-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtf.distribute.Strategy.py
169 lines (123 loc) · 5.14 KB
/
tf.distribute.Strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import tensorflow as tf
# Helper libraries
import numpy as np
import os
print(tf.__version__)
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# Adding a dimension to the array -> new shape == (28, 28, 1)
# We are doing this because the first layer in our model is a convolutional
# layer and it requires a 4D input (batch_size, height, width, channels).
# batch_size dimension will be added later on.
train_images = train_images[..., None]
test_images = test_images[..., None]
# Getting the images in [0, 1] range.
train_images = train_images / np.float32(255)
test_images = test_images / np.float32(255)
# If the list of devices is not specified in the
# `tf.distribute.MirroredStrategy` constructor, it will be auto-detected.
strategy = tf.distribute.MirroredStrategy()
print ('Number of devices: {}'.format(strategy.num_replicas_in_sync))
BUFFER_SIZE = len(train_images)
BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync
EPOCHS = 10
train_steps_per_epoch = len(train_images) // BATCH_SIZE
test_steps_per_epoch = len(test_images) // BATCH_SIZE
with strategy.scope():
train_iterator = strategy.experimental_make_numpy_iterator(
(train_images, train_labels), BATCH_SIZE, shuffle=BUFFER_SIZE)
test_iterator = strategy.experimental_make_numpy_iterator(
(test_images, test_labels), BATCH_SIZE, shuffle=None)
def create_model():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(64, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
return model
# Create a checkpoint directory to store the checkpoints.
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
with strategy.scope():
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
with strategy.scope():
train_loss = tf.keras.metrics.Mean(name='train_loss')
test_loss = tf.keras.metrics.Mean(name='test_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
name='train_accuracy')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
name='test_accuracy')
# model and optimizer must be created under `strategy.scope`.
with strategy.scope():
model = create_model()
optimizer = tf.keras.optimizers.Adam()
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
with strategy.scope():
# Train step
def train_step(inputs):
images, labels = inputs
with tf.GradientTape() as tape:
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
# Test step
def test_step(inputs):
images, labels = inputs
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
with strategy.scope():
# `experimental_run` replicates the provided computation and runs it
# with the distributed input.
@tf.function
def distributed_train():
return strategy.experimental_run(train_step, train_iterator)
@tf.function
def distributed_test():
return strategy.experimental_run(test_step, test_iterator)
for epoch in range(EPOCHS):
# Note: This code is expected to change in the near future.
# TRAIN LOOP
# Initialize the iterator
train_iterator.initialize()
for _ in range(train_steps_per_epoch):
distributed_train()
# TEST LOOP
test_iterator.initialize()
for _ in range(test_steps_per_epoch):
distributed_test()
if epoch % 2 == 0:
checkpoint.save(checkpoint_prefix)
template = ("Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, "
"Test Accuracy: {}")
print (template.format(epoch+1, train_loss.result(),
train_accuracy.result()*100, test_loss.result(),
test_accuracy.result()*100))
train_loss.reset_states()
test_loss.reset_states()
train_accuracy.reset_states()
test_accuracy.reset_states()
eval_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
name='eval_accuracy')
new_model = create_model()
new_optimizer = tf.keras.optimizers.Adam()
test_dataset = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(BATCH_SIZE)
@tf.function
def eval_step(images, labels):
predictions = new_model(images, training=False)
eval_accuracy(labels, predictions)
checkpoint = tf.train.Checkpoint(optimizer=new_optimizer, model=new_model)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
for images, labels in test_dataset:
eval_step(images, labels)
print ('Accuracy after restoring the saved model without strategy: {}'.format(
eval_accuracy.result()*100))