forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
190 lines (167 loc) · 6.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""test.py
Setup and Run hub models.
Make sure to enable an https proxy if necessary, or the setup steps may hang.
"""
# This file shows how to use the benchmark suite from user end.
import gc
import os
import unittest
import torch
from torchbenchmark import (
_list_canary_model_paths,
_list_model_paths,
get_metadata_from_yaml,
ModelTask,
)
from torchbenchmark.util.metadata_utils import skip_by_metadata
# Some of the models have very heavyweight setup, so we have to set a very
# generous limit. That said, we don't want the entire test suite to hang if
# a single test encounters an extreme failure, so we give up after a test is
# unresponsive to 5 minutes by default. (Note: this does not require that the
# entire test case completes in 5 minutes. It requires that if the worker is
# unresponsive for 5 minutes the parent will presume it dead / incapacitated.)
TIMEOUT = int(os.getenv("TIMEOUT", 300)) # Seconds
class TestBenchmark(unittest.TestCase):
def setUp(self):
gc.collect()
def tearDown(self):
gc.collect()
def _create_example_model_instance(task: ModelTask, device: str):
skip = False
try:
task.make_model_instance(test="eval", device=device, extra_args=["--accuracy"])
except NotImplementedError:
try:
task.make_model_instance(
test="train", device=device, extra_args=["--accuracy"]
)
except NotImplementedError:
skip = True
finally:
if skip:
raise NotImplementedError(
f"Model is not implemented on the device {device}"
)
def _load_test(path, device):
model_name = os.path.basename(path)
def _skip_cuda_memory_check_p(metadata):
if device != "cuda":
return True
if "skip_cuda_memory_leak" in metadata and metadata["skip_cuda_memory_leak"]:
return True
return False
def example_fn(self):
task = ModelTask(model_name, timeout=TIMEOUT)
with task.watch_cuda_memory(
skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual
):
try:
_create_example_model_instance(task, device)
accuracy = task.get_model_attribute("accuracy")
assert (
accuracy == "pass"
or accuracy == "eager_1st_run_OOM"
or accuracy == "eager_2nd_run_OOM"
), f"Expected accuracy pass, get {accuracy}"
task.del_model_instance()
except NotImplementedError as e:
self.skipTest(
f'Accuracy check on {device} is not implemented because "{e}", skipping...'
)
def train_fn(self):
metadata = get_metadata_from_yaml(path)
task = ModelTask(model_name, timeout=TIMEOUT)
allow_customize_batch_size = task.get_model_attribute(
"ALLOW_CUSTOMIZE_BSIZE", classattr=True
)
# to speedup test, use batch size 1 if possible
batch_size = 1 if allow_customize_batch_size else None
with task.watch_cuda_memory(
skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual
):
try:
task.make_model_instance(
test="train", device=device, batch_size=batch_size
)
task.invoke()
task.check_details_train(device=device, md=metadata)
task.del_model_instance()
except NotImplementedError as e:
self.skipTest(
f'Method train on {device} is not implemented because "{e}", skipping...'
)
def eval_fn(self):
metadata = get_metadata_from_yaml(path)
task = ModelTask(model_name, timeout=TIMEOUT)
allow_customize_batch_size = task.get_model_attribute(
"ALLOW_CUSTOMIZE_BSIZE", classattr=True
)
# to speedup test, use batch size 1 if possible
batch_size = 1 if allow_customize_batch_size else None
with task.watch_cuda_memory(
skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual
):
try:
task.make_model_instance(
test="eval", device=device, batch_size=batch_size
)
task.invoke()
task.check_details_eval(device=device, md=metadata)
task.check_eval_output()
task.del_model_instance()
except NotImplementedError as e:
self.skipTest(
f'Method eval on {device} is not implemented because "{e}", skipping...'
)
def check_device_fn(self):
task = ModelTask(model_name, timeout=TIMEOUT)
with task.watch_cuda_memory(
skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual
):
try:
task.make_model_instance(test="eval", device=device)
task.check_device()
task.del_model_instance()
except NotImplementedError as e:
self.skipTest(
f'Method check_device on {device} is not implemented because "{e}", skipping...'
)
metadata = get_metadata_from_yaml(path)
for fn, fn_name in zip(
[example_fn, train_fn, eval_fn, check_device_fn],
["example", "train", "eval", "check_device"],
):
# set exclude list based on metadata
setattr(
TestBenchmark,
f"test_{model_name}_{fn_name}_{device}",
(
unittest.skipIf(
skip_by_metadata(
test=fn_name, device=device, extra_args=[], metadata=metadata
),
"This test is skipped by its metadata",
)(fn)
),
)
def _load_tests():
devices = ["cpu"]
if torch.cuda.is_available():
devices.append("cuda")
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
devices.append("mps")
if device := os.getenv("ACCELERATOR"):
devices.append(device)
model_paths = _list_model_paths()
if os.getenv("USE_CANARY_MODELS"):
model_paths.extend(_list_canary_model_paths())
for path in model_paths:
# TODO: skipping quantized tests for now due to BC-breaking changes for prepare
# api, enable after PyTorch 1.13 release
if "quantized" in path:
continue
for device in devices:
_load_test(path, device)
_load_tests()
if __name__ == "__main__":
unittest.main()