forked from fuentesdt/livermask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
liver2.py
executable file
·640 lines (549 loc) · 33.2 KB
/
liver2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import numpy as np
# raw dicom data is usually short int (2bytes) datatype
# labels are usually uchar (1byte)
IMG_DTYPE = np.int16
SEG_DTYPE = np.uint8
# setup command line parser to control execution
from optparse import OptionParser
parser = OptionParser()
parser.add_option( "--builddb",
action="store_true", dest="builddb", default=False,
help="load all training data into npy", metavar="FILE")
parser.add_option( "--trainmodel",
action="store_true", dest="trainmodel", default=False,
help="train model", metavar="FILE")
parser.add_option( "--trainhvd",
action="store_true", dest="trainhvd", default=False,
help="train model with horovod", metavar="FILE")
parser.add_option( "--setuptestset",
action="store_true", dest="setuptestset", default=False,
help="cross validate test set", metavar="FILE")
parser.add_option( "--predictmodel",
action="store", dest="predictmodel", default=None,
help="apply model to image", metavar="Path")
parser.add_option( "--predictimage",
action="store", dest="predictimage", default=None,
help="apply model to image", metavar="Path")
parser.add_option( "--segmentation",
action="store", dest="segmentation", default=None,
help="model output ", metavar="Path")
parser.add_option( "--trainingid",
action="store", dest="trainingid", default='run_a',
help="setup info", metavar="Path")
parser.add_option( "--trainingmodel",
action="store", dest="trainingmodel", default='full',
help="setup info", metavar="string")
parser.add_option( "--trainingloss",
action="store", dest="trainingloss", default='dscimg',
help="setup info", metavar="string")
parser.add_option( "--trainingsolver",
action="store", dest="trainingsolver", default='adadelta',
help="setup info", metavar="string")
parser.add_option( "--dbfile",
action="store", dest="dbfile", default="./trainingdata.csv",
help="training data file", metavar="string")
parser.add_option( "--trainingresample",
type="int", dest="trainingresample", default=256,
help="setup info", metavar="int")
parser.add_option( "--trainingbatch",
type="int", dest="trainingbatch", default=4,
help="setup info", metavar="int")
parser.add_option( "--kfolds",
type="int", dest="kfolds", default=5,
help="setup info", metavar="int")
parser.add_option( "--idfold",
type="int", dest="idfold", default=0,
help="setup info", metavar="int")
parser.add_option( "--rootlocation",
action="store", dest="rootlocation", default='/rsrch1/ip/jacctor/LiTS/LiTS',
help="setup info", metavar="string")
parser.add_option("--numepochs",
type="int", dest="numepochs", default=10,
help="number of epochs for training", metavar="int")
parser.add_option("--outdir",
action="store", dest="outdir", default='./',
help="directory for output", metavar="string")
parser.add_option("--noskipconnections",
action="store_true", dest="noSC", default=False,
help="disable skip connections in model architecture", metavar="FILE")
parser.add_option("--nobatchnormalization",
action="store_true", dest="noBN", default=False,
help="disable batch normalization in model architecture", metavar="FILE")
(options, args) = parser.parse_args()
# FIXME: @jonasactor - is there a better software/programming practice to keep track of the global variables?
_globalnpfile = options.dbfile.replace('.csv','%d.npy' % options.trainingresample )
_globalexpectedpixel=512
print('database file: %s ' % _globalnpfile )
# build data base from CSV file
def GetDataDictionary():
import csv
CSVDictionary = {}
with open(options.dbfile, 'r') as csvfile:
myreader = csv.DictReader(csvfile, delimiter=',')
for row in myreader:
CSVDictionary[int( row['dataid'])] = {'image':row['image'], 'label':row['label']}
return CSVDictionary
# setup kfolds
def GetSetupKfolds(numfolds,idfold):
import csv
from sklearn.model_selection import KFold
# get id from setupfiles
dataidsfull = []
with open(options.dbfile, 'r') as csvfile:
myreader = csv.DictReader(csvfile, delimiter=',')
for row in myreader:
dataidsfull.append( int( row['dataid']))
if (numfolds < idfold or numfolds < 1):
raise("data input error")
# split in folds
if (numfolds > 1):
kf = KFold(n_splits=numfolds)
allkfolds = [ (train_index, test_index) for train_index, test_index in kf.split(dataidsfull )]
train_index = allkfolds[idfold][0]
test_index = allkfolds[idfold][1]
else:
train_index = np.array(dataidsfull )
test_index = None
print(numfolds, idfold)
print("train_index:\t", train_index)
print("test_index:\t", test_index)
return (train_index,test_index)
##########################
# preprocess database and store to disk
##########################
if (options.builddb):
import csv
import nibabel as nib
from scipy import ndimage
import skimage.transform
# create custom data frame database type
mydatabasetype = [('dataid', int), ('axialliverbounds',bool), ('axialtumorbounds',bool), ('imagepath','S128'),('imagedata','(%d,%d)int16' %(options.trainingresample,options.trainingresample)),('truthpath','S128'),('truthdata','(%d,%d)uint8' % (options.trainingresample,options.trainingresample))]
# initialize empty dataframe
numpydatabase = np.empty(0, dtype=mydatabasetype )
# load all data from csv
totalnslice = 0
with open(options.dbfile, 'r') as csvfile:
myreader = csv.DictReader(csvfile, delimiter=',')
for row in myreader:
imagelocation = '%s/%s' % (options.rootlocation,row['image'])
truthlocation = '%s/%s' % (options.rootlocation,row['label'])
print(imagelocation,truthlocation )
# load nifti file
imagedata = nib.load(imagelocation )
numpyimage= imagedata.get_data().astype(IMG_DTYPE )
# error check
assert numpyimage.shape[0:2] == (_globalexpectedpixel,_globalexpectedpixel)
nslice = numpyimage.shape[2]
resimage=skimage.transform.resize(numpyimage,(options.trainingresample,options.trainingresample,nslice),order=0,mode='constant',preserve_range=True).astype(IMG_DTYPE)
# load nifti file
truthdata = nib.load(truthlocation )
numpytruth= truthdata.get_data().astype(SEG_DTYPE)
# error check
assert numpytruth.shape[0:2] == (_globalexpectedpixel,_globalexpectedpixel)
assert nslice == numpytruth.shape[2]
restruth=skimage.transform.resize(numpytruth,(options.trainingresample,options.trainingresample,nslice),order=0,mode='constant',preserve_range=True).astype(SEG_DTYPE)
# bounding box for each label
if( np.max(restruth) ==1 ) :
(liverboundingbox,) = ndimage.find_objects(restruth)
tumorboundingbox = None
else:
(liverboundingbox,tumorboundingbox ) = ndimage.find_objects(restruth)
# error check
if( nslice == restruth.shape[2]):
# custom data type to subset
datamatrix = np.zeros(nslice , dtype=mydatabasetype )
# custom data type to subset
datamatrix ['dataid'] = np.repeat(row['dataid'] ,nslice )
# id the slices within the bounding box
axialliverbounds = np.repeat(False,nslice )
axialtumorbounds = np.repeat(False,nslice )
axialliverbounds[liverboundingbox[2]] = True
if (tumorboundingbox != None):
axialtumorbounds[tumorboundingbox[2]] = True
datamatrix ['axialliverbounds' ] = axialliverbounds
datamatrix ['axialtumorbounds' ] = axialtumorbounds
datamatrix ['imagepath'] = np.repeat(imagelocation ,nslice )
datamatrix ['truthpath'] = np.repeat(truthlocation ,nslice )
datamatrix ['imagedata'] = resimage.transpose(2,1,0)
datamatrix ['truthdata'] = restruth.transpose(2,1,0)
numpydatabase = np.hstack((numpydatabase,datamatrix))
# count total slice for QA
totalnslice = totalnslice + nslice
else:
print('training data error image[2] = %d , truth[2] = %d ' % (nslice,restruth.shape[2]))
# save numpy array to disk
np.save( _globalnpfile,numpydatabase )
##########################
# build NN model from anonymized data
##########################
elif (options.trainmodel ):
if (options.trainhvd ):
import horovod.keras as hvd
hvd.init()
# load database
print('loading memory map db for large dataset')
numpydatabase = np.load(_globalnpfile)
#setup kfolds
(train_index,test_index) = GetSetupKfolds(options.kfolds,options.idfold)
# uses 'views' for efficient memory usage
# https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
print('copy data subsets into memory...')
axialbounds = numpydatabase['axialliverbounds']
dataidarray = numpydatabase['dataid']
dbtrainindex= np.isin(dataidarray, train_index )
dbtestindex = np.isin(dataidarray, test_index )
subsetidx_train = np.all( np.vstack((axialbounds , dbtrainindex)) , axis=0 )
subsetidx_test = np.all( np.vstack((axialbounds , dbtestindex )) , axis=0 )
# error check
if not (options.trainhvd):
if np.sum(subsetidx_train ) + np.sum(subsetidx_test) != min(np.sum(axialbounds ),np.sum(dbtrainindex )) :
raise("data error")
print('copy memory map from disk to RAM...')
trainingsubset = numpydatabase[subsetidx_train ]
# ensure we get the same results each time we run the code
np.random.seed(seed=0)
np.random.shuffle(trainingsubset )
# subset within bounding box that has liver
totnslice = len(trainingsubset)
print("nslice train ",totnslice )
# load training data as views
x_train=trainingsubset['imagedata']
y_train=trainingsubset['truthdata']
studydict = {'run_a':.9, 'run_b':.8, 'run_c':.7 }
slicesplit = int(studydict[options.trainingid] * totnslice )
TRAINING_SLICES = slice(0,slicesplit)
VALIDATION_SLICES = slice(slicesplit,totnslice)
from keras.layers import InputLayer, Conv2D, MaxPool2D, Flatten, Dense, UpSampling2D, LocallyConnected2D
from keras.models import Model, Sequential
from keras.layers import UpSampling2D
from keras.layers import BatchNormalization,SpatialDropout2D
from keras.layers.advanced_activations import LeakyReLU, PReLU
# import keras.backend as K
def addConvBNSequential(model, filters=32, kernel_size=(3,3), batch_norm=True, activation='prelu', padding='same', kernel_regularizer=None,dropout=0.):
if batch_norm:
model = BatchNormalization()(model)
if dropout>0.:
model = SpatialDropout2D(dropout)(model)
if activation == 'prelu':
model = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding, activation='linear', kernel_regularizer=kernel_regularizer)(model)
model = PReLU()(model)
elif activation == 'lrelu':
model = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding, activation='linear', kernel_regularizer=kernel_regularizer)(model)
model = LeakyReLU()(model)
else:
model = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding, activation=activation, kernel_regularizer=kernel_regularizer)(model)
return model
# Creates a small U-Net.
from keras.layers import Input, concatenate
def get_batchnorm_unet(_filters=32, _filters_add=0, _kernel_size=(3,3), _padding='same', _activation='prelu', _kernel_regularizer=None, _final_layer_nonlinearity='sigmoid', _batch_norm=True, _num_classes=1):
crop_size = options.trainingresample
if _padding == 'valid':
input_layer = Input(shape=(crop_size+40,crop_size+40,1))
elif _padding == 'same':
input_layer = Input(shape=(crop_size,crop_size,1))
x0 = addConvBNSequential(input_layer, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x0 = addConvBNSequential(x0, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x1 = MaxPool2D()(x0)
x1 = addConvBNSequential(x1, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x1 = addConvBNSequential(x1, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x2 = MaxPool2D()(x1)
x2 = addConvBNSequential(x2, filters=_filters+2*_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x2 = addConvBNSequential(x2, filters=_filters+2*_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x3 = UpSampling2D()(x2)
if not options.noSC:
x3 = concatenate([x1,x3])
x3 = addConvBNSequential(x3, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x3 = addConvBNSequential(x3, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x4 = UpSampling2D()(x3)
if not options.noSC:
x4 = concatenate([x0,x4])
x4 = addConvBNSequential(x4, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x4 = addConvBNSequential(x4, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
output_layer = Conv2D(_num_classes, kernel_size=(1,1), activation=_final_layer_nonlinearity)(x4)
model = Model(inputs=input_layer, outputs=output_layer)
return model
def get_bnormfull_unet(_filters=32, _filters_add=0, _kernel_size=(3,3), _padding='same', _activation='prelu', _kernel_regularizer=None, _final_layer_nonlinearity='sigmoid', _batch_norm=True, _num_classes=1):
crop_size = options.trainingresample
if _padding == 'valid':
input_layer = Input(shape=(crop_size+40,crop_size+40,1))
elif _padding == 'same':
input_layer = Input(shape=(crop_size,crop_size,1))
x0 = addConvBNSequential(input_layer, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x0 = addConvBNSequential(x0, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x1 = MaxPool2D()(x0)
x1 = addConvBNSequential(x1, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x1 = addConvBNSequential(x1, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x2 = MaxPool2D()(x1)
x2 = addConvBNSequential(x2, filters=2*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x2 = addConvBNSequential(x2, filters=2*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x3 = MaxPool2D()(x2)
x3 = addConvBNSequential(x3, filters=4*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x3 = addConvBNSequential(x3, filters=4*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x4 = MaxPool2D()(x3)
x4 = addConvBNSequential(x4, filters=8*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x4 = addConvBNSequential(x4, filters=8*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm)
x5 = UpSampling2D()(x4)
if not options.noSC:
x5 = concatenate([x3,x5])
x5 = addConvBNSequential(x5, filters=4*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x5 = addConvBNSequential(x5, filters=4*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x6 = UpSampling2D()(x5)
if not options.noSC:
x6 = concatenate([x2,x6])
x6 = addConvBNSequential(x6, filters=2*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x6 = addConvBNSequential(x6, filters=2*(_filters+_filters_add), kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x7 = UpSampling2D()(x6)
if not options.noSC:
x7 = concatenate([x1,x7])
x7 = addConvBNSequential(x7, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x7 = addConvBNSequential(x7, filters=_filters+_filters_add, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x8 = UpSampling2D()(x7)
if not options.noSC:
x8 = concatenate([x0,x8])
x8 = addConvBNSequential(x8, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
x8 = addConvBNSequential(x8, filters=_filters, kernel_size=_kernel_size, padding=_padding, activation=_activation, kernel_regularizer=_kernel_regularizer, batch_norm=_batch_norm,dropout=.5)
output_layer = Conv2D(_num_classes, kernel_size=(1,1), activation=_final_layer_nonlinearity)(x8)
model = Model(inputs=input_layer, outputs=output_layer)
return model
### Train model with Dice loss
import keras.backend as K
if (options.trainhvd):
import tensorflow as tf
# Horovod: pin node to be used to process local rank (one node per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
print("HOROVOD: Using Horovod with local rank = " +
"{0} and size = {1}".format(hvd.local_rank(), hvd.size()))
K.set_session(tf.Session(config = config))
def dice_coef(y_true, y_pred, smooth=1):
"""
Dice = (2*|X & Y|)/ (|X|+ |Y|)
= 2*sum(|A*B|)/(sum(A^2)+sum(B^2))
ref: https://arxiv.org/pdf/1606.04797v1.pdf
@url: https://gist.github.com/wassname/7793e2058c5c9dacb5212c0ac0b18a8a
@author: wassname
"""
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
npixel = K.cast(K.prod(K.shape(y_true)[1:]),np.float32)
return npixel *(2. * intersection + smooth) / (K.sum(K.square(y_true),axis=None) + K.sum(K.square(y_pred),axis=None) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def dice_imageloss(y_true, y_pred, smooth=0):
"""
Dice = \sum_Nbatch \sum_Nonehot (2*|X & Y|)/ (|X|+ |Y|)
= \sum_Nbatch \sum_Nonehot 2*sum(|A*B|)/(sum(A^2)+sum(B^2))
return negative dice value for minimization. one dsc per one hot image for each batch. Nbatch * Nonehot total images.
objective function has implicit reduce mean - /opt/apps/miniconda/miniconda3/lib/python3.6/site-packages/keras/engine/training.py(447)weighted()
"""
# DSC = DSC_image1 + DSC_image2 + DSC_image3 + ...
intersection = 2. *K.abs(y_true * y_pred) + smooth
sumunion = K.sum(K.square(y_true),axis=(1,2)) + K.sum(K.square(y_pred),axis=(1,2)) + smooth
dicevalues= K.sum(intersection / K.expand_dims(K.expand_dims(sumunion,axis=1),axis=2), axis=(1,2))
return -dicevalues
def dice_metric_zero(y_true, y_pred):
batchdiceloss = dice_imageloss(y_true, y_pred)
return -batchdiceloss[:,0]
def dice_metric_one(y_true, y_pred):
batchdiceloss = dice_imageloss(y_true, y_pred)
return -batchdiceloss[:,1]
def dice_metric_two(y_true, y_pred):
batchdiceloss = dice_imageloss(y_true, y_pred)
return -batchdiceloss[:,2]
# Convert the labels into a one-hot representation
from keras.utils.np_utils import to_categorical
# Convert to uint8 data and find out how many labels.
t=y_train.astype(np.uint8)
t_max=np.max(t)
print("Range of values: [0, {}]".format(t_max))
y_train_one_hot = to_categorical(t, num_classes=t_max+1).reshape((y_train.shape)+(t_max+1,))
print("Shape before: {}; Shape after: {}".format(y_train.shape, y_train_one_hot.shape))
# The liver neuron should also be active for lesions within the liver
liver = np.max(y_train_one_hot[:,:,:,1:], axis=3)
y_train_one_hot[:,:,:,1]=liver
# output location
# logfileoutputdir= './tblog/%s/%s/%s/%d/%s/%03d/%03d/%03d' % (options.trainingloss,options.trainingmodel,options.trainingsolver,options.trainingresample,options.trainingid,options.trainingbatch,options.kfolds,options.idfold)
logfileoutputdir= '%s/%03d/%03d' % (options.outdir, options.kfolds, options.idfold)
print(logfileoutputdir)
# ensure directory exists
import os
os.system ('mkdir -p %s' % logfileoutputdir)
# tensor callbacks
from keras.callbacks import TensorBoard
tensorboard = TensorBoard(log_dir=logfileoutputdir, histogram_freq=0, write_graph=True, write_images=False)
# callback to save best model
from keras.callbacks import Callback as CallbackBase
if (options.trainhvd):
from keras.optimizers import Adadelta
class MyHistories(CallbackBase):
def on_train_begin(self, logs={}):
self.min_valloss = np.inf
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
if logs.get('val_loss')< self.min_valloss :
self.min_valloss = logs.get('val_loss')
# https://machinelearningmastery.com/save-load-keras-deep-learning-models/
# serialize model to JSON
model_json = model.to_json()
with open("%s/tumormodelunet.json" % logfileoutputdir , "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("%s/tumormodelunet.h5" % logfileoutputdir )
print("Saved model to disk - val_loss", self.min_valloss )
return
def on_batch_begin(self, batch, logs={}):
return
def on_batch_end(self, batch, logs={}):
return
callbacksave = MyHistories()
# dictionary of models to evaluate
_bn = not options.noBN
modeldict = {'half': get_batchnorm_unet(_activation='relu', _batch_norm=_bn,_filters=64, _filters_add=64,_num_classes=t_max+1),'full': get_bnormfull_unet(_activation='relu', _batch_norm=_bn,_filters=64, _filters_add=64,_num_classes=t_max+1)}
model = modeldict[options.trainingmodel]
lossdict = {'dscvec': dice_coef_loss,'dscimg': dice_imageloss}
if (options.trainhvd):
# Horovod: adjust learning rate based on number of nodes
# Overrides options.trainingsolver!!!!
opt = Adadelta(lr = 1.0 * hvd.size())
opt = hvd.DistributedOptimizer(opt)
# FIXME - dice applied to each class separately, and weight each class
# Hovorod: compile with modified optimizer
model.compile(loss=lossdict[options.trainingloss],metrics=[dice_metric_zero,dice_metric_one,dice_metric_two],optimizer=opt)
# Horovod: Callbacks for all nodes
callbacks = [# Horovod: broadcast initial variable states from rank 0 to all other
# processes. Necessary to ensure consistent intialization of all workers
# when training is started with random weights or restored from checkpoint
hvd.callbacks.BroadcastGlobalVariablesCallback(0),
# Horovod: average metrics among all workers at end of epoch
hvd.callbacks.MetricAverageCallback(),
# Horovod: use learning rate = 1.0 for first 5 epochs then scale
# learning rate with hvd.size() after
hvd.callbacks.LearningRateWarmupCallback(warmup_epochs = 5, verbose = 1)]
if hvd.rank() == 0:
import keras
callbacks.append(tensorboard)
print("Model parameters: {0:,}".format(model.count_params()))
from keras.preprocessing.image import ImageDataGenerator
# Data generator for training. Allows different workers to request batches without interfering with other workers
train_gen = ImageDataGenerator()
steps_per_epoch = (len(x_train[TRAINING_SLICES,...]) // options.trainingbatch) // hvd.size()
train_iter = train_gen.flow(x_train[TRAINING_SLICES ,:,:,np.newaxis],
y_train_one_hot[TRAINING_SLICES ],
batch_size = options.trainingbatch)
# fit_generator must be used instead of model.fit for distributed training
history = model.fit_generator(train_iter,
steps_per_epoch=steps_per_epoch,
validation_data=(x_train[VALIDATION_SLICES,:,:,np.newaxis],y_train_one_hot[VALIDATION_SLICES]),
callbacks = callbacks, # Note callbacksave is disabled
verbose = 1 if hvd.rank() == 0 else 0,
epochs=options.numepochs)
else:
model.compile(loss=lossdict[options.trainingloss],metrics=[dice_metric_zero,dice_metric_one,dice_metric_two],optimizer=options.trainingsolver)
print("Model parameters: {0:,}".format(model.count_params()))
history = model.fit(x_train[TRAINING_SLICES ,:,:,np.newaxis],
y_train_one_hot[TRAINING_SLICES ],
validation_data=(x_train[VALIDATION_SLICES,:,:,np.newaxis],y_train_one_hot[VALIDATION_SLICES]),
callbacks = [tensorboard,callbacksave],
batch_size=options.trainingbatch, epochs=options.numepochs)
# output predictions
if (options.trainingid == 'run_a'):
import nibabel as nib
validationimgnii = nib.Nifti1Image(x_train[VALIDATION_SLICES,:,:] , None )
validationimgnii.to_filename( '%s/validationimg.nii.gz' % logfileoutputdir )
validationonehotnii = nib.Nifti1Image(y_train[VALIDATION_SLICES ,:,:] , None )
validationonehotnii.to_filename( '%s/validationseg.nii.gz' % logfileoutputdir )
y_predicted = model.predict(x_train[VALIDATION_SLICES,:,:,np.newaxis])
y_segmentation = np.argmax(y_predicted , axis=-1)
validationprediction = nib.Nifti1Image(y_predicted [:,:,:] , None )
validationprediction.to_filename( '%s/validationpredict.nii.gz' % logfileoutputdir )
validationoutput = nib.Nifti1Image( y_segmentation.astype(np.uint8), None )
validationoutput.to_filename( '%s/validationoutput.nii.gz' % logfileoutputdir )
##########################
# apply model to test set
##########################
elif (options.setuptestset):
databaseinfo = GetDataDictionary()
maketargetlist = []
# open makefile
with open('kfold%03d-predict.makefile' % options.kfolds ,'w') as fileHandle:
for iii in range(options.kfolds):
(train_set,test_set) = GetSetupKfolds(options.kfolds,iii)
for idtest in test_set:
uidoutputdir= '%s/%03d/%03d' % (options.outdir, options.kfolds, iii)
segmaketarget = '%s/label-%04d.nii.gz' % (uidoutputdir,idtest)
maketargetlist.append(segmaketarget )
imageprereq = '$(TRAININGROOT)/%s' % databaseinfo[idtest]['image']
cvtestcmd = "python3 ./liver2.py --predictimage=%s --predictmodel=%s/tumormodelunet.json --segmentation=%s --dbfile=%s" % (imageprereq ,uidoutputdir,segmaketarget ,options.dbfile)
fileHandle.write('%s: %s\n' % (segmaketarget ,imageprereq ) )
fileHandle.write('\t%s\n' % cvtestcmd)
# build job list
with open('kfold%03d-predict.makefile' % options.kfolds, 'r') as original: datastream = original.read()
with open('kfold%03d-predict.makefile' % options.kfolds, 'w') as modified: modified.write( 'TRAININGROOT=%s\n' % options.rootlocation + "cvtest: %s \n" % ' '.join(maketargetlist) + datastream)
with open('kfold%03d-stats.makefile' % options.kfolds, 'w') as fileHandle:
for iii in range(options.kfolds):
(train_set,test_set) = GetSetupKfolds(options.kfolds,iii)
for idtest in test_set:
uidoutputdir= '%s/%03d/%03d' % (options.outdir, options.kfolds, iii)
segmaketarget = '%s/label-%04d.nii.gz' % (uidoutputdir,idtest)
segmaketarget0 = '%s/label-%04d-0.nii.gz' % (uidoutputdir,idtest)
segmaketargetQ = '%s/label-%04d-?.nii.gz' % (uidoutputdir,idtest)
predicttarget = '%s/label-%04d-all.nii.gz' % (uidoutputdir,idtest)
statstarget = '%s/stats-%04d.txt' % (uidoutputdir,idtest)
maketargetlist.append(segmaketarget )
imageprereq = '$(TRAININGROOT)/%s' % databaseinfo[idtest]['image']
segprereq = '$(TRAININGROOT)/%s' % databaseinfo[idtest]['label']
votecmd = "c3d %s -vote -type uchar -o %s" % (segmaketargetQ, predicttarget)
infocmd = "c3d %s -info > %s" % (segmaketarget0,statstarget)
statcmd = "c3d -verbose %s %s -overlap 0 -overlap 1 -overlap 2 > %s" % (predicttarget, segprereq, statstarget)
fileHandle.write('%s: %s\n' % (segmaketarget ,imageprereq ) )
fileHandle.write('\t%s\n' % votecmd)
fileHandle.write('\t%s\n' % infocmd)
fileHandle.write('\t%s\n' % statcmd)
# build job list
with open('kfold%03d-stats.makefile' % options.kfolds, 'r') as original: datastream = original.read()
with open('kfold%03d-stats.makefile' % options.kfolds, 'w') as modified: modified.write( 'TRAININGROOT=%s\n' % options.rootlocation + "cvtest: %s \n" % ' '.join(maketargetlist) + datastream)
##########################
# apply model to new data
##########################
elif (options.predictmodel != None and options.predictimage != None and options.segmentation != None ):
import json
import nibabel as nib
import skimage.transform
# force cpu for debug
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from keras.models import model_from_json
# load json and create model
_glexpx = _globalexpectedpixel
json_file = open(options.predictmodel, 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
weightsfile= '.'.join(options.predictmodel.split('.')[0:-1]) + '.h5'
loaded_model.load_weights(weightsfile)
print("Loaded model from disk")
imagepredict = nib.load(options.predictimage)
imageheader = imagepredict.header
numpypredict = imagepredict.get_data().astype(IMG_DTYPE )
# error check
assert numpypredict.shape[0:2] == (_glexpx,_glexpx)
nslice = numpypredict.shape[2]
print(nslice)
resizepredict = skimage.transform.resize(numpypredict,(options.trainingresample,options.trainingresample,nslice ),order=0,preserve_range=True,mode='constant').astype(IMG_DTYPE).transpose(2,1,0)
# FIXME: @jonasactor - the numlabel will change depending on the training data... can you make this more robust and the number of labels from the model?
numlabel = 3
segout = loaded_model.predict(resizepredict[:,:,:,np.newaxis] )
for jjj in range(numlabel):
segout_resize = skimage.transform.resize(segout[...,jjj],(nslice,_glexpx,_glexpx),order=0,preserve_range=True,mode='constant').transpose(2,1,0)
segout_img = nib.Nifti1Image(segout_resize, None, header=imageheader)
segout_img.to_filename( options.segmentation.replace('.nii.gz', '-%d.nii.gz' % jjj) )
#########################
# print help
#########################
else:
parser.print_help()