-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
273 lines (234 loc) · 8.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import os
import time
import jax
import jax.numpy as jnp
import numpy as np
import matplotlib.pyplot as plt
import optax
import orbax.checkpoint
import wandb
from dm_pix import ssim
from dm_pix import psnr
from flax.training import train_state
from flax.training import orbax_utils
from tqdm import tqdm
from dln.data_loader import VOC2007Loader, LOLLoader
from dln.model import DLN
from dln.tv import total_variation
def compute_metrics(*, y_pred, y):
ssim_loss = (1 - ssim(y, y_pred)).mean()
tv_loss = total_variation(y_pred, weight=0.001)
loss = ssim_loss + tv_loss
res_psnr = jnp.mean(psnr(y, y_pred))
metrics = {
"loss": loss,
"psnr": res_psnr,
"ssim": 1 - ssim_loss,
}
return metrics
@jax.jit
def train_step(state, X, y):
def loss_fn(params):
y_pred = DLN(dim=64).apply({"params": params}, X)
ssim_loss = (1 - ssim(y, y_pred)).mean()
tv_loss = total_variation(y_pred, weight=0.001)
loss = ssim_loss + tv_loss
return loss, y_pred
(_, nl_pred), grads = jax.value_and_grad(loss_fn, has_aux=True)(state.params)
state = state.apply_gradients(grads=grads) # this is the whole update now! concise!
metrics = compute_metrics(y_pred=nl_pred, y=y)
return state, metrics
@jax.jit
def eval_step(state, X, y):
nl_pred = DLN(dim=64).apply({"params": state.params}, X)
return compute_metrics(y_pred=nl_pred, y=y)
def train_one_epoch(state, data_loader):
"""Train for 1 epoch on the training set."""
train_steps = len(data_loader) // data_loader.batch_size
batch_metrics = []
for X, y in tqdm(data_loader.get(), total=train_steps):
state, metrics = train_step(state, X, y)
batch_metrics.append(metrics)
# Aggregate the metrics
batch_metrics_np = jax.device_get(
batch_metrics
) # pull from the accelerator onto host (CPU)
epoch_metrics_np = {
k: np.mean([metrics[k] for metrics in batch_metrics_np])
for k in batch_metrics_np[0]
}
return state, epoch_metrics_np
@jax.jit
def eval_step(state, X, y):
nl_pred = DLN(dim=64).apply({"params": state.params}, X)
return compute_metrics(y_pred=nl_pred, y=y)
def evaluate_model(state, data_loader):
"""Evaluate on the validation set."""
batch_metrics = []
test_steps = 5
for i, (X, y) in tqdm(enumerate(data_loader.get()), total=test_steps):
metrics = eval_step(state, X, y)
batch_metrics.append(metrics)
if i == test_steps:
break
# Aggregate the metrics
batch_metrics_np = jax.device_get(
batch_metrics
) # pull from the accelerator onto host (CPU)
epoch_metrics_np = {
k: np.mean([metrics[k] for metrics in batch_metrics_np])
for k in batch_metrics_np[0]
}
return epoch_metrics_np
def create_train_state(key, learning_rate):
dln = DLN(dim=64)
params = dln.init(key, jnp.ones((1, 128, 128, 3)))["params"]
optimizer = optax.adam(learning_rate)
return train_state.TrainState.create(
apply_fn=dln.apply, params=params, tx=optimizer
)
def plot_pred(state, X, y, name="prediction.png"):
y_pred = DLN(dim=64).apply({"params": state.params}, X)
print("PSNR:", np.mean(psnr(y, y_pred)))
print("SSIM:", np.mean(ssim(y, y_pred)))
plt.subplot(1, 3, 1)
plt.imshow(X[0])
plt.title("Low light")
plt.subplot(1, 3, 2)
plt.imshow(y[0])
plt.title("Normal light")
plt.subplot(1, 3, 3)
plt.imshow(y_pred[0])
plt.title("Prediction")
plt.savefig(name)
def parse_args():
parser = argparse.ArgumentParser(description="DLN-JAX training script")
parser.add_argument(
"--seed",
type=int,
default=int(time.time()),
help="random seed to use. Default=123",
)
parser.add_argument(
"--output", default="./output/", help="Location to save checkpoint models"
)
parser.add_argument(
"--model-folder",
default="DLN-MODEL",
help="pretrained base model to load",
)
parser.add_argument(
"--fine-tune",
type=bool,
default=False,
help="fine-tune the model with LOL dataset",
)
args = parser.parse_args()
return args
def main(seed, output_folder, fine_tune, model_folder):
seed = int(time.time())
name = f"JAX-{seed}-{'LOL' if fine_tune else 'VOC'}"
wandb.init(
project="DLN",
name=name,
entity="goncamateus",
config={"seed": seed},
save_code=True,
)
abs_folder_path = os.path.dirname(os.path.abspath(__file__))
dln_chkpts = f"{abs_folder_path}/models/DLN-MODEL-{seed}/"
learning_rate = 1e-3
num_epochs = 500
batch_size = 12
train_state = create_train_state(jax.random.PRNGKey(seed), learning_rate)
orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()
if fine_tune:
indexes_in_folder = sorted([int(i) for i in os.listdir(model_folder)])
model_folder = f"{model_folder}/{indexes_in_folder[-1]}/default"
chkpt = orbax_checkpointer.restore(model_folder)
model_dict = chkpt["model"]
train_state = train_state.replace(params=model_dict["params"])
options = orbax.checkpoint.CheckpointManagerOptions(max_to_keep=10, create=True)
checkpoint_manager = orbax.checkpoint.CheckpointManager(
dln_chkpts, orbax_checkpointer, options
)
ckpt = {"model": train_state}
save_args = orbax_utils.save_args_from_target(ckpt)
data_loader = LOLLoader if fine_tune else VOC2007Loader
train_loader = data_loader(
patch_size=128,
upscale_factor=1,
data_augmentation=True,
batch_size=batch_size,
)
first_ll, first_nl = next(train_loader.get(shuffle=False))
print("Before training:")
plot_pred(
train_state, first_ll, first_nl, name=f"{output_folder}/before_training.png"
)
metrics_history = {
"train_loss": [],
"train_psnr": [],
"train_ssim": [],
"test_loss": [],
"test_psnr": [],
"test_ssim": [],
}
for epoch in range(1, num_epochs + 1):
epoch_time_init = time.time()
train_state, train_metrics = train_one_epoch(train_state, train_loader)
for metric, value in train_metrics.items():
metrics_history[f"train_{metric}"].append(value)
test_state = train_state
test_loader = data_loader(
patch_size=128,
upscale_factor=1,
data_augmentation=True,
batch_size=3 if fine_tune else batch_size,
train=False,
)
test_metrics = evaluate_model(test_state, test_loader)
for metric, value in test_metrics.items():
metrics_history[f"test_{metric}"].append(value)
log_dict = {f"{k}": v[-1] for k, v in metrics_history.items()}
wandb.log(log_dict)
print(
f"train epoch: {epoch}, "
f"loss: {metrics_history['train_loss'][-1]}, "
f"PSNR: {metrics_history['train_psnr'][-1]}, "
f"SSIM: {metrics_history['train_ssim'][-1]}"
)
print(
f"test epoch: {epoch}, "
f"loss: {metrics_history['test_loss'][-1]}, "
f"PSNR: {metrics_history['test_psnr'][-1]}, "
f"SSIM: {metrics_history['test_ssim'][-1]}"
)
if epoch % 10 == 0:
ckpt = {"model": train_state}
if checkpoint_manager.save(
epoch, ckpt, save_kwargs={"save_args": save_args}
):
print(f"Saved checkpoint for epoch {epoch}")
artifact = wandb.Artifact(
f"epoch-{epoch}",
type="model",
metadata={
"loss": metrics_history["test_loss"][-1],
"PSNR": metrics_history["test_psnr"][-1],
"SSIM": metrics_history["test_ssim"][-1],
},
)
artifact.add_dir(f"{dln_chkpts}/{epoch}")
wandb.run.log_artifact(artifact)
end_time = time.time()
print("Time taken for epoch: ", (end_time - epoch_time_init), "seconds")
print("After training:")
plot_pred(
train_state, first_ll, first_nl, name=f"{output_folder}/after_training.png"
)
wandb.log({"Result Image": wandb.Image(f"{output_folder}/after_training.png")})
if __name__ == "__main__":
args = parse_args()
main(args.seed, args.output, args.fine_tune, args.model_folder)