.252 | cup | 0.307 |
| fork | 0.137 | knife | 0.057 | spoon | 0.058 |
| bowl | 0.314 | banana | 0.143 | apple | 0.087 |
| sandwich | 0.202 | orange | 0.219 | broccoli | 0.164 |
| carrot | 0.105 | hot dog | 0.117 | pizza | 0.353 |
| donut | 0.286 | cake | 0.190 | chair | 0.157 |
| couch | 0.266 | potted plant | 0.154 | bed | 0.288 |
| dining table | 0.172 | toilet | 0.434 | tv | 0.434 |
| laptop | 0.428 | mouse | 0.464 | remote | 0.143 |
| keyboard | 0.347 | cell phone | 0.209 | microwave | 0.384 |
| oven | 0.183 | toaster | 0.150 | sink | 0.208 |
| refrigerator | 0.331 | book | 0.052 | clock | 0.409 |
| vase | 0.282 | scissors | 0.211 | teddy bear | 0.298 |
| hair drier | 0.000 | toothbrush | 0.056 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 16:41:49,378 - mmdet - INFO - Evaluating bbox...
2021-10-31 16:42:59,374 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.460 | bicycle | 0.207 | car | 0.371 |
| motorcycle | 0.314 | airplane | 0.501 | bus | 0.531 |
| train | 0.497 | truck | 0.237 | boat | 0.185 |
| traffic light | 0.242 | fire hydrant | 0.546 | stop sign | 0.563 |
| parking meter | 0.423 | bench | 0.158 | bird | 0.269 |
| cat | 0.498 | dog | 0.457 | horse | 0.448 |
| sheep | 0.378 | cow | 0.437 | elephant | 0.541 |
| bear | 0.575 | zebra | 0.535 | giraffe | 0.577 |
| backpack | 0.101 | umbrella | 0.258 | handbag | 0.074 |
| tie | 0.216 | suitcase | 0.199 | frisbee | 0.558 |
| skis | 0.137 | snowboard | 0.220 | sports ball | 0.396 |
| kite | 0.308 | baseball bat | 0.195 | baseball glove | 0.284 |
| skateboard | 0.353 | surfboard | 0.242 | tennis racket | 0.352 |
| bottle | 0.307 | wine glass | 0.261 | cup | 0.336 |
| fork | 0.158 | knife | 0.078 | spoon | 0.073 |
| bowl | 0.356 | banana | 0.158 | apple | 0.111 |
| sandwich | 0.233 | orange | 0.251 | broccoli | 0.180 |
| carrot | 0.112 | hot dog | 0.173 | pizza | 0.392 |
| donut | 0.326 | cake | 0.225 | chair | 0.176 |
| couch | 0.308 | potted plant | 0.172 | bed | 0.320 |
| dining table | 0.182 | toilet | 0.483 | tv | 0.472 |
| laptop | 0.466 | mouse | 0.510 | remote | 0.177 |
| keyboard | 0.376 | cell phone | 0.248 | microwave | 0.440 |
| oven | 0.237 | toaster | 0.224 | sink | 0.264 |
| refrigerator | 0.378 | book | 0.059 | clock | 0.426 |
| vase | 0.292 | scissors | 0.163 | teddy bear | 0.327 |
| hair drier | 0.000 | toothbrush | 0.067 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-10-31 16:44:27,254 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 16:44:27,255 - mmdet - INFO - Iter [8000/40000] lr: 2.000e-02, eta: 16:51:26, time: 1.711, data_time: 0.030, memory: 26484, bbox_mAP: 0.3040, bbox_mAP_50: 0.5040, bbox_mAP_75: 0.3250, bbox_mAP_s: 0.1710, bbox_mAP_m: 0.3330, bbox_mAP_l: 0.3950, bbox_mAP_copypaste: 0.304 0.504 0.325 0.171 0.333 0.395, loss_rpn_cls: 0.0397, loss_rpn_bbox: 0.0508, loss_cls: 0.2504, acc: 91.6849, loss_bbox: 0.2834, loss_rpn_cls_unlabeled: 0.0939, loss_rpn_bbox_unlabeled: 0.0957, loss_cls_unlabeled: 0.1929, acc_unlabeled: 91.7266, loss_bbox_unlabeled: 0.1783, losses_cls_ig_unlabeled: 0.1904, pseudo_num: 1.4926, pseudo_num_ig: 5.5461, pseudo_num_mining: 0.7806, pseudo_num(acc): 0.8748, pseudo_num ig(acc): 0.4797, loss: 1.3755
2021-10-31 16:45:50,534 - mmdet - INFO - Iter [8050/40000] lr: 2.000e-02, eta: 17:11:42, time: 8.499, data_time: 6.865, memory: 26484, loss_rpn_cls: 0.0401, loss_rpn_bbox: 0.0534, loss_cls: 0.2439, acc: 91.9407, loss_bbox: 0.2778, loss_rpn_cls_unlabeled: 0.0906, loss_rpn_bbox_unlabeled: 0.0971, loss_cls_unlabeled: 0.1895, acc_unlabeled: 91.8785, loss_bbox_unlabeled: 0.1794, losses_cls_ig_unlabeled: 0.1826, pseudo_num: 1.4928, pseudo_num_ig: 5.5479, pseudo_num_mining: 0.7816, pseudo_num(acc): 0.8750, pseudo_num ig(acc): 0.4798, loss: 1.3543
2021-10-31 16:47:15,752 - mmdet - INFO - Iter [8100/40000] lr: 2.000e-02, eta: 17:09:20, time: 1.708, data_time: 0.033, memory: 26484, loss_rpn_cls: 0.0410, loss_rpn_bbox: 0.0529, loss_cls: 0.2478, acc: 91.8854, loss_bbox: 0.2786, loss_rpn_cls_unlabeled: 0.0947, loss_rpn_bbox_unlabeled: 0.0983, loss_cls_unlabeled: 0.1981, acc_unlabeled: 91.6057, loss_bbox_unlabeled: 0.1839, losses_cls_ig_unlabeled: 0.1893, pseudo_num: 1.4930, pseudo_num_ig: 5.5489, pseudo_num_mining: 0.7825, pseudo_num(acc): 0.8751, pseudo_num ig(acc): 0.4798, loss: 1.3847
2021-10-31 16:48:40,134 - mmdet - INFO - Iter [8150/40000] lr: 2.000e-02, eta: 17:06:54, time: 1.687, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0395, loss_rpn_bbox: 0.0496, loss_cls: 0.2489, acc: 91.8860, loss_bbox: 0.2766, loss_rpn_cls_unlabeled: 0.0965, loss_rpn_bbox_unlabeled: 0.0987, loss_cls_unlabeled: 0.1965, acc_unlabeled: 91.8970, loss_bbox_unlabeled: 0.1794, losses_cls_ig_unlabeled: 0.1847, pseudo_num: 1.4931, pseudo_num_ig: 5.5498, pseudo_num_mining: 0.7837, pseudo_num(acc): 0.8752, pseudo_num ig(acc): 0.4798, loss: 1.3703
2021-10-31 16:50:04,038 - mmdet - INFO - Iter [8200/40000] lr: 2.000e-02, eta: 17:04:28, time: 1.677, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0405, loss_rpn_bbox: 0.0508, loss_cls: 0.2448, acc: 91.8834, loss_bbox: 0.2743, loss_rpn_cls_unlabeled: 0.0911, loss_rpn_bbox_unlabeled: 0.0975, loss_cls_unlabeled: 0.1877, acc_unlabeled: 91.8264, loss_bbox_unlabeled: 0.1769, losses_cls_ig_unlabeled: 0.1871, pseudo_num: 1.4932, pseudo_num_ig: 5.5502, pseudo_num_mining: 0.7846, pseudo_num(acc): 0.8753, pseudo_num ig(acc): 0.4798, loss: 1.3508
2021-10-31 16:51:27,893 - mmdet - INFO - Iter [8250/40000] lr: 2.000e-02, eta: 17:02:02, time: 1.678, data_time: 0.030, memory: 26484, loss_rpn_cls: 0.0464, loss_rpn_bbox: 0.0537, loss_cls: 0.2609, acc: 91.5659, loss_bbox: 0.2858, loss_rpn_cls_unlabeled: 0.0910, loss_rpn_bbox_unlabeled: 0.0986, loss_cls_unlabeled: 0.1997, acc_unlabeled: 91.6460, loss_bbox_unlabeled: 0.1849, losses_cls_ig_unlabeled: 0.1879, pseudo_num: 1.4934, pseudo_num_ig: 5.5520, pseudo_num_mining: 0.7857, pseudo_num(acc): 0.8753, pseudo_num ig(acc): 0.4798, loss: 1.4089
2021-10-31 16:52:51,335 - mmdet - INFO - Iter [8300/40000] lr: 2.000e-02, eta: 16:59:36, time: 1.671, data_time: 0.032, memory: 26484, loss_rpn_cls: 0.0412, loss_rpn_bbox: 0.0497, loss_cls: 0.2430, acc: 91.9703, loss_bbox: 0.2760, loss_rpn_cls_unlabeled: 0.0906, loss_rpn_bbox_unlabeled: 0.0963, loss_cls_unlabeled: 0.1903, acc_unlabeled: 91.8549, loss_bbox_unlabeled: 0.1767, losses_cls_ig_unlabeled: 0.1843, pseudo_num: 1.4935, pseudo_num_ig: 5.5529, pseudo_num_mining: 0.7867, pseudo_num(acc): 0.8753, pseudo_num ig(acc): 0.4798, loss: 1.3482
2021-10-31 16:54:14,886 - mmdet - INFO - Iter [8350/40000] lr: 2.000e-02, eta: 16:57:10, time: 1.669, data_time: 0.027, memory: 26484, loss_rpn_cls: 0.0423, loss_rpn_bbox: 0.0550, loss_cls: 0.2599, acc: 91.4856, loss_bbox: 0.2867, loss_rpn_cls_unlabeled: 0.0935, loss_rpn_bbox_unlabeled: 0.1004, loss_cls_unlabeled: 0.1862, acc_unlabeled: 91.9397, loss_bbox_unlabeled: 0.1698, losses_cls_ig_unlabeled: 0.1802, pseudo_num: 1.4933, pseudo_num_ig: 5.5540, pseudo_num_mining: 0.7875, pseudo_num(acc): 0.8754, pseudo_num ig(acc): 0.4798, loss: 1.3740
2021-10-31 16:55:41,165 - mmdet - INFO - Iter [8400/40000] lr: 2.000e-02, eta: 16:54:54, time: 1.722, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0421, loss_rpn_bbox: 0.0531, loss_cls: 0.2534, acc: 91.6334, loss_bbox: 0.2861, loss_rpn_cls_unlabeled: 0.0931, loss_rpn_bbox_unlabeled: 0.0984, loss_cls_unlabeled: 0.1917, acc_unlabeled: 91.8530, loss_bbox_unlabeled: 0.1807, losses_cls_ig_unlabeled: 0.1854, pseudo_num: 1.4932, pseudo_num_ig: 5.5548, pseudo_num_mining: 0.7884, pseudo_num(acc): 0.8755, pseudo_num ig(acc): 0.4799, loss: 1.3841
2021-10-31 16:57:06,343 - mmdet - INFO - Iter [8450/40000] lr: 2.000e-02, eta: 16:52:37, time: 1.709, data_time: 0.035, memory: 26484, loss_rpn_cls: 0.0415, loss_rpn_bbox: 0.0535, loss_cls: 0.2458, acc: 91.7941, loss_bbox: 0.2820, loss_rpn_cls_unlabeled: 0.0957, loss_rpn_bbox_unlabeled: 0.0982, loss_cls_unlabeled: 0.1957, acc_unlabeled: 91.7650, loss_bbox_unlabeled: 0.1828, losses_cls_ig_unlabeled: 0.1848, pseudo_num: 1.4934, pseudo_num_ig: 5.5562, pseudo_num_mining: 0.7896, pseudo_num(acc): 0.8755, pseudo_num ig(acc): 0.4799, loss: 1.3798
2021-10-31 16:58:30,844 - mmdet - INFO - pseudo pos: 0.98(15929.0-person) 0.93(395.0-bicycle) 0.94(2678.0-car) 0.99(489.0-motorcycle) 1.00(258.0-airplane) 0.99(330.0-bus) 0.98(307.0-train) 0.76(609.0-truck) 0.75(632.0-boat) 0.92(808.0-traffic light) 0.98(96.0-fire hydrant) 1.00(108.0-stop sign) 0.92(79.0-parking meter) 0.71(568.0-bench) 0.91(595.0-bird) 0.99(268.0-cat) 0.98(294.0-dog) 0.99(405.0-horse) 0.94(554.0-sheep) 0.94(429.0-cow) 1.00(302.0-elephant) 1.00(100.0-bear) 0.99(293.0-zebra) 0.99(314.0-giraffe) 0.53(524.0-backpack) 0.81(756.0-umbrella) 0.53(690.0-handbag) 0.92(333.0-tie) 0.82(325.0-suitcase) 0.99(124.0-frisbee) 0.70(395.0-skis) 0.78(138.0-snowboard) 0.97(332.0-sports ball) 0.91(451.0-kite) 0.89(199.0-baseball bat) 0.93(197.0-baseball glove) 0.99(345.0-skateboard) 0.88(394.0-surfboard) 0.99(245.0-tennis racket) 0.87(1446.0-bottle) 0.96(416.0-wine glass) 0.90(1356.0-cup) 0.75(291.0-fork) 0.50(507.0-knife) 0.51(381.0-spoon) 0.84(913.0-bowl) 0.69(598.0-banana) 0.57(305.0-apple) 0.84(322.0-sandwich) 0.70(429.0-orange) 0.71(461.0-broccoli) 0.59(464.0-carrot) 0.76(182.0-hot dog) 0.95(339.0-pizza) 0.93(383.0-donut) 0.86(326.0-cake) 0.79(2338.0-chair) 0.84(367.0-couch) 0.75(585.0-potted plant) 0.93(222.0-bed) 0.73(1261.0-dining table) 0.96(223.0-toilet) 0.98(287.0-tv) 0.97(288.0-laptop) 0.97(140.0-mouse) 0.72(263.0-remote) 0.99(175.0-keyboard) 0.86(398.0-cell phone) 0.97(91.0-microwave) 0.89(215.0-oven) 0.00(0.0-toaster) 0.84(325.0-sink) 0.97(156.0-refrigerator) 0.34(1179.0-book) 0.99(371.0-clock) 0.91(399.0-vase) 0.77(103.0-scissors) 0.94(298.0-teddy bear) 0.00(0.0-hair drier) 0.51(113.0-toothbrush)
2021-10-31 16:58:30,845 - mmdet - INFO - pseudo ig: 0.64(57279.0-person) 0.44(1341.0-bicycle) 0.50(9783.0-car) 0.56(1907.0-motorcycle) 0.70(962.0-airplane) 0.66(1171.0-bus) 0.59(974.0-train) 0.37(2193.0-truck) 0.35(2377.0-boat) 0.39(3114.0-traffic light) 0.71(403.0-fire hydrant) 0.58(455.0-stop sign) 0.35(323.0-parking meter) 0.22(2090.0-bench) 0.32(2256.0-bird) 0.77(1047.0-cat) 0.67(1120.0-dog) 0.61(1386.0-horse) 0.55(2299.0-sheep) 0.52(2052.0-cow) 0.78(1191.0-elephant) 0.67(310.0-bear) 0.79(1244.0-zebra) 0.89(1062.0-giraffe) 0.23(1971.0-backpack) 0.41(2783.0-umbrella) 0.20(2835.0-handbag) 0.41(1225.0-tie) 0.41(1233.0-suitcase) 0.62(540.0-frisbee) 0.36(1447.0-skis) 0.31(582.0-snowboard) 0.40(1466.0-sports ball) 0.51(1731.0-kite) 0.38(780.0-baseball bat) 0.43(819.0-baseball glove) 0.58(1192.0-skateboard) 0.43(1446.0-surfboard) 0.65(1022.0-tennis racket) 0.42(5424.0-bottle) 0.45(1680.0-wine glass) 0.35(5484.0-cup) 0.29(1266.0-fork) 0.22(1900.0-knife) 0.18(1550.0-spoon) 0.39(3758.0-bowl) 0.28(2350.0-banana) 0.20(1329.0-apple) 0.37(1061.0-sandwich) 0.26(1821.0-orange) 0.39(1802.0-broccoli) 0.23(1766.0-carrot) 0.31(647.0-hot dog) 0.58(1245.0-pizza) 0.39(1693.0-donut) 0.36(1357.0-cake) 0.31(8834.0-chair) 0.41(1339.0-couch) 0.36(2059.0-potted plant) 0.52(829.0-bed) 0.36(3358.0-dining table) 0.69(923.0-toilet) 0.63(1287.0-tv) 0.57(1216.0-laptop) 0.43(562.0-mouse) 0.33(1183.0-remote) 0.46(654.0-keyboard) 0.28(1537.0-cell phone) 0.56(325.0-microwave) 0.36(812.0-oven) 0.00(0.0-toaster) 0.44(1286.0-sink) 0.45(556.0-refrigerator) 0.18(4507.0-book) 0.60(1399.0-clock) 0.40(1682.0-vase) 0.22(347.0-scissors) 0.48(1115.0-teddy bear) 0.00(0.0-hair drier) 0.19(391.0-toothbrush)
2021-10-31 16:58:30,845 - mmdet - INFO - pseudo gt: 75047.0 2054.0 12396.0 2587.0 1371.0 1838.0 1271.0 2735.0 3013.0 3647.0 532.0 558.0 360.0 2799.0 2881.0 1330.0 1588.0 1830.0 2821.0 2292.0 1581.0 388.0 1710.0 1518.0 2521.0 3297.0 3484.0 1911.0 1928.0 743.0 1938.0 777.0 1755.0 2606.0 895.0 1046.0 1691.0 1516.0 1430.0 7221.0 2315.0 5854.0 1549.0 2353.0 1715.0 4074.0 2670.0 1635.0 1318.0 1798.0 2282.0 2073.0 798.0 1677.0 2066.0 1743.0 11267.0 1698.0 2698.0 1142.0 4654.0 1254.0 1698.0 1443.0 671.0 1611.0 840.0 1860.0 496.0 947.0 68.0 1578.0 768.0 6750.0 1844.0 1950.0 390.0 1289.0 46.0 539.0
2021-10-31 16:58:30,845 - mmdet - INFO - pseudo mining: 14139.0 51.0 1382.0 166.0 152.0 292.0 114.0 14.0 86.0 374.0 184.0 273.0 7.0 13.0 70.0 183.0 136.0 208.0 517.0 233.0 495.0 78.0 636.0 630.0 2.0 159.0 0.0 100.0 44.0 218.0 24.0 0.0 488.0 515.0 61.0 208.0 200.0 46.0 331.0 484.0 120.0 387.0 4.0 6.0 1.0 220.0 32.0 14.0 18.0 25.0 77.0 30.0 1.0 175.0 176.0 22.0 55.0 6.0 91.0 7.0 48.0 372.0 432.0 184.0 167.0 34.0 71.0 74.0 59.0 21.0 0.0 155.0 27.0 3.0 893.0 136.0 0.0 72.0 0.0 1.0
2021-10-31 16:58:32,453 - mmdet - INFO - Iter [8500/40000] lr: 2.000e-02, eta: 16:50:23, time: 1.722, data_time: 0.028, memory: 26484, loss_rpn_cls: 0.0387, loss_rpn_bbox: 0.0514, loss_cls: 0.2401, acc: 92.0919, loss_bbox: 0.2726, loss_rpn_cls_unlabeled: 0.0974, loss_rpn_bbox_unlabeled: 0.0992, loss_cls_unlabeled: 0.1924, acc_unlabeled: 91.8882, loss_bbox_unlabeled: 0.1795, losses_cls_ig_unlabeled: 0.1839, pseudo_num: 1.4937, pseudo_num_ig: 5.5581, pseudo_num_mining: 0.7906, pseudo_num(acc): 0.8756, pseudo_num ig(acc): 0.4799, loss: 1.3551
2021-10-31 16:59:56,517 - mmdet - INFO - Iter [8550/40000] lr: 2.000e-02, eta: 16:48:02, time: 1.678, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0399, loss_rpn_bbox: 0.0513, loss_cls: 0.2382, acc: 92.0024, loss_bbox: 0.2701, loss_rpn_cls_unlabeled: 0.0941, loss_rpn_bbox_unlabeled: 0.0964, loss_cls_unlabeled: 0.1942, acc_unlabeled: 91.8219, loss_bbox_unlabeled: 0.1813, losses_cls_ig_unlabeled: 0.1830, pseudo_num: 1.4938, pseudo_num_ig: 5.5586, pseudo_num_mining: 0.7915, pseudo_num(acc): 0.8757, pseudo_num ig(acc): 0.4799, loss: 1.3485
2021-10-31 17:01:20,922 - mmdet - INFO - Iter [8600/40000] lr: 2.000e-02, eta: 16:45:43, time: 1.690, data_time: 0.033, memory: 26484, loss_rpn_cls: 0.0388, loss_rpn_bbox: 0.0505, loss_cls: 0.2411, acc: 92.0385, loss_bbox: 0.2725, loss_rpn_cls_unlabeled: 0.0952, loss_rpn_bbox_unlabeled: 0.1012, loss_cls_unlabeled: 0.1903, acc_unlabeled: 91.9042, loss_bbox_unlabeled: 0.1768, losses_cls_ig_unlabeled: 0.1838, pseudo_num: 1.4937, pseudo_num_ig: 5.5590, pseudo_num_mining: 0.7924, pseudo_num(acc): 0.8756, pseudo_num ig(acc): 0.4799, loss: 1.3503
2021-10-31 17:02:46,571 - mmdet - INFO - Iter [8650/40000] lr: 2.000e-02, eta: 16:43:29, time: 1.714, data_time: 0.032, memory: 26484, loss_rpn_cls: 0.0384, loss_rpn_bbox: 0.0498, loss_cls: 0.2321, acc: 92.3743, loss_bbox: 0.2652, loss_rpn_cls_unlabeled: 0.0941, loss_rpn_bbox_unlabeled: 0.0991, loss_cls_unlabeled: 0.1904, acc_unlabeled: 91.8726, loss_bbox_unlabeled: 0.1790, losses_cls_ig_unlabeled: 0.1813, pseudo_num: 1.4939, pseudo_num_ig: 5.5599, pseudo_num_mining: 0.7933, pseudo_num(acc): 0.8757, pseudo_num ig(acc): 0.4799, loss: 1.3294
2021-10-31 17:04:11,699 - mmdet - INFO - Iter [8700/40000] lr: 2.000e-02, eta: 16:41:14, time: 1.702, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0406, loss_rpn_bbox: 0.0527, loss_cls: 0.2462, acc: 91.8871, loss_bbox: 0.2766, loss_rpn_cls_unlabeled: 0.1000, loss_rpn_bbox_unlabeled: 0.1036, loss_cls_unlabeled: 0.2015, acc_unlabeled: 91.6494, loss_bbox_unlabeled: 0.1844, losses_cls_ig_unlabeled: 0.1840, pseudo_num: 1.4944, pseudo_num_ig: 5.5620, pseudo_num_mining: 0.7945, pseudo_num(acc): 0.8757, pseudo_num ig(acc): 0.4800, loss: 1.3896
2021-10-31 17:05:36,987 - mmdet - INFO - Iter [8750/40000] lr: 2.000e-02, eta: 16:39:00, time: 1.705, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0419, loss_rpn_bbox: 0.0531, loss_cls: 0.2450, acc: 91.9058, loss_bbox: 0.2774, loss_rpn_cls_unlabeled: 0.0950, loss_rpn_bbox_unlabeled: 0.0991, loss_cls_unlabeled: 0.1957, acc_unlabeled: 91.6222, loss_bbox_unlabeled: 0.1808, losses_cls_ig_unlabeled: 0.1848, pseudo_num: 1.4949, pseudo_num_ig: 5.5644, pseudo_num_mining: 0.7954, pseudo_num(acc): 0.8758, pseudo_num ig(acc): 0.4799, loss: 1.3727
2021-10-31 17:07:02,556 - mmdet - INFO - Iter [8800/40000] lr: 2.000e-02, eta: 16:36:47, time: 1.712, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0428, loss_rpn_bbox: 0.0540, loss_cls: 0.2468, acc: 91.8834, loss_bbox: 0.2743, loss_rpn_cls_unlabeled: 0.0883, loss_rpn_bbox_unlabeled: 0.0965, loss_cls_unlabeled: 0.1878, acc_unlabeled: 92.0969, loss_bbox_unlabeled: 0.1763, losses_cls_ig_unlabeled: 0.1764, pseudo_num: 1.4950, pseudo_num_ig: 5.5650, pseudo_num_mining: 0.7962, pseudo_num(acc): 0.8759, pseudo_num ig(acc): 0.4799, loss: 1.3431
2021-10-31 17:08:28,500 - mmdet - INFO - Iter [8850/40000] lr: 2.000e-02, eta: 16:34:36, time: 1.717, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0408, loss_rpn_bbox: 0.0522, loss_cls: 0.2449, acc: 91.9913, loss_bbox: 0.2733, loss_rpn_cls_unlabeled: 0.0916, loss_rpn_bbox_unlabeled: 0.0988, loss_cls_unlabeled: 0.1909, acc_unlabeled: 91.7130, loss_bbox_unlabeled: 0.1780, losses_cls_ig_unlabeled: 0.1880, pseudo_num: 1.4950, pseudo_num_ig: 5.5656, pseudo_num_mining: 0.7972, pseudo_num(acc): 0.8759, pseudo_num ig(acc): 0.4800, loss: 1.3584
2021-10-31 17:09:54,534 - mmdet - INFO - Iter [8900/40000] lr: 2.000e-02, eta: 16:32:26, time: 1.722, data_time: 0.034, memory: 26484, loss_rpn_cls: 0.0411, loss_rpn_bbox: 0.0522, loss_cls: 0.2442, acc: 92.0042, loss_bbox: 0.2688, loss_rpn_cls_unlabeled: 0.0927, loss_rpn_bbox_unlabeled: 0.1005, loss_cls_unlabeled: 0.1914, acc_unlabeled: 91.6025, loss_bbox_unlabeled: 0.1813, losses_cls_ig_unlabeled: 0.1856, pseudo_num: 1.4951, pseudo_num_ig: 5.5668, pseudo_num_mining: 0.7982, pseudo_num(acc): 0.8759, pseudo_num ig(acc): 0.4800, loss: 1.3578
2021-10-31 17:11:20,703 - mmdet - INFO - Iter [8950/40000] lr: 2.000e-02, eta: 16:30:18, time: 1.725, data_time: 0.033, memory: 26484, loss_rpn_cls: 0.0396, loss_rpn_bbox: 0.0513, loss_cls: 0.2478, acc: 91.8990, loss_bbox: 0.2721, loss_rpn_cls_unlabeled: 0.0945, loss_rpn_bbox_unlabeled: 0.1027, loss_cls_unlabeled: 0.1940, acc_unlabeled: 91.8594, loss_bbox_unlabeled: 0.1850, losses_cls_ig_unlabeled: 0.1851, pseudo_num: 1.4954, pseudo_num_ig: 5.5686, pseudo_num_mining: 0.7992, pseudo_num(acc): 0.8760, pseudo_num ig(acc): 0.4800, loss: 1.3720
2021-10-31 17:12:45,569 - mmdet - INFO - pseudo pos: 0.98(16895.0-person) 0.93(424.0-bicycle) 0.94(2833.0-car) 0.99(524.0-motorcycle) 1.00(275.0-airplane) 0.99(345.0-bus) 0.98(324.0-train) 0.77(638.0-truck) 0.75(693.0-boat) 0.92(871.0-traffic light) 0.98(98.0-fire hydrant) 1.00(122.0-stop sign) 0.93(81.0-parking meter) 0.71(618.0-bench) 0.91(638.0-bird) 0.98(285.0-cat) 0.98(308.0-dog) 0.99(432.0-horse) 0.95(580.0-sheep) 0.94(454.0-cow) 1.00(326.0-elephant) 1.00(108.0-bear) 0.99(301.0-zebra) 0.99(337.0-giraffe) 0.54(556.0-backpack) 0.82(794.0-umbrella) 0.53(729.0-handbag) 0.93(347.0-tie) 0.82(352.0-suitcase) 0.99(133.0-frisbee) 0.71(424.0-skis) 0.79(145.0-snowboard) 0.97(361.0-sports ball) 0.91(471.0-kite) 0.90(212.0-baseball bat) 0.94(210.0-baseball glove) 0.99(374.0-skateboard) 0.88(416.0-surfboard) 0.99(267.0-tennis racket) 0.87(1495.0-bottle) 0.96(450.0-wine glass) 0.90(1420.0-cup) 0.76(308.0-fork) 0.50(541.0-knife) 0.51(399.0-spoon) 0.85(978.0-bowl) 0.69(647.0-banana) 0.57(315.0-apple) 0.83(344.0-sandwich) 0.69(459.0-orange) 0.71(493.0-broccoli) 0.59(496.0-carrot) 0.76(194.0-hot dog) 0.95(359.0-pizza) 0.93(406.0-donut) 0.86(361.0-cake) 0.79(2491.0-chair) 0.84(387.0-couch) 0.74(620.0-potted plant) 0.94(237.0-bed) 0.73(1345.0-dining table) 0.95(235.0-toilet) 0.98(306.0-tv) 0.96(303.0-laptop) 0.97(148.0-mouse) 0.73(281.0-remote) 0.99(182.0-keyboard) 0.86(416.0-cell phone) 0.97(97.0-microwave) 0.89(232.0-oven) 0.00(0.0-toaster) 0.84(339.0-sink) 0.97(167.0-refrigerator) 0.35(1234.0-book) 0.99(385.0-clock) 0.91(433.0-vase) 0.76(112.0-scissors) 0.94(315.0-teddy bear) 0.00(0.0-hair drier) 0.51(115.0-toothbrush)
2021-10-31 17:12:45,569 - mmdet - INFO - pseudo ig: 0.64(60971.0-person) 0.44(1457.0-bicycle) 0.50(10412.0-car) 0.56(1992.0-motorcycle) 0.69(1026.0-airplane) 0.66(1222.0-bus) 0.59(1031.0-train) 0.37(2309.0-truck) 0.35(2588.0-boat) 0.39(3343.0-traffic light) 0.72(429.0-fire hydrant) 0.59(466.0-stop sign) 0.35(339.0-parking meter) 0.22(2239.0-bench) 0.32(2421.0-bird) 0.76(1109.0-cat) 0.68(1188.0-dog) 0.61(1465.0-horse) 0.55(2415.0-sheep) 0.52(2181.0-cow) 0.78(1266.0-elephant) 0.68(317.0-bear) 0.79(1296.0-zebra) 0.88(1148.0-giraffe) 0.23(2076.0-backpack) 0.41(2914.0-umbrella) 0.21(3029.0-handbag) 0.43(1302.0-tie) 0.41(1321.0-suitcase) 0.62(568.0-frisbee) 0.35(1562.0-skis) 0.32(615.0-snowboard) 0.39(1552.0-sports ball) 0.51(1799.0-kite) 0.38(822.0-baseball bat) 0.44(857.0-baseball glove) 0.58(1270.0-skateboard) 0.43(1540.0-surfboard) 0.65(1092.0-tennis racket) 0.43(5667.0-bottle) 0.46(1810.0-wine glass) 0.36(5769.0-cup) 0.29(1329.0-fork) 0.22(2032.0-knife) 0.19(1648.0-spoon) 0.39(3982.0-bowl) 0.27(2561.0-banana) 0.20(1384.0-apple) 0.37(1127.0-sandwich) 0.26(1947.0-orange) 0.39(1919.0-broccoli) 0.23(1903.0-carrot) 0.31(669.0-hot dog) 0.57(1313.0-pizza) 0.39(1820.0-donut) 0.36(1464.0-cake) 0.31(9331.0-chair) 0.41(1409.0-couch) 0.36(2188.0-potted plant) 0.51(874.0-bed) 0.36(3562.0-dining table) 0.70(954.0-toilet) 0.63(1372.0-tv) 0.57(1278.0-laptop) 0.44(580.0-mouse) 0.33(1250.0-remote) 0.46(686.0-keyboard) 0.28(1604.0-cell phone) 0.56(341.0-microwave) 0.36(860.0-oven) 0.00(0.0-toaster) 0.44(1361.0-sink) 0.46(587.0-refrigerator) 0.18(4761.0-book) 0.60(1473.0-clock) 0.39(1795.0-vase) 0.21(376.0-scissors) 0.48(1173.0-teddy bear) 0.00(0.0-hair drier) 0.19(399.0-toothbrush)
2021-10-31 17:12:45,569 - mmdet - INFO - pseudo gt: 79557.0 2199.0 13185.0 2702.0 1448.0 1939.0 1347.0 2889.0 3231.0 3895.0 564.0 598.0 383.0 2942.0 3072.0 1402.0 1693.0 1946.0 2972.0 2429.0 1675.0 411.0 1782.0 1612.0 2663.0 3472.0 3698.0 2041.0 2033.0 786.0 2055.0 850.0 1855.0 2698.0 965.0 1127.0 1819.0 1637.0 1526.0 7561.0 2510.0 6228.0 1642.0 2494.0 1819.0 4357.0 2869.0 1719.0 1410.0 1915.0 2408.0 2209.0 851.0 1769.0 2176.0 1898.0 11922.0 1800.0 2850.0 1215.0 4938.0 1314.0 1800.0 1514.0 699.0 1715.0 882.0 1971.0 517.0 1002.0 70.0 1681.0 812.0 7135.0 1942.0 2060.0 410.0 1360.0 51.0 560.0
2021-10-31 17:12:45,569 - mmdet - INFO - pseudo mining: 15189.0 58.0 1476.0 171.0 159.0 309.0 122.0 15.0 91.0 397.0 197.0 283.0 7.0 13.0 74.0 195.0 152.0 225.0 545.0 262.0 528.0 82.0 662.0 671.0 2.0 163.0 0.0 108.0 46.0 230.0 26.0 0.0 509.0 539.0 66.0 219.0 220.0 58.0 360.0 510.0 127.0 428.0 4.0 6.0 2.0 238.0 34.0 14.0 19.0 25.0 81.0 32.0 1.0 189.0 208.0 25.0 58.0 7.0 100.0 9.0 52.0 389.0 460.0 192.0 173.0 40.0 79.0 82.0 62.0 21.0 0.0 174.0 29.0 3.0 941.0 144.0 0.0 77.0 0.0 1.0
2021-10-31 17:14:16,482 - mmdet - INFO - Exp name: labelmatch_0.9_1_10_8.py
2021-10-31 17:14:16,483 - mmdet - INFO - Iter [9000/40000] lr: 2.000e-02, eta: 16:28:10, time: 1.729, data_time: 0.029, memory: 26484, loss_rpn_cls: 0.0413, loss_rpn_bbox: 0.0510, loss_cls: 0.2464, acc: 91.9452, loss_bbox: 0.2747, loss_rpn_cls_unlabeled: 0.0955, loss_rpn_bbox_unlabeled: 0.1019, loss_cls_unlabeled: 0.2019, acc_unlabeled: 91.5990, loss_bbox_unlabeled: 0.1862, losses_cls_ig_unlabeled: 0.1885, pseudo_num: 1.4957, pseudo_num_ig: 5.5709, pseudo_num_mining: 0.8005, pseudo_num(acc): 0.8760, pseudo_num ig(acc): 0.4801, loss: 1.3874
2021-10-31 17:15:39,707 - mmdet - INFO - Iter [9050/40000] lr: 2.000e-02, eta: 16:30:57, time: 3.449, data_time: 1.816, memory: 26484, loss_rpn_cls: 0.0398, loss_rpn_bbox: 0.0512, loss_cls: 0.2502, acc: 91.7926, loss_bbox: 0.2839, loss_rpn_cls_unlabeled: 0.0893, loss_rpn_bbox_unlabeled: 0.0936, loss_cls_unlabeled: 0.1931, acc_unlabeled: 91.9066, loss_bbox_unlabeled: 0.1816, losses_cls_ig_unlabeled: 0.1850, pseudo_num: 1.4960, pseudo_num_ig: 5.5720, pseudo_num_mining: 0.8015, pseudo_num(acc): 0.8761, pseudo_num ig(acc): 0.4800, loss: 1.3678
2021-10-31 17:17:04,365 - mmdet - INFO - Iter [9100/40000] lr: 2.000e-02, eta: 16:28:43, time: 1.693, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0387, loss_rpn_bbox: 0.0518, loss_cls: 0.2447, acc: 91.9369, loss_bbox: 0.2785, loss_rpn_cls_unlabeled: 0.0926, loss_rpn_bbox_unlabeled: 0.0938, loss_cls_unlabeled: 0.1902, acc_unlabeled: 91.7496, loss_bbox_unlabeled: 0.1816, losses_cls_ig_unlabeled: 0.1859, pseudo_num: 1.4960, pseudo_num_ig: 5.5720, pseudo_num_mining: 0.8022, pseudo_num(acc): 0.8762, pseudo_num ig(acc): 0.4800, loss: 1.3579
2021-10-31 17:18:29,977 - mmdet - INFO - Iter [9150/40000] lr: 2.000e-02, eta: 16:26:32, time: 1.712, data_time: 0.032, memory: 26484, loss_rpn_cls: 0.0394, loss_rpn_bbox: 0.0509, loss_cls: 0.2473, acc: 91.8210, loss_bbox: 0.2795, loss_rpn_cls_unlabeled: 0.0908, loss_rpn_bbox_unlabeled: 0.0984, loss_cls_unlabeled: 0.1948, acc_unlabeled: 91.8517, loss_bbox_unlabeled: 0.1804, losses_cls_ig_unlabeled: 0.1880, pseudo_num: 1.4958, pseudo_num_ig: 5.5727, pseudo_num_mining: 0.8031, pseudo_num(acc): 0.8763, pseudo_num ig(acc): 0.4801, loss: 1.3696
2021-10-31 17:19:56,393 - mmdet - INFO - Iter [9200/40000] lr: 2.000e-02, eta: 16:24:24, time: 1.727, data_time: 0.031, memory: 26484, loss_rpn_cls: 0.0371, loss_rpn_bbox: 0.0504, loss_cls: 0.2382, acc: 92.0272, loss_bbox: 0.2769, loss_rpn_cls_unlabeled: 0.0946, loss_rpn_bbox_unlabeled: 0.0992, loss_cls_unlabeled: 0.1929, acc_unlabeled: 92.0277, loss_bbox_unlabeled: 0.1826, losses_cls_ig_unlabeled: 0.1824, pseudo_num: 1.4959, pseudo_num_ig: 5.5730, pseudo_num_mining: 0.8040, pseudo_num(acc): 0.8764, pseudo_num ig(acc): 0.4802, loss: 1.3542