Routing problem including time windows and maximum drive time #4429
Replies: 2 comments
-
|
Beta Was this translation helpful? Give feedback.
-
Thanks for your clear answers Mizux! Based on your feedback, I incorporated the span upper bound limit to my vehicle routing routing problem. """Vehicles Routing Problem (VRP) with Time Windows."""
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def create_data_model():
"""Stores the data for the problem."""
data = {}
data["time_matrix"] = [
[0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
[6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
[9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
[8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
[7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
[3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
[6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
[2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
[3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
[2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
[6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
[6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
[4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
[4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
[5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
[9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
[7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
]
data["time_windows"] = [
(0, 5), # depot
(7, 12), # 1
(10, 15), # 2
(16, 18), # 3
(10, 13), # 4
(0, 5), # 5
(5, 10), # 6
(0, 4), # 7
(5, 10), # 8
(0, 3), # 9
(10, 16), # 10
(10, 15), # 11
(0, 5), # 12
(5, 10), # 13
(7, 8), # 14
(10, 15), # 15
(11, 15), # 16
]
data["num_vehicles"] = 7
data["depot"] = 0
return data
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f"Objective: {solution.ObjectiveValue()}")
time_dimension = routing.GetDimensionOrDie("Time")
total_time = 0
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
plan_output = f"Route for vehicle {vehicle_id}:\n"
while not routing.IsEnd(index):
time_var = time_dimension.CumulVar(index)
plan_output += (
f"{manager.IndexToNode(index)}"
f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
" -> "
)
index = solution.Value(routing.NextVar(index))
time_var = time_dimension.CumulVar(index)
plan_output += (
f"{manager.IndexToNode(index)}"
f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
)
plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
print(plan_output)
total_time += solution.Min(time_var)
print(f"Total time of all routes: {total_time}min")
def main():
"""Solve the VRP with time windows."""
# Instantiate the data problem.
data = create_data_model()
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(
len(data["time_matrix"]), data["num_vehicles"], data["depot"]
)
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
# Create and register a transit callback.
def time_callback(from_index, to_index):
"""Returns the travel time between the two nodes."""
# Convert from routing variable Index to time matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data["time_matrix"][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(time_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Time Windows constraint.
# get the max of the time windows
max_capacity_time_windows = max(max(window) for window in data["time_windows"])
time = "Time Window"
routing.AddDimension(
transit_callback_index,
30, # allow waiting time
max_capacity_time_windows, # maximum time per vehicle
False, # Don't force start cumul to zero.
time,
)
time_window_dimension = routing.GetDimensionOrDie(time)
# set span upperbound to restrict maximum driving time
for vehicle in range(data["num_vehicles"]):
time_window_dimension.SetSpanUpperBoundForVehicle(15, vehicle)
# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(data["time_windows"]):
if location_idx == data["depot"]:
continue
index = manager.NodeToIndex(location_idx)
time_window_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
# Add time window constraints for each vehicle start node.
depot_idx = data["depot"]
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
time_window_dimension.CumulVar(index).SetRange(
data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
)
# Instantiate route start and end times to produce feasible times.
for i in range(data["num_vehicles"]):
routing.AddVariableMinimizedByFinalizer(
time_window_dimension.CumulVar(routing.Start(i))
)
routing.AddVariableMinimizedByFinalizer(
time_window_dimension.CumulVar(routing.End(i))
)
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)
# search_parameters.log_search = True
search_parameters.time_limit.seconds = 500 # Set a time limit for the solver
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Print solution on console.
if solution:
print_solution(data, manager, routing, solution)
if __name__ == "__main__":
main() Therefore, I was wondering whether the code was correct or if there is a mistake. Since the long run time to obtain an answer feels really strange to me. Thanks |
Beta Was this translation helpful? Give feedback.
-
Hi all,
First off, thanks so much for the great work on the OR-Tools package – it’s been incredibly useful.
I have a question about implementing time windows alongside a maximum drive time constraint for a truck. I followed the example provided (https://developers.google.com/optimization/routing/vrptw), but ran into a few issues. Here's my scenario:
I'm working on a vehicle routing problem where the truck needs to arrive within specified time windows, but also cannot exceed a maximum allowable driving time (X minutes).
I tried a few approaches to handle this:
Any insights would be greatly appreciated!
Beta Was this translation helpful? Give feedback.
All reactions