forked from scikit-learn-contrib/stability-selection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
appveyor.yml
97 lines (74 loc) · 3.05 KB
/
appveyor.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# AppVeyor.com is a Continuous Integration service to build and run tests under
# Windows
environment:
global:
# SDK v7.0 MSVC Express 2008's SetEnv.cmd script will fail if the
# /E:ON and /V:ON options are not enabled in the batch script interpreter
# See: http://stackoverflow.com/a/13751649/163740
CMD_IN_ENV: "cmd /E:ON /V:ON /C .\\ci_scripts\\appveyor\\run_with_env.cmd"
WHEELHOUSE_UPLOADER_USERNAME: sklearn
WHEELHOUSE_UPLOADER_SECRET:
secure: XzK+Mi6Ba5frV2B/jHq7h4aD8/nox9SsI3T8Kub1L2XNevRSIurUEry3PdWESzRY
MODULE: skltemplate
PROJECT_NAME: sklearn-template
CLOUD_STORAGE: CLOUDFILES
CLOUD_CONTATINER: sklearn-template-trial
matrix:
- PYTHON: "C:\\Python27"
PYTHON_VERSION: "2.7.8"
PYTHON_ARCH: "32"
MINICONDA: "C:\\Miniconda"
- PYTHON: "C:\\Python27-x64"
PYTHON_VERSION: "2.7.8"
PYTHON_ARCH: "64"
MINICONDA: "C:\\Miniconda-x64"
- PYTHON: "C:\\Python35"
PYTHON_VERSION: "3.5.0"
PYTHON_ARCH: "32"
MINICONDA: "C:\\Miniconda35"
- PYTHON: "C:\\Python35-x64"
PYTHON_VERSION: "3.5.0"
PYTHON_ARCH: "64"
MINICONDA: "C:\\Miniconda35-x64"
install:
# Miniconda is pre-installed in the worker build
- "SET PATH=%MINICONDA%;%MINICONDA%\\Scripts;%PATH%"
- "python -m pip install -U pip"
# Check that we have the expected version and architecture for Python
- "python --version"
- "python -c \"import struct; print(struct.calcsize('P') * 8)\""
- "pip --version"
# Remove cygwin because it clashes with conda
# see http://help.appveyor.com/discussions/problems/3712-git-remote-https-seems-to-be-broken
- rmdir C:\\cygwin /s /q
# Install the build and runtime dependencies of the project.
- conda install --quiet --yes numpy scipy cython nose scikit-learn wheel
- pip install wheelhouse_uploader nose-timer
- "%CMD_IN_ENV% python setup.py bdist_wheel bdist_wininst"
- ps: "ls dist"
# Install the generated wheel package to test it
- "pip install --pre --no-index --find-links dist %PROJECT_NAME%"
# Not a .NET project, we build scikit-learn in the install step instead
build: false
artifacts:
# Archive the generated wheel package in the ci.appveyor.com build report.
- path: dist\*
on_success:
# Upload the generated wheel package to Rackspace
# On Windows, Apache Libcloud cannot find a standard CA cert bundle so we
# disable the ssl checks.
- "python -m wheelhouse_uploader upload provider=%CLOUD_STORAGE% --no-ssl-check --local-folder=dist %CLOUD_CONTAINER%"
test_script:
# Change to a non-source folder to make sure we run the tests on the
# installed library.
- "mkdir empty_folder"
- "cd empty_folder"
- "python -c \"import nose; nose.main()\" --with-timer --timer-top-n 20 -s -v %MODULE%"
# Move back to the project folder
- "cd .."
cache:
# Use the appveyor cache to avoid re-downloading large archives such
# the MKL numpy and scipy wheels mirrored on a rackspace cloud
# container, speed up the appveyor jobs and reduce bandwidth
# usage on our rackspace account.
- '%APPDATA%\pip\Cache'