From 2716a7e2bc04356af1febe0460d4a8613f205fc1 Mon Sep 17 00:00:00 2001 From: Eric Zhao <21zhaoe@protonmail.com> Date: Tue, 10 Oct 2023 02:41:18 -0400 Subject: [PATCH] formalism: Clean up formatting of untyped hazelnut metatheorems --- formalism/untyped.tex | 70 ++++++++++++++++++++++++++----------------- 1 file changed, 43 insertions(+), 27 deletions(-) diff --git a/formalism/untyped.tex b/formalism/untyped.tex index 6ab16b0..541203d 100644 --- a/formalism/untyped.tex +++ b/formalism/untyped.tex @@ -655,61 +655,77 @@ \subsection{Metatheorems} \begin{theorem}[name=Movement Erasure Invariance] \ \begin{enumerate} - \item If $\AUTAction{\ZTMV}{\ZTMV'}{\AMove{\MMV}}$, then $\cursorErase{\ZTMV} = - \cursorErase{\ZTMV'}$. + \item If $\AUTAction{\ZTMV}{\ZTMV'}{\AMove{\MMV}}$, + then $\cursorErase{\ZTMV} = \cursorErase{\ZTMV'}$. - \item If $\AUEAction{\ZMV}{\ZMV'}{\AMove{\MMV}}$, then $\cursorErase{\ZMV} = - \cursorErase{\ZMV'}$. + \item If $\AUEAction{\ZMV}{\ZMV'}{\AMove{\MMV}}$, + then $\cursorErase{\ZMV} = \cursorErase{\ZMV'}$. \end{enumerate} \end{theorem} \begin{theorem}[name=Reachability] \ \begin{enumerate} - \item If $\cursorErase{\ZTMV} = \cursorErase{\ZTMV'}$, then there exists $\AIMV$ such that - $\movements{\AIMV}$ and $\AUTActionIter{\ZTMV}{\ZTMV'}{\AIMV}$. - - \item If $\cursorErase{\ZMV} = \cursorErase{\ZMV'}$, then there exists $\AIMV$ such that - $\movements{\AIMV}$ and $\AUEActionIter{\ZMV}{\ZMV'}{\AIMV}$. + \item If $\cursorErase{\ZTMV} = \cursorErase{\ZTMV'}$, + then there exists $\AIMV$ + such that $\movements{\AIMV}$ + and $\AUTActionIter{\ZTMV}{\ZTMV'}{\AIMV}$. + + \item If $\cursorErase{\ZMV} = \cursorErase{\ZMV'}$, + then there exists $\AIMV$ + such that $\movements{\AIMV}$ + and $\AUEActionIter{\ZMV}{\ZMV'}{\AIMV}$. \end{enumerate} \end{theorem} \begin{lemma}[name=Reach Up] \ \begin{enumerate} - \item If $\cursorErase{\ZTMV} = \TMV$, then there exists $\AIMV$ such that $\movements{\AIMV}$ - and $\AUTActionIter{\ZTMV}{\ZTCursor{\TMV}}{\AIMV}$. - - \item If $\cursorErase{\ZMV} = \EMV$, then there exists $\AIMV$ such that $\movements{\AIMV}$ - and $\AUEActionIter{\ZMV}{\ZTCursor{\EMV}}{\AIMV}$. + \item If $\cursorErase{\ZTMV} = \TMV$, + then there exists $\AIMV$ + such that $\movements{\AIMV}$ + and $\AUTActionIter{\ZTMV}{\ZTCursor{\TMV}}{\AIMV}$. + + \item If $\cursorErase{\ZMV} = \EMV$, + then there exists $\AIMV$ + such that $\movements{\AIMV}$ + and $\AUEActionIter{\ZMV}{\ZTCursor{\EMV}}{\AIMV}$. \end{enumerate} \end{lemma} \begin{lemma}[name=Reach Down] \ \begin{enumerate} - \item If $\cursorErase{\ZTMV} = \TMV$, then there exists $\AIMV$ such that $\movements{\AIMV}$ - and $\AUTActionIter{\ZTCursor{\TMV}}{\ZTMV}{\AIMV}$. - - \item If $\cursorErase{\ZMV} = \EMV$, then there exists $\AIMV$ such that $\movements{\AIMV}$ - and $\AUEActionIter{\ZTCursor{\EMV}}{\ZMV}{\AIMV}$. + \item If $\cursorErase{\ZTMV} = \TMV$, + then there exists $\AIMV$ + such that $\movements{\AIMV}$ + and $\AUTActionIter{\ZTCursor{\TMV}}{\ZTMV}{\AIMV}$. + + \item If $\cursorErase{\ZMV} = \EMV$, + then there exists $\AIMV$ + such that $\movements{\AIMV}$ + and $\AUEActionIter{\ZTCursor{\EMV}}{\ZMV}{\AIMV}$. \end{enumerate} \end{lemma} \begin{theorem}[name=Constructability] \ \begin{enumerate} - \item For every $\TMV$, there exists $\AIMV$ such that - $\AUTActionIter{\ZTCursor{\TUnknown}}{\ZTCursor{\TMV}}{\AIMV}$. + \item For every $\TMV$, + there exists $\AIMV$ + such that $\AUTActionIter{\ZTCursor{\TUnknown}}{\ZTCursor{\TMV}}{\AIMV}$. - \item For every $\EMV$, there exists $\AIMV$ such that - $\AUEActionIter{\ZCursor{\EEHole}}{\ZCursor{\EMV}}{\AIMV}$. + \item For every $\EMV$, + there exists $\AIMV$ + such that $\AUEActionIter{\ZCursor{\EEHole}}{\ZCursor{\EMV}}{\AIMV}$. \end{enumerate} \end{theorem} \begin{theorem}[name=Determinism] \ \begin{enumerate} - \item If $\AUTActionIter{\ZTMV}{\ZTMV'}{\AMV}$ and $\AUTActionIter{\ZTMV}{\ZTMV''}{\AMV}$, then - $\ZTMV' = \ZTMV''$. + \item If $\AUTActionIter{\ZTMV}{\ZTMV'}{\AMV}$ + and $\AUTActionIter{\ZTMV}{\ZTMV''}{\AMV}$, + then $\ZTMV' = \ZTMV''$. - \item If $\AUEActionIter{\ZMV}{\ZMV'}{\AMV}$ and $\AUEActionIter{\ZMV}{\ZMV''}{\AMV}$, then - $\ZMV' = \ZMV''$. + \item If $\AUEActionIter{\ZMV}{\ZMV'}{\AMV}$ + and $\AUEActionIter{\ZMV}{\ZMV''}{\AMV}$, + then $\ZMV' = \ZMV''$. \end{enumerate} \end{theorem}