-
Notifications
You must be signed in to change notification settings - Fork 23
/
averager.go
227 lines (196 loc) · 5.2 KB
/
averager.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
package irtt
import (
"fmt"
"strconv"
"strings"
)
// Averager is implemented to return an average of a series of given values.
type Averager interface {
// Push adds a value to be averaged.
Push(val float64)
// Average returns the average.
Average() float64
String() string
}
// CumulativeAverager implements the cumulative moving average (takes into account
// all values equally).
type CumulativeAverager struct {
sum float64
n float64
}
// Push adds a value.
func (ca *CumulativeAverager) Push(val float64) {
ca.sum += val
ca.n++
}
// Average gets the cumulative average.
func (ca *CumulativeAverager) Average() float64 {
if ca.n == 0 {
return 0
}
return ca.sum / ca.n
}
func (ca *CumulativeAverager) String() string {
return "avg"
}
// ExponentialAverager implements the exponential moving average. More recent
// values are given higher consideration. Alpha must be between 0 and 1, where a
// higher Alpha discounts older values faster. An Alpha of 0.1 - 0.2 may give
// good results for timer compensation, but experimentation is required as
// results are dependent on hardware and test config.
type ExponentialAverager struct {
Alpha float64
avg float64
prev float64
}
// Push adds a value.
func (ea *ExponentialAverager) Push(val float64) {
if ea.avg == 0 {
ea.prev = val
ea.avg = val
return
}
ea.prev = ea.avg
ea.avg = ea.Alpha*val + (1-ea.Alpha)*ea.prev
}
// Average gets the exponential average.
func (ea *ExponentialAverager) Average() float64 {
return ea.avg
}
func (ea *ExponentialAverager) String() string {
return fmt.Sprintf("exp:%.2f", ea.Alpha)
}
// NewExponentialAverager returns a new ExponentialAverage with the specified
// Alpha.
func NewExponentialAverager(alpha float64) *ExponentialAverager {
return &ExponentialAverager{Alpha: alpha}
}
// NewDefaultExponentialAverager returns a new ExponentialAverage with the
// default Alpha. This may be changed before used.
func NewDefaultExponentialAverager() *ExponentialAverager {
return NewExponentialAverager(DefaultExponentialAverageAlpha)
}
// WindowAverager implements the moving average with a specified window.
type WindowAverager struct {
Window int
values []float64
pos int
filled bool
}
// Push adds a value.
func (wa *WindowAverager) Push(val float64) {
wa.values[wa.pos] = val
wa.pos++
if wa.pos == wa.Window {
wa.pos = 0
wa.filled = true
}
}
// Average gets the moving average.
func (wa *WindowAverager) Average() float64 {
var sum = float64(0)
var c = wa.Window - 1
// ignore unavailable values
if !wa.filled {
c = wa.pos - 1
if c < 0 {
return 0
}
}
// sum values
var ic = 0
for i := 0; i <= c; i++ {
sum += wa.values[i]
ic++
}
// calculate average and return
avg := sum / float64(ic)
return avg
}
func (wa *WindowAverager) String() string {
return fmt.Sprintf("win:%d", wa.Window)
}
// NewWindowAverage returns a new WindowAverage with the specified window.
func NewWindowAverage(window int) *WindowAverager {
return &WindowAverager{
Window: window,
values: make([]float64, window),
pos: 0,
filled: false,
}
}
// NewDefaultWindowAverager returns a new WindowAverage with the default window.
func NewDefaultWindowAverager() *WindowAverager {
return NewWindowAverage(DefaultAverageWindow)
}
// AveragerFactories are the registered Averager factories.
var AveragerFactories = make([]AveragerFactory, 0)
// AveragerFactory is the definition for an Averager.
type AveragerFactory struct {
FactoryFunc func(string) (Averager, error)
Usage string
}
// RegisterAverager registers a new Averager.
func RegisterAverager(fn func(string) (Averager, error), usage string) {
AveragerFactories = append(AveragerFactories, AveragerFactory{fn, usage})
}
// NewAverager returns an Averager from a string.
func NewAverager(s string) (Averager, error) {
for _, fac := range AveragerFactories {
a, err := fac.FactoryFunc(s)
if err != nil {
return nil, err
}
if a != nil {
return a, nil
}
}
return nil, Errorf(NoSuchAverager, "no such Averager %s", s)
}
func init() {
RegisterAverager(
func(s string) (a Averager, err error) {
if s == "avg" {
a = &CumulativeAverager{}
}
return
},
"avg: cumulative average error",
)
RegisterAverager(
func(s string) (Averager, error) {
args := strings.Split(s, ":")
if args[0] != "win" {
return nil, nil
}
if len(args) == 1 {
return NewDefaultWindowAverager(), nil
}
w, err := strconv.Atoi(args[1])
if err != nil || w < 1 {
return nil, Errorf(InvalidWinAvgWindow, "invalid window %s to window average", args[1])
}
return NewWindowAverage(w), nil
},
fmt.Sprintf("win:#: moving average error with window # (default %d)",
DefaultAverageWindow),
)
RegisterAverager(
func(s string) (Averager, error) {
args := strings.Split(s, ":")
if args[0] != "exp" {
return nil, nil
}
if len(args) == 1 {
return NewDefaultExponentialAverager(), nil
}
a, err := strconv.ParseFloat(args[1], 64)
if err != nil || a < 0 || a > 1 {
return nil, Errorf(InvalidExpAvgAlpha, "invalid alpha %s to exponential average", args[1])
}
return NewExponentialAverager(a), nil
},
fmt.Sprintf("exp:#: exponential average with alpha # (default %.2f)",
DefaultExponentialAverageAlpha),
)
}