diff --git a/README.md b/README.md index a705288a..5f645b7d 100644 --- a/README.md +++ b/README.md @@ -10,6 +10,9 @@ Now, there are multiple implementations available supporting different precision We support 3 boards for hardware acceleration which are Pynq-Z1, Pynq-Z2 and Ultra96 (with PYNQ image). +Note, this repository has now been archived and is no longer being actively maintained. +If you are relying on this repository, we strongly recommend you switch to the [FINN compiler](https://github.com/xilinx/finn). + ## Citation If you find BNN-PYNQ useful, please cite the FINN paper: @@ -74,5 +77,5 @@ Following the step-by-step instructions: - hls-syn: contains the Vivado HLS generated RTL and IP (in the subfolder named as the target network and target platform); - report: contains the Vivado and Vivado HLS reports; - vivado: contains the Vivado project; -6. Copy the generated bitstream and tcl script on the PYNQ board `pip_installation_path/bnn/bitstreams/` +6. Copy the generated bitstream, hwh and tcl script on the PYNQ board `pip_installation_path/bnn/bitstreams/` diff --git a/bnn/bitstreams/pynqZ1-Z2/cnvW1A1-pynqZ1-Z2.hwh b/bnn/bitstreams/pynqZ1-Z2/cnvW1A1-pynqZ1-Z2.hwh new file mode 100755 index 00000000..576bdae2 --- /dev/null +++ b/bnn/bitstreams/pynqZ1-Z2/cnvW1A1-pynqZ1-Z2.hwh @@ -0,0 +1,4279 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/pynqZ1-Z2/cnvW1A2-pynqZ1-Z2.hwh b/bnn/bitstreams/pynqZ1-Z2/cnvW1A2-pynqZ1-Z2.hwh new file mode 100755 index 00000000..3477b116 --- /dev/null +++ b/bnn/bitstreams/pynqZ1-Z2/cnvW1A2-pynqZ1-Z2.hwh @@ -0,0 +1,4279 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/pynqZ1-Z2/cnvW2A2-pynqZ1-Z2.hwh b/bnn/bitstreams/pynqZ1-Z2/cnvW2A2-pynqZ1-Z2.hwh new file mode 100755 index 00000000..5aad9192 --- /dev/null +++ b/bnn/bitstreams/pynqZ1-Z2/cnvW2A2-pynqZ1-Z2.hwh @@ -0,0 +1,4279 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/pynqZ1-Z2/lfcW1A1-pynqZ1-Z2.hwh b/bnn/bitstreams/pynqZ1-Z2/lfcW1A1-pynqZ1-Z2.hwh new file mode 100755 index 00000000..de6ebca0 --- /dev/null +++ b/bnn/bitstreams/pynqZ1-Z2/lfcW1A1-pynqZ1-Z2.hwh @@ -0,0 +1,4279 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/pynqZ1-Z2/lfcW1A2-pynqZ1-Z2.hwh b/bnn/bitstreams/pynqZ1-Z2/lfcW1A2-pynqZ1-Z2.hwh new file mode 100755 index 00000000..483a6d10 --- /dev/null +++ b/bnn/bitstreams/pynqZ1-Z2/lfcW1A2-pynqZ1-Z2.hwh @@ -0,0 +1,4279 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/ultra96/cnvW1A1-ultra96.hwh b/bnn/bitstreams/ultra96/cnvW1A1-ultra96.hwh new file mode 100644 index 00000000..712f6331 --- /dev/null +++ b/bnn/bitstreams/ultra96/cnvW1A1-ultra96.hwh @@ -0,0 +1,4572 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/ultra96/cnvW1A2-ultra96.hwh b/bnn/bitstreams/ultra96/cnvW1A2-ultra96.hwh new file mode 100644 index 00000000..1413dabf --- /dev/null +++ b/bnn/bitstreams/ultra96/cnvW1A2-ultra96.hwh @@ -0,0 +1,4572 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/ultra96/cnvW2A2-ultra96.hwh b/bnn/bitstreams/ultra96/cnvW2A2-ultra96.hwh new file mode 100644 index 00000000..bbb304ba --- /dev/null +++ b/bnn/bitstreams/ultra96/cnvW2A2-ultra96.hwh @@ -0,0 +1,4572 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/ultra96/lfcW1A1-ultra96.hwh b/bnn/bitstreams/ultra96/lfcW1A1-ultra96.hwh new file mode 100644 index 00000000..e90548fb --- /dev/null +++ b/bnn/bitstreams/ultra96/lfcW1A1-ultra96.hwh @@ -0,0 +1,4572 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/bitstreams/ultra96/lfcW1A2-ultra96.hwh b/bnn/bitstreams/ultra96/lfcW1A2-ultra96.hwh new file mode 100644 index 00000000..6eca85f2 --- /dev/null +++ b/bnn/bitstreams/ultra96/lfcW1A2-ultra96.hwh @@ -0,0 +1,4572 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/bnn/src/library/finn-hlslib b/bnn/src/library/finn-hlslib index a868d8df..8b7f5f5d 160000 --- a/bnn/src/library/finn-hlslib +++ b/bnn/src/library/finn-hlslib @@ -1 +1 @@ -Subproject commit a868d8dfa7799753d262cc5476cce19d276bcdc2 +Subproject commit 8b7f5f5dcd4e3dd17eddc41253040931af28179a diff --git a/bnn/src/network/cnvW1A2/hw/config.h b/bnn/src/network/cnvW1A2/hw/config.h index 5324bf78..88070938 100755 --- a/bnn/src/network/cnvW1A2/hw/config.h +++ b/bnn/src/network/cnvW1A2/hw/config.h @@ -197,7 +197,7 @@ #define L8_MW 512 #define L8_MH 64 #define L8_WPI 1 -#define L8_API 1 +#define L8_API 16 #define L8_WPF 0 #define L8_APF 0 diff --git a/bnn/src/network/cnvW2A2/hw/config.h b/bnn/src/network/cnvW2A2/hw/config.h index 7f56f114..b12d0ec2 100755 --- a/bnn/src/network/cnvW2A2/hw/config.h +++ b/bnn/src/network/cnvW2A2/hw/config.h @@ -197,7 +197,7 @@ #define L8_MW 512 #define L8_MH 64 #define L8_WPI 2 -#define L8_API 1 +#define L8_API 16 #define L8_WPF 0 #define L8_APF 0 diff --git a/bnn/src/network/make-hw.sh b/bnn/src/network/make-hw.sh index f8132932..ca62bd8f 100755 --- a/bnn/src/network/make-hw.sh +++ b/bnn/src/network/make-hw.sh @@ -165,6 +165,7 @@ VIVADO_OUT_DIR="$BNN_PATH/output/vivado/$TARGET_NAME" BITSTREAM_PATH="$BNN_PATH/output/bitstream" TARGET_BITSTREAM="$BITSTREAM_PATH/$NETWORK-$PLATFORM.bit" TARGET_TCL="$BITSTREAM_PATH/$NETWORK-$PLATFORM.tcl" +TARGET_HWH="$BITSTREAM_PATH/$NETWORK-$PLATFORM.hwh" if [[ ("$MODE" == "b") || ("$MODE" == "a") ]]; then mkdir -p "$BNN_PATH/output/vivado" @@ -183,6 +184,7 @@ if [[ ("$MODE" == "b") || ("$MODE" == "a") ]]; then vivado -mode batch -notrace -source $VIVADO_SCRIPT -tclargs $HLS_IP_REPO $TARGET_NAME $VIVADO_OUT_DIR $VIVADO_SCRIPT_DIR cp -f "$VIVADO_OUT_DIR/$TARGET_NAME.runs/impl_1/procsys_wrapper.bit" $TARGET_BITSTREAM cp -f "$VIVADO_OUT_DIR/procsys.tcl" $TARGET_TCL + cp -f "$VIVADO_OUT_DIR/$TARGET_NAME.srcs/sources_1/bd/procsys/hw_handoff/procsys.hwh" $TARGET_HWH # extract parts of the post-implementation reports cat "$VIVADO_OUT_DIR/$TARGET_NAME.runs/impl_1/procsys_wrapper_timing_summary_routed.rpt" | grep "| Design Timing Summary" -B 3 -A 10 > $REPORT_OUT_DIR/vivado.txt cat "$VIVADO_OUT_DIR/$TARGET_NAME.runs/impl_1/procsys_wrapper_utilization_placed.rpt" | grep "| Slice LUTs" -B 3 -A 11 >> $REPORT_OUT_DIR/vivado.txt diff --git a/bnn/src/training/cifar10-gen-weights-W1A1.py b/bnn/src/training/cifar10-gen-weights-W1A1.py index 1cdfc26a..3afc692c 100644 --- a/bnn/src/training/cifar10-gen-weights-W1A1.py +++ b/bnn/src/training/cifar10-gen-weights-W1A1.py @@ -1,43 +1,42 @@ -#BSD 3-Clause License -#======= -# -#Copyright (c) 2017, Xilinx -#All rights reserved. -# -#Redistribution and use in source and binary forms, with or without -#modification, are permitted provided that the following conditions are met: -# -#* Redistributions of source code must retain the above copyright notice, this +# BSD 3-Clause License +# ======= + +# Copyright (c) 2020, Xilinx +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. -# -#* Redistributions in binary form must reproduce the above copyright notice, + +# * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. -# -#* Neither the name of the copyright holder nor the names of its + +# * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. -# -#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os -import sys from finnthesizer import * if __name__ == "__main__": bnnRoot = "." npzFile = bnnRoot + "/cifar10-1w-1a.npz" - targetDirBin = bnnRoot + "/binparam-cnvW1A1-pynq" - targetDirHLS = bnnRoot + "/binparam-cnvW1A1-pynq/hw" + targetDirBin = bnnRoot + "/cnvW1A1" + targetDirHLS = bnnRoot + "/cnvW1A1/hw" #topology of convolutional layers (only for config.h defines) ifm = [32, 30, 14, 12, 5, 3] @@ -46,23 +45,25 @@ ofm_ch = [64, 64, 128, 128, 256, 256] filterDim = [ 3, 3, 3, 3, 3, 3] - WeightsPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] - ActivationPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] - InputPrecisions_fractional = [7 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] - WeightsPrecisions_integer = [1 , 1 , 1 , 1 , 1 , 1 , 1, 1, 1] - ActivationPrecisions_integer = [1 , 1 , 1 , 1 , 1 , 1 , 1, 1, 1] - InputPrecisions_integer = [1 , 1 , 1 , 1 , 1 , 1 , 1, 1, 1] + WeightsPrecisions_integer = [1 , 1 , 1 , 1 , 1 , 1 , 1, 1, 1] + WeightsPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] + + InputPrecisions_integer = [1 , 1 , 1 , 1 , 1 , 1 , 1, 1, 1] + InputPrecisions_fractional = [7 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] + + ActivationPrecisions_integer = [1 , 1 , 1 , 1 , 1 , 1 , 1, 1, 16] + ActivationPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] classes = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck'] #configuration of PE and SIMD counts - peCounts = [16, 32, 16, 16, 4, 1, 1, 1, 4] - simdCounts = [ 3, 32, 32, 32, 32, 32, 4, 8, 1] + peCounts = [16, 32, 16, 16, 4, 1, 1, 1, 4] + simdCounts = [ 3, 32, 32, 32, 32, 32, 4, 8, 1] if not os.path.exists(targetDirBin): - os.mkdir(targetDirBin) + os.mkdir(targetDirBin) if not os.path.exists(targetDirHLS): - os.mkdir(targetDirHLS) + os.mkdir(targetDirHLS) #read weights rHW = BNNWeightReader(npzFile, True) @@ -71,116 +72,94 @@ config+= " * Finnthesizer Config-File Generation\n"; config+= " *\n **/\n\n" config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n" - # process convolutional layers for convl in range(0, 6): - peCount = peCounts[convl] - simdCount = simdCounts[convl] - WPrecision_fractional = WeightsPrecisions_fractional[convl] - APrecision_fractional = ActivationPrecisions_fractional[convl] - IPrecision_fractional = InputPrecisions_fractional[convl] - WPrecision_integer = WeightsPrecisions_integer[convl] - APrecision_integer = ActivationPrecisions_integer[convl] - IPrecision_integer = InputPrecisions_integer[convl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl) - if convl == 0: + peCount = peCounts[convl] + simdCount = simdCounts[convl] + WPrecision_fractional = WeightsPrecisions_fractional[convl] + APrecision_fractional = ActivationPrecisions_fractional[convl] + IPrecision_fractional = InputPrecisions_fractional[convl] + WPrecision_integer = WeightsPrecisions_integer[convl] + APrecision_integer = ActivationPrecisions_integer[convl] + IPrecision_integer = InputPrecisions_integer[convl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl)) # use fixed point weights for the first layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer, usePopCount=False, numThresBits=24, numThresIntBits=16) + (usePopCount, numThresBits, numThresIntBits) = (False, 24, 16) if convl==0 else (True, 16, None) + (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer, \ + usePopCount=usePopCount, numThresBits=numThresBits, numThresIntBits=numThresIntBits) # compute the padded width and height paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (convl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, \ + WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional, numThresBits=numThresBits, numThresIntBits=numThresIntBits) + m.addMatrix(w,t,paddedW,paddedH) - - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, \ + peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) + #generate binary weight and threshold files to initialize memory during runtime #because HLS might not work for very large header files m.createBinFiles(targetDirBin, str(convl)) - else: - # regular binarized layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) + # process fully-connected layers + for fcl in range(6,9): + peCount = peCounts[fcl] + simdCount = simdCounts[fcl] + WPrecision_fractional = WeightsPrecisions_fractional[fcl] + APrecision_fractional = ActivationPrecisions_fractional[fcl] + IPrecision_fractional = InputPrecisions_fractional[fcl] + WPrecision_integer = WeightsPrecisions_integer[fcl] + APrecision_integer = ActivationPrecisions_integer[fcl] + IPrecision_integer = InputPrecisions_integer[fcl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl)) + if fcl == 8: + (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], 64) + useThresholds = False + else: + (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], peCount) + useThresholds = True # compute the padded width and height - paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (fcl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,\ + WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + m.addMatrix(w,t,paddedW,paddedH) - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, \ + WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl), useThresholds) + #generate binary weight and threshold files to initialize memory during runtime #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(convl)) - - # process fully-connected layers - for fcl in range(6,9): - peCount = peCounts[fcl] - simdCount = simdCounts[fcl] - WPrecision_fractional = WeightsPrecisions_fractional[fcl] - APrecision_fractional = ActivationPrecisions_fractional[fcl] - IPrecision_fractional = InputPrecisions_fractional[fcl] - WPrecision_integer = WeightsPrecisions_integer[fcl] - APrecision_integer = ActivationPrecisions_integer[fcl] - IPrecision_integer = InputPrecisions_integer[fcl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl) - - if fcl == 8: - (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], 64) - useThresholds = False - else: - (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], peCount) - useThresholds = True + m.createBinFiles(targetDirBin, str(fcl), useThresholds) - # compute the padded width and height - paddedW = padTo(w.shape[1], simdCount) - # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (fcl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) - m.addMatrix(w,t,paddedW,paddedH) - - config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl)) - - #generate binary weight and threshold files to initialize memory during runtime - #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(fcl), useThresholds) - config+="#endif //__LAYER_CONFIG_H_\n" - configFile = open(targetDirHLS+"/config.h", "w") configFile.write(config) configFile.close() with open(targetDirBin + "/classes.txt", "w") as f: f.write("\n".join(classes)) - diff --git a/bnn/src/training/cifar10-gen-weights-W1A2.py b/bnn/src/training/cifar10-gen-weights-W1A2.py index 1b3f03de..f8689dec 100644 --- a/bnn/src/training/cifar10-gen-weights-W1A2.py +++ b/bnn/src/training/cifar10-gen-weights-W1A2.py @@ -1,43 +1,42 @@ -#BSD 3-Clause License -#======= -# -#Copyright (c) 2017, Xilinx -#All rights reserved. -# -#Redistribution and use in source and binary forms, with or without -#modification, are permitted provided that the following conditions are met: -# -#* Redistributions of source code must retain the above copyright notice, this +# BSD 3-Clause License +# ======= + +# Copyright (c) 2020, Xilinx +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. -# -#* Redistributions in binary form must reproduce the above copyright notice, + +# * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. -# -#* Neither the name of the copyright holder nor the names of its + +# * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. -# -#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os -import sys from finnthesizer import * if __name__ == "__main__": bnnRoot = "." npzFile = bnnRoot + "/cifar10-1w-2a.npz" - targetDirBin = bnnRoot + "/binparam-cnvW1A2-pynq" - targetDirHLS = bnnRoot + "/binparam-cnvW1A2-pynq/hw" + targetDirBin = bnnRoot + "/cnvW1A2" + targetDirHLS = bnnRoot + "/cnvW1A2/hw" #topology of convolutional layers (only for config.h defines) ifm = [32, 30, 14, 12, 5, 3] @@ -46,137 +45,122 @@ ofm_ch = [64, 64, 128, 128, 256, 256] filterDim = [ 3, 3, 3, 3, 3, 3] - WeightsPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] - ActivationPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] - InputPrecisions_fractional = [7 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] WeightsPrecisions_integer = [1 , 1 , 1 , 1 , 1 , 1 , 1, 1, 1] - ActivationPrecisions_integer = [2 , 2 , 2 , 2 , 2 , 2 , 2, 2, 1] + WeightsPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] + InputPrecisions_integer = [1 , 2 , 2 , 2 , 2 , 2 , 2, 2, 2] + InputPrecisions_fractional = [7 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] + + ActivationPrecisions_integer = [2 , 2 , 2 , 2 , 2 , 2 , 2, 2, 16] + ActivationPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] classes = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck'] #configuration of PE and SIMD counts peCounts = [16, 32, 16, 16, 4, 1, 1, 1, 4] - simdCounts = [3 , 32, 32, 32, 32, 32, 4, 8, 1] + simdCounts = [ 3, 32, 32, 32, 32, 32, 4, 8, 1] if not os.path.exists(targetDirBin): - os.mkdir(targetDirBin) + os.mkdir(targetDirBin) if not os.path.exists(targetDirHLS): - os.mkdir(targetDirHLS) + os.mkdir(targetDirHLS) + + #read weights rHW = BNNWeightReader(npzFile, True) config = "/**\n" config+= " * Finnthesizer Config-File Generation\n"; config+= " *\n **/\n\n" config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n" - - # process convolutional layers + + # process convolutional layers for convl in range(0, 6): - peCount = peCounts[convl] - simdCount = simdCounts[convl] - WPrecision_fractional = WeightsPrecisions_fractional[convl] - APrecision_fractional = ActivationPrecisions_fractional[convl] - IPrecision_fractional = InputPrecisions_fractional[convl] - WPrecision_integer = WeightsPrecisions_integer[convl] - APrecision_integer = ActivationPrecisions_integer[convl] - IPrecision_integer = InputPrecisions_integer[convl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl) - if convl == 0: + peCount = peCounts[convl] + simdCount = simdCounts[convl] + WPrecision_fractional = WeightsPrecisions_fractional[convl] + APrecision_fractional = ActivationPrecisions_fractional[convl] + IPrecision_fractional = InputPrecisions_fractional[convl] + WPrecision_integer = WeightsPrecisions_integer[convl] + APrecision_integer = ActivationPrecisions_integer[convl] + IPrecision_integer = InputPrecisions_integer[convl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl)) # use fixed point weights for the first layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer, usePopCount=False, numThresBits=24, numThresIntBits=16) + (usePopCount, numThresBits, numThresIntBits) = (False, 24, 16) if convl==0 else (False, 16, None) + (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer, \ + usePopCount=usePopCount, numThresBits=numThresBits, numThresIntBits=numThresIntBits) # compute the padded width and height paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (convl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, \ + WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional, numThresBits=numThresBits, numThresIntBits=numThresIntBits) + m.addMatrix(w,t,paddedW,paddedH) - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, \ + peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) + #generate binary weight and threshold files to initialize memory during runtime - #because HLS might not work for very large header files + #because HLS might not work for very large header files m.createBinFiles(targetDirBin, str(convl)) - else: - # regular binarized layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) + # process fully-connected layers + for fcl in range(6,9): + peCount = peCounts[fcl] + simdCount = simdCounts[fcl] + WPrecision_fractional = WeightsPrecisions_fractional[fcl] + APrecision_fractional = ActivationPrecisions_fractional[fcl] + IPrecision_fractional = InputPrecisions_fractional[fcl] + WPrecision_integer = WeightsPrecisions_integer[fcl] + APrecision_integer = ActivationPrecisions_integer[fcl] + IPrecision_integer = InputPrecisions_integer[fcl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl)) + if fcl == 8: + (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], 64) + useThresholds = False + else: + (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], peCount) + useThresholds = True # compute the padded width and height - paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (fcl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,\ + WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + m.addMatrix(w,t,paddedW,paddedH) - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - + config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, \ + WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl), useThresholds) + #generate binary weight and threshold files to initialize memory during runtime #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(convl)) - - # process fully-connected layers - for fcl in range(6,9): - peCount = peCounts[fcl] - simdCount = simdCounts[fcl] - WPrecision_fractional = WeightsPrecisions_fractional[fcl] - APrecision_fractional = ActivationPrecisions_fractional[fcl] - IPrecision_fractional = InputPrecisions_fractional[fcl] - WPrecision_integer = WeightsPrecisions_integer[fcl] - APrecision_integer = ActivationPrecisions_integer[fcl] - IPrecision_integer = InputPrecisions_integer[fcl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl) - - if fcl == 8: - (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], 64) - useThresholds = False - else: - (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], peCount) - useThresholds = True - - paddedW = padTo(w.shape[1], simdCount) - # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (fcl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) - m.addMatrix(w,t,paddedW,paddedH) - - config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl)) - - #generate binary weight and threshold files to initialize memory during runtime - #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(fcl), useThresholds) + m.createBinFiles(targetDirBin, str(fcl), useThresholds) config+="#endif //__LAYER_CONFIG_H_\n" - configFile = open(targetDirHLS+"/config.h", "w") configFile.write(config) configFile.close() with open(targetDirBin + "/classes.txt", "w") as f: f.write("\n".join(classes)) - diff --git a/bnn/src/training/cifar10-gen-weights-W2A2.py b/bnn/src/training/cifar10-gen-weights-W2A2.py index 1df7b920..92431c5c 100644 --- a/bnn/src/training/cifar10-gen-weights-W2A2.py +++ b/bnn/src/training/cifar10-gen-weights-W2A2.py @@ -1,44 +1,42 @@ -#BSD 3-Clause License -#======= -# -#Copyright (c) 2017, Xilinx -#All rights reserved. -# -#Redistribution and use in source and binary forms, with or without -#modification, are permitted provided that the following conditions are met: -# -#* Redistributions of source code must retain the above copyright notice, this +# BSD 3-Clause License +# ======= + +# Copyright (c) 2020, Xilinx +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. -# -#* Redistributions in binary form must reproduce the above copyright notice, + +# * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. -# -#* Neither the name of the copyright holder nor the names of its + +# * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. -# -#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os -import sys from finnthesizer import * if __name__ == "__main__": - bnnRoot = "." npzFile = bnnRoot + "/cifar10-2w-2a.npz" - targetDirBin = bnnRoot + "/binparam-cnvW2A2-pynq" - targetDirHLS = bnnRoot + "/binparam-cnvW2A2-pynq/hw" + targetDirBin = bnnRoot + "/cnvW2A2" + targetDirHLS = bnnRoot + "/cnvW2A2/hw" #topology of convolutional layers (only for config.h defines) ifm = [32, 30, 14, 12, 5, 3] @@ -47,12 +45,14 @@ ofm_ch = [64, 64, 128, 128, 256, 256] filterDim = [ 3, 3, 3, 3, 3, 3] - WeightsPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] - ActivationPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] - InputPrecisions_fractional = [7 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] WeightsPrecisions_integer = [2 , 2 , 2 , 2 , 2 , 2 , 2, 2, 2] - ActivationPrecisions_integer = [2 , 2 , 2 , 2 , 2 , 2 , 2, 2, 1] + WeightsPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] + InputPrecisions_integer = [1 , 2 , 2 , 2 , 2 , 2 , 2, 2, 2] + InputPrecisions_fractional = [7 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] + + ActivationPrecisions_integer = [2 , 2 , 2 , 2 , 2 , 2 , 2, 2, 16] + ActivationPrecisions_fractional = [0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0] classes = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck'] @@ -61,9 +61,11 @@ simdCounts = [3, 16, 16, 16, 8, 8, 2, 2, 1] if not os.path.exists(targetDirBin): - os.mkdir(targetDirBin) + os.mkdir(targetDirBin) if not os.path.exists(targetDirHLS): - os.mkdir(targetDirHLS) + os.mkdir(targetDirHLS) + + #read weights rHW = BNNWeightReader(npzFile, True) config = "/**\n" @@ -71,108 +73,91 @@ config+= " *\n **/\n\n" config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n" - #process convolutional layers + # process convolutional layers for convl in range(0, 6): - peCount = peCounts[convl] - simdCount = simdCounts[convl] - WPrecision_fractional = WeightsPrecisions_fractional[convl] - APrecision_fractional = ActivationPrecisions_fractional[convl] - IPrecision_fractional = InputPrecisions_fractional[convl] - WPrecision_integer = WeightsPrecisions_integer[convl] - APrecision_integer = ActivationPrecisions_integer[convl] - IPrecision_integer = InputPrecisions_integer[convl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl) - if convl == 0: + peCount = peCounts[convl] + simdCount = simdCounts[convl] + WPrecision_fractional = WeightsPrecisions_fractional[convl] + APrecision_fractional = ActivationPrecisions_fractional[convl] + IPrecision_fractional = InputPrecisions_fractional[convl] + WPrecision_integer = WeightsPrecisions_integer[convl] + APrecision_integer = ActivationPrecisions_integer[convl] + IPrecision_integer = InputPrecisions_integer[convl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl)) # use fixed point weights for the first layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer, usePopCount=False, numThresBits=24, numThresIntBits=16) + (usePopCount, numThresBits, numThresIntBits) = (False, 24, 16) if convl==0 else (False, 16, None) + (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer, \ + usePopCount=usePopCount, numThresBits=numThresBits, numThresIntBits=numThresIntBits) # compute the padded width and height paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (convl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, \ + WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional, numThresBits=numThresBits, numThresIntBits=numThresIntBits) + m.addMatrix(w,t,paddedW,paddedH) - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, \ + peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) + #generate binary weight and threshold files to initialize memory during runtime - #because HLS might not work for very large header files + #because HLS might not work for very large header files m.createBinFiles(targetDirBin, str(convl)) - else: - # regular binarized layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) + + # process fully-connected layers + for fcl in range(6,9): + peCount = peCounts[fcl] + simdCount = simdCounts[fcl] + WPrecision_fractional = WeightsPrecisions_fractional[fcl] + APrecision_fractional = ActivationPrecisions_fractional[fcl] + IPrecision_fractional = InputPrecisions_fractional[fcl] + WPrecision_integer = WeightsPrecisions_integer[fcl] + APrecision_integer = ActivationPrecisions_integer[fcl] + IPrecision_integer = InputPrecisions_integer[fcl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl)) + if fcl == 8: + (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], 64) + useThresholds = False + else: + (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], peCount) + useThresholds = True # compute the padded width and height - paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (fcl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,\ + WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + m.addMatrix(w,t,paddedW,paddedH) - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - + config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, \ + WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl), useThresholds) + #generate binary weight and threshold files to initialize memory during runtime #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(convl)) - - # process fully-connected layers - for fcl in range(6,9): - peCount = peCounts[fcl] - simdCount = simdCounts[fcl] - WPrecision_fractional = WeightsPrecisions_fractional[fcl] - APrecision_fractional = ActivationPrecisions_fractional[fcl] - IPrecision_fractional = InputPrecisions_fractional[fcl] - WPrecision_integer = WeightsPrecisions_integer[fcl] - APrecision_integer = ActivationPrecisions_integer[fcl] - IPrecision_integer = InputPrecisions_integer[fcl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl) - - if fcl == 8: - (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], 64) - useThresholds = False - else: - (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], peCount) - useThresholds = True - - paddedW = padTo(w.shape[1], simdCount) - # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (fcl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) - m.addMatrix(w,t,paddedW,paddedH) - - config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl)) - - #generate binary weight and threshold files to initialize memory during runtime - #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(fcl), useThresholds) + m.createBinFiles(targetDirBin, str(fcl), useThresholds) config+="#endif //__LAYER_CONFIG_H_\n" - configFile = open(targetDirHLS+"/config.h", "w") configFile.write(config) configFile.close() diff --git a/bnn/src/training/finnthesizer.py b/bnn/src/training/finnthesizer.py old mode 100644 new mode 100755 index 66e9e766..4744c2b5 --- a/bnn/src/training/finnthesizer.py +++ b/bnn/src/training/finnthesizer.py @@ -1,485 +1,397 @@ -#BSD 3-Clause License -#======= -# -#Copyright (c) 2017, Xilinx -#All rights reserved. -# -#Redistribution and use in source and binary forms, with or without -#modification, are permitted provided that the following conditions are met: -# -#* Redistributions of source code must retain the above copyright notice, this +# BSD 3-Clause License +# ======= + +# Copyright (c) 2020, Xilinx +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. -# -#* Redistributions in binary form must reproduce the above copyright notice, + +# * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. -# -#* Neither the name of the copyright holder nor the names of its + +# * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. -# -#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -import numpy as np -import os -import sys +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +__authors__ = "Ussama Zahid, Giulio Gambardella, Yaman Umuroglu, Nicholas Fraser, Christoph Doehring" +__copyright__ = "Copyright 2020, Xilinx" + +import os +import numpy as np +from functools import reduce # convenience function to prepare a fully-connected BNN for FINN # with given number of (SIMD, PE) per layer # and arbitrary precisions for both weights and activations -def convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional, WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer): - numLayers = len(simdCounts) - if not os.path.exists(targetDirBin): - os.mkdir(targetDirBin) - if not os.path.exists(targetDirHLS): - os.mkdir(targetDirHLS) - # instantiate the weight reader, note how interleaveChannels=False for a - # fully connected network - r = BNNWeightReader(npzFile, False) - - config = "/**\n" - config+= " * Finnthesizer Config-File Generation\n"; - config+= " *\n **/\n\n" - config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n" - - for l in range(numLayers): - print "process layer" + str(l) - simdCount = simdCounts[l] - peCount = peCounts[l] - WPrecision_fractional = WeightsPrecisions_fractional[l] - APrecision_fractional = ActivationPrecisions_fractional[l] - IPrecision_fractional = InputPrecisions_fractional[l] - WPrecision_integer = WeightsPrecisions_integer[l] - APrecision_integer = ActivationPrecisions_integer[l] - IPrecision_integer = InputPrecisions_integer[l] - - # read out weights and thresholds - (w,t) = r.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - # compute the padded width and height - paddedH = padTo(w.shape[0], peCount) - paddedW = padTo(w.shape[1], simdCount) - if (l==0): # for the first layer, we pad to multiple of 64 due to the AXI interface - paddedW = padTo(w.shape[1], max(simdCount,64)) - if (l==numLayers-1): # for the last layer, we pad to multiple of 64 due to the AXI interface - paddedH = padTo(w.shape[0], max(peCount,64)) - - # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - - print "Layer %d: %d x %d, SIMD = %d, PE = %d" % (l, paddedH, paddedW, simdCount, peCount) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - # instantiate PE memory generator - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) - #add layer to config - config += (printFCDefines("L%d" % l, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - # pack parameters into PE memory - m.addMatrix(w,t,paddedW,paddedH) - - # create HLS weight init files for initializing memory contents directly - # while generating the bitstream - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(l) + ".h", str(l)) - - # create binary weight files -- useful for runtime initialization since - # HLS might freeze / not work for very large header files - # note that it will still be necessary to declare the PE memories in - m.createBinFiles(targetDirBin, str(l)) +def convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, \ + WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional, \ + WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer): + + numLayers = len(simdCounts) + if not os.path.exists(targetDirBin): + os.mkdir(targetDirBin) + if not os.path.exists(targetDirHLS): + os.mkdir(targetDirHLS) + # instantiate the weight reader, note how interleaveChannels=False for a + # fully connected network + r = BNNWeightReader(npzFile, False) + config = "/**\n" + config+= " * Finnthesizer Config-File Generation\n"; + config+= " *\n **/\n\n" + config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n" + for l in range(numLayers): + print("process layer" + str(l)) + simdCount = simdCounts[l] + peCount = peCounts[l] + WPrecision_fractional = WeightsPrecisions_fractional[l] + APrecision_fractional = ActivationPrecisions_fractional[l] + IPrecision_fractional = InputPrecisions_fractional[l] + WPrecision_integer = WeightsPrecisions_integer[l] + APrecision_integer = ActivationPrecisions_integer[l] + IPrecision_integer = InputPrecisions_integer[l] + # read out weights and thresholds + (w,t) = r.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + # compute the padded width and height + paddedH = padTo(w.shape[0], peCount) + paddedW = padTo(w.shape[1], simdCount) + if (l==0): # for the first layer, we pad to multiple of 64 due to the AXI interface + paddedW = padTo(w.shape[1], max(simdCount,64)) + if (l==numLayers-1): # for the last layer, we pad to multiple of 64 due to the AXI interface + paddedH = padTo(w.shape[0], max(peCount,64)) + # compute memory needed for weights and thresholds + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d, SIMD = %d, PE = %d" % (l, paddedH, paddedW, simdCount, peCount)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, \ + WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional)) + # instantiate PE memory generator + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + #add layer to config + config += (printFCDefines("L%d" % l, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, \ + WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + + # pack parameters into PE memory + m.addMatrix(w,t,paddedW,paddedH) + + # create HLS weight init files for initializing memory contents directly + # while generating the bitstream + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(l) + ".h", str(l)) + + # create binary weight files -- useful for runtime initialization since + # HLS might freeze / not work for very large header files + # note that it will still be necessary to declare the PE memories in + m.createBinFiles(targetDirBin, str(l)) + # create parameter files for tiny-cnn - - config+="#endif //__LAYER_CONFIG_H_\n" - - configFile = open(targetDirHLS+"/config.h", "w") - configFile.write(config) - configFile.close() + config+="#endif //__LAYER_CONFIG_H_\n" + configFile = open(targetDirHLS+"/config.h", "w") + configFile.write(config) + configFile.close() # return HW config string as C #define's for a Conv layer def printConvDefines(prefix, kernelDim, ifm_ch, ifm_dim, ofm_ch, ofm_dim, simd, pe, wmem, tmem, wpi, api, wpf, apf): - #network topology - config = "" - numb_ops = 2*ifm_ch*ofm_ch*kernelDim*kernelDim*ofm_dim*ofm_dim # 2* because of MAC - est_latency = numb_ops/(2*simd*pe) - config += "/**\n * Convolutional Layer %s:\n * IFM = %5d IFM_CH = %5d\n * OFM = %5d OFM_CH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, ifm_dim, ifm_ch, ofm_dim, ofm_ch, simd, pe, wmem, tmem, numb_ops, est_latency) - config += "\n" + "#define %s_K %d" % (prefix, kernelDim) - config += "\n" + "#define %s_IFM_CH %d" % (prefix, ifm_ch) - config += "\n" + "#define %s_IFM_DIM %d" % (prefix, ifm_dim) - config += "\n" + "#define %s_OFM_CH %d" % (prefix, ofm_ch) - config += "\n" + "#define %s_OFM_DIM %d" % (prefix, ofm_dim) - #network configuration - config += "\n" + "#define %s_SIMD %d" % (prefix, simd) - config += "\n" + "#define %s_PE %d" % (prefix, pe) - config += "\n" + "#define %s_WMEM %d" % (prefix, wmem) - config += "\n" + "#define %s_TMEM %d" % (prefix, tmem) - #precision used - config += "\n" + "#define %s_WPI %d" % (prefix, wpi) - config += "\n" + "#define %s_API %d" % (prefix, api) - config += "\n" + "#define %s_WPF %d" % (prefix, wpf) - config += "\n" + "#define %s_APF %d\n" % (prefix, apf) - return config + #network topology + config = "" + numb_ops = 2*ifm_ch*ofm_ch*kernelDim*kernelDim*ofm_dim*ofm_dim # 2* because of MAC + est_latency = numb_ops/(2*simd*pe) + config += "/**\n * Convolutional Layer %s:\n * IFM = %5d IFM_CH = %5d\n * OFM = %5d OFM_CH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, ifm_dim, ifm_ch, ofm_dim, ofm_ch, simd, pe, wmem, tmem, numb_ops, est_latency) + config += "\n" + "#define %s_K %d" % (prefix, kernelDim) + config += "\n" + "#define %s_IFM_CH %d" % (prefix, ifm_ch) + config += "\n" + "#define %s_IFM_DIM %d" % (prefix, ifm_dim) + config += "\n" + "#define %s_OFM_CH %d" % (prefix, ofm_ch) + config += "\n" + "#define %s_OFM_DIM %d" % (prefix, ofm_dim) + #network configuration + config += "\n" + "#define %s_SIMD %d" % (prefix, simd) + config += "\n" + "#define %s_PE %d" % (prefix, pe) + config += "\n" + "#define %s_WMEM %d" % (prefix, wmem) + config += "\n" + "#define %s_TMEM %d" % (prefix, tmem) + #precision used + config += "\n" + "#define %s_WPI %d" % (prefix, wpi) + config += "\n" + "#define %s_API %d" % (prefix, api) + config += "\n" + "#define %s_WPF %d" % (prefix, wpf) + config += "\n" + "#define %s_APF %d\n" % (prefix, apf) + return config # return HW config string as C #define's for a FC layer def printFCDefines(prefix, simd, pe, wmem, tmem, mw, mh, wpi, api, wpf, apf): - config = "" - numb_ops = 2*mw*mh # 2* because of MAC - est_latency = numb_ops/(2*simd*pe) - config += "/**\n * Fully-Connected Layer %s:\n * MatW = %5d MatH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, mw, mh, simd, pe, wmem, tmem, numb_ops, est_latency) - config += "\n" + "#define %s_SIMD %d" % (prefix, simd) - config += "\n" + "#define %s_PE %d" % (prefix, pe) - config += "\n" + "#define %s_WMEM %d" % (prefix, wmem) - config += "\n" + "#define %s_TMEM %d" % (prefix, tmem) - config += "\n" + "#define %s_MW %d" % (prefix, mw) - config += "\n" + "#define %s_MH %d" % (prefix, mh) - config += "\n" + "#define %s_WPI %d" % (prefix, wpi) - config += "\n" + "#define %s_API %d" % (prefix, api) - config += "\n" + "#define %s_WPF %d" % (prefix, wpf) - config += "\n" + "#define %s_APF %d\n" % (prefix, apf) - return config - + config = "" + numb_ops = 2*mw*mh # 2* because of MAC + est_latency = numb_ops/(2*simd*pe) + config += "/**\n * Fully-Connected Layer %s:\n * MatW = %5d MatH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, mw, mh, simd, pe, wmem, tmem, numb_ops, est_latency) + config += "\n" + "#define %s_SIMD %d" % (prefix, simd) + config += "\n" + "#define %s_PE %d" % (prefix, pe) + config += "\n" + "#define %s_WMEM %d" % (prefix, wmem) + config += "\n" + "#define %s_TMEM %d" % (prefix, tmem) + config += "\n" + "#define %s_MW %d" % (prefix, mw) + config += "\n" + "#define %s_MH %d" % (prefix, mh) + config += "\n" + "#define %s_WPI %d" % (prefix, wpi) + config += "\n" + "#define %s_API %d" % (prefix, api) + config += "\n" + "#define %s_WPF %d" % (prefix, wpf) + config += "\n" + "#define %s_APF %d\n" % (prefix, apf) + return config + # return val to nearest multiple of pad def padTo(val, pad): - rem = val % pad - return val if rem == 0 else (val + pad - rem) + rem = val % pad + return val if rem == 0 else (val + pad - rem) + # the quantization function def quantize(x, integer, fract): bits=integer+fract if (bits==1): - return(binarize(x)) + return(binarize(x)) n = float(2**fract) # GIULIO ADD CLIP return np.floor(x * n + 0.5) / n + # the binarization function, basically the sign encoded as 1 for positive and # 0 for negative def binarize(w): - return 1 if w >=0 else 0 - - -# convert a fully connected binarized layer plus batch normalization into -# the simplified form (binary weight and positive threshold) -# note that the neurons are assumed to be in the columns of the weight -# matrix -def makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_int=1, WPrecisions_fract=0, use_rowmajor=False, usePopCount=True): - ins = weights.shape[0] - outs = weights.shape[1] - print "Extracting FCBN complex, ins = %d outs = %d" % (ins, outs) - # we'll fill in the binarized weights and thresholds iteratively - w_bin = range(ins*outs) - thresholds = range(outs) - for neuron in range(outs): - # compute a preliminary threshold from the batchnorm parameters - thres = mean[neuron] - bias[neuron] - (beta[neuron] / (gamma[neuron]*invstd[neuron])) - need_flip = 0 - # ensure all neurons activate on the "positive" side, so we can use - # greater-than-threshold activation - if gamma[neuron]*invstd[neuron] < 0: - need_flip = 1 - thres = -thres - # turn threshold into "number of 1s" (popcount) instead of signed sum - if usePopCount: - thresholds[neuron] = int((ins + thres) / 2) - else: - thresholds[neuron] = int(thres) - # binarize the synapses - for synapse in range(ins): - # note how we change from col major to row major if requested - dest_ind = neuron*ins+synapse if use_rowmajor else synapse*outs+neuron - if need_flip: - w_bin[dest_ind] = quantize(-weights[synapse][neuron],WPrecisions_int,WPrecisions_fract) - else: - w_bin[dest_ind] = quantize(weights[synapse][neuron],WPrecisions_int,WPrecisions_fract) - # reshape the output as desired - if use_rowmajor: - w_bin = np.asarray(w_bin).reshape((outs, ins)) - else: - w_bin = np.asarray(w_bin).reshape((ins, outs)) - - return (w_bin, thresholds) + return np.where(w < 0, 0, 1) # convert a fully connected layer plus batch normalization into # the simplified form (quantized weight and multiple thresholds) -# note that the neurons are assumed to be in the columns of the weight -# matrix -def makeFCBNComplex_QNN(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, WPrecisions_int, APrecisions_int, use_rowmajor=False, numThresBits=16, numThresIntBits=None): - ins = weights.shape[0] - outs = weights.shape[1] - APrecision = APrecisions_fract + APrecisions_int - print "Extracting FCBN complex, ins = %d outs = %d" % (ins, outs) - # we'll fill in the weights and thresholds iteratively - w_bin = range(ins*outs) - thresholds = range(outs) - #tep = np.linspace(-1,1,num=2**APrecision-1,endpoint=False) # Equidistant points between -1 and +1 (hardtanh) - #step = step[1:] # Removing the -1 point for symmetrical quantization - hardtanh - step = np.linspace(-1,1,num=2**(APrecision-1),endpoint=False) + 1./(2**(APrecisions_fract+1)) # This one make -0.5 and +0.5 with 2 bits - - if (numThresIntBits) is None: - factor = 1 - else: - factor = 2**(numThresBits - numThresIntBits) - - for neuron in range(outs): - need_flip = 0 +# note that the neurons are assumed to be in the columns of the weight matrix +def makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, \ + WPrecisions_int, APrecisions_int, usePopCount=False, use_rowmajor=True, numThresBits=16, numThresIntBits=None): + + ins = weights.shape[0] + outs = weights.shape[1] + APrecision = APrecisions_fract + APrecisions_int + print("Extracting FCBN complex, ins = %d outs = %d" % (ins, outs)) + # compute a preliminary thresholds from the batchnorm parameters + if (APrecision == 1): + step = np.zeros(1, dtype=np.float64) + else: + # This one make -0.5 and +0.5 with 2 bits + step = np.linspace(-1,1,num=2**(APrecision-1), endpoint=False, dtype=np.float64) + 1./(2**(APrecisions_fract+1)) + # step = np.linspace(-1,1,num=2**APrecision-1,endpoint=False) # Equidistant points between -1 and +1 (hardtanh) + # step = step[1:] # Removing the -1 point for symmetrical quantization - hardtanh + thresholds = np.zeros((len(step),len(mean)), dtype=np.float64) + for i in range(len(step)): + thresholds[i] = (mean - bias) + ((step[i] - beta) / (gamma*invstd)) # ensure all neurons activate on the "positive" side, so we can use - thres = mean[neuron] - bias[neuron] + ((step - beta[neuron]) / (gamma[neuron]*invstd[neuron])) # greater-than-threshold activation - if gamma[neuron]*invstd[neuron] < 0: - need_flip = 1 - thres = np.ceil(-factor*thres) - else: - thres = np.floor(factor*thres) + need_flip = np.sign(gamma) + factor = need_flip if numThresIntBits is None else need_flip * 2**(numThresBits - numThresIntBits) + thresholds = factor*thresholds + # turn threshold into "number of 1s" (popcount) instead of signed sum + if usePopCount: + thresholds = (ins + thresholds)/2 # Integer-like threshold - # compute a preliminary threshold from the batchnorm parameters - #thres = dtype=int64 - thresholds[neuron] = thres.astype(int) - # binarize the synapses00 - for synapse in range(ins): - # note how we change from col major to row major if requested - dest_ind = neuron*ins+synapse if use_rowmajor else synapse*outs+neuron - if need_flip: - w_bin[dest_ind] = quantize(-weights[synapse][neuron],WPrecisions_int,WPrecisions_fract) - else: - w_bin[dest_ind] = quantize(weights[synapse][neuron],WPrecisions_int,WPrecisions_fract) - # reshape the output as desired - if use_rowmajor: - w_bin = np.asarray(w_bin).reshape((outs, ins)) - else: - w_bin = np.asarray(w_bin).reshape((ins, outs)) - return (w_bin, thresholds) + else: + thresholds = np.where(need_flip < 0, np.ceil(thresholds), np.floor(thresholds)) + thresholds = thresholds.transpose(1,0).astype(np.int) + + # generating weights + weights = weights * need_flip + weights = quantize(weights, WPrecisions_int, WPrecisions_fract) + # note how we change from col major to row major if requested + if use_rowmajor: + weights = weights.transpose(1,0) + return (weights, thresholds) # binarize and pack convolutional layer weights into a matrix and compute # thresholds from the conv bias and batchnorm parameters -def makeConvBNComplex(weights, bias, beta, gamma, mean, invstd, interleaveChannels, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, WPrecisions_int, APrecisions_int, IPrecisions_int,usePopCount=True,numThresBits=16, numThresIntBits=None): - WPrecision = WPrecisions_fract + WPrecisions_int - APrecision = APrecisions_fract + APrecisions_int - IPrecision = IPrecisions_fract + IPrecisions_int - numOut = weights.shape[0] - numIn = weights.shape[1] - k = weights.shape[2] - if(k != weights.shape[3]): - raise "Nonsymmetric conv kernels are not yet supported" - print "Extracting conv-BN complex, OFM=%d IFM=%d k=%d" % (numOut, numIn, k) - # the fanin is used to ensure positive-only threshold - fanin = numIn * k * k - w_bin = range(numOut * numIn * k * k) - # one threshold per output channel - thresholds = range(numOut) - dest_ind = 0 - step = np.linspace(-1,1,num=2**(APrecision-1),endpoint=False) + 1./(2**(APrecisions_fract+1)) # This one make -0.5 and +0.5 with 2 bits - # we'll fill in the binarized weights and thresholds iteratively - for neuron in range(numOut): +def makeConvBNComplex(weights, bias, beta, gamma, mean, invstd, interleaveChannels, \ + WPrecisions_fract, APrecisions_fract, IPrecisions_fract, \ + WPrecisions_int, APrecisions_int, IPrecisions_int, usePopCount=True, numThresBits=16, numThresIntBits=None): + + WPrecision = WPrecisions_fract + WPrecisions_int + APrecision = APrecisions_fract + APrecisions_int + IPrecision = IPrecisions_fract + IPrecisions_int + numOut = weights.shape[0] + numIn = weights.shape[1] + k = weights.shape[2] + # the fanin is used to ensure positive-only threshold + fanin = numIn * k * k + if(k != weights.shape[3]): + raise Exception("Nonsymmetric conv kernels are not yet supported") + print("Extracting conv-BN complex, OFM=%d IFM=%d k=%d" % (numOut, numIn, k)) + # compute a preliminary threshold from the batchnorm parameters, # subtracting the conv bias from the batchnorm mean - thres = (mean[neuron] - bias[neuron]) - (beta[neuron] / (gamma[neuron]*invstd[neuron])) - need_flip = 0 - - if (numThresIntBits) is None: - factor = 1 + if (APrecision == 1): + step = np.zeros(1, dtype=np.float64) else: - factor = 2**(numThresBits - numThresIntBits) - + # This one make -0.5 and +0.5 with 2 bits + step = np.linspace(-1,1,num=2**(APrecision-1), endpoint=False, dtype=np.float64) + 1./(2**(APrecisions_fract+1)) + # step = np.linspace(-1,1,num=2**APrecision-1,endpoint=False) # Equidistant points between -1 and +1 (hardtanh) + # step = step[1:] # Removing the -1 point for symmetrical quantization - hardtanh + thresholds = np.zeros((len(step),len(mean)), dtype=np.float64) + for i in range(len(step)): + thresholds[i] = (mean - bias) + ((step[i] - beta) / (gamma*invstd)) # ensure all neurons activate on the "positive" side, so we can use # greater-than-threshold activation - if (APrecision==1): - if gamma[neuron]*invstd[neuron] < 0: - need_flip = 1 - thres = np.ceil(-factor*thres) - else: - thres = np.floor(factor*thres) - # turn threshold into "number of 1s" (popcount) instead of signed sum - if usePopCount: - thresholds[neuron] = int((fanin + thres) / 2) - else: - thresholds[neuron] = thres - else: - if gamma[neuron]*invstd[neuron] < 0: - need_flip = 1 - thres = mean[neuron] - bias[neuron] + ((step - beta[neuron]) / (gamma[neuron]*invstd[neuron])) - thres = np.ceil(-factor*thres) - else: - thres = mean[neuron] - bias[neuron] + ((step - beta[neuron]) / (gamma[neuron]*invstd[neuron])) - thres = np.floor(factor*thres) - thresholds[neuron] = thres#thres.astype(int) - # go through each weight of each convolutional kernel + need_flip = np.sign(gamma) + factor = need_flip if numThresIntBits is None else need_flip * 2**(numThresBits - numThresIntBits) + thresholds = factor*thresholds + thresholds = np.where(need_flip < 0, np.ceil(thresholds), np.floor(thresholds)) + # turn threshold into "number of 1s" (popcount) instead of signed sum + if usePopCount and APrecision==1: + thresholds = (fanin + thresholds)/2 + thresholds = thresholds.transpose(1,0).astype(np.int) + + # generating weights + weights = weights * need_flip.reshape(-1,1,1,1) + weights = quantize(weights, WPrecisions_int, WPrecisions_fract) if interleaveChannels: - for ky in range(k): - for kx in range(k): - for ifm in range(numIn): - f = -1 if need_flip else +1 - w_bin[dest_ind] = quantize(f*weights[neuron][ifm][ky][kx],WPrecisions_int,WPrecisions_fract) # If use quantize should work in both cases - dest_ind += 1 - else: - for ifm in range(numIn): - for ky in range(k): - for kx in range(k): - f = -1 if need_flip else +1 - w_bin[dest_ind] = quantize(f*weights[neuron][ifm][ky][kx],WPrecisions_int,WPrecisions_fract) - dest_ind += 1 - - # reshape the output as desired - w_bin = np.asarray(w_bin).reshape((numOut, fanin)) - return (w_bin, thresholds) - + weights = np.moveaxis(weights, 1, -1) + weights = weights.reshape((numOut, fanin)) + return (weights, thresholds) # pull out data from a numpy archive containing layer parameters # this should ideally be done using Lasagne, but this is simpler and works class BNNWeightReader: - def __init__(self, paramFile, interleaveChannels): - self.paramDict = np.load(paramFile) - self.currentParamInd = 0 - self.interleaveChannels = interleaveChannels - self.numInterleaveChannels = 0 - - def __getCurrent(self): - ret = self.paramDict["arr_" + str(self.currentParamInd)] - self.currentParamInd += 1 - return ret - - def readWeightsRaw(self): - w = self.__getCurrent() - return w - - def readBatchNormLayerRaw(self): - bias = self.__getCurrent() - beta = self.__getCurrent() - gamma = self.__getCurrent() - mean = self.__getCurrent() - invstd = self.__getCurrent() - return (bias, beta, gamma, mean, invstd) - - # read a fully connected layer plus batchnorm, binarize and convert to - # positive threshold form, returning (bin weight matrix, thresholds) - # the returned bin weight matrix has neurons along rows and is suitable - # to be packed into BNN mems using BNNProcElemMem - def readFCBNComplex(self, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, WPrecisions_int, APrecisions_int, IPrecisions_int, numThresBits=16, numThresIntBits=None): - WPrecision = WPrecisions_fract + WPrecisions_int - APrecision = APrecisions_fract + APrecisions_int - IPrecision = IPrecisions_fract + IPrecisions_int - weights = self.readWeightsRaw() - (bias, beta, gamma, mean, invstd) = self.readBatchNormLayerRaw() + def __init__(self, paramFile, interleaveChannels): + self.paramDict = np.load(paramFile) + self.currentParamInd = 0 + self.interleaveChannels = interleaveChannels + self.numInterleaveChannels = 0 - if WPrecision==1 and APrecision==1 and IPrecision==1: - (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_int, WPrecisions_fract, use_rowmajor=True) - elif (APrecision==1): - (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_int, WPrecisions_fract, use_rowmajor=True, usePopCount=False) - else: - (Wb, T) = makeFCBNComplex_QNN(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, WPrecisions_int, APrecisions_int, True, numThresBits, numThresIntBits) - # if the interleave flag is set, permute elements in each row - if self.interleaveChannels and self.numInterleaveChannels != 0: - print "Interleaving %d channels in fully connected layer..." % self.numInterleaveChannels - pixPerChan = Wb.shape[1] / self.numInterleaveChannels - if (APrecisions_fract == 0): - Wb_perm = np.zeros(Wb.shape, dtype=np.int) - else: - Wb_perm = np.zeros(Wb.shape, dtype=np.float) - for r in range(Wb.shape[0]): - for chan in range(self.numInterleaveChannels): - for cpix in range(pixPerChan): - Wb_perm[r][cpix*self.numInterleaveChannels + chan] = Wb[r][chan*pixPerChan + cpix] - Wb = Wb_perm - # set interleave to zero once we go past this fc layer - self.numInterleaveChannels = 0 - - return (Wb, T) + def __getCurrent(self): + ret = self.paramDict["arr_" + str(self.currentParamInd)] + self.currentParamInd += 1 + return ret.astype(np.float64) + + def readWeightsRaw(self): + w = self.__getCurrent() + return w + + def readBatchNormLayerRaw(self, read_bias=True): + bias = self.__getCurrent() if read_bias else None + beta = self.__getCurrent() + gamma = self.__getCurrent() + mean = self.__getCurrent() + invstd = self.__getCurrent() + return (bias, beta, gamma, mean, invstd) + + # read a fully connected layer plus batchnorm, binarize and convert to + # positive threshold form, returning (bin weight matrix, thresholds) + # the returned bin weight matrix has neurons along rows and is suitable + # to be packed into BNN mems using BNNProcElemMem + def readFCBNComplex(self, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, \ + WPrecisions_int, APrecisions_int, IPrecisions_int, numThresBits=16, numThresIntBits=None): + + WPrecision = WPrecisions_fract + WPrecisions_int + APrecision = APrecisions_fract + APrecisions_int + IPrecision = IPrecisions_fract + IPrecisions_int + weights = self.readWeightsRaw() + (bias, beta, gamma, mean, invstd) = self.readBatchNormLayerRaw() + + if (WPrecision == 1) and (APrecision == 1) and (IPrecision == 1): + (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, \ + WPrecisions_int, APrecisions_int, usePopCount=True) + else: + (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, \ + WPrecisions_int, APrecisions_int, numThresBits=numThresBits, numThresIntBits=numThresIntBits) + + # if the interleave flag is set, permute elements in each row + if self.interleaveChannels and self.numInterleaveChannels != 0: + print("Interleaving %d channels in fully connected layer..." % self.numInterleaveChannels) + Wb = Wb.reshape(Wb.shape[0], self.numInterleaveChannels, -1) + Wb = Wb.swapaxes(1,-1).reshape(Wb.shape[0], -1) + # set interleave to zero once we go past this fc layer + self.numInterleaveChannels = 0 + return (Wb, T) # read a fully connected layer without batchnorm and without using thresholds, # returning bin weight matrix # the returned bin weight matrix has neurons along rows and is suitable # to be packed into BNN mems using BNNProcElemMem - def readFCBNComplex_no_thresholds(self, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, WPrecisions_int, APrecisions_int, IPrecisions_int, numThresBits=16, numThresIntBits=None): - WPrecision = WPrecisions_fract + WPrecisions_int - APrecision = APrecisions_fract + APrecisions_int - IPrecision = IPrecisions_fract + IPrecisions_int - - weights = self.readWeightsRaw() - - #fake the batchnorm params to use same make functions below - bias = np.zeros(weights.shape[1]) - beta = np.zeros(weights.shape[1]) - gamma = np.ones(weights.shape[1]) - mean = np.ones(weights.shape[1]) - invstd = np.ones(weights.shape[1]) - - if (WPrecision == 1) and (APrecision == 1) and (IPrecision == 1): - (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_int, WPrecisions_fract, use_rowmajor=True) - elif (APrecision==1): - (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_int, WPrecisions_fract, use_rowmajor=True, usePopCount=False) - else: - (Wb, T) = makeFCBNComplex_QNN(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, WPrecisions_int, APrecisions_int, True, numThresBits, numThresIntBits) - - # if the interleave flag is set, permute elements in each row - if self.interleaveChannels and self.numInterleaveChannels != 0: - print ("Interleaving %d channels in fully connected layer..." % self.numInterleaveChannels) - pixPerChan = Wb.shape[1] / self.numInterleaveChannels - if (APrecisions_fract == 0): - Wb_perm = np.zeros(Wb.shape, dtype=np.int) + def readFCBNComplex_no_thresholds(self, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, \ + WPrecisions_int, APrecisions_int, IPrecisions_int, numThresBits=16, numThresIntBits=None): + + WPrecision = WPrecisions_fract + WPrecisions_int + APrecision = APrecisions_fract + APrecisions_int + IPrecision = IPrecisions_fract + IPrecisions_int + + weights = self.readWeightsRaw() + (_, _, gamma, _, _) = self.readBatchNormLayerRaw(read_bias=False) + + #fake the batchnorm params to use same make functions below + bias = np.zeros(weights.shape[1]) + beta = np.zeros(weights.shape[1]) + #read gamma in case if it has a negative sign, we have to invert the weights + gamma = gamma*np.ones(weights.shape[1]) + mean = np.ones(weights.shape[1]) + invstd = np.ones(weights.shape[1]) + + if (WPrecision == 1) and (APrecision == 1) and (IPrecision == 1): + (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, \ + WPrecisions_int, APrecisions_int, usePopCount=True) else: - Wb_perm = np.zeros(Wb.shape, dtype=np.float) - for r in range(Wb.shape[0]): - for chan in range(self.numInterleaveChannels): - for cpix in range(pixPerChan): - Wb_perm[r][cpix*self.numInterleaveChannels + chan] = Wb[r][chan*pixPerChan + cpix] - Wb = Wb_perm - # set interleave to zero once we go past this fc layer - self.numInterleaveChannels = 0 - - return (Wb, T) - - # read a convolutional layer plus batchnorm, binarize and convert to - # positive threshold form, returning (bin weight matrix, thresholds) - # the returned bin weight matrix is suitable to be packed into BNN mems - def readConvBNComplex(self, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, WPrecisions_int, APrecisions_int, IPrecisions_int, usePopCount=True,numThresBits=16, numThresIntBits=None): - weights = self.readWeightsRaw() - (bias, beta, gamma, mean, invstd) = self.readBatchNormLayerRaw() - # keep track of output channels for use in FC layer interleave - self.numInterleaveChannels = weights.shape[0] - (Wb, T) = makeConvBNComplex(weights, bias, beta, gamma, mean, invstd, self.interleaveChannels, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, WPrecisions_int, APrecisions_int, IPrecisions_int, usePopCount=usePopCount, numThresBits=numThresBits, numThresIntBits=numThresIntBits) - return (Wb, T) + (Wb, T) = makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, \ + WPrecisions_int, APrecisions_int, numThresBits=numThresBits, numThresIntBits=numThresIntBits) + + # if the interleave flag is set, permute elements in each row + if self.interleaveChannels and self.numInterleaveChannels != 0: + print("Interleaving %d channels in fully connected layer..." % self.numInterleaveChannels) + Wb = Wb.reshape(Wb.shape[0], self.numInterleaveChannels, -1) + Wb = Wb.swapaxes(1,-1).reshape(Wb.shape[0], -1) + # set interleave to zero once we go past this fc layer + self.numInterleaveChannels = 0 + return (Wb, T) + + # read a convolutional layer plus batchnorm, binarize and convert to + # positive threshold form, returning (bin weight matrix, thresholds) + # the returned bin weight matrix is suitable to be packed into BNN mems + def readConvBNComplex(self, WPrecisions_fract, APrecisions_fract, IPrecisions_fract, \ + WPrecisions_int, APrecisions_int, IPrecisions_int, usePopCount=True,numThresBits=16, numThresIntBits=None): + + weights = self.readWeightsRaw() + (bias, beta, gamma, mean, invstd) = self.readBatchNormLayerRaw() + # keep track of output channels for use in FC layer interleave + self.numInterleaveChannels = weights.shape[0] + (Wb, T) = makeConvBNComplex(weights, bias, beta, gamma, mean, invstd, self.interleaveChannels, \ + WPrecisions_fract, APrecisions_fract, IPrecisions_fract, WPrecisions_int, APrecisions_int, IPrecisions_int, \ + usePopCount=usePopCount, numThresBits=numThresBits, numThresIntBits=numThresIntBits) + return (Wb, T) # create a 2D array of zeroes for the PE memories def makeEmptyPEMems(numPE, memDepth, initVal): - ret = [] - - for i in range(numPE): - ret += [ [initVal for i in range(memDepth)] ] - return ret + ret = np.full((numPE, memDepth), initVal) + return ret # ensure no non-binary weight values while packing def ensureBinary(x): - for i in x: - if i != 0 and i != 1: - raise "Non-binary values found in BNN weight data" - -# turn a binary array into a string representation with MSB on the left -# e.g. [A, B, C, D] becomes "DCBA" -def binArrayToString(x): - ensureBinary(x) - return reduce(lambda x,y: str(x)+str(y), np.flipud(x), "") + temp = np.where(x != 0, 1, x) + temp = np.where(x != 1, 0, temp) + if not np.array_equal(x,temp): + raise Exception("Non-binary values found in BNN weight data") # Encode the array as a single integer number # The array contains all the values that has to be encoded # in a single ap_uint. -def ArrayToString(array, precision, precFract=0, debug=False): - val = 0 - #for i in range(len(array)-1, -1, -1): - for i in range(len(array)): - tmp = array[i] - tmp2 = tmp * (2**precFract) - - if tmp < 0: - tmp2 = 2**(precision) + (tmp * (2**precFract)) - - tmp2 = int(tmp2) - tmp3 = tmp2 * 2**(precision*i) - val = val + tmp3 - - return val +def ArrayToAp_uints(array, precision, precFract=0): + if precision == 1: + ensureBinary(array) + datatype = np.int64 + else: + array = array * (1 << precFract) + array = np.where(array < 0, array+(1 << precision), array).astype(np.uint64) + datatype = np.uint64 + factor = 1 << precision*np.arange(array.shape[-1], dtype=datatype) + val = array.dot(factor) + return val # pack one or several BNN layers into PE on-chip memories, and create @@ -487,268 +399,196 @@ def ArrayToString(array, precision, precFract=0, debug=False): # note that no binarization or quantization is performed # If numThresIntBits is not none, weights produced will be fixed point numbers. class BNNProcElemMem: - def __init__(self, numPE, numSIMD, weightMemDepth, thresMemDepth, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional, numThresBits=16, numThresIntBits=None): - APrecision = APrecision_integer+APrecision_fractional - WPrecision = WPrecision_integer+WPrecision_fractional - IPrecision = IPrecision_integer+IPrecision_fractional - self.lenExtMemWord = 64 - self.numPE = numPE - self.numSIMD = numSIMD - self.numThresBits = numThresBits - self.numThresIntBits = numThresIntBits - self.APrecisionInt = APrecision_integer - self.APrecisionFract = APrecision_fractional - self.APrecision = APrecision - self.numThresholds = 2**(APrecision - 1) - self.IPrecision = IPrecision - self.IPrecisionInt = IPrecision_integer - self.IPrecisionFract = IPrecision_fractional - self.WPrecision = WPrecision - self.WPrecisionInt = WPrecision_integer - self.WPrecisionFract = WPrecision_fractional - self.weightMemDepth = weightMemDepth - self.thresMemDepth = thresMemDepth - self.weightMemHead = [0 for i in range(numPE)] - self.thresMemHead = [0 for i in range(numPE)] - # note that these memories are 2D: [PE index, mem index] - if self.WPrecision==1: - self.weightMem = makeEmptyPEMems(self.numPE, self.weightMemDepth, "1" * numSIMD) - else: - pad_word = ArrayToString(np.full((self.numSIMD),0), self.WPrecision) - self.weightMem = makeEmptyPEMems(self.numPE, self.weightMemDepth, pad_word) - self.thresMem = makeEmptyPEMems(self.numPE, self.thresMemDepth, 0) - self.AccuOffset = 0 - self.neuronPad = [] - self.synapsePad = [] - self.layerSizes = [] - self.layerHeadsW = [] - self.layerHeadsT = [] - - def __padMatrix(self, A, T, padW=0, padH=0): - n = A.shape[0] - s = A.shape[1] - # ensure number of rows (neurons) is divisable by PE count - padN = padH - n #self.numPE - (n % self.numPE) if n % self.numPE != 0 else 0 - # ensure number of cols (synapses per neuron) is divisable by SIMD width - padS = padW - s #self.numSIMD - (s % self.numSIMD) if s % self.numSIMD != 0 else 0 - # create padded version of matrix - # use 1 bits to pad matrix, 0 bits to pad input - if self.WPrecision==1: - Ap = np.pad(A, ((0, padN), (0, padS)), 'constant', constant_values=1 ) - else: -# pad_word = ArrayToString(np.full((self.numSIMD),1), self.WPrecision) - Ap = np.pad(A, ((0, padN), (0, padS)), 'constant', constant_values=0 ) - # pad thresholds - max_thres = pow(2, self.numThresBits) - 1 - if self.APrecision==1: - Tp = np.pad(T, ((0, padN)), 'constant', constant_values=max_thres) - else: - Tp = np.pad(T, ((0, padN), (0, 0)), 'constant', constant_values=max_thres) - #Tp = np.pad(T, ((0, padN)), 'constant', constant_values=max_thres) - # keep track of how much padding we added - self.neuronPad += [padN] - self.synapsePad += [padS] - if (self.WPrecision==1 and self.APrecision==1 and self.IPrecision==1) or (self.WPrecision>=2): - self.AccuOffset = 0 - else: - self.AccuOffset = padS - return (Ap, Tp) - - def __updatePEMapping(self, A, T): - # TODO also update threshold memories - # should only be called internally, and on a matrix that is already padded - n = A.shape[0] - s = A.shape[1] - if n % self.numPE != 0: - raise "Matrix height must be multiple of PE count" - if s % self.numSIMD != 0: - raise "Matrix width must be multiple of SIMD width" - if n != T.shape[0]: - raise "Number of neurons and thresholds do not match" - # reshape and copy into PE memories - neuronsPerPE = n / self.numPE - synGroupsPerNeuron = s / self.numSIMD - # TODO check that there is enough room in the PE memory - self.layerHeadsW += [ self.weightMemHead[0] ] - self.layerHeadsT += [ self.thresMemHead[0] ] - M=A.reshape((n, synGroupsPerNeuron, self.numSIMD)) - self.layerSizes += [(n,s)] - for i in range(n): - # interleave matrix rows between different PEs - targetPE = i % self.numPE - targetBase = self.weightMemHead[targetPE] - self.thresMem[targetPE][self.thresMemHead[targetPE]] = T[i] - self.AccuOffset # We have to add the AccuOffset if padding is not transparent - for j in range(synGroupsPerNeuron): - if (self.WPrecision==1): - self.weightMem[targetPE][targetBase+j] = binArrayToString(M[i][j]) + def __init__(self, numPE, numSIMD, weightMemDepth, thresMemDepth, \ + WPrecision_integer, APrecision_integer, IPrecision_integer,\ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional, numThresBits=16, numThresIntBits=None): + + APrecision = APrecision_integer+APrecision_fractional + WPrecision = WPrecision_integer+WPrecision_fractional + IPrecision = IPrecision_integer+IPrecision_fractional + self.numPE = numPE + self.numSIMD = numSIMD + if self.numSIMD*WPrecision > 64: + raise Exception("SIMD*(WPrecision_integer+WPrecision_fractional) = {} which needs to be <= 64 for now. ".format(\ + self.numSIMD*WPrecision) + + "If you wish extend the finnthesizer to support this, start with the old one " + \ + "(from previous commits).") + + self.numThresBits = numThresBits + self.numThresIntBits = numThresIntBits + self.APrecisionInt = APrecision_integer + self.APrecisionFract = APrecision_fractional + self.APrecision = APrecision + self.numThresholds = 2**(APrecision - 1) + self.IPrecision = IPrecision + self.IPrecisionInt = IPrecision_integer + self.IPrecisionFract = IPrecision_fractional + self.WPrecision = WPrecision + self.WPrecisionInt = WPrecision_integer + self.WPrecisionFract = WPrecision_fractional + self.weightMemDepth = weightMemDepth + self.thresMemDepth = thresMemDepth + # note that these memories are 2D: [PE index, mem index] + if self.WPrecision==1: + self.weightMem = makeEmptyPEMems(self.numPE, self.weightMemDepth, "1" * numSIMD) else: - self.weightMem[targetPE][targetBase+j] = ArrayToString(M[i][j], self.WPrecision) - # update the memory head pointers for the target PE - self.weightMemHead[targetPE] += synGroupsPerNeuron - self.thresMemHead[targetPE] += 1 - - def addMatrix(self, W, T, padW=0, padH=0): - # add padding - if self.numThresIntBits is None: + pad_word = ArrayToAp_uints(np.full((self.numSIMD),0), self.WPrecision) + self.weightMem = makeEmptyPEMems(self.numPE, self.weightMemDepth, pad_word) + self.thresMem = makeEmptyPEMems(self.numPE, self.thresMemDepth, 0) + self.AccuOffset = 0 + self.neuronPad = [] + self.synapsePad = [] + self.layerSizes = [] + + def __padMatrix(self, A, T, padW=0, padH=0): + n = A.shape[0] + s = A.shape[1] + # ensure number of rows (neurons) is divisable by PE count + padN = padH - n + # ensure number of cols (synapses per neuron) is divisable by SIMD width + padS = padW - s + # create padded version of matrix + # use 1 bits to pad matrix, 0 bits to pad input + const = 1 if self.WPrecision==1 else 0 + Ap = np.pad(A, ((0, padN), (0, padS)), 'constant', constant_values=const) + # pad thresholds + max_thres = pow(2, self.numThresBits) - 1 + Tp = np.pad(T, ((0, padN), (0, 0)), 'constant', constant_values=max_thres) + if self.APrecision==1: + Tp = Tp.reshape(-1,) + # keep track of how much padding we added + self.neuronPad += [padN] + self.synapsePad += [padS] + if (self.WPrecision==1 and self.APrecision==1 and self.IPrecision==1) or (self.WPrecision>=2): + self.AccuOffset = 0 + else: + self.AccuOffset = padS + return (Ap, Tp) + + def __updatePEMapping(self, A, T): + # TODO also update threshold memories + # should only be called internally, and on a matrix that is already padded + n = A.shape[0] + s = A.shape[1] + if n % self.numPE != 0: + raise Exception("Matrix height must be multiple of PE count") + if s % self.numSIMD != 0: + raise Exception("Matrix width must be multiple of SIMD width") + if n != T.shape[0]: + raise Exception("Number of neurons and thresholds do not match") + # reshape and copy into PE memories + neuronsPerPE = n // self.numPE + synGroupsPerNeuron = s // self.numSIMD + + M = A.reshape((n, synGroupsPerNeuron, self.numSIMD)) + self.layerSizes += [(n,s)] + + M = ArrayToAp_uints(M, self.WPrecision, self.WPrecisionFract) + + tempw = np.split(M, neuronsPerPE, axis=0) + tempw = np.asarray(tempw) + tempw = np.split(tempw, synGroupsPerNeuron, axis=-1) + tempw = np.asarray(tempw).swapaxes(0,2) + tempw = tempw.reshape(tempw.shape[0], -1) + + T = T - self.AccuOffset # We have to add the AccuOffset if padding is not transparent + tempt = np.split(T, neuronsPerPE, axis=0) + tempt = np.array(tempt) + tempt = tempt.swapaxes(0,1) + + self.weightMem = tempw + self.thresMem = tempt + + if self.numThresIntBits is None: + # do saturation + saturate_max = (2**(self.numThresBits-1))-1 + saturate_min = -(2**(self.numThresBits-1)) + self.thresMem = np.clip(self.thresMem, saturate_min, saturate_max) + + def addMatrix(self, W, T, padW=0, padH=0): + # add padding + if self.numThresIntBits is not None: + T = T.astype(np.int)/(2.**(self.numThresBits - self.numThresIntBits)) (Wp, Tp) = self.__padMatrix(W, T, padW, padH) - else: # Convert thresholds to ints before updating the PE mapping. - #Ti = map(lambda x: int(x*2**(self.numThresBits - self.numThresIntBits))/(2.**(self.numThresBits - self.numThresIntBits)), T) - if (self.APrecision==1): - Ti = map(lambda x: int(x*2**(self.numThresBits - self.numThresIntBits))/(2.**(self.numThresBits - self.numThresIntBits)), T) + # map to PE memories + self.__updatePEMapping(Wp, Tp) + + def __makeHLSInit(self, x): + if x == 0: + return "0x0" else: - round_func = lambda x: int(x)/(2.**(self.numThresBits - self.numThresIntBits)) - Ti = map(np.vectorize(round_func), T) - (Wp, Tp) = self.__padMatrix(W, Ti, padW, padH) - # map to PE memories - self.__updatePEMapping(Wp, Tp) - - def __makeHLSInit(self, x): - if x == 0: - return "0" - else: - if (self.WPrecision ==1): - return hex(int(x, 2)) - else: - return hex(int(x)) - # pack every word of the internal memory into a 64-bit integer and write - # into a binary file - # TODo support sizes > 64 bits. - def __wmem2bin(self, mem, fileName, isBinaryString): - import struct - import bitstring - lenExtMemWord=64 - outFile = open(fileName, "wb") - for memInd in range(len(mem)): - if isBinaryString: - if len(mem[memInd]) > lenExtMemWord: - raise "SIMD width needs to suit into 64 bit ExtMemWord for now" - #pad to machine word - if len(mem[memInd]) < lenExtMemWord: - mem[memInd] = ('0' * (lenExtMemWord-len(mem[memInd]))) + mem[memInd] - for b in range(lenExtMemWord/8) : - subByte = mem[memInd][lenExtMemWord-(b+1)*8:lenExtMemWord-b*8] - outFile.write(struct.pack("B",int(subByte,2))) - else: - if(len(bin(mem[memInd])) - 2 > lenExtMemWord): - raise "Error weight exceeding width of ExtMemWord" - if mem[memInd] >= 0: - weightBin = bitstring.Bits(uint=mem[memInd], length=lenExtMemWord).unpack("bin:"+str(lenExtMemWord))[0] + return hex(np.uint64(x)) + + # pack every word of the internal memory into a 64-bit integer and write + # into a binary file + def __wmem2bin(self, mem, fileName): + mem.astype(np.uint64).tofile(fileName) + + def __tmem2bin(self, mem, fileName): + if self.numThresIntBits is None: + if not np.array_equal(mem.astype(np.int), mem): + print("WARNING: Cannot pack non-int values into binary threshold file.") + print("The thresholds might be processed with wrong datatype. Check BNNProcElemMem \ + arguments numThresBits and numThresIntBits to ensure correct fractional shift.") else: - weightBin = bitstring.Bits(int=mem[memInd], length=lenExtMemWord).unpack("bin:"+str(lenExtMemWord))[0] - #write byte by byte - for b in range(lenExtMemWord/8) : - subByte = weightBin[lenExtMemWord-(b+1)*8:lenExtMemWord-b*8] - outFile.write(struct.pack("B",int(subByte,2))) - outFile.close() - - def __tmem2bin(self, mem, fileName, isBinaryString): - import struct - import bitstring - lenExtMemWord=64 - outFile = open(fileName, "wb") - for memInd in range(len(mem)): - if isBinaryString: - if len(mem[memInd]) > lenExtMemWord: - raise "Threshold needs to fit into 64 bit ExtMemWord for now" - if len(mem[memInd]) < lenExtMemWord: - mem[memInd] = ('0' * (lenExtMemWord-len(mem[memInd]))) + mem[memInd] - for b in range(lenExtMemWord/8) : - subByte = mem[memInd][lenExtMemWord-(b+1)*8:lenExtMemWord-b*8] - outFile.write(struct.pack("B",int(subByte,2))) - else: - #create list if APrecision==1 - if self.APrecision == 1: - mem[memInd]=list([mem[memInd]]) - for numThresh in range(self.APrecision): - #check wheter there are integer thresholds or floats - if self.numThresIntBits is None: - #do saturation - accuWidth = self.numThresBits - if mem[memInd][numThresh] > (2**(accuWidth-1))-1: - saturate = (2**(accuWidth-1))-1 - #print "WARNING: Threshold is out of datatype (int" + str(accuWidth) + "). Thresh is " + str(mem[memInd][numThresh]) + ", saturated to " + str(saturate) - mem[memInd][numThresh] = saturate - elif mem[memInd][numThresh] < -(2**(accuWidth-1)): - saturate = -(2**(accuWidth-1)) - #print "WARNING: Threshold is out of datatype (int" + str(accuWidth) + "). Thresh is " + str(mem[memInd][numThresh]) + ", saturated to " + str(saturate) - mem[memInd][numThresh] = saturate - if int(mem[memInd][numThresh]) != mem[memInd][numThresh]: - print("WARNING: Cannot pack non-int values into binary threshold file.") - print("The thresholds might be processed with wrong datatype. Check BNNProcElemMem arguments numThresBits and numThresIntBits to ensure correct fractional shift.") - print("Packed will be ",int(mem[memInd][numThresh])," instead of ",mem[memInd][numThresh]) - #read as int - threshBin = bitstring.Bits(int=int(mem[memInd][numThresh]), length=lenExtMemWord).unpack("bin:"+str(lenExtMemWord))[0] - else: - #read as fixed point to match with ap_fixed - sizeFract = self.numThresBits - self.numThresIntBits - intThresh = int(mem[memInd][numThresh] * (2**sizeFract)) - threshBin = bitstring.Bits(int=intThresh, length=lenExtMemWord).unpack("bin:"+str(lenExtMemWord))[0] - #write byte by byte - for b in range(lenExtMemWord/8): - subByte = threshBin[lenExtMemWord-(b+1)*8:lenExtMemWord-b*8] - outFile.write(struct.pack("B",int(subByte,2))) - outFile.close() - - - def createBinFiles(self, targetDir, prefix="", useThresholds=True): - for pe in range(self.numPE): - self.__wmem2bin(self.weightMem[pe], targetDir+"/"+prefix+"-"+str(pe)+"-weights.bin", self.WPrecision==1) - if useThresholds: - self.__tmem2bin(self.thresMem[pe], targetDir+"/"+prefix+"-"+str(pe)+"-thres.bin", False) - -# Finnthesizer HLS init files generation. Use these outputed header files for including params during bitstream generation - def createHLSInitFiles(self, targetFile, varSuffix=""): - outFile = open(targetFile , "wt") - if self.WPrecision==1: - wMemType = "ap_uint<1>" - elif self.WPrecisionFract==0: - wMemType = "ap_int<"+str(self.WPrecisionInt)+">" - else: - wMemType = "ap_fixed<"+str(self.WPrecision)+", "+str(self.WPrecisionFract)+", AP_RND_ZERO, AP_WRAP>" - if self.numThresIntBits is None: - tMemType = "ap_int<"+str(self.numThresBits)+">" - else: - tMemType = "ap_fixed<"+str(self.numThresBits)+", "+str(self.numThresIntBits)+">" - if self.APrecision==1: - ActType = "ap_uint<1>" - elif self.WPrecisionFract==0: - ActType = "ap_int<"+str(self.APrecisionInt)+">" - else: - ActType = "ap_fixed<"+str(self.APrecision)+", "+str(self.APrecisionFract)+", AP_RND_ZERO, AP_WRAP>" - MinActVal = -1 # Minimum value of the output activations -> -1 if hardtanh, 0 with ReLu - outFile.write("/*\nWeight and threshold memory initialization for Vivado HLS\n") - outFile.write("PEs = %d, SIMD width = %d, threshold bits = %d\n" % (self.numPE, self.numSIMD, self.numThresBits)) - outFile.write("weight mem depth = %d, thres mem depth = %d\n" % (self.weightMemDepth, self.thresMemDepth)) - outFile.write("layer sizes (neurons, synapses per neuron): \n") - outFile.writelines(["%s " % str(x) for x in self.layerSizes]) - outFile.write("\npadded neurons for each layer: \n") - outFile.writelines(["%d " % x for x in self.neuronPad]) - outFile.write("\npadded synapses for each layer: \n") - outFile.writelines(["%d " % x for x in self.synapsePad]) - outFile.write("\n*/\n\n") - outFile.write("const unsigned int matrixH"+varSuffix+"[] = {%s};\n" % ", ".join(map(lambda x: str(x[0]), self.layerSizes))) - outFile.write("const unsigned int matrixW"+varSuffix+"[] = {%s};\n" % ", ".join(map(lambda x: str(x[1]), self.layerSizes))) - outFile.write("const unsigned int layerStartW"+varSuffix+"[] = {%s};\n" % ", ".join(map(str, self.layerHeadsW))) - outFile.write("const unsigned int layerStartT"+varSuffix+"[] = {%s};\n\n" % ", ".join(map(str, self.layerHeadsT))) - - # write the weight memory init data - # np.save("weightMem"+str(varSuffix)+".npy",self.weightMem) - if self.WPrecision==1: - outFile.write("BinaryWeights<%d,%d,%d> weights%s= {\n{\n" % (self.numSIMD, self.numPE, self.weightMemDepth, varSuffix)) - else: - outFile.write("FixedPointWeights<%d,%s,%d,%d> weights%s= {\n{\n" % (self.numSIMD, wMemType, self.numPE, self.weightMemDepth, varSuffix)) - outFile.write(",".join(map(lambda pe:"{\n"+(",\n".join(map(self.__makeHLSInit, pe)))+"\n}", self.weightMem))) - outFile.write("\n}\n};\n") - # write the threshold memory init data - # np.save("tresh"+str(varSuffix)+".npy",self.thresMem) - if (self.numThresholds==1): - outFile.write("ThresholdsActivation<%d,%d,%d,%s,%s> threshs%s = {\n{\n" % (self.thresMemDepth, self.numPE, self.numThresholds, tMemType, ActType, varSuffix)) - outFile.write(",".join(map(lambda pe:"{\n"+(",\n".join(map(str, pe) ))+"\n}", self.thresMem))) - else: - outFile.write("ThresholdsActivation<%d,%d,%d,%s,%s,%d> threshs%s = {\n{\n" % (self.thresMemDepth, self.numPE, self.numThresholds, tMemType, ActType, MinActVal, varSuffix)) - outFile.write(",".join(map(lambda pe:"{\n"+(",\n".join(map(lambda nthresh:"{\n"+",\n".join(map(str,nthresh))+"\n}", pe) ))+"\n}", self.thresMem))) - #outFile.write(",".join(map(lambda pe: map(lambda nthresh:"{\n"+(",\n".join(map(str, nthresh) ))+"\n}", pe), self.thresMem))) - outFile.write("\n}\n};\n") - outFile.close() - + mem = mem * (1 << (self.numThresBits - self.numThresIntBits)) + mem.astype(np.int64).tofile(fileName) + + def createBinFiles(self, targetDir, prefix="", useThresholds=True): + for pe in range(self.numPE): + self.__wmem2bin(self.weightMem[pe], targetDir+"/"+prefix+"-"+str(pe)+"-weights.bin") + if useThresholds: + self.__tmem2bin(self.thresMem[pe], targetDir+"/"+prefix+"-"+str(pe)+"-thres.bin") + + # Finnthesizer HLS init files generation. Use these outputed header files for including params during bitstream generation + def createHLSInitFiles(self, targetFile, varSuffix="", useThresholds=True): + outFile = open(targetFile , "wt") + if self.WPrecision==1: + wMemType = "ap_uint<1>" + elif self.WPrecisionFract==0: + wMemType = "ap_int<"+str(self.WPrecisionInt)+">" + else: + wMemType = "ap_fixed<"+str(self.WPrecision)+", "+str(self.WPrecisionFract)+", AP_RND_ZERO, AP_WRAP>" + if self.numThresIntBits is None: + tMemType = "ap_int<"+str(self.numThresBits)+">" + else: + tMemType = "ap_fixed<"+str(self.numThresBits)+", "+str(self.numThresIntBits)+">" + if self.APrecision==1: + ActType = "ap_uint<1>" + elif self.WPrecisionFract==0: + ActType = "ap_int<"+str(self.APrecisionInt)+">" + else: + ActType = "ap_fixed<"+str(self.APrecision)+", "+str(self.APrecisionFract)+", AP_RND_ZERO, AP_WRAP>" + MinActVal = -1 # Minimum value of the output activations -> -1 if hardtanh, 0 with ReLu + outFile.write("/*\nWeight and threshold memory initialization for Vivado HLS\n") + outFile.write("PEs = %d, SIMD width = %d, threshold bits = %d\n" % (self.numPE, self.numSIMD, self.numThresBits)) + outFile.write("weight mem depth = %d, thres mem depth = %d\n" % (self.weightMemDepth, self.thresMemDepth)) + outFile.write("layer sizes (neurons, synapses per neuron): \n") + outFile.writelines(["%s " % str(x) for x in self.layerSizes]) + outFile.write("\npadded neurons for each layer: \n") + outFile.writelines(["%d " % x for x in self.neuronPad]) + outFile.write("\npadded synapses for each layer: \n") + outFile.writelines(["%d " % x for x in self.synapsePad]) + outFile.write("\n*/\n\n") + + # write the weight memory init data + # np.save("weightMem"+str(varSuffix)+".npy",self.weightMem) + if self.WPrecision==1: + outFile.write("static BinaryWeights<%d,%d,%d> weights%s= {\n{\n" % (self.numSIMD, self.numPE, self.weightMemDepth, varSuffix)) + else: + outFile.write("static FixedPointWeights<%d,%s,%d,%d> weights%s= {\n{\n" % (self.numSIMD, wMemType, self.numPE, self.weightMemDepth, varSuffix)) + outFile.write(",".join(["{\n"+(",\n".join(map(self.__makeHLSInit, pe)))+"\n}" for pe in self.weightMem])) + outFile.write("\n}\n};\n") + + # write the threshold memory init data + if useThresholds: + # np.save("threshMem"+str(varSuffix)+".npy",self.thresMem) + if (self.numThresholds==1): + outFile.write("static ThresholdsActivation<%d,%d,%d,%s,%s> threshs%s = {\n{\n" % (self.thresMemDepth, self.numPE, self.numThresholds, tMemType, ActType, varSuffix)) + outFile.write(",".join(["{\n"+(",\n".join(map(str, pe) ))+"\n}" for pe in self.thresMem])) + else: + outFile.write("static ThresholdsActivation<%d,%d,%d,%s,%s,%d> threshs%s = {\n{\n" % (self.thresMemDepth, self.numPE, self.numThresholds, tMemType, ActType, MinActVal, varSuffix)) + outFile.write(",".join(["{\n"+(",\n".join(["{\n"+",\n".join(map(str,nthresh))+"\n}" for nthresh in pe] ))+"\n}" for pe in self.thresMem])) + outFile.write("\n}\n};\n") + outFile.close() diff --git a/bnn/src/training/gtsrb-gen-binary-weights.py b/bnn/src/training/gtsrb-gen-binary-weights.py index da6f5224..fa0abd7d 100644 --- a/bnn/src/training/gtsrb-gen-binary-weights.py +++ b/bnn/src/training/gtsrb-gen-binary-weights.py @@ -1,43 +1,42 @@ -#BSD 3-Clause License -#======= -# -#Copyright (c) 2018, Xilinx -#All rights reserved. -# -#Redistribution and use in source and binary forms, with or without -#modification, are permitted provided that the following conditions are met: -# -#* Redistributions of source code must retain the above copyright notice, this +# BSD 3-Clause License +# ======= + +# Copyright (c) 2020, Xilinx +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. -# -#* Redistributions in binary form must reproduce the above copyright notice, + +# * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. -# -#* Neither the name of the copyright holder nor the names of its + +# * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. -# -#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os -import sys from finnthesizer import * if __name__ == "__main__": bnnRoot = "." npzFile = bnnRoot + "/gtsrb-1w-1a.npz" - targetDirBin = bnnRoot + "/binparam-cnvW1A1-pynq-gtrsb" - targetDirHLS = bnnRoot + "/binparam-cnvW1A1-pynq-gtrsb/hw" + targetDirBin = bnnRoot + "/cnvW1A1-gtrsb" + targetDirHLS = bnnRoot + "/cnvW1A1-gtrsb/hw" #topology of convolutional layers (only for config.h defines) ifm = [32, 30, 14, 12, 5, 3] ofm = [30, 28, 12, 10, 3, 1] @@ -97,15 +96,15 @@ 'End of no-overtaking zone for vehicles with a permitted gross weight over 3.5t including their trailers, and for tractors except passenger cars and buses', 'Not a roadsign' ] - + #configuration of PE and SIMD counts - peCounts = [16, 32, 16, 16, 4, 1, 1, 1, 4] - simdCounts = [ 3, 32, 32, 32, 32, 32, 4, 8, 1] + peCounts = [16, 32, 16, 16, 4, 1, 1, 1, 4] + simdCounts = [ 3, 32, 32, 32, 32, 32, 4, 8, 1] if not os.path.exists(targetDirBin): - os.mkdir(targetDirBin) + os.mkdir(targetDirBin) if not os.path.exists(targetDirHLS): - os.mkdir(targetDirHLS) + os.mkdir(targetDirHLS) #read weights rHW = BNNWeightReader(npzFile, True) @@ -115,112 +114,95 @@ config+= " *\n **/\n\n" config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n" + # process convolutional layers for convl in range(0, 6): - peCount = peCounts[convl] - simdCount = simdCounts[convl] - WPrecision_fractional = WeightsPrecisions_fractional[convl] - APrecision_fractional = ActivationPrecisions_fractional[convl] - IPrecision_fractional = InputPrecisions_fractional[convl] - WPrecision_integer = WeightsPrecisions_integer[convl] - APrecision_integer = ActivationPrecisions_integer[convl] - IPrecision_integer = InputPrecisions_integer[convl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl) - if convl == 0: + peCount = peCounts[convl] + simdCount = simdCounts[convl] + WPrecision_fractional = WeightsPrecisions_fractional[convl] + APrecision_fractional = ActivationPrecisions_fractional[convl] + IPrecision_fractional = InputPrecisions_fractional[convl] + WPrecision_integer = WeightsPrecisions_integer[convl] + APrecision_integer = ActivationPrecisions_integer[convl] + IPrecision_integer = InputPrecisions_integer[convl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, convl)) # use fixed point weights for the first layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer, usePopCount=False, numThresBits=24, numThresIntBits=16) + (usePopCount, numThresBits, numThresIntBits) = (False, 24, 16) if convl==0 else (True, 16, None) + (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer, \ + usePopCount=usePopCount, numThresBits=numThresBits, numThresIntBits=numThresIntBits) # compute the padded width and height paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (convl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, \ + WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional, numThresBits=numThresBits, numThresIntBits=numThresIntBits) m.addMatrix(w,t,paddedW,paddedH) - - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, \ + peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) + #generate binary weight and threshold files to initialize memory during runtime #because HLS might not work for very large header files m.createBinFiles(targetDirBin, str(convl)) - else: - # regular binarized layer - (w,t) = rHW.readConvBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) + # process fully-connected layers + for fcl in range(6,9): + peCount = peCounts[fcl] + simdCount = simdCounts[fcl] + WPrecision_fractional = WeightsPrecisions_fractional[fcl] + APrecision_fractional = ActivationPrecisions_fractional[fcl] + IPrecision_fractional = InputPrecisions_fractional[fcl] + WPrecision_integer = WeightsPrecisions_integer[fcl] + APrecision_integer = ActivationPrecisions_integer[fcl] + IPrecision_integer = InputPrecisions_integer[fcl] + print("Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl)) + if fcl == 8: + (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], 64) + useThresholds = False + else: + (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ + WPrecision_integer, APrecision_integer, IPrecision_integer) + paddedH = padTo(w.shape[0], peCount) + useThresholds = True # compute the padded width and height - paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (convl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + neededWMem = (paddedW * paddedH) // (simdCount * peCount) + neededTMem = paddedH // peCount + print("Layer %d: %d x %d" % (fcl, paddedH, paddedW)) + print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) + print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,\ + WPrecision_fractional, APrecision_integer, APrecision_fractional)) + m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ + WPrecision_fractional, APrecision_fractional, IPrecision_fractional) + m.addMatrix(w,t,paddedW,paddedH) - - config += (printConvDefines("L%d" % convl, filterDim[convl], ifm_ch[convl], ifm[convl], ofm_ch[convl], ofm[convl], simdCount, peCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(convl) + ".h", str(convl)) - + config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, \ + WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" + + #generate HLS weight and threshold header file to initialize memory directly on bitstream generation + # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl), useThresholds) + #generate binary weight and threshold files to initialize memory during runtime #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(convl)) - - # process fully-connected layers - for fcl in range(6,9): - peCount = peCounts[fcl] - simdCount = simdCounts[fcl] - WPrecision_fractional = WeightsPrecisions_fractional[fcl] - APrecision_fractional = ActivationPrecisions_fractional[fcl] - IPrecision_fractional = InputPrecisions_fractional[fcl] - WPrecision_integer = WeightsPrecisions_integer[fcl] - APrecision_integer = ActivationPrecisions_integer[fcl] - IPrecision_integer = InputPrecisions_integer[fcl] - print "Using peCount = %d simdCount = %d for engine %d" % (peCount, simdCount, fcl) - - if fcl == 8: - (w,t) = rHW.readFCBNComplex_no_thresholds(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], 64) - useThresholds = False - else: - (w,t) = rHW.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, WPrecision_integer, APrecision_integer, IPrecision_integer) - paddedH = padTo(w.shape[0], peCount) - useThresholds = True - - paddedW = padTo(w.shape[1], simdCount) - # compute memory needed for weights and thresholds - neededWMem = (paddedW * paddedH) / (simdCount * peCount) - neededTMem = paddedH / peCount - print "Layer %d: %d x %d" % (fcl, paddedH, paddedW) - print "WMem = %d TMem = %d" % (neededWMem, neededTMem) - print "IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional) - - m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, WPrecision_fractional, APrecision_fractional, IPrecision_fractional) - m.addMatrix(w,t,paddedW,paddedH) - - config += (printFCDefines("L%d" % fcl, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" - - #generate HLS weight and threshold header file to initialize memory directly on bitstream generation - #m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(fcl) + ".h", str(fcl)) - - #generate binary weight and threshold files to initialize memory during runtime - #because HLS might not work for very large header files - m.createBinFiles(targetDirBin, str(fcl), useThresholds) + m.createBinFiles(targetDirBin, str(fcl), useThresholds) config+="#endif //__LAYER_CONFIG_H_\n" - configFile = open(targetDirHLS+"/config.h", "w") configFile.write(config) configFile.close() with open(targetDirBin + "/classes.txt", "w") as f: f.write("\n".join(classes)) + + \ No newline at end of file diff --git a/bnn/src/training/mnist-gen-weights-W1A1.py b/bnn/src/training/mnist-gen-weights-W1A1.py index e0d6bd91..0ffdbc62 100644 --- a/bnn/src/training/mnist-gen-weights-W1A1.py +++ b/bnn/src/training/mnist-gen-weights-W1A1.py @@ -1,57 +1,60 @@ -#BSD 3-Clause License -#======= -# -#Copyright (c) 2017, Xilinx -#All rights reserved. -# -#Redistribution and use in source and binary forms, with or without -#modification, are permitted provided that the following conditions are met: -# -#* Redistributions of source code must retain the above copyright notice, this +# BSD 3-Clause License +# ======= + +# Copyright (c) 2020, Xilinx +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. -# -#* Redistributions in binary form must reproduce the above copyright notice, + +# * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. -# -#* Neither the name of the copyright holder nor the names of its + +# * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. -# -#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os -import sys import finnthesizer as fth if __name__ == "__main__": bnnRoot = "." npzFile = bnnRoot + "/mnist-1w-1a.npz" - targetDirBin = bnnRoot + "/binparam-lfcW1A1-pynq" - targetDirHLS = bnnRoot + "/binparam-lfcW1A1-pynq/hw" + targetDirBin = bnnRoot + "/lfcW1A1" + targetDirHLS = bnnRoot + "/lfcW1A1/hw" simdCounts = [64, 32, 64, 8] peCounts = [32, 64, 32, 16] + WeightsPrecisions_integer = [1, 1, 1, 1] WeightsPrecisions_fractional = [0, 0, 0, 0] - ActivationPrecisions_fractional = [0, 0, 0, 0] + + InputPrecisions_integer = [1, 1, 1, 1] InputPrecisions_fractional = [0, 0, 0, 0] - WeightsPrecisions_integer = [1, 1, 1, 1] + ActivationPrecisions_integer = [1, 1, 1, 1] - InputPrecisions_integer = [1, 1, 1, 1] + ActivationPrecisions_fractional = [0, 0, 0, 0] - classes = map(lambda x: str(x), range(10)) + classes = [str(x) for x in range(10)] - fth.convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional, WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer) + fth.convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, \ + WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional, \ + WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer) with open(targetDirBin + "/classes.txt", "w") as f: f.write("\n".join(classes)) diff --git a/bnn/src/training/mnist-gen-weights-W1A2.py b/bnn/src/training/mnist-gen-weights-W1A2.py index a59d2a87..e712dab6 100644 --- a/bnn/src/training/mnist-gen-weights-W1A2.py +++ b/bnn/src/training/mnist-gen-weights-W1A2.py @@ -1,57 +1,60 @@ -#BSD 3-Clause License -#======= -# -#Copyright (c) 2017, Xilinx -#All rights reserved. -# -#Redistribution and use in source and binary forms, with or without -#modification, are permitted provided that the following conditions are met: -# -#* Redistributions of source code must retain the above copyright notice, this +# BSD 3-Clause License +# ======= + +# Copyright (c) 2020, Xilinx +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. -# -#* Redistributions in binary form must reproduce the above copyright notice, + +# * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. -# -#* Neither the name of the copyright holder nor the names of its + +# * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. -# -#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os -import sys import finnthesizer as fth if __name__ == "__main__": bnnRoot = "." npzFile = bnnRoot + "/mnist-1w-2a.npz" - targetDirBin = bnnRoot + "/binparam-lfcW1A2-pynq" - targetDirHLS = bnnRoot + "/binparam-lfcW1A2-pynq/hw" + targetDirBin = bnnRoot + "/lfcW1A2" + targetDirHLS = bnnRoot + "/lfcW1A2/hw" simdCounts = [64, 32, 64, 8] peCounts = [32, 64, 32, 16] + WeightsPrecisions_integer = [1, 1, 1, 1] WeightsPrecisions_fractional = [0, 0, 0, 0] - ActivationPrecisions_fractional = [0, 0, 0, 0] + + InputPrecisions_integer = [1, 2, 2, 2] InputPrecisions_fractional = [0, 0, 0, 0] - WeightsPrecisions_integer = [1, 1, 1, 1] + ActivationPrecisions_integer = [2, 2, 2, 1] - InputPrecisions_integer = [1, 2, 2, 2] + ActivationPrecisions_fractional = [0, 0, 0, 0] - classes = map(lambda x: str(x), range(10)) + classes = [str(x) for x in range(10)] - fth.convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional, WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer) + fth.convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, \ + WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional,\ + WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer) with open(targetDirBin + "/classes.txt", "w") as f: f.write("\n".join(classes))