-
Notifications
You must be signed in to change notification settings - Fork 52
/
setup.py
98 lines (90 loc) · 3.46 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright 2024 The AI Edge Torch Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import pathlib
import re
import setuptools
setup = setuptools.setup
find_packages = setuptools.find_packages
here = pathlib.Path(__file__).parent.resolve()
# Get the long description from the README file
long_description = """
Library that supports converting PyTorch models into a .tflite format, which can
then be run with TensorFlow Lite and MediaPipe. This enables applications for
Android, iOS and IOT that can run models completely on-device.
[Install steps](https://github.com/google-ai-edge/ai-edge-torch#installation)
and additional details are in the AI Edge Torch
[GitHub repository](https://github.com/google-ai-edge/ai-edge-torch).
""".lstrip()
name = "ai-edge-torch"
# TODO(b/357076369): move version updating logics to version.py
version_py = here / "ai_edge_torch" / "version.py"
version_regex = "__version__\s*=\s*(\"|')(?P<version>[^\"']+)(\"|')"
version = re.search(version_regex, version_py.read_text()).group("version")
if nightly_release_date := os.environ.get("NIGHTLY_RELEASE_DATE"):
name += "-nightly"
version += ".dev" + nightly_release_date
version_py.write_text(
re.sub(
version_regex, f'__version__ = "{version}"', version_py.read_text()
)
)
setup(
name=name,
version=version,
description=(
"Supporting PyTorch models with the Google AI Edge TFLite runtime."
),
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/google-ai-edge/ai-edge-torch",
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
keywords="On-Device ML, AI, Google, TFLite, PyTorch, LLMs, GenAI",
packages=find_packages(
include=["ai_edge_torch*"],
),
python_requires=">=3.10",
install_requires=[
"numpy",
"scipy",
"safetensors",
"tabulate",
"torch>=2.4.0",
"tf-nightly>=2.19.0.dev20241201",
"ai-edge-litert-nightly",
"ai-edge-quantizer-nightly",
"jax",
"torch-xla2[odml]>=0.0.1.dev20241201",
],
extras_require={
"torch-xla": ["torch_xla>=2.4.0"],
},
)