-
Notifications
You must be signed in to change notification settings - Fork 0
/
spm_MH_reml_likelihood.m
46 lines (40 loc) · 1.16 KB
/
spm_MH_reml_likelihood.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function [L] = spm_MH_reml_likelihood(h,Y,M);
% likelihood function for spm_MH_reml
% FORMAT [L] = spm_MH_reml_likelihood(h,Y,M);
%
% h - hyperparameters
% Y - residual covariance
%
% L - likelihood p(Y,P)
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_MH_reml_likelihood.m 1143 2008-02-07 19:33:33Z spm $
% likelihood function
%--------------------------------------------------------------------------
n = length(Y);
m = length(M.Q);
% compute current estimate of covariance
%--------------------------------------------------------------------------
C = sparse(n,n);
for i = 1:m
if M.OPT
C = C + M.Q{i}*exp(h(i));
else
C = C + M.Q{i}*h(i);
end
end
iC = inv(C);
% log p(Y,P|M)
%--------------------------------------------------------------------------
e = h - M.hE;
L = ...
- trace(iC*Y)/2 ...
- e'*M.hP*e/2 ...
- M.N*n*log(2*pi)/2 ...
- m*log(2*pi)/2 ...
- M.N*spm_logdet(C)/2 ...
+ spm_logdet(M.hP)/2;
% p(Y,P|M)
%--------------------------------------------------------------------------
L = exp(L);