-
Notifications
You must be signed in to change notification settings - Fork 17
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Retraining the smt-2016 model #10
Comments
I am training it on Linux. |
Please check |
The contents of the |
It seems that there is too much values for bmira to read. I have tried several times to train it and got different results. The bmira wants 13 weights but sometimes got 15, 16 etc. Sometimes it can finish 2-3 steps of tuning but failed in the next step. Have you encountered this problem? |
I'm not sure. I've been using my fork for most of the experiments (https://github.com/snukky/mosesdecoder/tree/gleu), and I had some issues with parsing weights in the past (see snukky/mosesdecoder@20c3b67), but I doubt they are related. You may try my branch for tuning. |
@ghozn |
@wulouzhu |
@ghozn |
I retrained the model successfully after I changed the branch of mosesdecoder to https://github.com/snukky/mosesdecoder/tree/gleu. But when I test the model with But when I use "python ./models/run_gecsmt.py...",it worked. Did you meet the same problem or do you know what's the problem? Thank you |
Did you train a model with sparse features using word classes? Then WC factors need to be added manually (it's here: https://github.com/grammatical/baselines-emnlp2016/blob/master/models/run_gecsmt.py#L48) |
Hi,
Thank you for answering my questions before. I am training the smt-2016 model recently. Everything just fine while using moses to train the model but I encounter an error while tuning. The error message is:
Name:moses VmPeak:30234320 kB VmRSS:702832 kB RSSMax:29396400 kB user:474.828 sys:7.216 CPU:482.044 real:55.818
The decoder returns the scores in this order: OpSequenceModel0 LM0 LM1 LM2 EditOps0 EditOps0 EditOps0 WordPenalty0 PhrasePenalty0 TranslationModel0 TranslationModel0 TranslationModel0 TranslationModel0
Executing: gzip -f run1.best100.out
Scoring the nbestlist.
exec: /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/work.err-cor/tuning.0.1/extractor.sh
Executing: /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/work.err-cor/tuning.0.1/extractor.sh > extract.out 2> extract.err
Executing: \cp -f init.opt run1.init.opt
Executing: echo 'not used' > weights.txt
exec: /data/home/ghoznfan/mosesdecoder-master/bin/kbmira --sctype M2SCORER --scconfig beta:0.5,max_unchanged_words:2,case:false --model-bg -D 0.001 --dense-init run1.dense --ffile run1.features.dat --scfile run1.scores.dat -o mert.out
Executing: /data/home/ghoznfan/mosesdecoder-master/bin/kbmira --sctype M2SCORER --scconfig beta:0.5,max_unchanged_words:2,case:false --model-bg -D 0.001 --dense-init run1.dense --ffile run1.features.dat --scfile run1.scores.dat -o mert.out > run1.mira.out 2> mert.log
sh: line 1: 34173 abandoned /data/home/ghoznfan/mosesdecoder-master/bin/kbmira --sctype M2SCORER --scconfig beta:0.5,max_unchanged_words:2,case:false --model-bg -D 0.001 --dense-init run1.dense --ffile run1.features.dat --scfile run1.scores.dat -o mert.out > run1.mira.out 2> mert.log
Exit code: 134
ERROR: Failed to run '/data/home/ghoznfan/mosesdecoder-master/bin/kbmira --sctype M2SCORER --scconfig beta:0.5,max_unchanged_words:2,case:false --model-bg -D 0.001 --dense-init run1.dense --ffile run1.features.dat --scfile run1.scores.dat -o mert.out'. at /data/home/ghoznfan/mosesdecoder-master/scripts/training/mert-moses.pl line 1775.
06/12/2019 19:54:13 Command: perl /data/home/ghoznfan/mosesdecoder-master/scripts/training/mert-moses.pl /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/test.lc.0.mer.err.fact /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/test.lc.0.mer.m2 /data/home/ghoznfan/mosesdecoder-master/bin/moses /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/work.err-cor/binmodel.err-cor/moses.ini --working-dir=/data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/work.err-cor/tuning.0.1 --mertdir=/data/home/ghoznfan/mosesdecoder-master/bin --mertargs "--sctype M2SCORER" --no-filter-phrase-table --nbest=100 --threads 16 --decoder-flags "-threads 16 -fd '|'" --maximum-iterations 15 --batch-mira --return-best-dev --batch-mira-args "--sctype M2SCORER --scconfig beta:0.5,max_unchanged_words:2,case:false --model-bg -D 0.001"
finished with non-zero status 512
Died at train/run_cross.perl line 695.
Died at train/run_cross.perl line 11.
[ghoznfan@train-shuaidong-20190308-1708-gpu-pod-0 baselines-emnlp2016-master]$ paste: /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.*/work.err-cor/binmodel.err-cor/moses.mert.?.1.ini: no such file
06/12/2019 19:54:15 Running command: perl /data/home/ghoznfan/baselines-emnlp2016-master/train/scripts/reuse-weights.perl /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/work.err-cor/binmodel.err-cor/moses.mert.1.ini < /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/release/work.err-cor/binmodel.err-cor/moses.ini > /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/release/work.err-cor/binmodel.err-cor/moses.mert.1.ini
ERROR: could not open weight file: /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/work.err-cor/binmodel.err-cor/moses.mert.1.ini at /data/home/ghoznfan/baselines-emnlp2016-master/train/scripts/reuse-weights.perl line 9.
06/12/2019 19:54:15 Command: perl /data/home/ghoznfan/baselines-emnlp2016-master/train/scripts/reuse-weights.perl /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/cross.00/work.err-cor/binmodel.err-cor/moses.mert.1.ini < /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/release/work.err-cor/binmodel.err-cor/moses.ini > /data/home/ghoznfan/baselines-emnlp2016-master/trainworkdir/release/work.err-cor/binmodel.err-cor/moses.mert.1.ini
finished with non-zero status 512
Died at train/run_cross.perl line 695.
Where is the problem here?
The text was updated successfully, but these errors were encountered: