forked from statOmics/tradeSeq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
83 lines (83 loc) · 2.41 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
Package: tradeSeq
Type: Package
Title: trajectory-based differential expression analysis for sequencing data
Date: 2019-03-17
Version: 1.7.07
Authors@R: c(person("Koen", "Van den Berge", role = c("aut"),
email = "[email protected]"),
person("Hector", "Roux de Bezieux", role = c("aut", "cre"),
email = "[email protected]",
comment = c(ORCID = "0000-0002-1489-8339")),
person("Kelly","Street", role = c("aut","ctb")),
person("Lieven","Clement", role=c("aut","ctb")),
person("Sandrine","Dudoit", role="ctb"))
Description: tradeSeq provides a flexible method for fitting regression models that can be used to find genes that are differentially expressed along one or multiple lineages in a trajectory. Based on the fitted models, it uses a variety of tests suited to answer different questions of interest, e.g. the discovery of genes for which expression is associated with pseudotime, or which are differentially expressed (in a specific region) along the trajectory. It fits a negative binomial generalized additive model (GAM) for each gene, and performs inference on the parameters of the GAM.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: false
URL: https://statomics.github.io/tradeSeq/index.html
Depends: R (>= 3.6)
Collate:
'AllGenerics.R'
'utils.R'
'associationTest.R'
'clusterExpressionPatterns.R'
'conditionTest.R'
'data.R'
'diffEndTest.R'
'earlyDETest.R'
'evaluateK.R'
'fitGAM.R'
'getSmootherPvalues.R'
'getSmootherTestStats.R'
'nknots.R'
'patternTest.R'
'plotGeneCount.R'
'plotSmoothers.R'
'predictCells.R'
'predictSmooth.R'
'startVsEndTest.R'
RoxygenNote: 7.1.1
Imports:
mgcv,
edgeR,
SingleCellExperiment,
SummarizedExperiment,
slingshot,
magrittr,
RColorBrewer,
BiocParallel,
Biobase,
pbapply,
igraph,
ggplot2,
princurve,
methods,
S4Vectors,
tibble,
Matrix,
TrajectoryUtils,
viridis,
matrixStats,
MASS
Suggests:
knitr,
rmarkdown,
testthat,
covr,
clusterExperiment
VignetteBuilder: knitr
biocViews:
Clustering,
Regression,
TimeCourse,
DifferentialExpression,
GeneExpression,
RNASeq,
Sequencing,
Software,
SingleCell,
Transcriptomics,
MultipleComparison,
Visualization
BugReports: https://github.com/statOmics/tradeSeq/issues