-
Notifications
You must be signed in to change notification settings - Fork 4
/
replay.py
170 lines (150 loc) · 5.53 KB
/
replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
'''
Replay FSMP to inspect the Markov process.
'''
import argparse
import pandas as pd
import h5py
import numpy as np
from math import erf
np.seterr("raise")
psr = argparse.ArgumentParser()
psr.add_argument("ipt", type=str, help="input file for the markov chain")
psr.add_argument("--sparse", type=str, help="sparsified file from LucyDDM preparation")
psr.add_argument("--trigger", type=int, help="Select trigger number")
args = psr.parse_args()
sample = pd.read_hdf(args.ipt, "sample").query(f"TriggerNo=={args.trigger}")
jumps = sample.query("flip != 0")
with h5py.File(args.sparse, "r") as sparse:
index0 = sparse["index"][:]
loc = np.searchsorted(index0["TriggerNo"], args.trigger)
index = sparse["index"][loc]
l_t = index["l_t"]
l_wave = index["l_wave"]
A = sparse["A"][loc, :l_wave, :l_t]
cx = sparse["cx"][loc, :l_wave, :l_t]
tq = sparse["tq"][loc, :l_t]
z = sparse["z"][loc, :l_wave]
s0 = sparse["s"][loc]
NPE = round(index["mu0"])
cq = tq["cq"][:l_t]
### copied from metropolis.py
def combine(A, cx, t):
frac, ti = np.modf(t)
ti = int(ti)
alpha = np.array((1 - frac, frac))
return alpha @ A[:, ti : (ti + 2)].T, alpha @ cx[:, ti : (ti + 2)].T
def move1(A_vec, c_vec, z, step, mus, sig2s):
fsig2s = step * sig2s
beta_under = 1 + fsig2s * np.dot(A_vec, c_vec)
beta = fsig2s / beta_under
Δν = 0.5 * (beta * (z @ c_vec + mus / sig2s) ** 2 - mus ** 2 / fsig2s)
print(1/beta_under)
Δν -= 0.5 * np.log(beta_under) # space
return Δν, beta
def move2(A_vec, c_vec, step, mus, A, beta):
Δcx = -np.einsum("n,m,mp->np", beta * c_vec, c_vec, A, optimize=True)
Δz = -step * A_vec * mus
return Δcx, Δz
def move(A_vec, c_vec, z, step, mus, sig2s, A):
Δν, beta = move1(A_vec, c_vec, z, step, mus, sig2s)
return Δν, *move2(A_vec, c_vec, step, mus, A, beta)
a0 = A[:, 0]
b0 = 1 + index["sig2s"] * a0 @ a0 / index["sig2w"]
vstep = np.array([-1, 1], np.float32)
def vmove1(A_vec, c_vec, z, mus, sig2s):
'''
A_vec: 2 x l_wave
c_vec: 2 x l_wave
'''
fsig2s_inv = np.diag(vstep) / sig2s
ac = A_vec @ c_vec.T
beta_inv = fsig2s_inv + (ac + ac.T)/2
beta = np.linalg.inv(beta_inv)
fmu = mus * vstep
zc = np.einsum('jk,k->j', c_vec, z) + np.einsum('j,jk->k', fmu, fsig2s_inv)
Δν = 0.5 * np.einsum('j,jk,k->', zc, beta, zc)
logee = -np.linalg.det(beta) / sig2s ** 2
print(logee)
Δν += 0.5 * np.log(logee) # det(diag(-sig2s, sig2s)) = sig2s**2
return Δν, beta, fmu
def vmove2(A_vec, c_vec, fmu, A, beta):
Δcx = -np.einsum("ij,iv,jw,wt->vt", beta, c_vec, c_vec, A, optimize=True)
Δz = -np.einsum("j,jw->w", fmu, A_vec)
return Δcx, Δz
def lc(x, tau=20, sigma=5):
"""
light curve
"""
alpha = 1 / tau
co = -np.log(2.0 * tau) + alpha * alpha * sigma * sigma / 2.0
x_erf = (alpha * sigma * sigma - x) / (np.sqrt(2.0) * sigma)
return co + np.log(1.0 - erf(x_erf)) - alpha * x
def v_rt(_s, _ts):
frac, ti = np.modf(_s)
ti = int(ti)
return (1 - frac) * _ts[ti] + frac * _ts[ti+1]
cx0 = np.copy(cx)
z0 = np.copy(z)
frac, ti = np.modf(s0[:NPE])
ti = np.array(ti, np.int_)
vA0 = (1-frac) * A[:, ti] + frac * A[:, ti+1]
z_null = z0 + np.sum(vA0, axis=1) * index["mus"]
def nu(s):
frac, ti = np.modf(s)
ti = np.array(ti, np.int_)
A_vec = (1-frac) * A[:, ti] + frac * A[:, ti+1]
phi = (A_vec @ A_vec.T) * index["sig2s"] + np.eye(A.shape[0]) * index["sig2w"]
phi_inv = np.linalg.inv(phi)
z = z_null - np.sum(A_vec * index["mus"], axis=1)
return -0.5 * z @ phi_inv @ z - 0.5 * np.log(np.linalg.det(phi)), phi_inv, z
s = np.zeros(NPE*8)
s[:NPE] = s0[:NPE]
precise_nu0, phi_inv, z = nu(s[:NPE])
precise_cx = phi_inv @ A
print(np.linalg.norm(cx - cx0))
for idx, jump in jumps.iterrows():
t_minus = jump["annihilation"]
t_plus = jump["creation"]
sign = f"m: {t_minus:.2f} -> {t_plus:.2f}"
t0 = jump["t0"]
s_raw = np.copy(s)
if np.abs(jump["flip"]-2) < 1e-6:
A_d, c_d = combine(A, cx, t_minus)
A_u, c_u = combine(A, cx, t_plus)
vA_move = np.stack((A_d, A_u), axis=0)
vc_move = np.stack((c_d, c_u), axis=0)
Δν, beta, fmu = vmove1(vA_move, vc_move, z, index["mus"], index["sig2s"])
Δν_l = -lc(v_rt(t_minus, tq["t_s"]) - t0)
Δν_l += lc(v_rt(t_plus, tq["t_s"]) - t0)
Δcx, Δz = vmove2(vA_move, vc_move, fmu, A, beta)
cx += Δcx
z += Δz
op = np.where(np.abs(s[:NPE] - t_minus) < 1e-6)[0]
assert len(op) == 1
s[op] = t_plus
else: # +-1
if jump["flip"] < 0:
t, sign = (t_minus, f'-: {t_minus:.2f}')
op = np.where(np.abs(s[:NPE] - t_minus) < 1e-6)[0]
assert len(op) == 1
n_NPE = NPE
NPE-=1
s[op] = s[NPE]
else:
t, sign = (t_plus, f'+: {t_plus:.2f}')
s[NPE] = t_plus
NPE+=1
n_NPE = NPE
A_vec, c_vec = combine(A, cx, t)
Δν, beta = move1(A_vec, c_vec, z, jump["flip"], index["mus"], index["sig2s"])
Δν_l = jump["flip"] * lc(v_rt(t, tq["t_s"]) - t0)
log_mu = np.log(index["mu0"])
Δν_l += jump["flip"] * (log_mu - np.log(tq["q_s"][int(t) + 1]) - np.log(n_NPE))
Δcx, Δz = move2(A_vec, c_vec, jump["flip"], index["mus"], A, beta)
cx += Δcx
z += Δz
precise_nu = nu(s[:NPE])[0]
ref_nu = jump["delta_nu"]
print(f"{precise_nu:.1f} {precise_nu - precise_nu0 + Δν_l:.4f} {Δν + Δν_l:.4f} ref: {ref_nu:.2f} | {sign}")
precise_nu0 = precise_nu