Skip to content

Files

This branch is up to date with open-mmlab/mmsegmentation:master.

upernet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jun 21, 2022
Jun 21, 2022
Jul 9, 2020
Jul 9, 2020
Jul 9, 2020
Jul 9, 2020
Jul 9, 2020
Jul 9, 2020
Jul 9, 2020
Jul 9, 2020
Jun 21, 2022
Jun 21, 2022
Jun 21, 2022
Jun 21, 2022
Jun 21, 2022
Jun 21, 2022
Jul 9, 2020
Jul 9, 2020
Jan 24, 2021
Jul 9, 2020
Jul 9, 2020
Jan 24, 2021
Jan 20, 2021
Jan 20, 2021

UPerNet

Unified Perceptual Parsing for Scene Understanding

Introduction

Official Repo

Code Snippet

Abstract

Humans recognize the visual world at multiple levels: we effortlessly categorize scenes and detect objects inside, while also identifying the textures and surfaces of the objects along with their different compositional parts. In this paper, we study a new task called Unified Perceptual Parsing, which requires the machine vision systems to recognize as many visual concepts as possible from a given image. A multi-task framework called UPerNet and a training strategy are developed to learn from heterogeneous image annotations. We benchmark our framework on Unified Perceptual Parsing and show that it is able to effectively segment a wide range of concepts from images. The trained networks are further applied to discover visual knowledge in natural scenes. Models are available at this https URL.

Citation

@inproceedings{xiao2018unified,
  title={Unified perceptual parsing for scene understanding},
  author={Xiao, Tete and Liu, Yingcheng and Zhou, Bolei and Jiang, Yuning and Sun, Jian},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={418--434},
  year={2018}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
UPerNet R-18 512x1024 40000 4.8 4.47 75.39 77.0 config model |log
UPerNet R-50 512x1024 40000 6.4 4.25 77.10 78.37 config model | log
UPerNet R-101 512x1024 40000 7.4 3.79 78.69 80.11 config model | log
UPerNet R-50 769x769 40000 7.2 1.76 77.98 79.70 config model | log
UPerNet R-101 769x769 40000 8.4 1.56 79.03 80.77 config model | log
UPerNet R-18 512x1024 80000 - - 76.02 77.38 config model | log
UPerNet R-50 512x1024 80000 - - 78.19 79.19 config model | log
UPerNet R-101 512x1024 80000 - - 79.40 80.46 config model | log
UPerNet R-50 769x769 80000 - - 79.39 80.92 config model | log
UPerNet R-101 769x769 80000 - - 80.10 81.49 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
UPerNet R-18 512x512 80000 6.6 24.76 38.76 39.81 config model | log
UPerNet R-50 512x512 80000 8.1 23.40 40.70 41.81 config model | log
UPerNet R-101 512x512 80000 9.1 20.34 42.91 43.96 config model | log
UPerNet R-18 512x512 160000 - - 39.23 39.97 config model | log
UPerNet R-50 512x512 160000 - - 42.05 42.78 config model | log
UPerNet R-101 512x512 160000 - - 43.82 44.85 config model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
UPerNet R-18 512x512 20000 4.8 25.80 72.9 74.71 config model | log
UPerNet R-50 512x512 20000 6.4 23.17 74.82 76.35 config model | log
UPerNet R-101 512x512 20000 7.5 19.98 77.10 78.29 config model | log
UPerNet R-18 512x512 40000 - - 73.71 74.61 config model | log
UPerNet R-50 512x512 40000 - - 75.92 77.44 config model | log
UPerNet R-101 512x512 40000 - - 77.43 78.56 config model | log