-
Notifications
You must be signed in to change notification settings - Fork 14
/
readobslogs.py
210 lines (191 loc) · 8.08 KB
/
readobslogs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import pandas as pd
from glob import glob
import ccdmap as c
import numpy as np
import os
def run(verbose=True):
snids = list(c.ccdmap.keys())
m = pd.read_csv('yse/fieldmaps.txt',delim_whitespace=True, comment='#')
snids.extend(list(m['SNID'].to_numpy()))
ignoref = open('debass/ignore.list','r').readlines()
ignore = [i.strip() for i in ignoref]
outtxt = open('debass/debass_sne.txt','w')
outtxtexp = open('debass/debass_sne_wexpnums.txt','w')
os.system('rm obslogs/*~ >& dump')
os.system('rm 2021A/*/*~ >& dump')
os.system('rm 2022A/*/*~ >& dump')
os.system('rm 2022B/*/*~ >& dump')
os.system('rm 2023A/*/*~ >& dump')
os.system('rm 2023B/*/*~ >& dump')
os.system('rm 2024A/*/*~ >& dump')
os.system('rm 2024B/*/*~ >& dump')
ysedict = {}
ysedict2 = {}
rysedict = {}
for row in m.iterrows():
#print(row[1]['YSEID'])
ysedict[str(row[1]['YSEID'])] = str(row[1]['SNID'])
if str(row[1]['YSEID'])[-1] == 'a':
ysedict2[str(row[1]['YSEID'])[:-1]+'b'] = str(row[1]['SNID'])
if str(row[1]['YSEID'])[-1] == 'b':
ysedict2[str(row[1]['YSEID'])[:-1]+'a'] = str(row[1]['SNID'])
rysedict[str(row[1]['SNID'])] = str(row[1]['YSEID'])
dfs = []
l = glob('2021A/*/*qc*nv')
l.extend(glob('2021B/*/*qc*nv'))
l.extend(glob('2022A/*/*qc*nv'))
l.extend(glob('2022B/*/*qc*nv'))
l.extend(glob('2023A/*/*qc*nv'))
l.extend(glob('2023B/*/*qc*nv'))
l.extend(glob('2024A/*/*qc*nv'))
l.extend(glob('2024B/*/*qc*nv'))
for f in l:
#print(f)
datestr = f.split('/')[-1].split('.')[0]
date = datestr[:4]+'-'+datestr[4:6]+'-'+datestr[6:8]
datestrf = int(datestr)
expnums = []
objects = []
filts = []
ras = []
decs = []
datestrfs = []
teffs = []
if verbose: print(f)
for l in open(f,'r').readlines():
if l[0] == '#': continue
if len(l.split()) < 2: continue
if l.split()[0] == 'MJD': continue
#if l.split()[0] == 'ID': continue
expnums.append(int(l.split()[0]))
objects.append(str(l.split()[-1]))
print(str(l.split()[-1]))
if len(l.split()) <= 10:
teffs.append(np.nan)
else:
teffs.append(float(l.split()[10]))
filts.append(str(l.split()[4]))
ras.append(float(l.split()[1]))
decs.append(float(l.split()[2]))
#tdf = pd.read_csv(f,names=['expnum','ra','dec','ut','filt','exp','secz','type','object'],delim_whitespace=True,comment='#')
dates = [date for e in range(len(expnums))]
datestrfs = [datestrf for e in range(len(expnums))]
tdf = pd.DataFrame.from_dict({'expnum':expnums,'object':objects,'date':dates,'filt':filts,'ra':ras,'dec':decs,'teff':teffs,'datestrf':datestrfs})
dfs.append(tdf)
obsdict = {}
debassonlyexpnums = []
df = pd.concat(dfs)
for row in df.iterrows():
r = row[1]
if str(r['object']).split('_')[0] in snids:
snid = r['object'].split('_')[0]
ra = r['ra']
dec = r['dec']
if not snid in obsdict.keys():
obsdict[snid] = {'dates':[],'expnums':[],'filts':[],'ra':ra,'dec':dec,'datestrfs':[],'teffs':[], 'objects':[]}
#print(snid,r['date'])
obsdict[snid]['dates'].append(r['date'])
obsdict[snid]['expnums'].append(r['expnum'])
obsdict[snid]['filts'].append(r['filt'])
obsdict[snid]['teffs'].append(r['teff'])
obsdict[snid]['datestrfs'].append(r['datestrf'])
obsdict[snid]['objects'].append(r['object'])
debassonlyexpnums.append(r['expnum'])
elif str(r['object']) in ysedict.keys():
snid = ysedict[r['object']]
ra = r['ra']
dec = r['dec']
if not snid in obsdict.keys():
obsdict[snid] = {'dates':[],'expnums':[],'filts':[],'ra':ra,'dec':dec,'datestrfs':[],'teffs':[], 'objects':[]}
obsdict[snid]['dates'].append(r['date'])
obsdict[snid]['expnums'].append(r['expnum'])
obsdict[snid]['filts'].append(r['filt'])
obsdict[snid]['teffs'].append(r['teff'])
obsdict[snid]['datestrfs'].append(r['datestrf'])
obsdict[snid]['objects'].append(r['object'])
elif str(r['object']) in ysedict2.keys():
snid = ysedict2[r['object']]
ra = r['ra']
dec = r['dec']
if not snid in obsdict.keys():
obsdict[snid] = {'dates':[],'expnums':[],'filts':[],'ra':ra,'dec':dec,'datestrfs':[],'teffs':[], 'objects':[]}
obsdict[snid]['dates'].append(r['date'])
obsdict[snid]['expnums'].append(r['expnum'])
obsdict[snid]['filts'].append(r['filt'])
obsdict[snid]['teffs'].append(r['teff'])
obsdict[snid]['datestrfs'].append(r['datestrf'])
obsdict[snid]['objects'].append(r['object'])
if verbose: print('-'*25)
cnt = 0
keys = obsdict.keys()
values = obsdict.values()
datestrfs = [min(v['datestrfs']) for v in values]
if verbose: print(np.array(list(keys)))
if verbose: print(datestrfs)
returndict = {}
ss = np.argsort(datestrfs)
for k in np.array(list(keys))[ss]:
#for k,v in zip(keys[ss],values[ss]):
v = obsdict[k]
if k in ignore: continue
if c.ccdmap.get(k, None) is None:
if not m['SNID'].str.contains(k).any():
continue
else:
ind = m['SNID'].str.contains(k)
fixccd = m['candCCD'].values[ind][0]
c.ccdmap[k] = fixccd
if k in rysedict.keys():
if verbose: print('SNID',k,'YSE_Field',rysedict[k],'CCD',c.ccdmap[k],'RA',v['ra'],'DEC',v['dec'])
outtxt.write(' '.join(['SNID',str(k),'YSE_Field',rysedict[k],'CCD',str(c.ccdmap[k]),'\n']))
outtxtexp.write(' '.join(['SNID',str(k),'YSE_Field',rysedict[k],'CCD',str(c.ccdmap[k]),'\n']))
returndict[k] = ' '.join(['SNID',str(k),'YSE_Field',rysedict[k],'RA',str(v['ra']),'DEC',str(v['dec']),'\n\n'])
else:
if verbose: print('SNID',k,'CCD',c.ccdmap[k],'RA',v['ra'],'DEC',v['dec'])
outtxt.write(' '.join(['SNID',str(k),'CCD',str(c.ccdmap[k]),'\n']))
outtxtexp.write(' '.join(['SNID',str(k),'CCD',str(c.ccdmap[k]),'\n']))
returndict[k] = ' '.join(['SNID',str(k),'RA',str(v['ra']),'DEC',str(v['dec']),'\n\n'])
#cnt += 1
if len(np.unique(v['dates'])) > 1:
cnt += 1
for date in np.sort(np.unique(v['dates'])):
ww = np.array(v['dates']) == date
filts = np.array(v['filts'])[ww]
exps = np.array(v['expnums'])[ww]
if verbose: print(date+':',filts,'Avg Teff %.2f'%np.nanmean(np.array(v['teffs'])[ww]),)
outstr = date+':'+str(filts)+'\n'
outstre = date+':'+str(filts)+str(exps)+'\n'
outtxt.write(outstr)
outtxtexp.write(outstre)
returndict[k] += date+': ' + str(filts) + ' Avg Teff %.2f'%np.nanmean(np.array(v['teffs'])[ww])+'\n'
outtxt.write('\n')
outtxtexp.write('\n')
if verbose: print()
#print('Dates',v['dates'])
if verbose: print('-'*25)
outtxt.write('-'*25)
outtxt.write('\n')
outtxtexp.write('-'*25)
outtxtexp.write('\n')
outtxt.close()
outtxtexp.close()
if verbose: print('Total SNe %d'%cnt)
if verbose: print('-'*1000)
allexps = []
for k,v in obsdict.items():
if k in ignore: continue
#print(v['expnums'])
#for e,o in zip(v['expnums'],v['objects']):
allexps.extend(v['expnums'])
allexps = np.unique(allexps)
fout = open('debass/combined_expnums.txt','w')
for exp in allexps:
fout.write(str(exp)+'\n')
fout.close()
fout = open('debass/debass_expnums.txt','w')
for exp in np.unique(debassonlyexpnums):
fout.write(str(exp)+'\n')
fout.close()
return returndict
if __name__ == '__main__':
run()