forked from fu-berlin-swp-2014/center-points
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
executable file
·477 lines (402 loc) · 14.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#!/usr/bin/env python
import argparse
import csv
import json
import random
from os import path
import numpy as np
import scipy.stats
from centerpoints.benchmark import benchmark
from centerpoints.data_set import sphere_surface, sphere_volume, cube, \
cube_surface
from centerpoints.helpers import uniform_sphere_points, \
uniform_sphere_points_volume, normal_distributed_points, \
NumpyAwareJSONEncoder
from centerpoints.iterated_radon import IteratedRadon
from centerpoints.iterated_tverberg import IteratedTverberg
# Initialize the algorithms
algorithms = (
(IteratedTverberg(), "IteratedTverberg"),
(IteratedRadon(), "IteratedRadon"),
(IteratedRadon(True), "IteratedRadon (w/ Trees)")
)
# Wrappers to generators with less parameters
def _(gen):
return lambda n, dim, r: gen(n, dim)
def __(gen):
return lambda n, dim, r: gen(n)
dim_benchmark_gens = {
"sphere": uniform_sphere_points,
"normal": _(normal_distributed_points),
"sphere-solid": uniform_sphere_points_volume,
}
def dim_benchmarks(gens, repeat=None, size=None, radius=None, dim=None):
benchmarks = {}
for name, gen in gens.items():
benchmark_name = "{}-{}n-{}d".format(name, size, dim)
benchmark = {
"title": benchmark_name,
"generator": gen,
"repeat": repeat,
"size": size,
"radius": radius,
"dim": dim
}
benchmarks[benchmark_name] = benchmark
return benchmarks
# Benchmark configs
def benchmarks(repeat=None, size=None, radius=None):
return {
"sphere": {
"title": "Sphere Surface",
"generator": uniform_sphere_points,
"repeat": repeat,
"size": size,
"radius": radius,
"dim": 3
},
"sphere-solid": {
"title": "Solid Sphere",
"generator": uniform_sphere_points_volume,
"repeat": repeat,
"size": size,
"radius": radius,
"dim": 3
},
"sphere-5d": {
"title": "Sphere Surface (5D)",
"generator": uniform_sphere_points,
"repeat": repeat,
"size": size,
"radius": radius,
"dim": 5
},
"sphere-5d-solid": {
"title": "Solid Sphere (5D)",
"generator": uniform_sphere_points_volume,
"repeat": repeat,
"size": size,
"radius": radius,
"dim": 5
},
"sphere-10d": {
"title": "Sphere (10D)",
"generator": uniform_sphere_points,
"repeat": repeat,
"size": 15000,
"radius": radius,
"dim": 10
},
"sphere-10d-solid": {
"title": "Solid Sphere (10D)",
"generator": uniform_sphere_points_volume,
"repeat": repeat,
"size": 15000,
"radius": radius,
"dim": 10
},
"normal-2d": {
"title": "Normal distribution (2D)",
"generator": _(normal_distributed_points),
"repeat": repeat,
"size": size,
"radius": None,
"dim": 2
},
"normal-3d": {
"title": "Normal distribution (3D)",
"generator": _(normal_distributed_points),
"repeat": repeat,
"size": size,
"radius": None,
"dim": 3
},
"normal-5d": {
"title": "Normal distribution (3D)",
"generator": _(normal_distributed_points),
"repeat": repeat,
"size": size,
"radius": None,
"dim": 5
},
"normal-10d": {
"title": "Normal distribution (10D)",
"generator": _(normal_distributed_points),
"repeat": repeat,
"size": 15000,
"radius": radius,
"dim": 10
},
# Other testdata
"circle-surface": {
"title": "Circle Surface b",
"generator": _(sphere_surface),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 2
},
"circle-volume": {
"title": "Circle Volume b",
"generator": _(sphere_volume),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 2
},
"sphere-surface": {
"title": "Sphere Surface b",
"generator": _(sphere_surface),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 3
},
"sphere-volume": {
"title": "Solid Volume b",
"generator": _(sphere_volume),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 3
},
"sphere-surface-5d": {
"title": "Sphere Surface 5D b",
"generator": _(sphere_surface),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 5
},
"sphere-volume-5d": {
"title": "Solid Volume 5D b",
"generator": _(sphere_volume),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 5
},
# "sphere-surface-10d": {
# "title": "Sphere Surface 10D b",
# "generator": _(sphere_surface),
# "repeat": repeat,
# "size": 15000,
# "radius": 1,
# "dim": 10
# },
#
# "sphere-volume-10d": {
# "title": "Solid Volume 10D b",
# "generator": _(sphere_volume),
# "repeat": repeat,
# "size": 15000,
# "radius": 1,
# "dim": 10
# },
"square-surface": {
"title": "Square Surface b",
"generator": _(cube_surface),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 2
},
"square-volume": {
"title": "Square Volume b",
"generator": _(cube),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 2
},
"cube-surface": {
"title": "Cube Surface b",
"generator": _(cube_surface),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 3
},
"cube-volume": {
"title": "Cube Volume b",
"generator": _(cube),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 3
},
"cube-surface-5d": {
"title": "Cube Surface 5D b",
"generator": _(cube_surface),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 5
},
"cube-volume-5d": {
"title": "Cube Volume 5D b",
"generator": _(cube),
"repeat": repeat,
"size": size,
"radius": 1,
"dim": 5
},
}
def run_benchmarks(benchmarks, output_dir, seed):
# Truncate results and write header
csv_file = open(path.join(output_dir, "results.csv"), "w")
csv_writer = csv.writer(csv_file)
bench_short_result_titles = (
"Name", "Title", "Algorithm",
"Repeat", "Size", "Radius", "Dimension",
"min time", "max time", "mean time", "median time",
"std time", "sem time",
"min distance", "max distance",
"mean distance", "median distance",
"std distance", "sem distance"
)
csv_writer.writerow(bench_short_result_titles)
# Run the benchmarks
for name, config in benchmarks.items():
# Export config
title = config["title"]
generator = config["generator"]
repeat = config["repeat"]
size = config["size"]
radius = config["radius"]
dim = config["dim"]
print("Generating points for " + title)
if seed:
# Reset the seed to generate the same point sets
random.seed(seed)
np.random.seed(seed)
try:
points = generator(size, dim, radius)
except Exception as e:
print("Error on generating data:", e)
import traceback
traceback.print_exc()
continue
for i, algorithm in enumerate(algorithms):
print("Run " + title + " with " + algorithm[1])
# TODO: Reset seed again????
try:
timings, results = benchmark(algorithm[0], points, repeat)
except Exception as e:
print("Error on calculating centerpoint:", e)
import traceback
traceback.print_exc()
continue
# Calculate the distance to 0
distances = np.linalg.norm(results, axis=1)
# Calculate stats about the min, max and average
_timings = np.asarray(timings)
timings_stats = {
"min": np.amin(_timings),
"max": np.amax(_timings),
"mean": np.mean(_timings),
"median": np.median(_timings),
"std": np.std(_timings),
"sem": scipy.stats.sem(_timings)
}
distances_stats = {
"min": np.amin(distances),
"max": np.amax(distances),
"mean": np.mean(distances),
"median": np.median(distances),
"std": np.std(distances),
"sem": scipy.stats.sem(distances)
}
if np.isnan(timings_stats["sem"]):
timings_stats["sem"] = 0
if np.isnan(distances_stats["sem"]):
distances_stats["sem"] = 0
_config = config.copy()
del _config['generator']
bench_result = {
"algorithm": algorithm[1],
"config": _config,
"timings": timings,
"results": results,
"distances": distances,
"stats": {
'timings': timings_stats,
'distances': distances_stats
},
"seed": seed
}
# Store the results as csv and json
algoname = type(algorithm[0]).__name__ + "-" + str(i)
basename = path.join(output_dir, name + "-" + algoname)
# with open(baseFileName + ".csv", mode="w") as f:
# writer = csv.writer(f)
# writer.writerows(zip(timings, results, distances))
with open(basename + ".json", mode="w") as f:
json.dump(bench_result, f,
cls=NumpyAwareJSONEncoder,
indent=4, separators=(',', ': '))
# Write a short summary to the combined results.
bench_short_result = [name, title, algorithm[1],
repeat, size, radius, dim]
r = timings_stats
bench_short_result.extend([r["min"], r["max"], r["mean"], r["median"], r["std"], r["sem"]])
r = distances_stats
bench_short_result.extend([r["min"], r["max"], r["mean"], r["median"], r["std"], r["sem"]])
csv_writer.writerow(bench_short_result)
csv_file.flush()
csv_file.close()
def IntListType(argstr):
if type(argstr) is None:
return None
return map(int, argstr.split(","))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Run multiple centerpoint benchmarks.")
parser.add_argument("--repeat", type=int, default=10, required=False,
help="Repeat each benchmark REPEAT times.")
parser.add_argument("--sizes", type=IntListType, default=[5000],
required=False, help="Generate SIZES points for each "
"benchmark without a fixed size.")
parser.add_argument("--radius", type=int, default=50, required=False,
help="Set the radius if applicable (f.ex. spheres).")
parser.add_argument("--dimensions", type=IntListType, default=None, required=False,
help="Use special dimensions case... to be documented.")
parser.add_argument("--seed", type=int, default=None, required=False,
help="Generate random points based on this seed. "
"Can be used to reproduce results.")
parser.add_argument("--output-dir", type=str, default=None, required=False,
help="Write results to output-dir. "
"Default ./evaluation .")
parser.add_argument("benchmarks", nargs="*",
help="Benchmarks to run. "
"If omitted every benchmark is run. "
"Possible values: " +
", ".join(benchmarks().keys())
)
args = parser.parse_args()
if not args.output_dir:
_dirname = path.dirname(path.realpath(__file__))
args.output_dir = path.join(_dirname, "evaluation")
# Only run the specified benchmarks
_benchmarks = {}
for size in args.sizes:
if args.dimensions:
_gens = {name: gen
for (name, gen)
in dim_benchmark_gens.items()
if not args.benchmarks or name in args.benchmarks}
for dim in args.dimensions:
_dim_benchmarks = dim_benchmarks(_gens, args.repeat, size,
args.radius, dim)
_benchmarks.update(_dim_benchmarks)
else:
avialible_benchmarks = benchmarks(args.repeat, size, args.radius)
if args.benchmarks:
_benchmarks.update(
{"{}-{}n".format(name, size): config
for (name, config)
in avialible_benchmarks.items()
if name in args.benchmarks})
# Run run run!
run_benchmarks(_benchmarks, args.output_dir, args.seed)