-
Notifications
You must be signed in to change notification settings - Fork 4
/
tensorbatch.py
309 lines (254 loc) · 10.3 KB
/
tensorbatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python3
from scipy.special import erf
import argparse
import h5py
import numpy as np
import tensorflow as tf
tf.config.experimental.enable_tensor_float_32_execution(False)
# import cupy as cp
psr = argparse.ArgumentParser()
psr.add_argument("-o", dest="opt", type=str, help="output file")
psr.add_argument("ipt", type=str, help="input file")
psr.add_argument("--size", type=int, default=100, help="batch size")
args = psr.parse_args()
fipt = args.ipt
fopt = args.opt
TRIALS = 5000
def bool_inplace_add(x, b, y):
i = tf.cast(tf.experimental.numpy.nonzero(b)[0], tf.int32)
return tf.raw_ops.InplaceAdd(x=x, i=i, v=tf.gather(y, i))
# tf.function(jit_compile=True)
def vcombine(A, cx, t):
frac = tf.math.floormod(t, 1)
ti = tf.cast(tf.floor(t), tf.int32)
A = tf.transpose(A, perm=(0, 2, 1))
cx = tf.transpose(cx, perm=(0, 2, 1))
A_vec = (1 - frac)[:, :, None] * tf.gather(A, ti, batch_dims=1) + frac[
:, :, None
] * tf.gather(A, ti + 1, batch_dims=1)
c_vec = (1 - frac)[:, :, None] * tf.gather(cx, ti, batch_dims=1) + frac[
:, :, None
] * tf.gather(cx, ti + 1, batch_dims=1)
return A_vec, c_vec
vstep = tf.constant([-1, 1], dtype=tf.float32)
# tf.function(jit_compile=True)
def vmove1(A_vec, c_vec, z, fmu, fsig2s_inv, det_fsig2s_inv, b0):
ac = A_vec @ tf.transpose(c_vec, (0, 2, 1))
beta_inv = fsig2s_inv + (ac + tf.transpose(ac, (0, 2, 1))) / 2
beta = tf.linalg.inv(beta_inv)
# beta = tf.constant(cp.asnumpy(cp.linalg.inv(cp.array(beta_inv))))
zc = tf.squeeze(c_vec @ z[:, :, None]) + tf.squeeze(fmu[:, None, :] @ fsig2s_inv)
Δν = 0.5 * tf.squeeze(zc[:, None, :] @ beta @ zc[:, :, None])
Δν += 0.5 * tf.math.log(
tf.clip_by_value(tf.linalg.det(beta) * det_fsig2s_inv, 1 / b0, b0)
)
return Δν, beta
# tf.function(jit_compile=True)
def vmove2(A_vec, c_vec, fmu, A, beta):
Δcx = -tf.transpose(beta @ c_vec, (0, 2, 1)) @ (c_vec @ A)
Δz = -tf.squeeze(fmu[:, None, :] @ A_vec)
return Δcx, Δz
# tf.function(jit_compile=True)
def periodic(_h, _lt):
c_overflow = _h < 0
_h[c_overflow] += _lt[c_overflow] - 1
c_overflow = _h > _lt - 1
_h[c_overflow] -= _lt[c_overflow] - 1
return _h
def v_rt(_s, _ts, w_all):
frac, ti = np.modf(_s)
ti = np.array(ti, np.int32)
return (1 - frac) * _ts[w_all, ti] + frac * _ts[w_all, ti + 1]
tau = 20
sigma = 5
alpha = 1 / tau
co = -np.log(2.0 * tau) + alpha * alpha * sigma * sigma / 2.0
ass = alpha * sigma * sigma
s2s = np.sqrt(2.0) * sigma
# tf.function(jit_compile=True)
def lc(t):
return co + tf.math.log(1.0 - erf((ass - t) / s2s)) - alpha * t
# tf.function(jit_compile=True)
def batch(A, cx, index, tq, s, z):
sig2w = tf.constant(index["sig2w"], dtype=tf.float32)
sig2s = tf.constant(index["sig2s"], dtype=tf.float32)
mus = tf.constant(index["mus"], dtype=tf.float32)
NPE = index["NPE"]
a0 = A[:, :, 0]
b0 = 1 + sig2s * tf.squeeze(a0[:, None, :] @ a0[:, :, None]) / sig2w
l_e = len(index)
l_t = tq.shape[1]
# istar [0, 1) 之间的随机数,用于点中 PE
istar = np.random.rand(l_e, TRIALS) # 同时可用于创生位置的选取
# 根据 p_cha 采样得到的 PE 序列。供以后的产生过程使用。这两行是使用了 InverseCDF 算法进行的MC采样。
fp = np.arange(l_t)
home_s = np.array(
[
np.interp(_is, xp=_xp[:_lt], fp=fp[:_lt])
for _is, _xp, _lt in zip(istar, tq["cq"], index["l_t"])
]
)
t0 = np.zeros(l_e, np.float32)
e_hit = NPE > 0
t0[e_hit] = v_rt(s[e_hit, 0], tq["t_s"], e_hit)
e_nonhit = ~e_hit
t0[e_nonhit] = tq["t_s"][e_nonhit, 0]
# step: +1 创生一个 PE, -1 消灭一个 PE, +2 向左或向右移动
flip = np.random.choice((-1, 1, 2), (l_e, TRIALS), p=np.array((1, 1, 2)) / 4)
Δν_g = tf.zeros(l_e, dtype=np.float32)
Δν = np.zeros(l_e, dtype=np.float32)
Δν_history = np.zeros((l_e, TRIALS), dtype=np.float32) # list of Δν's
annihilations = np.zeros((l_e, TRIALS), dtype=np.float64) # float64
creations = np.zeros((l_e, TRIALS), dtype=np.float64) # float64
t0_history = np.zeros((l_e, TRIALS), dtype=np.float32)
s0_history = np.zeros((l_e, TRIALS), dtype=np.uint32) # 0-norm of s
log_mu = np.log(index["mu0"]) # 猜测的 Poisson 流强度
loc = np.zeros((l_e, 2)) # float64
fsig2s_inv = tf.linalg.diag(vstep)[None, :, :] * (1 / sig2s)[:, None, None]
det_fsig2s_inv = tf.linalg.det(fsig2s_inv)
fmu = vstep[None, :] * mus[:, None]
for i, (t, step, home, wander, wt, accept, acct) in enumerate(
zip(
istar.T,
flip.T,
home_s.T,
*np.random.normal(size=(2, TRIALS, l_e)),
*np.log(np.random.rand(2, TRIALS, l_e)),
)
):
if i % 1000 == 0:
print(i)
mNPE = np.max(NPE)
rt = v_rt(s[:, :mNPE], tq["t_s"], np.arange(l_e)[:, None])
nt0 = t0 + wt.astype(np.float32)
sel = np.arange(mNPE)[None, :] < NPE[:, None]
lc0 = tf.reduce_sum(tf.where(sel, lc(rt - t0[:, None]), 0), axis=1)
lc1 = tf.reduce_sum(tf.where(sel, lc(rt - nt0[:, None]), 0), axis=1)
np.putmask(t0, (lc1 - lc0).numpy() >= acct, nt0)
t0_history[:, i] = t0
# 光变曲线和移动计算
Δν[:] = 0
e_bounce = NPE == 0
step[e_bounce] = 1
accept[e_bounce] += np.log(4) # 惩罚
ea_bounce = np.logical_and(NPE == 1, step == -1)
accept[ea_bounce] -= np.log(4) # 1 -> 0: 行动后从 0 脱出的几率大,需要鼓励
e_create = step == 1
e_minus = ~e_create
e_move = step == 2
e_pm = ~e_move
e_annihilate = step == -1
e_plus = ~e_annihilate
loc[e_create, 0] = l_t # 0 A_vec
op = np.array(t * NPE, dtype=np.int32)
loc[e_minus, 0] = s[e_minus, op[e_minus]] # annihilate + move
loc[e_move, 1] = periodic(loc[e_move, 0] + wander[e_move], index["l_t"][e_move])
loc[e_create, 1] = periodic(home[e_create], index["l_t"][e_create])
loc[e_annihilate, 1] = l_t
# 矩阵 Δν 计算
vA, vc = vcombine(A, cx, tf.constant(loc, dtype=tf.float32))
Δν_g, beta = vmove1(vA, vc, z, fmu, fsig2s_inv, det_fsig2s_inv, b0)
# -1 cases, step == 2, -1
Δν[e_minus] -= lc(v_rt(loc[e_minus, 0], tq["t_s"], e_minus) - t0[e_minus])
# +1 cases, step == 2, 1
Δν[e_plus] += lc(v_rt(loc[e_plus, 1], tq["t_s"], e_plus) - t0[e_plus])
# non-move cases, step == 1, -1
NPE[e_create] += 1
loc[e_annihilate, 1] = loc[e_annihilate, 0]
Δν[e_pm] += step[e_pm] * (
log_mu[e_pm]
- np.log(tq["q_s"][e_pm, np.array(loc[e_pm, 1], dtype=np.int32) + 1])
- np.log(NPE[e_pm])
)
loc[e_annihilate, 1] = l_t
NPE[e_create] -= 1
########
Δν += np.array(Δν_g)
#######
# 计算 Δcx, Δz, 更新 cx 和 z。对 accept 进行特别处理
e_accept = Δν >= accept
Δcx, Δz = vmove2(vA, vc, fmu, A, beta)
cx = bool_inplace_add(cx, e_accept, Δcx)
z = bool_inplace_add(z, e_accept, Δz)
########
# 增加
ea_create = np.logical_and(e_accept, e_create)
ea_plus = np.logical_and(e_accept, e_plus)
creations[ea_plus, i] = loc[ea_plus, 1]
s[ea_create, NPE[ea_create]] = loc[ea_create, 1]
NPE[ea_create] = NPE[ea_create] + 1
# 减少
ea_annihilate = np.logical_and(e_accept, step == -1)
ea_minus = np.logical_and(e_accept, e_minus)
annihilations[ea_minus, i] = loc[ea_minus, 0]
NPE[ea_annihilate] -= 1
s[ea_annihilate, op[ea_annihilate]] = s[ea_annihilate, NPE[ea_annihilate]]
# 移动
ea_move = np.logical_and(e_accept, e_move)
s[ea_move, op[ea_move]] = loc[ea_move, 1]
Δν[~e_accept] = 0
step[~e_accept] = 0
Δν_history[:, i] = Δν
flip[:, i] = step
s0_history[:, i] = NPE
return flip, s0_history, t0_history, Δν_history, annihilations, creations
with h5py.File(fipt, "r", libver="latest", swmr=True) as ipt:
A = ipt["A"][:]
cx = ipt["cx"][:]
index = ipt["index"][:]
s = ipt["s"][:]
tq = ipt["tq"][:]
z = ipt["z"][:]
l_e = len(index)
s_t = np.argsort(index["l_t"])
sample = np.zeros(
(l_e * TRIALS),
dtype=[
("TriggerNo", "u4"),
("ChannelID", "u4"),
("flip", "i2"),
("s0", "u4"),
("t0", "f8"),
("annihilation", "f8"),
("creation", "f8"),
("delta_nu", "f4"),
],
)
sample["TriggerNo"] = np.repeat(index["TriggerNo"], TRIALS)
sample["ChannelID"] = np.repeat(index["ChannelID"], TRIALS)
for part in range(l_e // args.size + 1):
i_part = s_t[part * args.size : (part + 1) * args.size]
l_part = len(i_part)
if l_part:
ind_part = index[i_part]
lp_t = np.max(ind_part["l_t"])
lp_wave = np.max(ind_part["l_wave"])
lp_NPE = np.max(ind_part["NPE"])
print(lp_t, lp_wave, lp_NPE)
# cx, A[:, :, -1] = 0 用于 +- 的空白维度
null = np.zeros((l_part, lp_wave, 1), np.float32)
s_null = np.zeros((l_part, lp_NPE * 2), np.float32) # 富余的 PE 活动空间
A_slice = np.asarray(
np.append(A[i_part, :lp_wave, :lp_t], null, axis=2), dtype=np.float32
)
cx_slice = np.asarray(
np.append(cx[i_part, :lp_wave, :lp_t], null, axis=2), dtype=np.float32
)
(flip, s0_history, t0_history, Δν_history, annihilations, creations) = batch(
tf.constant(A_slice, dtype=tf.float32),
tf.constant(cx_slice, dtype=tf.float32),
index[i_part],
tq[i_part, :lp_t],
np.append(s[i_part, :lp_NPE], s_null, axis=1),
tf.constant(z[i_part, :lp_wave], dtype=tf.float32),
)
fi_part = (i_part * TRIALS)[:, None] + np.arange(TRIALS)[None, :]
fip = fi_part.flatten()
sample["flip"][fip] = flip.flatten()
sample["s0"][fip] = s0_history.flatten()
sample["t0"][fip] = t0_history.flatten()
sample["annihilation"][fip] = annihilations.flatten()
sample["creation"][fip] = creations.flatten()
sample["delta_nu"][fip] = Δν_history.flatten()
with h5py.File(fopt, "w") as opt:
opt.create_dataset("sample", data=sample, compression="gzip", shuffle=True)