-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetropolis.py
446 lines (386 loc) · 13.7 KB
/
metropolis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import time
import argparse
import h5py
import numpy as np
# np.seterr(all='raise')
from scipy.special import erf
from scipy.stats import norm
import wf_func as wff
global_start = time.time()
cpu_global_start = time.process_time()
psr = argparse.ArgumentParser()
psr.add_argument("-o", dest="opt", type=str, help="output file")
psr.add_argument("ipt", type=str, help="input file")
psr.add_argument("--ref", type=str, help="reference file")
args = psr.parse_args()
fipt = args.ipt
fopt = args.opt
reference = args.ref
spe_pre = wff.read_model(reference, 1)
with h5py.File(fipt, "r", libver="latest", swmr=True) as ipt:
ent = ipt["Readout/Waveform"][:]
pelist = ipt["SimTriggerInfo/PEList"][:]
t0_truth = ipt["SimTruth/T"][:]
N = len(ent)
print("{} waveforms will be computed".format(N))
window = len(ent[0]["Waveform"])
assert window >= len(spe_pre[0]["spe"]), "Single PE too long which is {}".format(
len(spe_pre[0]["spe"])
)
Mu = ipt["Readout/Waveform"].attrs["mu"].item()
Tau = ipt["Readout/Waveform"].attrs["tau"].item()
Sigma = ipt["Readout/Waveform"].attrs["sigma"].item()
gmu = ipt["SimTriggerInfo/PEList"].attrs["gmu"].item()
gsigma = ipt["SimTriggerInfo/PEList"].attrs["gsigma"].item()
PEList = ipt["SimTriggerInfo/PEList"][:]
p = spe_pre[0]["parameters"]
if Tau != 0:
Alpha = 1 / Tau
Co = (Alpha / 2.0 * np.exp(Alpha ** 2 * Sigma ** 2 / 2.0)).item()
std = 1.0
Thres = wff.Thres
mix0sigma = 1e-3
mu0 = np.arange(1, int(Mu + 5 * np.sqrt(Mu)))
n_t = np.arange(1, 20)
n = 1
b_t0 = [0.0, 600.0]
print(
"Initialization finished, real time {0:.02f}s, cpu time {1:.02f}s".format(
time.time() - global_start, time.process_time() - cpu_global_start
)
)
tic = time.time()
cpu_tic = time.process_time()
ent = np.sort(ent, kind="stable", order=["TriggerNo", "ChannelID"])
Chnum = len(np.unique(ent["ChannelID"]))
dt = [
("TriggerNo", np.uint32),
("ChannelID", np.uint32),
("flip", np.int8),
("delta_nu", np.float64),
("t0", np.float64),
]
mu0_dt = [("TriggerNo", np.uint32), ("ChannelID", np.uint32), ("mu_t", np.float64)]
d_history = [
("TriggerNo", np.uint32),
("ChannelID", np.uint32),
("step", np.uint32),
("loc", np.float32),
]
TRIALS = 5000
def combine(A, cx, t):
"""
combine neighbouring dictionaries to represent sub-bin locations
"""
frac, ti = np.modf(t - 0.5)
ti = int(ti)
alpha = np.array((1 - frac, frac))
return alpha @ A[:, ti : (ti + 2)].T, alpha @ cx[:, ti : (ti + 2)].T
def lc(x, tau=Tau, sigma=Sigma):
"""
light curve
"""
if tau == 0.0:
return norm.logpdf(x, loc=0, scale=sigma)
else:
alpha = 1 / tau
co = -np.log(2.0 * tau) + alpha * alpha * sigma * sigma / 2.0
x_erf = (alpha * sigma * sigma - x) / (np.sqrt(2.0) * sigma)
return co + np.log(1.0 - erf(x_erf)) - alpha * x
def gelman(xis):
T = len(xis) // 2
xis_1 = xis[:T]
xis_2 = xis[-T:]
xi_ave_1 = np.average(xis_1)
xi_ave_2 = np.average(xis_2)
xi_ave = (xi_ave_1 + xi_ave_2) / 2
b = (xi_ave_1 - xi_ave) ** 2 + (xi_ave_2 - xi_ave) ** 2
s2_1 = np.sum((xis_1 - xi_ave_1) ** 2) / (T - 1)
s2_2 = np.sum((xis_2 - xi_ave_2) ** 2) / (T - 1)
wt = (s2_1 + s2_2) / 2
var = (T - 1) / T * wt + b
if var == 0 and wt == 0:
rt = np.sqrt((T - 1) / T)
else:
rt = np.sqrt(var / wt)
return rt
def flow(cx, tlist, z, N, sig2s, mus, A, p_cha, mu_t):
"""
flow
====
连续时间游走
cx: Cov^-1 * A, 详见 FBMP
s: list of PE locations
mu_t: LucyDDM 的估算 PE 数
z: residue waveform
"""
def real_time(t):
return np.interp(t, xp=np.arange(0.5, N), fp=tlist)
# istar [0, 1) 之间的随机数,用于点中 PE
istar = np.random.rand(TRIALS)
# 同时可用于创生位置的选取
# cha: charge; p_cha: pdf of LucyDDM charge (由 charge 引导的 PE 强度流先验)
c_cha = np.cumsum(p_cha)
# 根据 p_cha 采样得到的 PE 序列。供以后的产生过程使用。这两行是使用了 InverseCDF 算法进行的MC采样。
home_s = np.interp(istar, xp=np.insert(c_cha, 0, 0), fp=np.arange(N + 1))
NPE0 = int(mu_t + 0.5) # mu_t: μ_total,LucyDDM 给出的 μ 猜测;NPE0 是 PE 序列初值 s_0 的 PE 数。
# t 的位置,取值为 [0, N)
# MCMC 链的 PE configuration 初值 s0
s = list(
np.interp(
(np.arange(NPE0) + 0.5) / NPE0,
xp=np.insert(c_cha, 0, 0),
fp=np.arange(N + 1),
)
)
for t in s: # 从空序列开始逐渐加 PE 以计算 s0 的 ν, cx, z
Δν, Δcx, Δz = move(*combine(A, cx, t), z, 1, mus, sig2s, A)
cx += Δcx
z += Δz
if len(s) == 0:
t0 = tlist[0]
else:
t0 = real_time(s[0])
# s 的记录方式:使用定长 compound array es_history 存储(存在 'loc' 里),但由于 s 实际上变长,每一个有相同 'step' 的 'loc' 属于一个 s,si 作为临时变量用于分割成不定长片段,每一段是一个 s。
si = 0
es_history = np.zeros(TRIALS * (NPE0 + 5) * N, dtype=d_history)
# step: +1 创生一个 PE, -1 消灭一个 PE, +2 向左或向右移动
flip = np.random.choice((-1, 1, 2), TRIALS, p=np.array((1, 1, 2)) / 4)
Δν_history = np.zeros(TRIALS) # list of Δν's
t0_history = np.zeros(TRIALS)
nu_history = np.zeros(TRIALS)
log_mu = np.log(mu_t) # 猜测的 Poisson 流强度
for i, (t, step, home, wander, wt, accept, acct) in enumerate(
zip(
istar,
flip,
home_s,
*np.random.normal(size=(2, TRIALS)),
*np.log(np.random.rand(2, TRIALS)),
)
):
p1 = lc(real_time(s) - t0)
new_t0 = t0 + wt
new_p1 = lc(real_time(s) - new_t0)
acc = np.sum(new_p1 - p1)
if acc >= acct:
t0 = new_t0
p1 = new_p1
t0_history[i] = t0
# 不设左右边界
NPE = len(s)
if NPE == 0:
step = 1 # 只能创生
accept += np.log(4) # 惩罚
elif NPE == 1 and step == -1:
# 1 -> 0: 行动后从 0 脱出的几率大,需要鼓励
accept -= np.log(4)
if step == 1: # 创生
if home >= 0.5 and home <= N - 0.5:
A_vec, c_vec = combine(A, cx, home)
Δν, beta = move1(A_vec, c_vec, z, 1, mus, sig2s)
Δν += (
log_mu
+ lc(real_time(home) - t0)
- np.log(p_cha[int(home)])
- np.log(NPE + 1)
)
if Δν >= accept:
Δcx, Δz = move2(A_vec, c_vec, 1, mus, A, beta)
s.append(home)
else: # p(w|s) 无定义
Δν = -np.inf
else:
op = int(t * NPE) # 操作的 PE 编号
loc = s[op] # 待操作 PE 的位置
A_vec, c_vec = combine(A, cx, loc)
Δν, beta = move1(A_vec, c_vec, z, -1, mus, sig2s)
if step == -1: # 消灭
Δν -= log_mu + p1[op] - np.log(p_cha[int(loc)]) - np.log(NPE)
if Δν >= accept:
Δcx, Δz = move2(A_vec, c_vec, -1, mus, A, beta)
del s[op]
elif step == 2: # 移动
nloc = loc + wander # 待操作 PE 的新位置
if nloc >= 0.5 and nloc <= N - 0.5: # p(w|s) 无定义
Δcx, Δz = move2(A_vec, c_vec, -1, mus, A, beta)
A_vec1, c_vec1 = combine(A, cx + Δcx, nloc)
Δν1, beta1 = move1(A_vec1, c_vec1, z + Δz, 1, mus, sig2s)
Δν += Δν1
Δν += lc(real_time(nloc) - t0) - p1[op]
if Δν >= accept:
Δcx1, Δz1 = move2(A_vec1, c_vec1, 1, mus, A, beta1)
s[op] = nloc
Δcx += Δcx1
Δz += Δz1
else: # p(w|s) 无定义
Δν = -np.inf
if Δν >= accept:
cx += Δcx
z += Δz
si1 = si + len(s)
es_history[si:si1]["step"] = i
es_history[si:si1]["loc"] = s
si = si1
else: # reject proposal
Δν = 0
step = 0
Δν_history[i] = Δν
flip[i] = step
nu_history[i] = len(s)
if i > 600:
rt_nu = gelman(nu_history[500 : i + 1])
rt_t0 = gelman(t0_history[500 : i + 1])
# print(rt_nu, rt_t0)
if np.abs(rt_nu - 1.0) < 1e-3 and np.abs(rt_t0 - 1.0) < 1e-3:
print(i)
if i > 10000:
breakpoint()
break
return flip, Δν_history, es_history[:si], t0_history
def move1(A_vec, c_vec, z, step, mus, sig2s):
"""
step
====
A_vec: 行向量
c_vec: 行向量
z: 残余波形
step:
1: 在 t 加一个 PE
-1: 在 t 减一个 PE
mus: spe波形的平均幅值
sig2s: spe波形幅值方差
A: spe, PE x waveform
"""
fsig2s = step * sig2s
# Eq. (30) sig2s = 1 sigma^2 - 0 sigma^2
beta_under = 1 + fsig2s * np.dot(A_vec, c_vec)
beta = fsig2s / beta_under
# Eq. (31) # sign of mus[t] and sig2s[t] cancels
Δν = 0.5 * (beta * (z @ c_vec + mus / sig2s) ** 2 - mus ** 2 / fsig2s)
# sign of space factor in Eq. (31) is reversed. Because Eq. (82) is in the denominator.
Δν -= 0.5 * np.log(beta_under) # space
return Δν, beta
def move2(A_vec, c_vec, step, mus, A, beta):
# accept, prepare for the next
# Eq. (33) istar is now n_pre. It crosses n_pre and n, thus is in vector form.
Δcx = -np.einsum("n,m,mp->np", beta * c_vec, c_vec, A, optimize=True)
# Eq. (34)
Δz = -step * A_vec * mus
return Δcx, Δz
def move(A_vec, c_vec, z, step, mus, sig2s, A):
Δν, beta = move1(A_vec, c_vec, z, step, mus, sig2s)
return Δν, *move2(A_vec, c_vec, step, mus, A, beta)
def metropolis(ent, sample, mu0, d_tlist, s_history):
i_tlist = 0
si = 0
for ie, e in enumerate(ent):
eid = e["TriggerNo"]
cid = e["ChannelID"]
assert cid == 0
PEs = PEList[np.logical_and(PEList["TriggerNo"] == eid, PEList["PMTId"] == cid)]
wave = e["Waveform"].astype(np.float64) * spe_pre[cid]["epulse"]
# initialization
A, y, tlist, t0_t, t0_delta, cha, left_wave, right_wave = wff.initial_params(
wave,
spe_pre[e["ChannelID"]],
Tau,
Sigma,
gmu,
Thres["lucyddm"],
p,
is_t0=False,
is_delta=False,
n=n,
)
s_cha = np.cumsum(cha)
# moving average filter of size 2*n+1
cha = np.pad(s_cha[2 * n + 1 :], (n + 1, n), "edge") - np.pad(
s_cha[: -(2 * n + 1)], (n + 1, n), "edge"
)
cha += 1e-8 # for completeness of the random walk.
o_tlist = i_tlist + len(tlist)
d_tlist[i_tlist:o_tlist] = list(
zip(
np.repeat(eid, o_tlist - i_tlist),
np.repeat(cid, o_tlist - i_tlist),
tlist,
cha,
)
)
i_tlist = o_tlist
mu_t = abs(y.sum() / gmu)
mu0[ie] = (eid, cid, mu_t)
# Eq. (9) where the columns of A are taken to be unit-norm.
mus = np.sqrt(np.diag(np.matmul(A.T, A))) # ~39
# elements of mus must be equal for continuous metropolis to function
assert np.std(mus) < 1e-6, "mus must be equal"
mus = mus[0]
A = A / mus
"""
A: basis dictionary
p1: prior probability for each bin.
sig2w: variance of white noise.
sig2s: variance of signal x_i.
mus: mean of signal x_i.
TRIALS: number of Metropolis steps.
"""
sig2w = spe_pre[cid]["std"] ** 2
sig2s = (mus * (gsigma / gmu)) ** 2 # ~94
# Only for multi-gaussian with arithmetic sequence of mu and sigma
# N: number of t bins
# M: length of the waveform clip
M, N = A.shape
# Eq. (29)
cx = A / sig2w
# mu = 0 => (y - A * mu -> z)
z = y
p_cha = cha / np.sum(cha)
# Metropolis flow
flip, Δν_history, es_history, t0_history = flow(
cx, tlist, z, N, sig2s, mus, A, p_cha, mu_t
)
sample[ie * TRIALS : (ie + 1) * TRIALS] = list(
zip(
np.repeat(eid, TRIALS),
np.repeat(cid, TRIALS),
flip,
Δν_history,
t0_history,
)
)
so = si + len(es_history)
es_history["TriggerNo"] = eid
s_history[si:so] = es_history
si = so
d_tlist.resize((o_tlist,))
s_history.resize((so,))
with h5py.File(fopt, "w") as opt:
sample = opt.create_dataset("sample", shape=(N * TRIALS,), dtype=dt)
mu0 = opt.create_dataset("mu0", shape=(N,), dtype=mu0_dt)
d_tlist = opt.create_dataset(
"tlist",
shape=(N * 1024,),
dtype=[
("TriggerNo", np.uint32),
("ChannelID", np.uint32),
("t_s", np.float16),
("q_s", np.float32),
],
chunks=True,
)
s_history = opt.create_dataset(
"s_history", shape=(N * TRIALS * 100,), dtype=d_history, chunks=True
)
metropolis(ent, sample, mu0, d_tlist, s_history)
print("The output file path is {}".format(fopt))
print(
"Prediction generated, real time {0:.02f}s, cpu time {1:.02f}s".format(
time.time() - tic, time.process_time() - cpu_tic
)
)
print(
"Finished! Consuming {0:.02f}s in total, cpu time {1:.02f}s.".format(
time.time() - global_start, time.process_time() - cpu_global_start
)
)