-
Notifications
You must be signed in to change notification settings - Fork 0
/
Figures 1 and 2 Workbook_v2023.3.twb
1445 lines (1444 loc) · 105 KB
/
Figures 1 and 2 Workbook_v2023.3.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20241.24.0208.0337 -->
<workbook original-version='18.1' source-build='2024.1.0 (20241.24.0208.0337)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<_.fcp.AnimationOnByDefault.false...style>
<_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
<_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
</_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule>
</_.fcp.AnimationOnByDefault.false...style>
<datasources>
<datasource caption='New_York_City_Seasonally_Adjusted_Employment_20240421' inline='true' name='federated.0ybs5cm1fx883w195q3jm026y2l4' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='New_York_City_Seasonally_Adjusted_Employment_20240421' name='textscan.1dpfc981qtzk7e1ad9fek0nfr1sd'>
<connection class='textscan' directory='/Users/halk/Downloads' filename='New_York_City_Seasonally_Adjusted_Employment_20240421.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.1dpfc981qtzk7e1ad9fek0nfr1sd' name='New_York_City_Seasonally_Adjusted_Employment_20240421.csv' table='[New_York_City_Seasonally_Adjusted_Employment_20240421#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='date' name='PUBLICATION DATE' ordinal='0' />
<column datatype='string' date-parse-format='yyyy' name='REFERENCE YEAR' ordinal='1' />
<column datatype='integer' date-parse-format='MM' name='REFERENCE MONTH' ordinal='2' />
<column datatype='string' name='INDUSTRY' ordinal='3' />
<column datatype='real' name='EMPLOYMENT' ordinal='4' />
<column datatype='integer' name='METHOD' ordinal='5' />
<column datatype='string' name='REVISION REASON' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.1dpfc981qtzk7e1ad9fek0nfr1sd' name='New_York_City_Seasonally_Adjusted_Employment_20240421.csv' table='[New_York_City_Seasonally_Adjusted_Employment_20240421#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='date' name='PUBLICATION DATE' ordinal='0' />
<column datatype='string' date-parse-format='yyyy' name='REFERENCE YEAR' ordinal='1' />
<column datatype='integer' date-parse-format='MM' name='REFERENCE MONTH' ordinal='2' />
<column datatype='string' name='INDUSTRY' ordinal='3' />
<column datatype='real' name='EMPLOYMENT' ordinal='4' />
<column datatype='integer' name='METHOD' ordinal='5' />
<column datatype='string' name='REVISION REASON' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>PUBLICATION DATE</remote-name>
<remote-type>133</remote-type>
<local-name>[PUBLICATION DATE]</local-name>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias>PUBLICATION DATE</remote-alias>
<ordinal>0</ordinal>
<local-type>date</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>REFERENCE YEAR</remote-name>
<remote-type>129</remote-type>
<local-name>[REFERENCE YEAR]</local-name>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias>REFERENCE YEAR</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>REFERENCE MONTH</remote-name>
<remote-type>20</remote-type>
<local-name>[REFERENCE MONTH]</local-name>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias>REFERENCE MONTH</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>INDUSTRY</remote-name>
<remote-type>129</remote-type>
<local-name>[INDUSTRY]</local-name>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias>INDUSTRY</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>EMPLOYMENT</remote-name>
<remote-type>5</remote-type>
<local-name>[EMPLOYMENT]</local-name>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias>EMPLOYMENT</remote-alias>
<ordinal>4</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>METHOD</remote-name>
<remote-type>20</remote-type>
<local-name>[METHOD]</local-name>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias>METHOD</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>REVISION REASON</remote-name>
<remote-type>129</remote-type>
<local-name>[REVISION REASON]</local-name>
<parent-name>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv]</parent-name>
<remote-alias>REVISION REASON</remote-alias>
<ordinal>6</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Employment' datatype='real' name='[EMPLOYMENT]' role='measure' type='quantitative' />
<column aggregation='None' datatype='integer' name='[Employment (bin)]' role='dimension' type='quantitative'>
<calculation class='bin' decimals='1' formula='[EMPLOYMENT]' peg='0' size='73' />
</column>
<column caption='Industry' datatype='string' name='[INDUSTRY]' role='dimension' type='nominal' />
<column caption='Method' datatype='integer' name='[METHOD]' role='measure' type='quantitative' />
<column caption='Publication Date' datatype='date' name='[PUBLICATION DATE]' role='dimension' type='ordinal' />
<column caption='Reference Month' datatype='integer' name='[REFERENCE MONTH]' role='dimension' type='ordinal' />
<column caption='Reference Year' datatype='string' name='[REFERENCE YEAR]' role='dimension' type='nominal' />
<column caption='Revision Reason' datatype='string' name='[REVISION REASON]' role='dimension' type='nominal' />
<_.fcp.ObjectModelTableType.true...column caption='New_York_City_Seasonally_Adjusted_Employment_20240421.csv' datatype='table' name='[__tableau_internal_object_id__].[New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB]' role='measure' type='quantitative' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='New_York_City_Seasonally_Adjusted_Employment_20240421.csv' id='New_York_City_Seasonally_Adjusted_Employment_20240421.csv_E268DFE2E0374A799FD3096F2CED3AAB'>
<properties context=''>
<relation connection='textscan.1dpfc981qtzk7e1ad9fek0nfr1sd' name='New_York_City_Seasonally_Adjusted_Employment_20240421.csv' table='[New_York_City_Seasonally_Adjusted_Employment_20240421#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='date' name='PUBLICATION DATE' ordinal='0' />
<column datatype='string' date-parse-format='yyyy' name='REFERENCE YEAR' ordinal='1' />
<column datatype='integer' date-parse-format='MM' name='REFERENCE MONTH' ordinal='2' />
<column datatype='string' name='INDUSTRY' ordinal='3' />
<column datatype='real' name='EMPLOYMENT' ordinal='4' />
<column datatype='integer' name='METHOD' ordinal='5' />
<column datatype='string' name='REVISION REASON' ordinal='6' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 2'>
<layout-options>
<title>
<formatted-text>
<run>Employment in New York City During the Pandemic by Month</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='New_York_City_Seasonally_Adjusted_Employment_20240421' name='federated.0ybs5cm1fx883w195q3jm026y2l4' />
</datasources>
<datasource-dependencies datasource='federated.0ybs5cm1fx883w195q3jm026y2l4'>
<column caption='Employment' datatype='real' name='[EMPLOYMENT]' role='measure' type='quantitative' />
<column caption='Reference Month' datatype='integer' name='[REFERENCE MONTH]' role='dimension' type='ordinal' />
<column caption='Reference Year' datatype='string' name='[REFERENCE YEAR]' role='dimension' type='nominal' />
<column-instance column='[REFERENCE MONTH]' derivation='None' name='[none:REFERENCE MONTH:ok]' pivot='key' type='ordinal' />
<column-instance column='[REFERENCE YEAR]' derivation='None' name='[none:REFERENCE YEAR:nk]' pivot='key' type='nominal' />
<column-instance column='[EMPLOYMENT]' derivation='Sum' name='[sum:EMPLOYMENT:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE MONTH:ok]' />
</encodings>
</pane>
</panes>
<rows>[federated.0ybs5cm1fx883w195q3jm026y2l4].[sum:EMPLOYMENT:qk]</rows>
<cols>([federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE YEAR:nk] / [federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE MONTH:ok])</cols>
</table>
<simple-id uuid='{A43746C4-A191-460B-B034-C2C35770DE8A}' />
</worksheet>
<worksheet name='Sheet 3'>
<layout-options>
<title>
<formatted-text>
<run>Employment by Industry During the Pandemic</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='New_York_City_Seasonally_Adjusted_Employment_20240421' name='federated.0ybs5cm1fx883w195q3jm026y2l4' />
</datasources>
<datasource-dependencies datasource='federated.0ybs5cm1fx883w195q3jm026y2l4'>
<column caption='Employment' datatype='real' name='[EMPLOYMENT]' role='measure' type='quantitative' />
<column caption='Industry' datatype='string' name='[INDUSTRY]' role='dimension' type='nominal' />
<column caption='Reference Year' datatype='string' name='[REFERENCE YEAR]' role='dimension' type='nominal' />
<column-instance column='[INDUSTRY]' derivation='None' name='[none:INDUSTRY:nk]' pivot='key' type='nominal' />
<column-instance column='[REFERENCE YEAR]' derivation='None' name='[none:REFERENCE YEAR:nk]' pivot='key' type='nominal' />
<column-instance column='[EMPLOYMENT]' derivation='Sum' name='[sum:EMPLOYMENT:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<filter class='categorical' column='[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:INDUSTRY:nk]'>
<groupfilter function='except' user:ui-domain='relevant' user:ui-enumeration='exclusive' user:ui-marker='enumerate'>
<groupfilter function='level-members' level='[none:INDUSTRY:nk]' />
<groupfilter function='member' level='[none:INDUSTRY:nk]' member='"Securities, Commodity Contracts, Investments "' />
</groupfilter>
</filter>
<slices>
<column>[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:INDUSTRY:nk]</column>
</slices>
<aggregation value='true' />
</view>
<style>
<style-rule element='mark'>
<encoding attr='size-bar' field='[federated.0ybs5cm1fx883w195q3jm026y2l4].[sum:EMPLOYMENT:qk]' field-type='quantitative' max-size='1' min-size='0.005' type='centersize' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE YEAR:nk]' />
</encodings>
</pane>
</panes>
<rows>[federated.0ybs5cm1fx883w195q3jm026y2l4].[sum:EMPLOYMENT:qk]</rows>
<cols>[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:INDUSTRY:nk]</cols>
</table>
<simple-id uuid='{55FADAD1-E3D3-4FE7-BB47-0CEDC4F488D9}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' name='Sheet 2'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE MONTH:ok]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE MONTH:ok]</field>
<field>[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE YEAR:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{9E643EB6-7507-4376-9843-273AC0A61D71}' />
</window>
<window class='worksheet' maximized='true' name='Sheet 3'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE YEAR:nk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0ybs5cm1fx883w195q3jm026y2l4].[none:REFERENCE YEAR:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{1A31D88E-5D40-480E-A906-806E732326A5}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Sheet 2' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO3deXAU550//nd3z62RBLoldHJfNuIwtjG2ARubM4CPXMR2dlPJt+JvvFXJ
ZpPNblyxv9kj2ZBUUltb+7N348QnYMcmxtjmBmEucyMhgSQQOtA5umc0Zx+/P4QaxKWWEBqJ
fr+qqEKt/kw/3f2o39NP9/QImqZpICIi0xGj3QAiIooOBgARkUkxAIiITIoBQERkUnd9AEQi
Efh8vmg3g4ho2LnrAyAcDqOzszPazSAiGnbu+gAgIqIbYwAQEZkUA4CIDOnq6kJzczPa29uh
quot5y0rK8NHH32Ejo6OIWpdN6/Xi0AgoP/c2dmJSCQyKK8dDAbx8ssvIxwO95re2tqK5uZm
BAIB3OpztbIsY8+ePdi9e/egtKc/QqEQmpubIcuyPq29vZ0BQETGvPnmm/j+97+Pl156CS+8
8AIqKytvOF9bWxt+/vOfIxQKDW0DARw6dAg///nPoWka2tvb8YMf/ADt7e2D8tpnz55FUlIS
bDZbr+kvvPAC/vEf/xFr167Fr371q5sGzvbt27FhwwZIkjQo7emPgoICPP3009i1axeA7qB8
/vnnIb3yyiuvDHlrhlAkEkEoFEJsbGy0m0I0oh06dAjz5s3Dj3/8Y7S2tqK8vBxz5szBvn37
8NZbb6G9vR0TJ07EG2+8gXPnziEnJwfjx4/H1q1b8Ze//AU2mw2ZmZnYvXs3IpEIPvvsM2Rm
ZqKkpARvvPEGampqMHXqVJw4cQLHjh3Dp59+ivLyckydOhWyLGPTpk34+OOPERMTg7i4OLz1
1lvYtm0bUlJSkJSUBADIzs7Gxo0bkZOTg507dyIvLw8PPfQQDh48iDfffBMejwcTJ05Ea2sr
3n77bezcuROqqiI7Oxtbt26FIAjYvHkzxo0bB7vd3mv9169fj8ceewypqam9pr/33nt4/fXX
sWrVKrzxxhuYO3curFYr3nnnHXz22WdITU1FMBjE66+/DrvdjtTUVGRmZuKtt97C9u3bkZaW
hri4OHz44YfQNA379u3DuHHj8P777+vrm56ejs8//1w/s/J6vRg/fjxqa2vx5z//GYcPH8bU
qVNRWVmJ//mf/0FpaSkmTZqkh1V5eTk6OjrQ2NiIRYsW4ejRo6irq+MZABEZ5/P50NDQgKqq
KiQnJ+sHnG984xvYunUrTp48ifHjx8PtdiM/Px+HDh3CkSNH8LWvfQ2/+93v0N7ejn379uH/
/b//h+bmZrS1teF3v/sd1qxZg+LiYuzatQsnT55EQUEBZs+ejU8++QS1tbXYuHEjTp8+jWXL
lkEQBLz55psIBoNYsGABfvOb3+hnG1arFS+++CJ+//vfo6CgAM8++yxqamrw2muv4emnn8ah
Q4dw+PBhdHZ2Yty4cVi4cCF+//vfo729Hdu3b8cvf/lLdHV1XfcuvaurCzU1NZg0adJ120TT
NDQ3N6OiogKKosDlcuHtt9+Gz+fD0qVL8corr8DlciEtLQ1ZWVl6SCqKgoULF+LVV1+Foih4
44038Pvf/x5OpxNbtmxBeXk5vvKVr2DdunXo6urCjh07UFZWhvz8fLz55ptobW3Fq6++iqys
LMyePRuBQAAvv/wyFi9eDK/Xi/fff79XO8ePH49Lly4hEong4MGDePjhhxkARGTc5s2b8Z3v
fAcxMTFYsWIFzp49C1VVsW3bNgDdY/9TpkxBXFwc7r//fpSXlyMUCmHHjh0QRVEfNvrKV76C
H/7wh2hra4Pf78eePXsQCoVQWloKAJg/fz4effRRpKamQpZlnDhxAt/85jeRn5+PmTNn4vTp
02hubsbRo0fR1taG1tZWvY333XcfXC4Xli9fjtjYWFy4cAHBYBC7d+9GOBxGWVkZ7HY79u/f
j02bNsHr9eoB8rWvfQ0vvvgiXC5Xr/UuLCzElClTrjsrALrH9n/xi1/gxz/+Mb7//e8jOTkZ
p0+fhsfjwYEDB9DW1gZJkpCZmYmxY8di+vTpKCwsRENDA7788ku0tLTA7/dDEAS8+uqrWL58
OU6fPg2fz4eCggLIsoza2loAwLJly7BgwQLYbDY0NTVBURSsXr0a8+fPhyzLaG9vx8GDB9HW
1oaysrJe7bRYLJg+fTpOnjyJmpoajB07FpbB6RZEZAbf+ta34HQ6sX79erS1tWHUqFFwOp1Y
smQJFi9ejJiYGCiKos8/evRohEIhLFu2DAsXLkRGRgYAYNy4cRAEAfHx8bBarXjiiScgCAIk
SdLHqa+WmJiIiooKTJw4EZFIBKNHj8bYsWMxf/58LFy4EKNGjdLnFQQBaWlpSE9P15fhcDjw
5JNP4oknnoDdbsd7772H6dOnY8mSJXjxxRf1up52XWvPnj145plnbrhNrFYr/vCHP2DdunU4
deoU5s+fj1GjRmH8+PF45JFHMH/+/OsCZdSoUZg4cSIefPBBPPzww7Db7Rg1apQ+lDVq1Cgk
JCRg+fLlWLhwIdLT069brtPp1C/uxsbGwuVyQRAELFy4EE6ns9d+6PHII4/gT3/6EyZMmACH
w8EzACIyxm63w2q14sknn8SqVavwy1/+EpMmTUJycjJ+/etf47e//S0qKyshiiKcTicAYOXK
laisrMS6devwhz/8AT6fD3a7XR9iycvLw5w5c/Dv//7vWLduHUpKSmCz2WC1WgF0H+REUcRz
zz2HDz/8EC+++CI++ugjPPfcc9ixYwfWrVuHP/3pT9ddeHU4HLBYut/fTps2DWPHjsWvfvUr
/Pa3v8X58+cxdepUvP/++3j55Zfh8/kgCIK+rGt5vV40NzcjLy/vhtslJiYGDocD//zP/4zq
6mqsX78e3/rWt7Bz506sW7cOr7/+OjRNg81m09v0/PPP47PPPsO6devwv//7vxBFUT+AA8Az
zzyDwsJCrFu3Dv/1X/+FYDAIp9MJSZIgCAJcLhcSExOxZs0a/PCHP8RLL72Ezs5OPPPMM/jN
b36DdevW4dChQ3obrVYrbDYbZs6ciZqamu7hH1GEcLd/H0BXVxc6Ojr0dx5ENLg0TUMgEOh1
gLv2936//6YHWE3TEAqFIEmSfuC/2XL8fr9+oFRVFYFAoNeB81a1wWAQFotFX0ZHRwfcbnef
d+Xs3r0bly5dwvPPP3/L+a7VV/v6+v2163sz4XAYmqbpw1M9w1k3Gq66FoeAiOi29LwjvdXv
Y2Jibvl7h8NhaDlXv44oird83Wtre85KesTHxxuqLS4uxlNPPWVo3qv11b6+ft/Xdutx7W2p
Rg78+jJ4BkBEdHOqqkIQhD7PMkYiXgO4S2iahqampmg3g6gXRVHQ0tIS7WbcFlEU78qDP8AA
uKvwqac03KiqCq/XG+1m0E0wAIiITIoBQERkUqYIgEgkgqqqKpw9e1a/RUpRFJSXl+sf3wau
3M7m8Xj02q6uLhQVFaGuru6WT/qjkUHTNHi9Xpw9exY1NTX6Uy19Ph+KiorQ0tICTdOgqiqa
mppw5swZ/VOmmqahqqoK586dG7QnTBIB3X2ro6MDJSUlqK+v1481HR0dKCws1J+qqmkaOjs7
cfbsWdTW1ur9V1EU1NbW9vsYZYoAOH36NM6fP4+mpiZs3LgRALBz505UVlbi7Nmz+OKLLwAA
p06dwptvvok9e/YA6L6fdsOGDZBlGQUFBSgpKYnaOtDgqK+vx6ZNm9DR0YGDBw/ixIkTiEQi
eOeddxCJRLBp0yYEAgEcPnwY+/fvR1dXFz744AO0tbXh+PHjOH78OBoaGrBlyxa+IaBBU1FR
gU8++QRerxc7d+5EaWkpvF4vNm7cCFmWsX79ev15RB9//DE6OztRUFCgv0F599138cc//rHf
yzXF5wDmzJmDjIwM/V2/pmm4dOkS/uZv/gYA8Pbbb0OWZaSmpmLt2rXYvn07AKC6uhqTJk3C
zJkzMWHCBGzevBnTpk2L5qrQbUpKSsLatWshiiKysrJw8uRJOJ1O3HvvvZg1axYSEhIQDAYx
a9YsOBwO/R1XW1sbioqKuh+hK0nYsGEDfD4fnzJLgyIzMxNr164F0P35hMbGRrS3t+PBBx/E
PffcA4fDgVOnTuG+++7D2rVrIQgCUlJScP78eeTk5GDNmjX461//2u/lmuIMAOgeytmwYQPy
8/OhKEr3czBEUf8wRjAYREZGRq9PBSYmJqKsrAytra1obW0dtOeKU/TYbDZIkoQLFy7g008/
xfz589HW1qY/4jcxMRFdXV1wOBxQFAX79u1Da2srsrOzYbVa9U+yxsbGRuV593R3stvtEAQB
JSUlOHDgAObMmYPOzk792UBpaWloaWmBzWaDKIooKyvDzp07cf/99yM+Pn7Ab0RMcQbQ0NCA
zZs3Y9myZcjKyoKmaVAUBZqm6R8pv9HHwUePHo1HH30UBw8eRGxsrKFPK9LwpmkavvjiC9TX
1+O5556D0+mE1WrVx/RlWYbFYkE4HMYHH3yA3NxcPPvss9e9jqIoN3ysAdFAaJqGrVu3IhwO
47nnntMfq9HzDV6RSAQ2mw2apmH37t1ob2/Hc889d9vHJFP04PLycjzzzDPIzs6GIAgQRRGR
SATBYBBerxfBYPCGH58WBAG5ublYsWIF0tLSkJmZGYXW02Cqq6vDpUuX8PTTT+uPBsjKykJJ
SQk0TUNZWRlcLhcOHDiACRMmYN68efoHgQRBQHt7OyKRCFpaWgw/hoCoLxcuXEAgEMDKlSv1
RzuMGTMG586dg6ZpKCoqQm5uLqqrq9HS0oLVq1cPyhtSUzwKYvv27fr3hFosFjz77LOoqKjQ
L/4uXLgQmZmZ2L59Ozo6OtDS0oKUlBQsWbIEn3/+uf5aK1asuOUzT6JJ0zRcuHAB48ePj3ZT
hrUzZ85g//79iIuLAwBMmDABc+bMweeff46Ojg6IooinnnoKn376KTo6OvQHhy1YsABWqxVb
tmyBKIqYPXs2pk+fHs1VGREikQhqa2uRm5sb7aYMa19++SUKCwv1NxX33HMPpkyZgk8//RRd
XV2w2+1Ys2YNTp06hWPHjsHtdgMApkyZApvNhpKSEjQ0NCA1NRVTpkzBPffcY2i5pgiAmz0L
qOf06kZPMOyhqirC4bA+RjdcMQBuj6ZpCIfDsNlst9zPiqJAVdVbPrWSrmAA3B6j/XKgTHEN
4GZudeDvIYoix/5NQBAEQ09RlCQpKl/qTeZktF8OlCmuARAR0fVuOATU1taG5ubmaLRn0PU8
q/xOpuhwEAqFEAgEen01HlG0+f1+KIrCz0sMU3f9NQCzaGlpgSAISEhIiHZTiHSNjY1wOp36
RXcaXjgERERkUgwAIiKTYgAQEZkUA4CIyKQYAEREJsUAICIyKQYAEZFJRSUAVFXt9W1KVz+e
uT/TNE274f+JiKhvQ/osIFVVcfLkSZw4cQIvvPACbDYbGhsbsWPHDj0Uvv71rwMANm3ahHA4
jLS0NCxevBiyLOPDDz+ELMtITEzEk08+iaKiIiQnJyMjIwNFRUVQVRX5+flDuUpERCPWkAZA
RUUFgsEg3G63/mXGfr8fq1atgtvtxpEjR1BaWgqfz4eJEydi5syZ+Pjjj1FXV4fa2lrk5eVh
7ty5+Otf/4r6+np4vV643W40Nzfj+PHjeO6554ZydYiIRrQhDYBx48Zh3LhxqK2t1afl5eUB
ALxeL4qKivDUU09h7969ePzxxyEIAiZOnIi6ujrU1dVh4cKFEAQBU6ZMQU1NDQCgubkZ+/fv
x4oVK/Sne149xKRpmv7Y57tZJBKBIAgIBoPRbgqRLhKJQJIk9sthakgD4EbPs+55jv2ePXuw
bNkyjB49Gqqq6l+31/N1fZFIRH8G+9VflVZaWopgMIj4+Pher9lzhiEIgv4NO3czi8VimnWl
kcNiscBqtbJfDlNR/z6Auro6FBQUYO3atfq3bblcLnR0dMDtdqOxsRFJSUno6upCU1MTcnNz
0dTUhNGjR6OtrQ0PPfQQOjs7sW3bNqxYsQKCIJjyme09X1nI76ml4YT9cngb0r1SU1ODo0eP
orGxESdOnEBdXR2OHTuGhIQEnDp1CgcPHoTH48GsWbOwY8cOHDt2DGVlZcjNzUV+fj527tyJ
kydPori4uNc3X82YMQOSJOHkyZNDuTpERCPakD4OurW1FR0dHfrPo0ePhizL8Hq9+rSkpCTE
xsaiqakJDQ0NyMvLQ2xsLDRNQ3NzM+rq6jB27FjExsbC6/XCarXC4XBAlmW0tLQgNTV1qFZn
WOHjoGk44uOghzd+H8BdggFAwxEDYHjjwBwRkUkxAIiITIoBQERkUgwAIiKTYgAQEZkUA4CI
yKQYAEREJsUAICIyKQYAEZFJMQCIiEyKAUBEZFIMACIik2IAEBGZFAOAiMikGABERCbFACAi
MikGABGRSTEAiIhMigFARGRSDAAiIpNiABARmRQDgIjIpBgAREQmxQAgIjIpBgARkUkxAIiI
TIoBQERkUgwAIiKTYgAQEZkUA4CIyKQYAEREJsUAICIyKQYAEZFJMQCIiEyKAUBEZFIMACIi
k2IAEBGZFAOAiMikGABERCbFACAiMikGABGRSTEAiIhMigFARGRSDAAiIpNiABARmRQDgIjI
pKISAF1dXdA0Tf85GAyioaEBiqJcN02WZX1aKBRCfX29Pi0cDus1qqoiGAwO0RoQEY18QxoA
Xq8XmzZtwmuvvYZwOAwAaGtrwzvvvIPTp0/jvffeg6qqaG9vx7vvvouTJ09i48aNkGUZXq8X
b731FoqKivDuu+9ClmUcP34c1dXV0DQNO3fuxPnz54dydYiIRjTLUC7M5/PhvvvuQyQS0c8A
jh07hoULF2Ls2LHYunUrLl26hLKyMixYsABjx47Frl27UFVVhZqaGjz88MOYPHkydu3ahYsX
L0JRFKiqivPnz8Pn82Hq1KlDuTpERCPakAZAenr6ddPa29uRnp4OQRCQnZ2NxsZGdHR0IDU1
FYIgICsrCx6PBy0tLZgzZw4AIDs7Gx6PBwBw5swZNDU1Ye3atRDF7hMaWZb1gNE0rdcw0t0q
HA5DEAT4/f5oN4VIF4lEIEkS++UwNaQBcCOCIPQ6WAuC0Ov3PdOuna+Hy+UC0N3RevQEQQ+b
zXZH2j6cBAIBCIKgbw+i4cDr9cJms7FfDlNRvwsoISEBtbW10DQNFy9eRHp6eq9pVVVVSElJ
QXJyMqqrqwEAlZWVSEtLAwCMHTsWS5Yswccff6y/0xdFsdc/IiK63pCeAZw+fRplZWW4cOEC
Nm3ahBkzZmDOnDlYv349CgsLEYlEkJGRgbi4OGzYsAGFhYWQZRnZ2dlITU3F22+/jXPnziEQ
COCxxx5DQ0ODPkw0depU7NmzB4sXLx7KVSIiGrEE7erxlChRVRVdXV2IjY29bprb7daHhVRV
hc/nQ2xs7HVDRWbX0tICQRCQkJAQ7aYQ6RobG+F0OhEXFxftptANRP0aANA9ZHP1wf9W09iR
iIgGBwfIiYhMigFARGRSDAAiIpNiABARmdRdHwBKsB6+0n+BEmyIdlOIiIaVuz4AoIah+isB
NRztlhARDSt3fwAQEdENMQCIiExqWHwQbKida2zAp8VnDM370qMLYJNMuZmI6C5nyiNbo7cT
u8pLDc374sOPAtIdbhARURRwCIiIyKQYAEREJmXKIaCBCkYiCMqRPucTBQFxDucQtIiIaOAY
AP1w7FIVvqgo73M+t82Olx5eNAQtIiIaOA4BERGZFAOAiMikGABERCbFawBDoOX/ew1dBw72
OZ9j8iSk/PM/DUGLiIgYAENCUxQg0vfdQ5osD0FriIi6cQiIiMikGABERCbFIaDhbN9eoLW1
7/lycoHsnDvdGiK6yzAAhrOODqC1pe/5kpLufFuI6K7DISAiIpNiABARmRSHgAgAEFFUHKry
Gpp3aqoLSTHWO9wiIrrTGAB3oe/8ejO8/lCf861dfA9WzZ8MAFA14GJr0NDr54y2MwCI7gIM
gLtQKCwjFFH6nE9WtCFoDRENV7wGQERkUgwAIiKTYgAQEZkUA4CIyKQYAEREJsW7gOi2aIF2
yDVfGprXkjMPgj32DreIiIxiANBtUdurEfz07w3N63ruI0gMAKJhg0NAREQmxQAgIjIpBgAR
kUkxAIiITIoBQERkUgwAIiKTYgAQEZkUA4CIyKQYAEREJsUAICIyqagHgKIoKCkpwb59+3Dp
0iVoWve3VF28eBH79u1Dc3MzAEDTNFRVVaGgoAAejwcA0NLSAr/fDwDw+Xyor6+PzkoQEY1A
UQ+AI0eOoKqqCrm5udi+fTs8Hg+qq6tx6NAhjBkzBh9//DH8fj/q6+tRUFCAnJwcbNq0CX6/
H2fPnkV9fT1kWcbmzZuhqmq0V4eIaMSI+sPgurq6MHbsWIwZMwZpaWkIBAIoLCzEY489htTU
VHg8HlRUVODSpUtYtGgRMjMzMXPmTJw/f15/jUOHDiEnJwdjxoy56XI0TdUDoucswwhN7X+d
BvQOI6N1Wu86ARoEQ3Wa3jZVVWF07TRN05fXn/DsVaf1o07VGNIm09M3ud+Hp6gHwJw5c/DH
P/4RcXFxsFgsWLJkCY4ePQq32w0ASEpKQmNjIzo7O5GQkAAASEhIQF1dHQRBwLZt22CxWPCd
73xHf81IJHLlABUOX54mQ5C6/y/LfX9heo9wJALx8sFVUQzWaRrCl5cLGD+4apraq86mGgsA
VVUhyzIEQbhcbywCFEXRlxfpxxfEy7KMcLi7ZVpENlwXkSMQrlo/uvspinK5v3C/D0dRD4Av
vvgCzzzzDLKzs7F7926UlpZCFEX9YBsIBOBwOGC32xEKheByuRAKhWC32xEOh/Hoo4/i1KlT
qK6uRl5eHgDAarXqr68oNkQA2Gw2SA7H5d8bX2273Q7H5dezWIzVCYIAx+VlAYBPkgzViaLY
qw6isRE6SZJgtVr15QqGYqN7fXqWJ8jG36FZrVa9TrHZYDQCrt4HZA4Wi6VXf6HhJerXAHw+
H5xOJwDA6XTC5/MhOzsbRUVFUFUVJSUlyMzMRE5ODgoLC6FpGgoLC5GbmwsAcDgcWL16NXbs
2AGv1xvFNSEiGlmiHgBLlizBrl27sH79eng8HsyaNQv5+floaWnB22+/jaysLKSkpOCee+5B
Z2cn3n77bWRmZiI5ORmJiYmIiYlBTEwMVqxYgdOnT0d7dYiIRoyoDwGNHj0aX//616FpGgRB
gCB0D1+sXLmy1zRJkrBixYpe06ZMmaK/TkZGBjIyMqK1GkREI07UAwBArwN/f6cREdHARH0I
iIiIooMBQERkUgwAIiKTYgAQEZkUA4CIyKQYAEREJsUAICIyKQYAEZFJMQCIiEyKAUBEZFIM
ACIik2IAEBGZFAOAiMikGABERCbFACAiMikGABGRSTEAiIhMasABEAqF8Oc//1n/ubKyElu3
bh2MNhER0RAY0FdChsNhlJaW4sSJE5g3bx4A4PDhw5BleVAbR0REd86AAsDr9eKjjz5CdXU1
3n//fQBAQkICvvGNbwxq44iI6M4ZUAAkJibi5z//OQoLCzFjxgx9Or+wnYho5BhQAPTYt28f
Xn/9df3np59+GosXL77tRhER0Z034ADo6upCeXk5fvvb30IUu68lW63WQWsYERHdWQO+C8jt
diM1NRXBYBCKokBRFKiqOphtIyKiO2jAZwCyLCMSieDll1/Wx/7XrFmDxx9/fNAaR0REd86A
A8Bms+HVV19Fe3s7FEWBzWaDy+UazLYREdEdNOAA0DQNb731FoqLi5GcnIyZM2dCFEU89thj
g9k+IiK6QwZ8DaCzsxMXL17Ev/zLv8BisSAzMxPnz58fzLYREdEdNOAzALvdjlAohDNnzsDr
9WLLli2YOnXqYLaN7mbNpcDFXcbmnf09QLytO5aJ6AYG/FfldDrxgx/8AB9++CHC4TCmTp2K
J554YjDbRnczOQD4GqLdCiJTu61rAIIgYO7cufo0j8eDjIyMQWkY0Y3su7Ab+ysK+pwvzhGP
Hzz8I/1nRZWhou/blAWIsFw+29A0FaoSMtQuUbJBECRD8xINF7f1QbCf/OQnuP/++/UPgjkc
DgYA3VGN3gacqT/d53yJrqReP2+9tAnn2ov6rMuKycNXx/0NAMDfWYN9G1caatfcFX9EYsZ9
AAA10g7FV2aozhKfD0G0GZqXaLANOAAkSUJWVhZeeuklPgOI6CqKvxqBytf7nhGAe9pvINgY
ABQdt/U5AFEU8cMf/hAWS/fLrFixAgsWLBisthGZSpPPi9r29j7nEwUBM8ZkDkGL6G434ADw
+XxobW3FL37xC0hS99in2+0etIYRmc2hixV47eD+PuezWyzY9J3/MwQtorvdgAPA5XJh9OjR
CIVCegA4nc5BaxgRGdMZDCIQCfc5n0UUkRjDN2l0xYADQFVVxMfH47XXXtOvASxduhQPP/zw
oDWOiPp2qOoCTlyq7nO+FHcsvnP//CFoEY0Ut3UReOXKlcjLy+MzgIiIRqDb+hzAwYMH8d//
/d+YMmUKnnzySeTm5uoXhImIaHgb8NHaarXiu9/9LiKRCPbs2YMXX3wROTk5+Na3voVHHnmE
t4YSEQ1zt3UN4MCBA/jrX/+KQCCAH/3oR5g7dy7+4z/+A1OmTEFKSspgtpOIBlnw7Fko7R19
zmdJTIB94sQhaBENtQEHQCQSwYULF/D9738f48aNA9D9pfDf/e53ERsbO2gNJKI7o3PTXxEs
7PvT0c7770cyA+CudFsfBHvyySexYcMGeDwePPjgg1i2bJkeBkRENLwN+PsAQqEQfv3rX+O+
++7D9773PZw7dw6fffbZYLaNiIjuoAEHQCAQgM1mw0MPPYTc3FwsX76cXwhDRDSCDHgIKC4u
DklJSfi3f/s3pKWl4dixY3jxxRcHs21ENByVFAPhvj95jNRUQOQjsoez2/og2I9+9COcPn0a
ra2tWLZsGdLS0vr9OpqmoaSkBGfOnIHNZsPy5cthsVhw4MAB1NbW4p577sHUqblVy7cAACAA
SURBVFOhaRoOHTqEmpoaTJ8+HdOmTcPFixcRHx+PxMRE1NXVobOzE5MnTx7oKhGREWeKAJ+3
7/nuzQeysu98e2jABhQAO3bsQHNzc69pe/fuRX5+PqZMmdKv16qtrcWZM2ewevVq+P1+iKKI
kpISdHV1YdWqVfjggw+Qnp4Oj8eD1tZWrFmzBuvXr8eYMWNQV1cHTdPgcrnw+eef46tf/epA
VoeIyJQGFAAxMTEI3+AU0G639/u1iouLcf/996OpqQmJiYmQJAnl5eVYsGABnE4n7r33XlRV
VeHSpUt48MEHYbfbMXv2bFy4cAFA9xnE1q1b8fDDD+u3n2qadt1yZFmGGol0/19RDLdPjkQQ
ufx/1WCdBg2RSOTKz2rf30TVPV/vOknTDF2kUVUViqJAEAREIhFcv/Y3q1P05UVkY20EAEW5
UqfKsuE6WVb0fSAoiuHOF4lEAFG73GaD2/KafWC4TrtSJ/dj3a7eJkp/+pcsQxD6X3e76wYA
6g3+Tm5cp/aqs0CDkY95Kpf7Zc+2UQy2UxQEfpB0iAwoAObNmweg+06gY8eOoaOjA7Nnz0Zq
amq/X6u1tRUHDx5ERkYGPv74Yzz99NNQFAW2y1+S4Xa70dDQgEAggJiYGADdTyJtb2+HIAjY
smULnE4nVq9erb+mLMv6H0XPAefqHisY6r49Mw9hRxRu+eOdXfRA17M/m7LX//uzvGgdDIZg
uULvrTKglxjoogdYNxCqquFrr24yNO//XT0HC2fm3OEWEXAb1wDC4TB+9rOfISMjA0lJSfjJ
T36Cn/3sZ/0eg4+Pj8esWbOQlpaG3NxcnD17FlarFcFgEDExMWhvb0dsbCxiYmLQ2dkJp9OJ
zs5OxMTEwO/3Y+XKlbhw4QK+/PJLPPDAAwC6H1PRQ1GsiACwSBZIl6dLkvGbnywWi/56omTs
gpYAoVcbBNHY8gShd53R8BFFEZIk6fVG/7BFUdKXpwrGzwAk6UqdIllg4HJgd51F0vcB+rEP
rFYLcPl7ekWj2/KafWC47qp9YLEYv4B59TaBwX4CABZJgjiAfjkY/cto6AuC2LtfGuxh0uV+
KUkSLFbjhxpJunZ5dKcM+DbQYDAIm82Gv//7v8e3v/1t/N3f/R0OHDjQ79eZNm0a9uzZg7a2
NhQXFyMjIwNTp05FQUEBGhsbUVRUhLy8PH1ac3Mzjh8/jgkTJuivsXDhQpw/fx41NTUDXR0i
ItMZ8BmA0+mEqqr45JNPIEkSLl68iJaWFnz22WdYsGCB4UdEZ2dnIxAI4MCBA0hPT8fEiRMh
CAL8fj+OHj2KhQsXIjY2FrGxsfB6vTh8+DAee+wxuN1u5OXlISYmBlarFatXr0ZlZSWysrIG
ukpENMwEIgrONPgNzTs5xYVYO2877Y8BB4AgCHjkkUfg8/kAAElJSUhKSoLX673hRdhbvc7k
yZOvGzqaMWMGZsyY0Wvavffei3vvvVf/ecyYMfr/3W43pk+fPpBVIaJhKiRrKGk0FgDZo+wM
gH66rc8BzJ07Fw0NDfq09PR0JCcnD0rDiIjozhpwAPj9fvzDP/wDpkyZol9gW7BgAQOAiKJO
rj2O0L7fGprXtea/ITji73CLhqfbGgJKT0/HT3/6U96zS0TDS7ATakOhoVk1VY7ajcbRNuAA
cDgcsFqtePnll/WvgXziiSf0zwgQEY04/bh+OaSfEbpDBhwAXq8XDQ0N+OlPf6oPASUkJAxa
w4iIhlzNQeDCtr7nk+zAI/9859tzhw04AFwuF1JSUhAXFwfp8gdfBvIoCCIiio7b+k5gi8WC
f/3Xf9WvAaxatQoLFy4ctMYREdGdM6AACIfDkCQJr7zyCjRNgyiKvZ6/Q0RkJkeqDuF8c2mf
8yW4krBkyoohaJExAwqATz75BGPGjMGsWbOwbt06/NM//ROOHTuG2tpaPP3004PdRiKiYa2o
/hR2lfV97SAvcdywCoABPQvI7/cjFApB0zR4PB4A3U8G9fuNfWKPiIiib8APg2tubkZNTQ0C
gQCqq6v1ICAiopFhQENA2dnZ2LJlCw4fPozY2Fj853/+JwBgxYrhc2pDRES3NqAAePTRR/Ho
o48OdluIiGgIDXgIiIiIRjYGABGRSQ34g2BERHR7Nleux6Wuqj7nmxA/FYszvzLoy2cAEBFF
SVAJIqD0fft8WA3dkeUzAIiIRhi/txaaKvc5n9UeD5tj1E1/zwAgIhphvtz8Nwh2NfQ53/hZ
/wcT5vzfm/6eF4GJiEyKZwBERCagaSoirYd7TWMAEBGZgaYgWP1Gr0kcAiIiMikGABGRSTEA
iIhMigFARGRSDAAiIpNiABARmRQDgIjIpBgAREQmxQAgIjIpBgARkUkxAIiITIoBQERkUgwA
IiKTYgAQEZkUA4CIyKQYAEREJsUAICIyKQYAEZFJMQCIiEyKAUBEZFIMACIik2IAEBGZFAOA
iMikGABERCY1LAJA0zSUl5fjyy+/hKZp0DQNR48exQcffIALFy7o044fP473338f58+fh6Zp
qK6uRnt7OwDA4/GgvLw8ymtCRDRyDIsA8Pv92L9/P8rKygAApaWlqK+vx9KlS1FQUIDOzk5c
uHABlZWVWLlyJfbu3YvOzk5UV1ejpaUF4XAYmzdvRkpKSpTXhIho5LBEuwGqqmLr1q1YsmQJ
du3aBQA4e/YsHn30UbjdbuTn5+PixYuoqanBI488AqfTifvuuw/nz5/XX2Pbtm144IEHEB8f
f9PlKIoCTZYv/1813D5FliELgt5WIzRokC8vCwA0VTNWp/WukzQNgoE6VVX1tsmyDGNL667r
WZ4s92ObKFfqVEXpR92VfSCoKiSDdbIs629VBroPDNddtQ+Ufq3bVdvE4LJ6lqH2LK8fdYPR
vzTNaJ3au1+if/1SUZRe9X1RruqX/dsHysDq5Cv7wGi/1NB9bOhhvH9hQPvg6r/V7uX3v05T
r98HUQ+A0tJSjBo1Cqmpqfo0RVFgt9sBAHFxcWhoaEAgEIDb7QYAuN1u1NXVQRAEbNmyBQ6H
AytWrNDrI5GIvkPUcBhA94bumWZ04wGAenWdwZ0FXNshDNZpvetEg39o2lVt68/BRxvgumGA
dVcvT+xnndazXv1oZn+2xY3qjB5Yu2ceYD/RNAj6ug2sf/WrP19dN8BtaTS4NWj68O1Q9C9g
YH/jmqbq/Usa8N+44aXddr/s19KuPqbcYN2iGgCyLGPfvn1ISUnBp59+iqqqKpw8eRIWiwWh
UAgxMTHo7OyE2+2Gy+WC1+uF0+mEz+eDy+VCIBDAsmXLUFpaipMnT2LWrFkAAKvVqi9DUWyI
ALBYLJBsNgCARTLahbtfy3b59SSDdQIE2C4vCwAE0dhImyD2roNgrE4SRUiSBEHorjcSGkD3
+vQsT+vHGYBkuVKnWCwIG6y7eh+gn/sAYndXFSWD2/KafSAa3QfClbqI1fifx9XbJNKfdbNY
IF6uM9q/ANz2unXXGespgiD27pcGe5gkSpAkCRaLpdffZJ91V/VLi2L8zEGSLHqdLFkQMVhn
sVr1fWC0XwoYnH0gCMa2pSj23geC0X0gXanTVAHBa1/X0KvcIZIk4fnnn8cTTzyBBQsWYMyY
MZg2bRomTZqEgwcPoq2tDWfOnEFubq4+raOjAydOnMD48eO7V0AUsXjxYhQVFaG+vj6aq0NE
NKJE9QxAEAQ4nU4A3ad6+fn5sNlsmDRpEjo6OrB3717cf//9iI+PR1xcHNra2rB79248+OCD
iIuLQ1ZWFmJjY2G327Fq1SpUVlYiPT09mqtERDRiRP0aQA9BEJCfn6///4EHHrju93Pnzu01
LScnR///qFGj9HoiIurbsLgNlIiIhh4DgIjIpBgAREQmxQAgIjIpBgARkUkxAIiITIoBQERk
UgwAIiKTYgAQEZkUA4CIyKQYAEREJsUAICIyKQYAEZFJMQCIiEyKAUBEZFIMACIik2IAEBGZ
FAOAiMikGABERCbFACAiMikGABGRSTEAiIhMigFARGRSDAAiIpNiABARmRQDgIjIpBgAREQm
xQAgIjIpBgARkUkxAIiITIoBQERkUgwAIiKTYgAQEZkUA4CIyKQYAEREJsUAICIyKQYAEZFJ
MQCIiEyKAUBEZFIMACIik2IAEBGZFAOAiMikGABERCbFACAiMikGABGRSTEAiIhMalgEQCgU
wqVLlxAIBPRpgUAAly5dgizL+rRgMIiamhp9WjgchqIoAABFUXrVExHRrUU9AIqLi7F+/XqU
lJTgjTfeQEtLC1pbW/HOO+/g7NmzePfddxGJRNDR0YE333wT5eXlePPNNxGJRHD06FFUVVVB
0zRs3boVFRUV0V4dIqIRwxLtBmRlZWHy5MmQJAlxcXGora1FQ0MDHn/8ceTm5mLPnj2orKxE
TU0NFi1ahAkTJmDv3r2oqKiApmnQNA3nzp2DLMuYOnVqtFeHiGjEiHoAxMXF6Qfx4uJirF27
FuXl5UhOToYgCMjMzERzczNaW1sxd+5cAMCYMWPQ1NQEADhx4gTa29vx3HPPQRAEAIAsy1BV
FQCgXh4uCoWCAPwAgHA4Yrh9wUAAWqR7fjlirE7TNPj9fv1nRVYM1amK2qvOoaqGTtFkWUY4
HIYgCPD7/dCgGVpeJBLRlxdWjNUA3UNvfn/39kUoZLguFAwBl5dnCUdgM1gXCASgCRIAQI7I
fczd7dp9IBvdB+qVfRAMGl+3cCis12nhsOG6YDAIyJf3gcH+BQ3X9C+D20S9pl8qqqE6RVF6
90tNM9QvI3IEkUgEkiRB7MfwbDh8pV+Gwsba2F0Xgt/fvS36tQ8CV44N1kgEVgM1GoBAr/5l
bB9c3b96fjZClnvvA00z+jcuX6nTrm9j1ANAVVXs2rULXq8Xa9euhcPhAHBlBRVFgSiKEEVR
n6aqKkRRhKIoSE5ORkdHB/x+v17bMz8AqJKEMAC73QHJ5QIA2GxGdnE3h9MJp7V7fovVWJ0g
CHBdXhYA+C2SoTpREnvVQTQ2QmexWGCz2fTlChAM1VmtVn15kqwC8Bmqs9lscLm6t7Vit8Pf
x/w97A67vg/Qj33gdDoBsburWqzGuuy1+8BidB+IV/aBFrEbbqPNbtPrIhEbjB7uHA4HRNvl
fmmwf0FAr3WTLAa3idh7m/gkEUYiR5Kk3v1SMNi/LFZYrVbYbLbufWiQzXalX4YFGUCXwTo7
XK7utxWyrR/7wOmA2LN+Rv/GgWv6l7F9cHX/6vnZCIul9z4QjO4Dq+VKf1Yj8F7bHkOvcgcV
FxcjEAhg9erV+gE8KSkJNTU10DQNlZWVSEtLQ2pqqj7GX1FRgfT0dADdQ0jLli3D5s2bEbn8
DqonAERRNLyhiIjMJupnABUVFWhqasKGDRsAAA888ADmzJmD999/H0VFRZAkCZmZmUhJScF7
772HsrIyqKqKrKwsNDY2QpIkZGRkID8/HwUFBXj88cejvEZERCND1ANg1apVN5z+wgsvIBAI
dA9pCAKcTif+9m//Fl1dXYiJiYEgCLj//vv1+fPz84eqyUREd4WoB8DNiKKImJiYXtMEQYDb
7Y5Si4iI7i5RvwZARETRwQAgIjIpBgARkUkxAIiITIoBQERkUgwAIiKTYgAQEZkUA4CIyKQY
AEREJsUAICIyKQYAEZFJMQCIiEyKAUBEZFIMACIik2IAEBGZFAOAiMikGABERCbFACAiMikG
ABGRSTEAiIhMigFARGRSDAAiIpNiABARmRQDgIjIpBgAREQmxQAgIjIpBgARkUkxAIiITIoB
QERkUgwAIiKTYgAQEZkUA4CIyKQYAEREJsUAICIyKQYAEZFJMQCIiEyKAUBEZFIMACIik2IA
EBGZ1IgJAE3T0NDQgCNHjqC9vR0A0NHRgWAwCAAIBALweDzRbCIR0YgyYgKgqakJn332Gdxu
N95//30Eg0EUFRWhtrYWiqLgk08+QVdXV7SbSUQ0Ylii3QCjTp06hccffxzZ2dno7OzE+fPn
9d8dO3YMycnJyM3NjV4DiYhGmBFzBtDZ2YmkpCQAQHJyMtra2gAAO3bswOnTp/HII49Es3lE
RCPOiAkAq9WKcDgMAAiHw7DZbACAhx56CHa7HQ0NDdFsHhHRiDNiAiA7OxvFxcUAgDNnziAn
JwcA4HK5sGbNGnz66ae8BkBE1A8jJgDuvfdeNDQ04J133kFCQgJSUlIQHx8Pp9OJuLg4PPnk
kzh+/Hi0m0lENGKMmIvAFosFTz31FGRZhsVigSAIuOeee/Tf5+Tk6GcFRETUtxETAAAgCAKs
Vmu0m0FEdFcQNE3Trp3o8/ng9Xqj0Z5Bp8hBdLVXQbSnAEJ3eHSFw/D4jK1fTkIihMv/90fC
6AqH+qwRBRGJrpgrbWhpherv+/qEYLfDkpJyZYK3E5Dlvhtpt0OxOwAAkiShpqkT6vW79Tqj
3Q7ExdgBABqAjoCBZQGIsUmwSpe3ihyE2l5jqE4cnQNINr0OoQ5DdYhJ1f/bEexAZ7C9zxJJ
tCAjboz+szfSgZAS7LPOKtoQbxsNANDUCHztlYaa6IrLhGRxdv+gBqGGWwzViY509IzEdgaD
aDXSTwQBOaMT9J994RACkXCfdRZRwminS/9Z8XigBvveJqLTBSkp8cqEjg5AVfqsg8MJ2WqF
KIoQRRFVjcb2d1KcCzHO7r9VVQM6g8b6ZazdAqlnUDvcBbWzzlCdmDgWEKTuHyJ+IGzg2CCI
gCtZ/7HN3wqfgTqbZENqbLr+c0e4DRG1731nlxyItcbrP3e1X4Sq9r1d7M5E2JxX+ooarO31
+xsGQDgc1u+4GenC4TAURUFycjJkWYYgCJAkqV+vEYlE9GGn/i67526lO12naRpqa2uRmZnZ
rzpVVaEoSr/PrBRFgaZpsFj6dxIpy7J+QOiPodwHqqpCVdV+r5uidB8UB9K/JEnq9zYJh8Ow
Wq3Dul/KsgyPx4P09PS+Z74K98Hg1WmaBlmWb/g3fsOta7PZBtS44airqwsdHd3vPDRN6/eO
6qkbSO0NsvWO1gUNvJsbzOUNdFkDWd5Q7oPbaeNA3M11mqYhFOr7rPlGddwHg1N3q205Yu4C
IiKiwTWiLgLfroFeQB7o2ZDdbh/SuoEQRXFA69ffU+weI2EfSJI0oPXr73BFj5HSv4ayX3If
DF7drf7GeQZARGRSpjoDuJH29nbs2LEDoVAI48ePxwMPPHDL+b1eLwoKCpCVlYUZM2YAAMrK
ynDkyBFYLBYsWbIEo0aNuq6upaUFO3fuxIMPPojs7GwAQGtrK3bt2oU5c+YgLy/vuhpN01Bf
X48dO3ZgzZo1iIuLQzAYxN69e9HS0n2XydKlS5GQkHBd7dXt3bt3L3Jzc3t9buJWIpEIvvji
C9TX10NRFCxevNjQRbympibs2bMHiqLAYrFg+fLliImJ6bOux+HDh+HxeLBy5UpD83s8Hmzd
uhVOpxOiKGLFihWG3skFg0Hs2LEDnZ2dGD16NJYtW9ZnTXl5OU6fPg2ge/ukp6djwYIFfdb5
fD5s374doVAILpcLS5YsMfQurrm5GTt37kQkEsG9996r97WbaWtrw549e3Dvvfdi/Pjx0DQN
RUVFOH36NBwOB5YvXw6Xy9WrRtM0NDU1Yfv27Vi6dKn+rK2mpibs3r0bCxYsQFpa2nXL0jQN
VVVV+OKLL/D000/D5XKhq6sLu3fvRkdHBywWC1asWAG3233L9u7evRv5+fkYN25cn9sDAEKh
EPbu3Yvm5maoqorly5ffsu/3qKmpwYEDB6CqKpxOJ5YuXQqHw2FomQD0Pv34448bmr+qqgr7
9++H3W6HxWLB6tWrDdV1dXVh27ZtCAQCSE9Px6JFi/qs6ejowI4dO/SfI5EIvvrVr/Z59qSq
Knbv3s0AKCgowLx585CSkoK//OUvGDduHJKTk284r6Io2Lt3L2JiYvQLy4qiYN++ffjmN7+J
pqYm7N2797odHolEsHv3bjidTvj9fgBXOnPPH8+NdHZ24tChQ7BYLJAv3w7a1taGcePG4bHH
HkNNTQ2+/PJLLF269Kbt3bNnD9xut95eI3w+H1JTUzF//nw0Nzfj0KFDeOqpp/qsc7lcWLp0
KWJiYlBYWIiTJ09i/vz5hpbZ2NiIioqKfl3krampwbRp0zBt2jQAxoeX9u3bh3HjxmHy5MmG
L1COHTtWD+59+/YZOvAAwPHjxzF+/HhMmzYNhw8fRnFxMWbNmnXLGk3T9INyTEwM1q9fj7y8
PMTFxd1wflmWsWfPHjidTvh8PgDd/evIkSN44YUXUF5ejv379+OJJ57oVRcMBlFQUACHw6Hf
9ef1enHw4EHYbLab3lTQ2NiIoqIiCIKg90uPx4MZM2YgPT0dZ8+exalTp26672/UXiPa29uR
m5uLRYsWoaamBocPHzYU3nFxcVixYgWcTicOHjyIc+fOIT8/39Ayq6ur0dTU1K+7g6qqqnDf
fff1+4Op27dvx+zZs5GVlWX4Lsy4uDj9DVN9fT2OHz9uqK11dXXw+XwcAgoGg4iNjYXVasXk
yZNx6dKlm87b8y7z6ncsbW1tSEtLg8vlQnZ2Njo6Oq674m6xWPDMM88gLS1NP8DZbDasWbMG
6enpNz3oxcXF4amnnup1RpGeno4JEyZAEASUlpbe8B3a1e1duXLlDc8ubmX06NGYNm0aLBYL
Lly4oL8z7Ivb7YYkSWhoaMC5c+cML7cnqB577LF+BYDH40EgEEBTUxMAGK6tq6uDzWbD6dOn
DQeAJEmw2+0QBAE1NTWYMmWKoboxY8agsrISNTU1qKuru+X+ulokEkFMTAxsNhvy8vL0dbxZ
29asWdPrFmCPx4O8vDy9Xzc0NFzXLx0OB5599tleYeZ2u7Fq1aqbvgkCgNTUVKxYsQKxsbH6
tNzcXGRnZ0PTNJw/fx4pV3+e5SbtHTNmzE3nudlyJ02aBFEUUVZWhtTU1L6LAMTHd98/X1tb
i+rqasO3SsuyjL179/a7X7a0tKCzsxMej6dfda2trQiFQigsLEQkEjFUIwgC7HY7bDYbDhw4
gEWLFhla5qhRo+D3+xkAM2fOxIcffojNmzfjwIEDt9zwgiBct3HD4bB+Sn+z5L1R3Y2mGakD
uk/7NmzYgFGjRt1yaMDIMm7G7/fjww8/RDgcxkMPPWS4rrS0FNu2bUMoFLrhUNiNHD16FGPH
jtX/UFVVNVQ3bdo0WK1WlJaW4q233jJ0G6ymaWhpaYHH44EoitiwYYN+VmbEsWPHkJ+fb/hs
w+12o62tDefOnYPf779uGOZm8vPzsX79emzevBnHjh3rd78MhUL6MIcoije8DXCw+2VLSwve
e+89jB07FhMmTOh3vRE+nw/vvfceYmNjMXPmTMN1hYWF2LZtG0RRvOXQVA9N01BQUIDZs2fD
4XD067bU/Px8qKqK4uJivP3224b6c89wXHt7OxRFwcaNG/t1+2xTUxOsVqvhv7mez9SYfgho
4sSJyMnJQTgcxtGjRw2/2+0RGxuLtrY2aJqGcDgMURQH3LmNCAaD2LhxI5588sk79uwjVVWx
YcMGzJs3D5MmTerX+syaNQuzZs1CVVUVdu/ebWg8v7S0FA6HAxUVFTh//jy+/PJLPPjgg33W
jRkzRn83t23bNjQ1NenDNDcjCAJSUlIwe/Zs2Gw2NDc3o7m5uc86oPtMpbi4GN/+9rf7nLdH
zxBdSkqKPmyxZMmSPts4Y8YMTJw4EYqiQBAEw0NOPeLj41FcXAxN0xAMBgf0YaX+6OrqwoYN
G/DMM88YfmfeX5FIBO+88w6WLVuGrKysfq3PvHnzMG/ePBQXF+PQoUNYuHDhLedXVRUXLlxA
a2srCgsLUVFRgZMnT/Y5fAd0nw3l5eVB0zR89NFHaG9v73P/CYKA9PR0zJ49G5Ikob6+Hp2d
nbc8E+vRE1YLFiwwvE1KS0sxduxYBkB9fT18Ph9CoRBqampu+cUykUgEVVVVqKurQ2NjI8rL
yzF+/HiEw2EUFhaivr4e48ePv64uEAigpqYGDQ0N6OzshN1uR3p6uv5aVqsVMTExyMnJ6bUD
vV4v6uvr0dLSgoqKCgSDQXg8HrhcLvh8PhQXFyMhIeGmF2h72ltbWwuPx6O3t69OUl1dDVmW
oSgKSkpKEBcXh6ysrD635YkTJ6AoClJTU/W2GfHCCy8A6H7XumnTJkMH/55x8uTkZLjdblRU
VODhhx82tLwJEyZgx44dmDp1KiorKzFv3jxDdSdOnMD06dP7dStrSkoKDh8+jBkzZuDIkSOY
NGmSobrq6mooioL29nb4fL5bHghCoRCqq6v1r0eNi4tDbm4umpubUVpaipKSEkyfPv26uq6u
Lr1vOJ1OKIqCxMREXLp0CY2NjVBVFaIoXheObW1t8Hg8aGlpwYULF5CRkYHy8nKkpaXpgZqS
knLTNve0t66uDpqmITY2FmPHju1zm5SVlcHlcsHr9aKkpASjR49GRkZGn3WHDx+G3W5HQkIC
ysrKDA1NSpKE733vewC6z4Y/++wzQwd/TdOwZcsWZGdnw2q1oqmpST+z7UtmZiYKCgqQk5OD
5uZmw3UtLS1QFOWWw27XSklJweeffw7plVdeecVw1QgUiUQQCoV6jVdeq6KiAoqiYNGiRbe8
Q0NVVTQ0NMBmsyExMVE/2E2aNAk1NTVITk7GzJkzrzvARiIRNDY2Ij4+Xh8CiI+PR0NDA+Li
4vRT0sTExF61fr8fzc3NSE1NhSiKsFgsSE5OhsPh0D8q3/M4bKD7D/Pqg66iKHp7ExIS9Pb2
FQCiKMLlcunLsNlsGD169C1rACAhIQHt7e1oaGhAdnY28vPz+/UuTRRFJCQk3PRi59UEQUBm
ZiZaWlrQ0dGBRYsW3XIfX23MmDHQNA11dXV45JFHDC0P6N6ekydP7tcFwczMTFgsFtTW1mLK
lCmGA0DTNJSXl0OSJCxcuPCW97f39K+YmBjExcVB0zSkpKRg0qRJqKioD5TpTwAAALtJREFU
QG5uLqZOnXrdvggGg2hqakJSUhKsViskSYLL5UJTUxMSEhLgcDggiiISExN71fl8PrS2turX
r+x2O1JSUmC1WvU+ExMTA7fbDVVV4fV6ew1N9LTX7XYjNjYWmqYZeqdrsVh69X2Hw2HoIJmY
mIjm5mY0NTVh4sSJmDx5cr/6Zc8ZmJH+1dMvPR4P/H4/Fi9ebPiOo7y8PPj9fng8HixYsMDw
HXTBYBATJ07s151NsbGxyMjIwP8PQkH5xuXXexwAAAAASUVORK5CYII=
</thumbnail>
<thumbnail height='384' name='Sheet 3' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdeXBb5303+u/BwUoSIAiA+76LFBftq0VZlmTZsqLYcZsmb3LT9GbSNE0m
09zJtOlt5l5P2+k7nd62t+mbvEneZprcuM1S27FsS9a+kpLMRRR3UtwpLiC4gQSI/Zxz/2Bw
RNoinkNKlEjh95nRDAE9B3hwcPD8nv1wkiRJIIQQEnVUTzsDhBBCng4KAIQQEqUoABBCSJSi
AEAIIVGKAgAhhEQpCgCEEBKlKAAQQkiUogBACCFRigIAIeuc3+/HtWvXmOl6enrw1ltvKXrN
UCiE6elp0DrQ6EYBgJB1zu1244c//KH8WJIkBAKBJYW3KIpwOp3o7Oxc9nUkSYIoigAAh8OB
v/mbv1m7TJMNQf20M0AIUe5f/uVf0NfXh6mpKeTm5uKv//qv8etf/xoffPABVCoVioqKMDEx
gX/+53/G3/3d3+HUqVNQq9VITk7Gv/7rv0Kv1+PkyZO4ceMGmpqa8M1vfhPf+c538E//9E+o
qqrCtWvXkJaWhkOHDmHv3r343ve+h69+9avIzs5+2h+drAEKAIRsIE6nE6+++ioqKirwx3/8
x5ibm8Pbb7+Nn/zkJ+jo6MDly5chCAImJycBLLQetFotamtrUVFRgc9//vMwGo3YvHkz5ubm
8I//+I/QarUYGxtDZ2cn3njjDXR0dOC9995Dfn4+7HY70tLSnvKnJmuFuoAI2UA4joPZbIbB
YIBGo4HT6URiYiISEhKg1WqXPe5zn/scDAYDvve97+HDDz+ERqMBx3HQ6XRQqVTgeR7f/va3
YbPZsGfPHgwMDODUqVM4cOAANBrNE/yE5EmiAEDIBmaz2WC323H27FlcvXoVAKDVajE6Oorz
58+jpqYGAHDr1i2Ul5fj8OHDaGlpgdFoxMDAAC5duoTZ2VlwHAe1eqFDQKPR4MUXX8Sbb76J
o0ePPq2PRp4A/o033njjaWeCELI8lUoFk8mEoqIi6PV6ZGVlIS4uDnFxcSgtLUVZWRkaGxtR
UlKCsrIy5OXlIS4uDiMjIzhw4ACKioqQkpKC2tpaBAIBfOlLX4LVakVGRgY6OztRUlICm82G
wsJCqFQP6oTj4+N4/fXXwXHcU/z0ZC1xdD8AQshi9fX1+MEPfoBvfvOb2L59+9PODllDFAAI
IUt4vV4EAgGYTCaq/T/jntkAEP5YdAETQsjDPdODwOFFL4QQQj7pmQ4AhBBClkcBgBBCohQF
AEIIiVIUAAghJEpRACCEkChFAYAQQqIUBQBCCIlSFAAIISRKUQAghJAoRQGAEEKiFN0RjBBC
NgivPwiXN8BMp9eoYYrVMdOtmwAgSRLGx8eRkJAAnU4HSZIwMzODkZERWK1WpKamwuv1Ympq
ChkZGeA4DpIkwW63Iy4uDkaj8Wl/BEIIWVPXmgbxP9+tZ6Y7UJGF73xuHzPduugC8vv9ePfd
d/GLX/wCU1NTACDfrSgUCuHSpUsYGhpCX18ffvazn2F2dlY+7j/+4z9w586dp5l9QgjZkNZF
C0ClUuH555+H2WyWt2/OyMhATk4OAMDn82Fubg4cx6G8vBxtbW3Yv38/+vr6UFhYuOzrSpJE
O4ISQp4ZK9m9X0nZty4CgEajQUJCwieeEwQBt27dgt1ux6c//Wl0dXUhMzMTvb29kCQJXV1d
2Lx5M8bGxgAAgiAgFArJryGKIt0PgBDyzBBCgqJ0oigiEGCPFayLAPAwgiDgt7/9LVJSUvCZ
z3xGvlepRqNBfHw8RkZGwHEcDAaDfAzP8+B5HsCD2n/4MSGEbHRqjbIiW6VSQa/Xs9M9aoYe
B1EU4fP5EAqFEAgEEAwG0dXVBb1ej+3bt8Pv9y+p2ZeXl+P999+P2P1DCCEksnXRAnA6nbh5
8yb8fj/u3r2LyclJxMXFIRAI4Pz58wCAyspKWCwWSJKEpKQk5OXlobCwEPPz80hNTX3Kn4AQ
QjaedREALBYLTpw48Ynni4uLlz3m2LFjAACtVvuJ8QNCCCFs66ILiBBCyJNHAYAQQqIUBQBC
CIlSFAAIISRKUQAghJAoRQGAEEKiFAUAQgiJUhQACCEkSlEAIISQKEUBgBBCohQFAEIIiVIU
AAghJEpRACCEkChFAYAQQqIUBQBCCIlSFAAIISRKUQAghJAoRQGAEEKiFAUAQgiJUhQACCEk
SlEAIISQKEUBgBBCohQFAEIIiVIUAAghJEqpn3YGCCGErK3OocmHPk8BgBBCnnF/8aOLD32e
uoAIISRKUQAghJAoRQGAEEKiFAUAQgiJUhQACCEkSlEAIISQKEUBgBBCotS6CQCiKGJoaAg+
n09+bnx8HB999BGmp6cBAG63G729vZAkCQAgSRIGBwfhdDqfSp4JIWQjWxcBwO/345133sFb
b70lF/YzMzP48MMPYTabcerUKXg8HgwMDOBXv/oVZmZmAAA+nw//9V//haampqeZfUII2ZDW
xUpgnufx4osvoqGhARzHAQDa29uxb98+FBUVweVyoa+vDwBQXl6OtrY2HDhwAL29vSguLl72
dUVRlF+PEEI2OkmUFKcVRZGZZl0EALVaDZPJtOQ5j8eD+Ph4AIDVasXo6Cji4+ORnp6Onp4e
SJKEe/fuoby8HKOjowAAQRAQCoXk15AkSdFJIISQjUAQBEXpRFFEMBhkplsXAeBhtFot/H4/
AGB+fh4GgwEAoNFoYLFYMDQ0BJ7nodfr5WN4ngfP8wAeFP7hx4QQstGpNcqKbJVKBZ1Ox073
qBl6HARBgNvtht/vh8fjgc/nQ15eHhoaGuB2u9HS0oLs7Gw5fVlZGd577z0UFRU9xVwTQsjG
ti5aAHNzc6itrUUwGERXVxdcLhcqKipgt9tx7tw5lJWVwWKxIBgMQpIkJCUloaysDAUFBZif
n0dGRsbT/giEELLhrIsAkJCQgGPHjn3i+Z07d2Lnzp3y45SUFPnvQ4cOAQDMZjPMZvPaZ5IQ
Qp4x66ILiBBCyJNHAYAQQqIUBQBCCIlSFAAIISRKUQAghJAoRQGAEEKiFAUAQgiJUhQACCEk
SlEAIISQKEUBgBBCohQFAEIIiVIUAAghJEpRACCEkChFAYAQQqIUBQBCCIlSFAAIISRKUQAg
hJAoRQGAEEKiFAUAQgiJUhQACCEkSlEAIISQKEUBgBBCohQFAEIIiVIUAAghJEpRACCEkChF
AYAQQqIUBQBCCIlS6qedAUIIIcoc0DWjwvqPzHQG4zEA+5jpKAAQQsgGoeFCMKq8zHRqLqDo
9agLiBBCohQFAEIIiVIUAAghJEpRACCEkCi1bgOAz+fDBx98gN/85jc4d+4cgsEg7t+/j1//
+tcQBAEAIIoi3n//fXR2dj7l3BJCyMazbgNAU1MTUlJS8Prrr0Oj0aCvrw+zs7OYnJzE0NAQ
AGBmZgbDw8MYHx9/yrklhJCNZ91OA01LS0N9fT1MJhMmJydRWVmJsbExlJWVob29Hbm5uWhr
a0NFRQVCoRAAQJIkSJIk/x0MBuX/I4SQjU5QWJ6JogC/389Mt24DgEajgdfrxejoKEKhEHie
BwDEx8djfHwcfr8fdrsde/bsQX9/P4CFQj/cPQQAPM/LxxFCyIbH8xDYqcBxKmg0Gma6dRsA
GhsbcejQIaSmpqKnpwfNzc2wWCxQqVTIy8tDQ0MDLBYLOI6Tj1GpVFCpFnq1JEmCKIryY0II
2egWl3esdErKvnVbOubm5uLq1atoaGjAzZs3kZOTI//fpk2bcOXKFZSVlSk+IYQQQpZaty2A
4uJiJCYmYmpqCidPnoTZbIbf74ckSdDpdPj617+OhIQEhEIhJCQkPO3sEkLIhrNuAwDHcbBa
rbBarfJzOp1O/ttisQBYGCtQ0tdFCCFkqXXbBUQIIWRtUQAghJAoRQGAEEKi1KoDQENDA3p6
euTHb7/9Ni26IoSQDWRVAWB6ehp3795FR0cH7t+/j66uLly9enXJIixCCCHr26pmAdXU1KCm
pgYGgwENDQ3QaDT44he/CK1W+7jzRwghZI2sKgB86lOfQmVlJXQ6nTxNkxZkEULIxrLqdQBO
pxM/+tGP5OXGmZmZ+M53vkN77xBCyAax6gDQ0NCAz372s9i7dy8A5XtPEEIIebLMKjckSJ94
ftUBYMuWLaitrUVubi4AQKvVIiUlZfU5JIQQsib+h/X/fejzqw4AkiRhfHwcP//5zwEAKSkp
+MpXvkJdQIQQskGsOgBs3boVWVlZGBgYQHFxMVwuFxX+hBCygay6076lpQV///d/j5///Ofw
eDz4yU9+QusACCFkA1l1AKiursY3v/lNbNmyBRqNBn6/H8Fg8HHmjRBCyBpadRfQ/v378aMf
/Qg+nw8OhwMWi2XJds2EEELWt1UHgMrKSthsNrS3tyMuLg47duygxWCEELKBrDoAjIyM4D//
8z/lbp+Ojg58+ctfprUAhBCyQaw6AJw9exZZWVnYunUrgIW7dVELgBBCNo5VV9e3bNkCSZJg
sVhgsVgQHx//OPNFCCFkja26BTA+Po4zZ86gsbERAJCeno5vfOMbtBaAEEI2iFUHALfbjT/5
kz/Bvn37Hmd+CCGEPCGrDgCpqan46U9/iuvXrwMAkpOT8Yd/+Ic0CEwIIRvEqgNARUUFvvvd
78qPaRCYEEI2llVX1+/cuYM333wT09PTyM3NRVZWFgUAQgjZQFbdAnj++eeRn5+PS5cu4Ze/
/CXy8/Nx8uRJCgSEELJBPFKHfSgUgsvlgtvtRkxMDH784x/Ls4IIIYSsb6tuAVy6dAnnzp3D
q6++iq9//etQq9UYHh7G/fv3H2f+CCGErJFVB4BDhw5h8+bNaG5uRktLC7Zs2YLMzExkZmY+
zvwRQghZI6vuAurs7MTf/u3fYmpqChcvXsT3v/99iKL4OPNGCCFkDa26BXDt2jV84xvfQGlp
KSRJwl/+5V/C6/UiNjb2ceaPEELIGnmkm8L/4he/wIkTJ3D//n3o9Xro9frHmTdCCCFraNUB
YO/evYiJicHt27eRlJSEP//zP6d9gAghZANZcQBwuVxoamqCJEkAgM2bNwMAurq6sGXLFloD
QAghG8SKA4DP50N3d7ccAMKsVisqKysfWwCQJAl37tzBvXv3wPM8XnrpJczMzODatWv4whe+
AJ7nIYoifvvb36K4uBhlZWWP5X0JISRarDgAJCYm4o/+6I8AAGNjY+jv74fVakVhYeFj3QjO
4XBgcHAQn/3sZyGKIniex9DQEObn5zEwMID8/HxMT09jcnISNpvtsb0vIYREi1WPATQ0NODH
P/4xtm3bhoGBARQXF+PLX/7yY2sB9Pb2wmKx4ObNm0hMTERRUREAoKysDO3t7cjPz0draysq
KioQCAQALLQaFk9FDQQC1CVFCHlmiMGQonSCIMDn8zHTrToAtLS04Gtf+xq2b9+OUCiE733v
ewgGg9Bqtat9ySU8Hg9EUURpaSnq6+sRDAbBcRxMJhPsdjt8Ph8cDgf27NmD/v5+AJ8MABqN
hranJoQ8M0JqHoKCdDyvWlIWB5dJt+oAUFRUhDNnzmB4eBgAMDExgTNnzqCiogJ5eXmrfVmZ
zWaDKIrIyMiAWq1Gc3Mz0tLSwHEc8vPzUVtbC5vNtqSGr1Kp5AI/HAwoABBCnhmKezQ4RWXf
qkvHtLQ0VFRUyI9Pnjz5WLtbNm3ahJaWFty4cQOXLl1CaWmp/H/FxcW4ceMGysrKqIuHEEJW
adUtgOTkZCQmJsr973Fxcdi2bdtjq3Hr9Xp87nOfw9jYGMrLyxEfH4/k5GRIkgSNRoNvfetb
iIuLgyAINAhMCCGrsOoAcOrUKbS1taGgoAAAYLFYHlumwnQ6HXJycuTHGo1G/ttoNAIA1Go1
1OpVfwxCCIlaqy45zWYzDh06hBdeeOFx5ocQQsgTsuoAYLPZ8A//8A94//33AQAZGRn4sz/7
M9oOghBCNohVB4DW1lZ89atfxa5duwAsnYFDCCFk/Vt1ACguLkZ1dbW8A2hcXBwqKysfW8YI
IYSsrVUHAIvFApvNhu7ubgALewFVVFTQtExCCNkgVhUAurq6UFhYiOTkZKjVasTGxuLevXtU
+BNCyAayqk77H/zgBxAEARcuXEBjYyMkScIPf/hDCIKSRcqEEELWAxq1JYSQKLWqLqDJyUl8
//vfR09PD2JjY1FXV4f5+fnHnTdCCCFraFUB4Lvf/S6CwSCef/55+bmXX36Z1gAQQsgGsqoA
sHgTOEIIIU+GJPAQfOwt9/mgsqKdNtEhhJANIjBlxlzTJma6mNg0xCh4PRoEJoSQKEUBgBBC
ohQFAEIIiVIUAAghJEpRACCEkChFAYAQQqIUBQBCCIlSFAAIISRKUQAghJAoRQGAEEKiFAUA
QgiJUhQACCEkStFmcIQQ8oyTxIffrpcCACGEPOOcdeUPfZ66gAghJEpRACCEkChFAYAQQqIU
BQBCCIlSFAAIISRKUQAghJAote4DwOjoKBoaGgAAU1NTuH37NiRJAgBIkoTGxkaMjo4+zSwS
QsiGtK4DgN/vx/nz59He3g4AGBsbw/Xr1+FwOAAA8/PzuHr1Krq7u59mNgkhZENatwvBJEnC
9evXsWfPHjQ3N8vPV1ZWoqWlBcnJyejs7ERZWdmyryEIgtxaIISQjU4UBEXpJElEKBRiplu3
AWBkZAR+vx/5+flLAkBSUhK6urogiiL6+/uxY8cODA0NAVgo8D/+oSkAEEKijQRlZd+6DQA1
NTUQRRHvv/8+enp6UFdXB4PBAJ7nkZqaiq6uLsTExECtfvAReJ4Hz/MAFj68KIryY0II2ehU
CsszFaeCRqNhplu3AeD111+HJEkIhUIIBALYtm0bOjo6AABlZWX46U9/it/7vd97yrkkhJCN
a90GgHDNnud57Nq1CzzPIz09HZIkwWw24+WXX0Z2djZ8Pt+SVgAhhBBl1n3JqVKpkJeXBwBI
SEiQny8vX9jdLjY2FrGxsU8lb4QQspGt62mghBBC1g4FAEIIiVIUAAghJEpRACCEkChFAYAQ
QqIUBQBCCIlSFAAIISRKUQAghJAoRQGAEEKiFAUAQgiJUhQACCEkSlEAIISQKEUBgBBCohQF
AEIIiVIUAAghJEpRACCEkChFAYAQQqLUur8jGCGEkAWTlgTcLS9lpsvISodNwetRAIgikiRh
fGZeUdqkhFioOG6Nc0QIWYlxmwW3t1cy01WmpmGngtejABBFJAn42v/zgaK0v37j96DX0uVB
yLOMxgAIISRKUQAghJAoRQGAEEKiFAUAQgiJUhQACCEkStE0D0IIeca1bCp86PMUAAgh5Bl3
fc+Ohz5PXUCEEBKlKAAQQkiUogBACCFRigIAIYREKQoAhBASpdb1LCBJkiCKIjiOg0qlgiRJ
kCQJKtWDuBX+f452riQrIIoSgoLATKfiOGjU/BPIESFP3roNAE6nE2fPnoUgCAiFQnj99dcx
Pj6Oc+fO4atf/So0Gg0EQcCbb76JiooKbN269WlnmWwgt9uH8ff/WcNMV1mQjL/+3w89gRwR
8uSt2wAQCATw0ksvwWw2o7m5GV1dXdDpdNDpdOjt7cWmTZswMTGBUCiEubm5p51dQogCoihB
lCRmOhXHQaWiVv1aW7cBICkpCZIkYXZ2FvX19fj0pz+NsbExlJSUoLOzE5s2bUJraysqKysx
P79wkxNRFCGKovwagUCAuoYWkSQJe3WtitIGfC9DErRrnKOnJxAIKEonCiK8Xu8a5yZ6vH29
C/91rZOZ7vjuPHzpxfInkKONJRgMKkonCIKi63bdBgBJknDv3j3cuHEDn/70p2G1WjE2NobY
2FiEQiF4PB5MT0+juLgYfX19D30NnU4Hnqf+2zBJFPAN07uK0sYZ/k9wGsMa5+jp0WqVBTcV
r4LB8OyehydNrVZW5PBqNZ33h9BoNIrS8Tyv6Pyt2wAwOTmJmpoafOlLX1ryY+U4DsXFxaiu
rkZKSsqSY1QqlTxAHB5AJoQQ8nDrdhpoe3s7vF4v3n33XfzmN79ZUssvKChAbW0tysvLqYuH
EEJWad22AKqqqnDgwAH58ccL+r/6q78CAJjNZqSnpz/RvBFCyLNg3QYAmttPCCFra912ARFC
CFlbFAAIISRKUQAghJAotW7HAAgh5FF8cPMeekdnmOle3JmHkuzEJ5Cj9YcCAIlK8ap5lGt6
meny1LSWZKNq7hvHR+0jzHTleUkUAAiJJkWa+/gL8y+Z6fjYvQD+29pniJCngAIAIeSJSeKd
2KzpZ6ZL5W1PIDeEAgAh5InZr2/BTvN/MNNp9CoAR9Y+Q1GOAgDZ8PrHZuD2snf3zEqOR3ys
/gnkiJCNgQJAVOHgGUhTlDJO3DgzhH/24V3c7RlnpvuL/7Yf+8oyn0COCNkYKABEGf+4sr5V
SQJoIw5Cnm0UAAgh65rXH8SbF1qY6dQqFf7o+JYnkKNnBwUAQsi65g8K+ODmPWY6rZpfEgBS
+SkUqIeZx5lUG+fOYx5/L0Yn2dOXs+P2AdjOTEcBgJA11tA1iqZe9hhFeV4Sdm6irc0fl8/F
XkYo4TIznV5bCGDz2mfoMZCkEATRw0wnin5Fr0cBgJA11jE4iVPVXcx0Ko6jAEDWRCA4Aekh
z1MAIFFJ8OjhGUphptPqLYh5AvkhZC2Nz7z30OcpAJB1Y8I5j7/6X+wme1yMFv/0jWPy42R+
BtnqMeZxMZxP/lv06eAfS2Iew9nimWkI2agoAJB1QxAljM/MM9N5/MElj78c9yGEhFvM4/Ta
MgCFq80eeQxCc3Hw3me3vJBrxEZasvfO9Q7MK1iMeGJfERKMhieQI2We+QAQDAn41r98qCjt
v/7Zcaj5jbMAipCNJuSKhW+U3fLSzBrlv1UQkcmzB9E16qdXnJ253Y0JJ3tw9kBlNgWAJ0mS
gNEp99POBiFkleI4L/675X+xE6p1AL6x5vl5ljzzAYAQEp3EgBaCR8dMJwn8E8jN+kQBYBm3
24cxMOZkpttWlIqiTOsTyNHjUVtZpihdmkol3y+0tmMEfQrurLSlMAWbsmgb348r1Q7itZjr
zHRlWh0AWsn6uHgG0uBtKWamUx8wQfsE8rMeUQBYxu22YVxpHGCmizNoN0wAkDgOdVuVrXo8
qXowFlLbMYIL9X3MY/Q69SMFAItqDv894cfMdLwhHsBnVv0+T9pmTT8KY9kBQKvNfwK5IeQB
CgBk3VBzAjLVE8x0HB9kplkrp6q74A+GmOmO7ylEnCFa65XR50VDPVyBaWY6k+oAAPPaZ0ih
Zz4AqDkBf5ugYAAJAI/XAdAsoI3GM5AOfxt7eqf6QBw0v/t7ODUZpz71EvOY7NRUfHbR47eu
tmPOw15mX1WZTQHgMRJ87HPJqZ/e+T5uuA0pNMpMF6P61hPIjXLPfADgICFHzZ5CRjYu0aeD
4GFPrVs82OfXajFpTWAek2CMe6S8PctO3+qGL8Bujb24Mx/GmIXB2LEkGzrKSpjHFKQlI/zt
SCE15po2MY/htBpspGV7lxr64HT7mOmqKrORaI5dkzys6wAgCAK8Xi9iYmKgUqkgiiIEQYBG
o5HTBINBqFQq8PzjHcn/TOx1HDJfYKZL1+sBFD3W915vPh1TjQNm9lqKNN3XALB/qMuRJA6C
X8NMp1I9vZqelZ+FVsX+0fIQn0Bunq63rrZh2sU+F7tLM+QAMJyajNs72APd6ow0bJw9Olfn
g5v30Kdgoklxli36AkAgEMA777wDrVYLjuNw8uRJ9Pb24vTp0/jTP/1T6HQ6hEIh/Pu//zu2
bt2KnTt3Ptb3T+SdSNCwtxfQceyVqyyX7/Rjdl5Bt0JFFqzxT35nmkR+FmYl50L1aOdC8msx
d5ddO1QZjTA90jut3t8m/BSSnj0jKlb1CvDUckkAoD8rHWNe9hqgbeZ4RGs7b90GgM7OTuTk
5GD37t24ePEihoaGEAgEYLFY0N3djbKyMtjtduh0Ong87BV469mp6k4M2GeZ6YozrU8lAKx3
Xr0O8zHsLiDzY24lKuV3WOFqZc/wicu0gT1rff0wq9yAiv3be1qtoc6CPLSZ2L+XDKsF4RuF
dg1N4t9ONzKPyUmJxzde2yU/dndnQ5hkX4N6nxbhq/Brpvfg9faw30tdCoC9eno11m0AmJiY
QGlpKTiOQ25uLsbHxxEXF4eioiI5ALS1taGiogJzc3PLv5AE+MaUTU1cXAsIOY2KjlMr6Htm
2a9rxSYDewApQbULQCKAhRuht/Q5mMdkJJqwrSj1d48kuDytivIk4cFma8HZOEXngp83PJX5
1Beq9qJ7M3sQ+IsZqU+lW0EMaCDMs5vwooLur/XkbxJ+CknLnrUVwx/Fo8x8CfE87pay5/Pz
ajUe9Y7P874g7t2fYqZTcUtvmCrMGxR9x9Kie21n8g6IGvbvXs8p29t/NdZtAFhOTMxCRJ+b
m8Pc3BxKS0sZAYCDd0jZjdAhPfhSA1NmRcfpXQ++9JAgKpohwqs4xMc+2OrqlZhbEOPYdzwy
8P+b/HfH4CR+qqCmcnBL9qIAADjdHzGPAQBJelBrC0wrOxe6uQfnYnhiDv/jnVrmMYe25uLY
roXasajiMG9gbwHG6x99mzAJIQjCym+s4e7KgeCyMI8zBDXyfLKgRq3oc+k1GysAPCkBjQY1
u7Yx06lVKrzyiO+Vrx7B/2X+GTNdbFwpgCOP9F5SSA0xoKAIFtfu7tzrNgAkJiZiaGgIKSkp
GBgYQH5+Pubn58FxHDZt2oSrV68iPX193TyjZ2Qaf/Gji8x0WUkm/OufHX+k98pUO3BUX8dM
V6wVAex9pPdaDV8ghI7BSWa6stwHTVtXbAx+9gevMY+J0Wjxfz9S7gCffxijU+xb61m0lQCe
lx+H3DEQ3QLzOGnRj/ZOWSkux7AL94O5+QhfFV5/EJca+pnHqNUqvLSrgJluLfgnLBDn2N07
htCDrrdAcBIuTxv7tYMxAJStWn+cYlU+FGnYt5FUqZe2iDsLcuG1sWeVmXU6uaTYZqgAACAA
SURBVJXs6sxDcIA97Vz3qdg1K6jXbQDYtGkTfvOb3+D+/fuQJAlZWVno7u6GKIrIy8vD2bNn
cfDgQczPzy+ZFfRxgkqF3750WNF7fpPj5P65hopSdMSwOzQOZmfIi/d5iDAqGBSO/dgslvm+
DISG2YuLtB69/IUV88PI0rODjUb96LXlxrIStGnZF+qB3CyE62mp/BT+Kv7/Yx6Tpv8cgIpH
yp8oBSCIXma6xa2a1TpzuApeH3vmy5djDI80JdHjC+BXp28w0xn02iUB4Odnm9A1xA68f/DC
ZlQWKNiWOQLfcDKEGfaohTn4oJjxBYbhdN9mHuP1Jy56JCn6flVYOsaj/Lp4ENBD7hi42vOY
x2j96Vjc4VO7pRxOH/u9tscY5KkBfq0Gfh37/ImqKGwBaLVafOELX4DX64XBYJBr/mHf/va3
AQDx8fFIS1u+e0LigHsmdp9eOG2Y02TCaAp74GU+5sEgU556FP/T9s/MY1TmfCzeyqArcRPm
RHYf6V5trDxI6J+wYPYO+z6mMTFpj3xHq1mTUdG5cC86F9qQiLwZ9gwMw6I91CUpCLeng3mM
pDMAi8YopmYvY3SyiXmcL5ABIIOZLhJ7og3zQfa+76FFA86B0ISiz+UPGgGUAgASVC5F1xK0
cQAedA0mzNQjxc5+L4PPAuDRAkBnfi58LhcznUWnwaN0bomiD6OT/8lMp+G1AF6XH0/PXcfo
JLvL0+NPBJADAHDpjGhMY09TTbBl4VF3vTp17AWMuiJ0X//O15ISwQ5Jq7NuAwAAcBwn9/mv
lgQRM+6bChP/H/Kfc55mOGaU1FSMAHIBAEG/AZO97HnwGk/mktpDXXkhxnLYBWypMRbh3ue+
zBRcObqfecymgiKw17tGNudpgWOmhpnO6zcAWOjPn9Yn4JeFf8A8ZpetDPt+97co+hR9V6Gg
kZlmrUzOXoTLzw5sgrgH+N237PUPKfpcXn+y/LcYUiu6ljhDDBafjV2z4yh3DDCPS/Q9+vTl
m1tLMOdnt4Z26nUbZprllNmIq7vZLdLsBKt83QLA9NxVTM6zK5ohYRvC04NFKajo5u2Po+W6
HE6SpIfdK3hDEkURorhwsiRJgiAIkCCh3d6i6PjNKRXgfje6P+wcgtPLnu+dakqHNXahLuAL
BXF/lr2wQ8urkW1+0F/YM9EFX4j9Q8q1FiBWu1CoTM1PYmxuhHmM2ZCADHMWAECChLaxZuYx
AFCaUg4Vt9DtMzJ7HzMe9j4nKaY02GIXmu7eoAe9k93MYxLjkpFsXKiJBkIB3Jtg1155lRol
yQ9aPwPTfXD72TXRzIQcxOsXOmZmfbO4PzPAPCZWa0Su9UH9q2O8DYLI7q4rSiyB9ndbE4y7
7Jhws1ej22KTkGJaGLAPiSL6Z5TNRsm3PKiLjs7NKmqhpMSZYFTQ/RBJ53g7QiJ7JXBhYjF0
v+uKdLjG4XDbmcdYYxORalpo2YfEEDrH2eMGHKfC5pQH87wGZwbg8rGnV6ebs5BgWPg9uvwu
DE6zNz6M0cQiz/ag663L0YGgwD7vBbYi6DULMwd7Ju/BF2R3G+Va8xGrXQih054pjM6yxyji
9WZkJmTLj1vHHt5CfuYCwOKPI4pixPGBhwkGg1Cr1XIgUPq+oihCvcI7EgWDwRXnLxQKQaVS
QaVSvmeRJEkIhULr9lw8yfMnCAv9vStdOf4kvytBEOhc4NGu2/V8LtbT+Xumdj4LbwnB87y8
dcRKKTnm44FGkiSsJo6uJn9P8r0of4/2XqvN37NwLkKh0CcqY6vJz5P6rp7ke62n7+qZCgBP
yu3btzE9ze4SeVoEQUAoxO6meNhxiy+yldT8nyWrLYSfRZOTk+joYHfLfdylS5eWXINKrqXW
1lYMDg6u6H2CwSAuXGDv2bXRrdVv8ZnqAloNr9cLvV6/5oVd+DSz3icc6Rd/LSqVakX56+3t
RSgUQnExe/XkYqdPn8bx48eZ7yWKIjiOQzAYhCAIis5f+JhQKIRgMCjP7Iok3ISdn5+H0WhU
1KUXPnccx8HvXxhg069w4djIyAjGx8exbVvkxUcPCxSs70qSJIyPjyMxMXHF3+vi11DSTfSw
/HEcJ/9TIhAIIBAIIC5ufQ7jrqSb6OMt95Wef6W/YWChMuV2uxEbGwtBEKBb4XjLSsqLxd8x
x3GKuokEQcDc3BwFgPPnz+Po0aMruhC6u7uRmpq6oh/F9PQ02tvb8dxzz0VM53Q6cenSJRiN
C3M7NBoNnnvuuRX3Ga4VURRx/fp1HDhwAKdOnYJGo8G+fftgtS5/V7TwMVVVVXj//feh0Wiw
ZcuWiNN3AWBoaAjNzc1wuVx49dVXcfv2bRw6dCjiMX6/H3V1ddi1axfeffddaDQaHD9+fMU/
QCXGxsZw+/ZtxMYuDMzHxMRg7969EfuRJUlCW1sbBgcHERsbi8rKSpjN5hVdf36/Hzdu3MCR
I5FXooZCIfz617+Wvxu73Y7ExERUVFQgM1PZpgmBQADBYFD+jErV1tZi27ZtKxrLGBkZgV6v
j3gtfZwoihgZGWF+nlAohHfeeQdm84Pp1gcOHIDBoHwrF7vdjsHBQezevTtiOrfbjStXrsDn
8+HgwYNoamrCCy+8sKLxhXPnzuHgwYMRKy+SJOHChQtLglppaSnzXExPT+PGjRtwuVzrexro
k/Diiy+u+Bij0bjiQTqLxcIs/IGFPZC2bNmC/PzV3x6wr68PoVAIRUUr26a6rq4OO3bsiFgY
+f1+qNVqjI2NIT8/H1arFQ6HI+KPNrxl9/T0NFJSUpCfn4/79+8zA0BXVxeOHz+OGzduQK/X
yzX6SObn5xETE4Pe3l7s2LEDfr8fk5OTK1o1PjMzg7m5OWRnZ0dMNzIygqqqqhUVWBzHoays
DJs3b8bExAR+8YtfICMjA9u2bUNOTo6i19DpdMzCH1g4FwUFBdi9ezckScLFixdx5MgRXLhw
ARkZGYqCzuzsrLwv10rk5uauaMASWGiprbSiI4oinE4ns9BzuVzIzs5mFt6RpKSkICWFvXai
t7cXu3btwtTUlDyV3ePxyJU6JY4dO8ZMI4oiVCqVomthsaamJrz88suoq6ujMYAzZ86seHAl
JSVlxd0KXq8X9+/fZ6ZLS0tDX18fZmdnMTs7C5fLteL8ZWVlITc3d0XHAEBGBnuRlF6vx+zs
LG7evImCggKMjIwgKSnyGgatVgufz4crV66guLhY0THAwrmora2Fx+NBe3u7osLBZDJhcHAQ
bW1tyM7OxsjICBITE5nHLabRaBStP8nLy0Nra6v8XbndbuZ3JUkShoeH8cEHH6CxsRFf/OIX
8eqrr6Kjo0OeicLi9/tx7do1ZrrY2FiMjIxAEAS5yR/OAyuP4X82mw0lJSWKjrHb7bh27Rrq
6+thNptXHACsVitMJvYW2uFuj3ABuHkze0Gk2WyGw+GQv6vZ2dkVj/O43W6MjLCnXqenp+PO
nTtwOp0YHR2F3W5f8XqmcDduJCqVCmq1GvX19WhsbERjYyMmJ9mrwPPz81FdXb2wtU60dwGt
ZKrjSvoAP87j8cDhcDBreV6vF3fu3JEfazSaFTellRoZGcHo6CgqKyuh0WgUf65w4SCKotys
VTq2sdJjRkdHMTg4CKvVisLCQkWFyuJ+UaX9vPPz8zAYDJifn0d3dzcqKiqY53x2dhatrQ92
VzUYDKisrGR2AbW2tqKoqAg6nU6+pgKBgHzvCyWfz+fzKeq+GBsbQ11dHdRqNbZt2war1YrR
0dGIrZurV6/K+25NTk7CYrEgISEB+/btWzZ/IyMjaG5uxv79+zEzM4OWlhYcP358xUFAibt3
72JwcFDu1rPZbNixY0fEYyRJws2bSxfj7dixY0Vdgy6XS1FrA1i4Njo7O6HVarF582ZotSvb
J7e7uxu5ubkRr0FBEHDq1Cns3r1b/l7i4+OZ3XWSJGFychI9PT3g33jjjTdWlLNnDM/zin50
g4ODqK6uhkqlgt1uR0JCwor69DQazZL+x0jprFYrJiYmoNPp5MJ5LZhMJqhUKtTV1aG7uxs8
zzP7oyVJwvXr19HU1AS3242hoSGYTCZmX+Xt27fR2NiIqakpTE1NQaVSMcdQOjs7kZCQgKKi
IsTHx+POnTvMrhxRFHHx4kU0NTWB53ncvXsX2dnZzILoypUryMvLw+XLl5GTk4PW1lZmF5Be
r0d8fDwmJiYQFxeH8vJyRYG6v79frgg4nU4MDg4iJSUl4nkXBAF1dXVoaWlBZmYmRkdHYbGw
dyXVaDRITU1FRkYGeJ5HTEwMEhIib1rW3d2NY8eOoaioCFarFTExMfB6vbBarcsWZP39/Sgq
KoLFYpFr2zabjVnwDQwMID4+Hm1tbbh79y7S09OZ57CtrQ1Hjx5FUVERCgoKmF2JwEJlIyUl
Ra4hb926VVErPhxsw92YJpNp2d+91+tFfX09BgcH4XA4IIoigsEgJicnkZKSwrwGA4EAOjo6
MD09jYKCAuZ54DhOrsCZTCYYjUZFgaanpwcmkwkFBQXUBaSEx+PBvXv38Nxzz8HtdoPneYyO
svfxXo25uTlcuHABubm5SEpKwunTpxEMLr/asqmpCWfOnMHbb7+NM2fO4MyZM/jtb3+LoaEh
Re+XmpqKvXv3IjY2Fo2Njcym/tzcHHQ6HQ4fPgy1Wo20tDSMj0de5erxeCAIAo4ePQqdTof0
9HSMjbHvMDY2NibXZtRqtaKpt3a7HampqaiqqgKwsKuskmaxSqVCKBQCz/PIzMyET8GGbw6H
Azdu3EBhYSFMJhM+/PDDiN04giDAbrdjdHRU/tfV1aWo66eurg7p6emIiYmBVqtFXx97ter8
/DzefvttdHd3y/+UTA9WqVTyOZuYmJArIA8LUPPz87h06RKGhoZw+vRpXLhwARcuXMDg4CCz
MAqFQujt7UUgEMDo6Ci2bduGtjb2it+cnBxcv34d/f396O/vZ15/wMK5f/fdd5GWlobc3Fyc
Pn1a0Y2kzp8/j5qaGtTV1aGuri5iF5BOp8PmzZthMplgMplQXl6O8vJyTE1NMX9XHo8HH3zw
gdyqe++99xR9VxzH4fTp0/jwww/x4YcfMruZfT4fxsfHMTMzg9nZ2egZBJ6ensbt27cRCATk
vjNgoRZ36NAhZq13cTdReKBxORMTEw8NEDabjVmDHRkZQXl5OZKTF/aFsdvtmJ6elh9/XEVF
BcrKynD16lW88MILAICpqSkMDAwgKysr4nvZ7XbU1tbCaDRi27ZtMJlMzNZQbGwsHA4HMjIy
EAgE0Nraij179kQ8Rq/Xw+l0YmZmBsFgEM3NzSgpYd/6sbi4GGfPnkVRURFGR0cVDcCZzWbU
19fDaDTC6/Wip6dnySaCy8nPz8fZs2dx4MABOBwOFBaybzDT19eHPXv2wGazyduXRxrsEwQB
DocDLpdLLrSSk5MVDf56PB5YrVb09vbKtVKWYDAoDwKvxIEDB3D9+nX4/X7YbDbk5+dDpVI9
tMspJiZGDraLcRzHbCFzHIdAIICuri6kp6dDEARFXUYJCQnw+/3wehe2UVDSEp+enkZ2drb8
+ysvL8fIyAjze1apVHjhhRcU5SvcQtDpdOA4DvHxC9uOxMXFwe12R+wBuH//PioqKuTJH263
W245RFJaWqrodxFmt9sxNDQEt9uNuLi46AkACQkJeOmll1BTU4Pt27fLzT8li0hiYmJgs9lw
7do1uFwuZGRkYMuW5XcM1Ov1sFgsuHPnjtyXPD8/j76+PmYAyMzMxIULF6BWqxEMBjEyMoKt
W7cumz4879fn80GSJKhUKmi12sg3yfmdcK18Jesg1Go1Dh8+jMbGRvh8Pmzfvp05C4bnefkY
j8eDTZs2KZqVk5aWBrPZjOHhYVRWVirq8jAYDKiqqsLdu3chiiKOHDmiqKmfkZGBnJwcBAIB
DA0NoaCAvcd+YWEhampqsHXrVrjdbrjd7ogVA61Wi4qKChQXF694EsGuXbtw+fJl2O12uFwu
lJWx98o3Go1yP3RYWVkZs0tRrVZj+/bt8jiKz+dbdlYax3HQaDRwOp2oq3twfwqDwcCcEsvz
PLZu3YrR0VFs3rwZdrtdUbBOSEiA2+2GS8FOpGFWqxXXrl1DYmIieJ5HS0sLTpw4wTxOp9Oh
rq5ODuo2m405gSEvLw/nzp3D+Pg4gsEg/H4/c3A7NTUVV65cQXx8PEKhkBwQWOrr63H48GHF
g8w5OTlISkqCVqtdqNRG2yBwY2MjrFarXDs+deoUTp48yWwBTE1NwWq1QpIkeDweqNVq5o/4
4sWLOHjwIDQaDSRJwocffojjxyPfCCZcu+vq6oJarUZxcbGiMQC73Y6PPvoIer0eXq8XR44c
YfaxDwwMwG63LxlEYpEkCXfu3MG2bdvAcRy6u7uRlJQk13aUHDM4OAiDwcD8ITkcDty5c0eu
fSUnJ6OysnLZ9NPT0zCbzZ/oKrJYLMwa3Pnz53H48GFcuHABmZmZmJubw969kW+kI0kS3G43
uru7ERMTg8LCwogFXltbG9LT09Hc3Ay3+8GOojt27FA0Kyo8uK10sU940dli4QIwktOnT8Ns
Nsut5PT0dOYMMVEUl3RZXLt2DYcPH2bmc2xsDCkpKejt7cXIyAj27t3L7DpqaWmB2+3G+Pg4
SkpKMDw8jMOH2ff8CAaD6OzshCAI2LRpk1xTj2RqampJoImPj2eOoQAL535ubg48zyM2NlbR
hAeXy4XW1lbwPI+KigrmIL8kSejs7MTNmzexc+dOcByH9PR0ZkVpZmYGly9fxtTUVPS0AMIq
Kytx4cIFtLe3IxgMKqpxSJKEpqYmHD58GBzHweFwKJpnX1hYiHPnziE3NxcjIyNITU2NmH5w
cBCpqakYHByUg8vAwADy8vKYP9qUlBR86lOfklsBSgp0o9GIS5cuYW5uDkajEXFxcSgrK4t4
rM/ng8fjkdOo1WrY7faIASAQCMDlcsnH6HQ6jI6OMgu9xsZGHDx4UC4QWJ9pfHwc8fHxn+gf
j4+PZxZEHMfJNd7S0lJcvBj5ZjuDg4NITEzEyMiIXPsaHBxETk7Osu8Vnkt/4MCBiK+9mM/n
Q0dHBxISEtDZ2Sk/n5SUFHGlssPhQGJi4qq2tNBqtdi7d++KZvCEW55hMTExcLvdEWu+oVAI
ra2tsFqt6OnpQUVFBdrb2yO2roGFQnn//v24desWioqKmP3eg4ODyMrKQm9vLzQaDTQajXyX
QVblymQyYWRkBIHAwk6fGo2GGQBCoRBqamowOTkpXxtHjx5ddlC3sbERZWVlMJlM2LdvHyRJ
QkNDA7Zt28b8Dmw225I1A0oGgTs6OvDyyy+joaEh+gJAeOGEw+FAXFwc4uLiIhYsLpcLNTU1
6OnpkQdjA4GAosUXWVlZSExMhMPhwO7du5nNwHDBvfiiVNK/KUkSrly5Aq/XK3+W8vJy5nQ1
o9GIz3zmwY1plLyXXq/H3NwcOjo6YDAYcPfuXRw9ejTiMVqtFoFAAC0tLTCZTGhqalJUCCYm
JsrTM5UoKSmBIAgoKCiQa0FOJ3t7bmCh6+306dPYs2cPHA4HcwbQw74r1qyN1tZWzMx8covx
srKyZWtt4ZlgHMcxx3QWczqdsNlssNuXbr2spAXA8zxu3bolD8ArWQDldDrx0UcLN18JT/ll
dUuEg+7Q0BBSU1Oh1WoVDYinp6djenoaBoMBV65cYS4QDBeiq5lNV11djfT0dIyOjiItLQ0z
MzPM7stwRU6lUmHPnj2oqalZdhBYkiSMjY0tCXrhbVZmZ2cjBhuO4xAbG4uBgQH5vGk0GmbL
32g0yq3kqAsAs7Oz8krI2dlZWK1WbN++fdkgEBcXhyNHjiAtLQ2lpaXyPipKakejo6Nob2+X
XzsjIyNiiyMzMxMejwcmk0levDQ2NgZBECL+aMMLfZTs47OYRqNBV1cX7HY7Tpw4gc7OTuai
Go7j8NJLL6G7uxtOpxPHjh1jFtAcx+Hw4cPo6+vD9PQ0XnjhBUVbC8TFxeHKlSvyBZ2SkhJx
PARYCM5tbW1ygBkaGoLNZmNOFdy0aZO8d9Li1spyMjMzMTMzg8TERDmwj4yMRJztUVBQ8NCZ
HZHOX/h6m56eRkNDg5yvxMTEiN1hRUVFct+zkvGMxbZu3bpkhoyS7yo+Pn5JpUhJK5TneRQX
F2N4eBi7d+/G2NiYotXr4c+TlJTEHHcBFr4rSZKg0WjkIDoxMaFoW2ZRFJGfnw+73Y7y8nJc
unSJOf4SboXrdDr4/X7odDp4PJ5lW8nhfYPC4wyiKGJiYoJ5rUuShGvXrqGoqAjDw8OIjY2V
B8YjKSkpQTAYRGJiYvQFgNraWpw4cQJ6vR6SJOH06dPy5mEPw3Ec1Go1YmNjwfM8bt++Da/X
i6qqKmaNr7m5Gc8//7xceCupYbvdboyNjckBYGBgADqdLmK/Xvh1p6en5Qtar9czm4MNDQ1I
S0tDIBAAx3Gw2+1ykHuYkZERJCcno7+/X36PoaEh5OTkLDse4vP5wHGcvCLVYDBgeHgYmZmZ
zIKlqKhoRdtZTE1N4datWxgeHpYLsEAgoGgbA5fLhba2NnmfJ9ZGcMBCIaLVauUAcO/ePSQk
JCxbIIULeo/Hg4GBAbl7Jjs7m7lNQH19Pfbt2yd/p0oqIGq1Gk1NTcjOzlZU+/V6vRAEQdEM
no9bvCunIAgoKipS1L2alJQk77ETnuLKsvj6VLq9giRJ6O7ulgNAuNuS1aqyWCzy1tbnzp1T
1P+fkZGB6elpJCUl4dq1a4iNjV02nxzHoaqqCufPn5fLmNnZWVRUVDDHGCVJglarRXp6OiYm
JlBZWYnq6mrmrLKJiQl0dXWhrKws+gJAcnIy7t27h/LycszPzyMUCjFrKj6fD8PDw7DZbAgG
g8jMzMTQ0BDy8iLfqTM+Pl4u9JQYHR1FdXU1XC4XhocX7vpjMpkUXXTJycno6OiQP0tBQcGy
U0fD/H4/jEYjVCqVPLgdSfi1NRrNkgKIdf7CQXSlW02Pj4/j9u3bcDqdMJlMMJvNETeDs1gs
OHz4MAYGBuTpfayFfuPj46itrUVcXBxKSkrgdDpx6NAhZgHY19eH27dvg+d5ee56YmIi87sW
RRGXL1+WZ065XC4kJSUxCzKbzQav17viXTk1Gg3efPNNuUtr//79y65+9fv98Pl88Pl8SwbS
U1NTmfnr6OjA5s2bkZ2dLW9SlpeXF7FAFwQB165dQ0VFBYaGhpCVlYXu7m5FM5xWwul0orq6
Gv39/fL0Wa1Wq6hiEO6aOXDgAAKBgKKVw3Nzc+A4DiaTSZ70EekajI+Px2uvvYZAIABRFOUZ
Oiwcx8mLv8Lrh5RMKU5JSUFcXBza29ujLwCUl5ejubkZ77//PgwGA44cOaKoqepyudDQ0IDS
0lJMTU0p2rMkJiYG586dk2uEWVlZEbtY0tLScPz4cbjdbrnPNTzrI5LwBmNTU1NyrVJJ/sJT
Cx0OB5xOZ8Tafzh/4RlRRUVFimpf4ZbW1NQUcnNzFa2GDuvs7MSxY8dQV1eHvXv3orq6OmL6
4eFhpKWlgef5JQPBeXl5y/6gFndVRFpw93F5eXmIj4+XV08rFQqFYDQakZOTA5fLhaKiIgwO
DjIHxI1GIy5fvix/r0lJSdi+fXvEY1Qq1Sc2O4xUIIc/hyRJSE1NlQO2ksIoISFBHoMK902z
+vODwSD0ej1sNhvu378PtVqtqAvj46/x9ttvo6qqatluPrPZjFdeeQUDAwMr3iMrfG1wHKd4
6q5er0dNTQ2SkpIUt6RUKtWKpgYPDw8jPT0daWlpUKlUOHz4MILBoKIAxXEc4uLikJaWFn0B
AFi4IKampmA0GhWdMI1Gg61bt2J+fh7JyckIBALMGT3AQu2BNaPh43w+nzw1DgBqamqwc+dO
5lYLV69eBcdxmJmZAcdx2Lp1a8TaQPgWjC+++CJ8Ph9cLhcSExMV1cyzs7PR2NgIv9+P9PR0
FBYWMrsYsrOz0draCo/Hg9TUVBQXFzOb+2q1Wt6PPhgMYn4+8o3Mw115KxkHSUxMxCuvvAKv
1yuPa1y5cgWVlZXMTeTi4+Nx8+ZNeUCS53lm6yE8CyW8TqS7u1tRV0lBQcGK+/JFUURNTY38
OBgM4tChQ8xr/tKlS5AkSf4cubm5zILTaDSisbERvb298ntduXIFBQUFy3bj6XQ6mEwmXLly
BePj4xgfH5cXMyqlVqvx2muvMVeWcxwHp9OJU6dOwWAwwOPxKBq/Wi2324233noLiYmJ0Ov1
2LVrV8RAGggE4HQ6Ff8G29ra5FZ/eJsPpcHGbrejrq4OmZmZ0bcOoKenR1527nQ60dzcjJdf
flnRFMO+vj65VlRZWcnswx4aGsLdu3cxOzsLvV6PnJwc7Ny5M+Ix9+/fh9PpRHn5ws2tr1+/
jsrKyojTLMNN6d27d8tN8YaGhojbT7///vs4ceIEBEHA22+/Lc9s2L9/v6ILMDx7o6amBlVV
VYo2yArvhHnz5k1s27aNuQpzfn4eKpUKHo8HDQ0NKCkpUbTve3il8Wp+3OGuML/fz5xP3dnZ
CbVajZGREXm2x8GDB5mbwYU3fgsvEjIYDMxa9uTkJG7evInZ2Vl5qwHWvRE+vmK4uroaVVVV
zACwmntkrJYkSfD7/fKNhZQUYs3NzUhLS4PNZoMgCKiursbBgwcjHhO+h0JMTAwqKipw9+5d
bN26ddnfcHd3N+7du/eJ5wsKCiLeaCk8a21xazI8WyzS+QwGg6irq4PT6URycjJKSkoiDm5P
Tk6ivr4e9+7dW7JIr7y8nDmuER7nUalU0dcC6O3txQsvvCBPl2pubo44CAwsnLCPPvoIVqsV
mZmZ6O7uVrRFc09PD1588UXU19djx44dqK+vZx6TmpqKjo4OOBwOefxAyfRRSZKg0+ngcDig
Uqki1sgX1+5aW1uxZcsWFBcX4/z580t261zu2Js3b8LpdCIjIwOvvfaaZZW1aAAAIABJREFU
ogUrdXV1mJiYQGpqKk6cOKFo5WJXVxcKCwthtVoV37eB53kkJyfj1q1bkCQJ2dnZyMvLUzyn
Pdx9oWTmiyAIiI2NlRf6aTQa+Hw+5rG3bt3C888/D61WC7fbjd7eXmZLsb29HUeOHEFDQ4Oi
7rDwZ1n83aSlpcFutzOnuGq1WrS1tcmfw2w2KxqHWqnwLJbFY0/bt29njl3NzMzIhZ5KpWK2
DMPvFZ7DH27tOhyOZVs2hYWFirYD+bjq6mocO3ZsxTcgCt9YSRAENDc349/+7d9QUlKCXbt2
PbTyF57/X1pauqLpwTU1NcjPz0dDQwOAKJwGWllZibNnz6KkpAQzMzOIiYlh1nQCgQASEhLk
3RALCgowOjrKnKESLpjD2zQoWbquVqtx5MgRufarJH/hmQQ8z+O5557D1NQU86IIhULweDzo
7OzE7//+7wNYqCUpubVjcnLyihYKSZIEi8WCHTt2rGhxUVpaGhoaGlBVVbWiAjw9PR2pqano
6enBjRs3YLVa16QAy83NhdPpxKZNm3Dx4kUYjcaIwTAQCKC5uRl9fX1yuunpaUVdQOGtQcK3
4VRS6AmCgPPnz8uPfT4fXnnlFeZxhYWFmJ2dlfvjlQw8T01NAYA8uN3f34+MjIyIFRG/3w9R
FBW1wBcLL+ZMTk7G3NycogIwvAlhTk4OLl68iGAwqOimK2NjY7h79y7m5+fB8zw2bdoUcR+r
2dlZdHV1LXlOo9FEXCAILHxX7e3t6O/vR1JSEr7yla9AFEXU1tZGXOU8Nze3ZNFiSUlJxHUK
+/btk7u/1Gp19AWA5ORkHDx4EPfv30dqairS0tKYF59er4der0d2djYuX76MQCDAbHICC/Op