forked from arnab39/cycleGAN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
59 lines (51 loc) · 2.28 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
from argparse import ArgumentParser
import model as md
from utils import create_link
import test as tst
# To get arguments from commandline
def get_args():
parser = ArgumentParser(description='cycleGAN PyTorch')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--decay_epoch', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--lr', type=float, default=.0002)
parser.add_argument('--load_height', type=int, default=286)
parser.add_argument('--load_width', type=int, default=286)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('--crop_height', type=int, default=256)
parser.add_argument('--crop_width', type=int, default=256)
parser.add_argument('--lamda', type=int, default=10)
parser.add_argument('--idt_coef', type=float, default=0.5)
parser.add_argument('--training', type=bool, default=True)
parser.add_argument('--testing', type=bool, default=False)
parser.add_argument('--results_dir', type=str, default='./results')
parser.add_argument('--dataset_dir', type=str, default='./datasets/horse2zebra')
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints/horse2zebra')
parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization')
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--gen_net', type=str, default='resnet_9blocks')
parser.add_argument('--dis_net', type=str, default='n_layers')
args = parser.parse_args()
return args
def main():
args = get_args()
create_link(args.dataset_dir)
str_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
args.gpu_ids.append(id)
print(not args.no_dropout)
if args.training:
print("Training")
model = md.cycleGAN(args)
model.train(args)
if args.testing:
print("Testing")
tst.test(args)
if __name__ == '__main__':
main()