Skip to content

Latest commit

 

History

History
563 lines (427 loc) · 50 KB

File metadata and controls

563 lines (427 loc) · 50 KB

Turbinia Helm Chart

Turbinia is an open-source framework for deploying, managing, and running distributed forensic workloads.

Overview of Turbinia

Chart Source Code

TL;DR

helm repo add osdfir-charts https://google.github.io/osdfir-infrastructure/
helm install my-release osdfir-charts/turbinia

Note: By default, Turbinia is not externally accessible and can be reached via kubectl port-forward within the cluster.

Introduction

This chart bootstraps a Turbinia deployment on a Kubernetes cluster using the Helm package manager.

For a quick start with a local Kubernetes cluster on your desktop, check out the getting started with Minikube guide.

Prerequisites

  • Kubernetes 1.23+
  • Helm 3.8.0+
  • PV provisioner support in the underlying infrastructure
  • Shared storage for clusters larger then one machine.

Installing the Chart

The first step is to add the repo and then update to pick up any new changes.

helm repo add osdfir-charts https://google.github.io/osdfir-infrastructure/
helm repo update

To install the chart, specify any release name of your choice. For example, using my-release as the release name, run:

helm install my-release osdfir-charts/turbinia

The command deploys Turbinia on the Kubernetes cluster in the default configuration. The Parameters section lists the parameters that can be configured during installation.

Tip: See the Managing and updating the Turbinia config section for more details on managing the Turbinia config.

Configuration and installation details

Use a different Turbinia version

The Turbinia Helm chart utilizes the latest container release tags by default. OSDFIR Infrastructure actively monitors for new versions of the main containers and releases updated charts accordingly.

To modify the application version used in Turbinia, specify a different version of the image using the image.tag parameter and/or a different repository using the image.repository parameter.

For example, to use the most recent development version instead, set the following variables:

turbinia.server.image.repository="us-docker.pkg.dev/osdfir-registry/turbinia/release/turbinia-server-dev"
turbinia.server.image.tag="latest"
turbinia.api.image.repository="us-docker.pkg.dev/osdfir-registry/turbinia/release/turbinia-api-server-dev"
turbinia.api.image.tag="latest"
turbinia.worker.image.repository="us-docker.pkg.dev/osdfir-registry/turbinia/release/turbinia-worker-dev"
turbinia.worker.image.tag="latest"

Upgrading the Helm chart

Helm chart updates can be retrieved by running helm repo update.

To explore available charts and versions, use helm search repo osdfir-charts/. Install a specific chart version with helm install my-release osdfir-charts/turbinia --version <version>.

A major Helm chart version change (like v1.0.0 -> v2.0.0) indicates that there is an incompatible breaking change needing manual actions.

Managing and updating the Turbinia config

This section outlines how to deploy and manage the Turbinia configuration file within OSDFIR infrastructure.

There are two primary methods:

Using Default Configurations

If you don't provide your own Turbinia config file during deployment, the Turbinia deployment will automatically retrieve the latest default configs from the Turbinia Github repository. This method requires no further action from you.

NOTE: When using the default method, you cannot update the Turbinia config file directly. See the next section below for instructions on using a custom Turbinia config instead.

Managing Turbinia configs externally

For more advanced configuration management, you can manage the Turbinia config file independently of the Helm chart:

  1. Prepare your Config File:

    Organize the Turbinia config file with your desired customizations.

  2. Create a ConfigMap:

    kubectl create configmap turbinia-configs --from-file=turbinia.conf

    Replace turbinia.conf with the actual name of your config file.

  3. Install or Upgrade the Helm Chart:

    helm install my-release osdfir-charts/turbinia --set config.existingConfigMap="turbinia-configs"

    This command instructs the Helm chart to use the turbinia-configs ConfigMap for Turbinia's config file.

To update the config changes using this method:

  1. Update the ConfigMap:

    kubectl create configmap turbinia-configs --from-file=turbinia.conf --dry-run -o yaml | kubectl replace -f -
  2. Restart the Turbinia deployment to apply the new configs

    kubectl rollout restart deployment -l app.kubernetes.io/name=turbinia

Metrics and monitoring

The chart starts a metrics exporter for prometheus. The metrics endpoint (port 9200) is exposed in the service. Metrics can be scraped from within the cluster by either a Prometheus server running in your cluster or a cloud-based Prometheus service. Currently, Turbinia application metrics and system metrics are available.

One recommended option for an integrated monitoring solution would be the kube-prometheus-stack.

To setup, first add the repository containing the kube-prometheus-stack Helm chart:

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update

Create a file to disable the default selector:

cat >> values-monitoring.yaml << EOF
prometheus:
  prometheusSpec:
    serviceMonitorSelectorNilUsesHelmValues: false
EOF

Then to install the kube prometheus chart in a namespace called monitoring:

helm install kube-prometheus prometheus-community/kube-prometheus-stack -f values-monitoring.yaml --namespace monitoring

NOTE: To confirm Turbinia is recording metrics, check Prometheus or Grafana for entries starting with turbinia_. If nothing shows up, you might need to update your Turbinia installation (helm upgrade) to apply the necessary CustomResourceDefinition (CRD).

Resource requests and limits

OSDFIR Infrastructure charts allow setting resource requests and limits for all containers inside the chart deployment. These are inside the resources value (check parameter table). Setting requests is essential for production workloads and these should be adapted to your specific use case.

To maximize deployment success across different environments, resources are minimally defined by default.

Persistence

By default, the chart mounts a Persistent Volume at the /mnt/turbiniavolume path. The volume is created using dynamic volume provisioning.

Configuration files can be found at the /etc/turbinia path of the container while logs can be found at /mnt/turbiniavolume/logs/.

For clusters running more than one node or machine, the Persistent Volume will need to have the ability to be mounted by multiple machines, such as NFS, GCP Filestore, AWS EFS, and other shared file storage equivalents.

Installing Turbinia for Google Kubernetes Engine (GKE)

In order to process Google Cloud Platform (GCP) disks with Turbinia, some additional setup steps are required.

The first is to create a Turbinia GCP account using the helper script in tools/create-gcp-sa.sh prior to installing the chart.

Once done, install the chart with the appropriate values to enable GCP disk processing for Turbinia. Using a release name such as my-release, run:

helm install my-release osdfir-charts/turbinia \
    --set gcp.enabled=true \
    --set gcp.projectID=<GCP_PROJECT_ID> \
    --set gcp.projectRegion=<GKE_CLUSTER_REGION> \
    --set gcp.projectZone=<GKE_ClUSTER_ZONE>

Turbinia offers worker autoscaling based on CPU utilization. This feature can significantly increase the speed of task processing by automatically adjusting the number of active worker pods. To enable autoscaling on your existing deployment, run the following command:

helm upgrade my-release osdfir-charts/turbinia \
--reuse-values \
--set autoscaling.enabled.true

Enabling External Access and OIDC Authentication

Follow these steps to externally expose Turbinia and enable Google Cloud OIDC using the Oauth2 Proxy to control user access to Turbinia.

  1. Create a global static IP address:

    gcloud compute addresses create turbinia-webapps --global
  2. Register a new domain or use an existing one, ensuring a DNS entry points to the IP created earlier.

  3. Create OAuth web client credentials following the Google Support guide. If using the CLI client, also create a Desktop/Native OAuth client.

    • Fill in Authorized JavaScript origins with your domain as https://<DOMAIN_NAME>.com
    • Fill in Authorized redirect URIs with https://<DOMAIN_NAME>.com/oauth2/callback/
  4. Generate a cookie secret:

    openssl rand -base64 32 | head -c 32 | base64
  5. Store your new OAuth credentials in a K8s secret:

    kubectl create secret generic oauth-secrets \
        --from-literal=client-id=<WEB_CLIENT_ID> \
        --from-literal=client-secret=<WEB_CLIENT_SECRET> \
        --from-literal=cookie-secret=<COOKIE_SECRET> \
        --from-literal=client-id-native=<NATIVE_CLIENT_ID>
  6. Make a list of allowed emails in a text file, one per line:

    touch authenticated-emails.txt
  7. Apply the authenticated email list as a K8s secret:

    kubectl create secret generic authenticated-emails --from-file=authenticated-emails-list=authenticated-emails.txt
  8. Then to upgrade an existing release, externally expose Turbinia through a load balancer with GCP managed certificates, and deploy the Oauth2 Proxy for authentication, run:

    helm upgrade my-release osdfir-charts/turbinia \
        --reuse-values \
        --set ingress.enabled=true \
        --set ingress.className="gce" \
        --set ingress.host=<DOMAIN> \
        --set ingress.gcp.managedCertificates=true \
        --set ingress.gcp.staticIPName=<GCP_STATIC_IP_NAME> \
        --set oauth2proxy.enabled=true \
        --set oauth2proxy.configuration.existingSecret=<OAUTH_SECRET_NAME> \
        --set oauth2proxy.configuration.authenticatedEmailsFile.existingSecret=<AUTHENTICATED_EMAILS_SECRET_NAME>

Warning: Turbinia relies on the Oauth2 Proxy for authentication. If you plan to expose Turbinia with a public facing IP, it is highly recommended that the Oauth2 Proxy is deployed alongside with the command provided above. Otherwise, Turbinia will be accessible from anyone on the internet without authentication.

Installing Turbinia for Other Cloud Platforms

Turbinia currently offers native support only for Google Cloud Disks. This means you can seamlessly process evidence from Google Cloud Disks. For other cloud providers, you'll need to manually mount the disk to your Turbinia instance or copy the evidence into Turbinia for processing. We are actively working to expand native disk processing support for other cloud environments in the future. Installing the Turbinia Helm Chart remains the same regardless of your cloud provider.

Uninstalling the Chart

To uninstall/delete a Helm deployment with a release name of my-release:

helm uninstall my-release

Tip: Please update based on the release name chosen. You can list all releases using helm list

The command removes all the Kubernetes components but Persistent Volumes (PVC) associated with the chart and deletes the release.

To delete the PVC's associated with a release name of my-release:

kubectl delete pvc -l release=my-release

Note: Deleting the PVC's will delete Turbinia data as well. Please be cautious before doing it.

Parameters

Global parameters

Name Description Value
global.timesketch.enabled Enables the Timesketch deployment (only used in the main OSDFIR Infrastructure Helm chart) false
global.timesketch.servicePort Timesketch service port (overrides timesketch.service.port) nil
global.turbinia.enabled Enables the Turbinia deployment (only used within the main OSDFIR Infrastructure Helm chart) false
global.turbinia.servicePort Turbinia API service port (overrides turbinia.service.port) nil
global.dfdewey.enabled Enables the dfDewey deployment along with Turbinia false
global.yeti.enabled Enables the Yeti deployment (only used in the main OSDFIR Infrastructure Helm chart) false
global.yeti.servicePort Yeti API service port (overrides yeti.api.service.port) nil
global.ingress.enabled Enable the global loadbalancer for external access false
global.existingPVC Existing claim for Turbinia persistent volume (overrides persistent.name) ""
global.storageClass StorageClass for the Turbinia persistent volume (overrides persistent.storageClass) ""

Turbinia configuration

Turbinia server configuration

Name Description Value
server.image.repository Turbinia image repository us-docker.pkg.dev/osdfir-registry/turbinia/release/turbinia-server
server.image.pullPolicy Turbinia image pull policy IfNotPresent
server.image.tag Overrides the image tag whose default is the chart appVersion 20240820
server.image.imagePullSecrets Specify secrets if pulling from a private repository []
server.podSecurityContext Holds pod-level security attributes and common server container settings {}
server.securityContext Holds security configuration that will be applied to the server container {}
server.resources.limits Resource limits for the server container {}
server.resources.requests Requested resources for the server container {}
server.nodeSelector Node labels for Turbinia server pods assignment {}
server.tolerations Tolerations for Turbinia server pods assignment []
server.affinity Affinity for Turbinia server pods assignment {}

Turbinia worker configuration

Name Description Value
worker.image.repository Turbinia image repository us-docker.pkg.dev/osdfir-registry/turbinia/release/turbinia-worker
worker.image.pullPolicy Turbinia image pull policy IfNotPresent
worker.image.tag Overrides the image tag whose default is the chart appVersion 20240820
worker.image.imagePullSecrets Specify secrets if pulling from a private repository []
worker.replicaCount Number of worker pods to run at once 1
worker.autoscaling.enabled Enables Turbinia Worker autoscaling false
worker.autoscaling.minReplicas Minimum amount of worker pods to run at once 5
worker.autoscaling.maxReplicas Maximum amount of worker pods to run at once 500
worker.autoscaling.targetCPUUtilizationPercentage CPU scaling metric workers will scale based on 80
worker.podSecurityContext Holds pod-level security attributes and common worker container settings {}
worker.securityContext.privileged Runs the container as priveleged. Due to Turbinia attaching and detaching disks, a priveleged container is required for the worker container. true
worker.resources.limits Resources limits for the worker container {}
worker.resources.requests.cpu Requested cpu for the worker container 250m
worker.resources.requests.memory Requested memory for the worker container 256Mi
worker.nodeSelector Node labels for Turbinia worker pods assignment {}
worker.tolerations Tolerations for Turbinia worker pods assignment []
worker.affinity Affinity for Turbinia worker pods assignment {}

Turbinia API / Web configuration

Name Description Value
api.image.repository Turbinia image repository for API / Web server us-docker.pkg.dev/osdfir-registry/turbinia/release/turbinia-api-server
api.image.pullPolicy Turbinia image pull policy IfNotPresent
api.image.tag Overrides the image tag whose default is the chart appVersion 20240820
api.image.imagePullSecrets Specify secrets if pulling from a private repository []
api.podSecurityContext Holds pod-level security attributes that will be applied to the API / Web container {}
api.securityContext Holds security configuration that will be applied to the API / Web container {}
api.resources.limits Resource limits for the api container {}
api.resources.requests Requested resources for the api container {}
api.nodeSelector Node labels for Turbinia api pods assignment {}
api.tolerations Tolerations for Turbinia api pods assignment []
api.affinity Affinity for Turbinia api pods assignment {}

Common Parameters

Name Description Value
config.existingConfigMap Use an existing ConfigMap as the default Turbinia config. ""
config.disabledJobs List of Turbinia Jobs to disable. Overrides DISABLED_JOBS in the Turbinia config. ['BinaryExtractorJob', 'BulkExtractorJob', 'HindsightJob', 'PhotorecJob', 'VolatilityJob']
config.existingVertexSecret Name of existing secret containing Vertex API Key in order to enable the Turbinia LLM Artifacts Analyzer. The secret must contain the key turbinia-vertexapi ""
gcp.enabled Enables Turbinia to run within a GCP project. When enabling, please ensure you have run the supplemental script create-gcp-sa.sh to create a Turbinia GCP service account required for attaching persistent disks. false
gcp.projectID GCP Project ID where your cluster is deployed. Required when .Values.gcp.enabled is set to true ""
gcp.projectRegion Region where your cluster is deployed. Required when .Values.gcp.enabled is set to true ""
gcp.projectZone Zone where your cluster is deployed. Required when .Values.gcp.enabled is set to true ""
gcp.gcpLogging Enables GCP Cloud Logging false
gcp.gcpErrorReporting Enables GCP Cloud Error Reporting false
serviceAccount.create Specifies whether a service account should be created true
serviceAccount.annotations Annotations to add to the service account {}
serviceAccount.name The name of the Kubernetes service account to use turbinia
service.type Turbinia service type ClusterIP
service.port Turbinia api service port 8000
metrics.enabled Enables metrics scraping true
metrics.port Port to scrape metrics from 9200
versioncheck.enabled Enable Turbinia runtime version checking true
persistence.name Turbinia persistent volume name turbiniavolume
persistence.size Turbinia persistent volume size 2Gi
persistence.storageClass PVC Storage Class for Turbinia volume ""
persistence.accessModes PVC Access Mode for Turbinia volume ["ReadWriteOnce"]
ingress.enabled Enable the Turbinia loadbalancer for external access (only used in the main OSDFIR Infrastructure Helm chart) false
ingress.host The domain name Turbinia will be hosted under ""
ingress.selfSigned Create a TLS secret for this ingress record using self-signed certificates generated by Helm false
ingress.certManager Add the corresponding annotations for cert-manager integration false
ingress.className IngressClass that will be be used to implement the Ingress ""
ingress.gcp.managedCertificates Enabled GCP managed certificates for your domain false
ingress.gcp.staticIPName Name of the static IP address you reserved in GCP ""
ingress.gcp.staticIPV6Name Name of the static IPV6 address you reserved. This can be optionally provided to deploy a loadbalancer with an IPV6 address in GCP. ""

dfDewey PostgreSQL Configuration Parameters

Name Description Value
dfdewey.postgresql.enabled Enables the Postgresql deployment true
dfdewey.postgresql.nameOverride String to partially override common.names.fullname template dfdewey-postgresql
dfdewey.postgresql.auth.username Name for a custom user to create dfdewey
dfdewey.postgresql.auth.password Password for the custom user to create. Ignored if auth.existingSecret is provided password
dfdewey.postgresql.auth.database Name for a custom database to create dfdewey
dfdewey.postgresql.primary.persistence.size PostgreSQL Persistent Volume size 8Gi
dfdewey.postgresql.primary.resources.requests.cpu Requested cpu for the PostgreSQL Primary containers 250m
dfdewey.postgresql.primary.resources.requests.memory Requested memory for the PostgreSQL Primary containers 256Mi
dfdewey.postgresql.primary.resources.limits Resource limits for the PostgreSQL Primary containers {}

dfDewey Opensearch Configuration Parameters

Name Description Value
dfdewey.opensearch.enabled Enables the Opensearch deployment true
dfdewey.opensearch.nameOverride Overrides the clusterName when used in the naming of resources dfdewey-opensearch
dfdewey.opensearch.masterService The service name used to connect to the masters dfdewey-opensearch
dfdewey.opensearch.singleNode Replicas will be forced to 1 true
dfdewey.opensearch.sysctlInit.enabled Sets optimal sysctl's through privileged initContainer true
dfdewey.opensearch.opensearchJavaOpts Sets the size of the Opensearch Java heap -Xms512m -Xmx512m
dfdewey.opensearch.config.opensearch.yml Opensearch configuration file. Can be appended for additional configuration options {"opensearch.yml":"discovery:\n type: single-node\nplugins:\n security:\n disabled: true\n"}
dfdewey.opensearch.extraEnvs[0].name Environment variable to set the initial admin password OPENSEARCH_INITIAL_ADMIN_PASSWORD
dfdewey.opensearch.extraEnvs[0].value The initial admin password KyfwJExU2!2MvU6j
dfdewey.opensearch.extraEnvs[1].name Environment variable to disable Opensearch Demo config DISABLE_INSTALL_DEMO_CONFIG
dfdewey.opensearch.extraEnvs[1].value Disables Opensearch Demo config true
dfdewey.opensearch.extraEnvs[2].name Environment variable to disable Opensearch Security plugin given that DISABLE_SECURITY_PLUGIN
dfdewey.opensearch.extraEnvs[2].value Disables Opensearch Security plugin true
dfdewey.opensearch.persistence.size Opensearch Persistent Volume size. A persistent volume would be created for each Opensearch replica running 2Gi
dfdewey.opensearch.resources.requests.cpu Requested cpu for the Opensearch containers 250m
dfdewey.opensearch.resources.requests.memory Requested memory for the Opensearch containers 512Mi

Third Party Configuration

Redis configuration parameters

Name Description Value
redis.enabled enabled Enables the Redis deployment true
redis.auth.enabled Enables Redis Authentication. Disabled due to incompatibility with Turbinia false
redis.sentinel.enabled Enables Redis Sentinel on Redis pods false
redis.architecture Specifies the Redis architecture. Allowed values: standalone or replication standalone
redis.master.count Number of Redis master instances to deploy (experimental, requires additional configuration) 1
redis.master.service.type Redis master service type ClusterIP
redis.master.service.ports.redis Redis master service port 6379
redis.master.persistence.size Persistent Volume size 2Gi
redis.master.resources.limits Resource limits for the Redis master containers {}
redis.master.resources.requests Requested resources for the Redis master containers {}
redis.replica.replicaCount Number of Redis replicas to deploy 0
redis.replica.service.type Redis replicas service type ClusterIP
redis.replica.service.ports.redis Redis replicas service port 6379
redis.replica.persistence.size Persistent Volume size 2Gi
redis.replica.resources.limits Resources limits for the Redis replica containers {}
redis.replica.resources.requests Requested resources for the Redis replica containers {}

Oauth2 Proxy configuration parameters

Name Description Value
oauth2proxy.enabled Enables the Oauth2 Proxy deployment false
oauth2proxy.containerPort Oauth2 Proxy container port 4180
oauth2proxy.service.type OAuth2 Proxy service type ClusterIP
oauth2proxy.service.port OAuth2 Proxy service HTTP port 8080
oauth2proxy.extraEnvVars[0].name Name of the environment variable to pass to Oauth2 Proxy OAUTH2_PROXY_OIDC_EXTRA_AUDIENCES
oauth2proxy.extraEnvVars[0].valueFrom.secretKeyRef.name Name of the secret containing native client id {{ template "oauth2-proxy.secretName" . }}
oauth2proxy.extraEnvVars[0].valueFrom.secretKeyRef.key Name of the secret key containing native client id client-id-native
oauth2proxy.extraEnvVars[0].valueFrom.secretKeyRef.optional Set to optional if native client id is not provided true
oauth2proxy.configuration.turbiniaSvcPort Turbinia service port referenced from .Values.service.port to be used in Oauth setup 8000
oauth2proxy.configuration.existingSecret Secret with the client ID, client secret, client native id (optional) and cookie secret ""
oauth2proxy.configuration.content Oauth2 proxy configuration. Please see the official docs for a list of configurable values ""
oauth2proxy.configuration.authenticatedEmailsFile.enabled Enable authenticated emails file true
oauth2proxy.configuration.authenticatedEmailsFile.content Restricted access list (one email per line). At least one email address is required for the Oauth2 Proxy to properly work ""
oauth2proxy.configuration.authenticatedEmailsFile.existingSecret Secret with the authenticated emails file ""
oauth2proxy.configuration.authenticatedEmailsFile.existingSecret Secret with the authenticated emails file ""
oauth2proxy.configuration.oidcIssuerUrl OpenID Connect issuer URL https://accounts.google.com
oauth2proxy.redis.enabled Enable Redis for OAuth Session Storage false

Specify each parameter using the --set key=value[,key=value] argument to helm install. For example,

helm install my-release osdfir-charts/turbinia \
--set ingress.enabled=true \
--set ingress.host="mydomain.com" \
--set ingress.selfSigned=true

The above command installs Turbinia with an attached Ingress.

Alternatively, the values.yaml file can be directly updated if the Helm chart was pulled locally. For example,

helm pull osdfir-charts/turbinia --untar

Then make changes to the downloaded values.yaml and once done, install the chart with the updated values.

helm install my-release ../turbinia

License

Copyright © 2024 OSDFIR Infrastructure

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.