-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_msssim.py
152 lines (116 loc) · 5.24 KB
/
train_msssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from torch.autograd import Variable
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.datasets import ImageFolder
import Model.model as model
from Model.context_model import Weighted_Gaussian
import time
import Util.torch_msssim as torch_msssim
def adjust_learning_rate(optimizer, epoch, init_lr):
if epoch < 3:
lr = init_lr
else:
lr = init_lr * (0.5 ** ((epoch-3) // 2))
if lr < 1e-6:
lr = 1e-6
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def train(args):
train_data = ImageFolder(root=args.data, transform=transforms.Compose(
[transforms.RandomCrop(256), transforms.ToTensor()]))
train_loader = DataLoader(train_data, batch_size=args.b_size,
shuffle=True, num_workers=8)
image_comp = model.Image_coding(3, args.M, args.N2, args.M, args.M // 2).cuda()
context = Weighted_Gaussian(args.M).cuda()
net = model.NIC_Modnet(3, args.M, args.N2, args.M, args.M // 2).cuda()
model_existed = os.path.exists(os.path.join(args.model, 'fr_mse.pkl')) and \
os.path.exists(os.path.join(args.model, 'fr_msep.pkl'))
if model_existed:
image_comp.load_state_dict(torch.load(os.path.join(args.model, 'fr_mse.pkl')))
context.load_state_dict(torch.load(os.path.join(args.model, 'fr_msep.pkl')))
net.encoder = image_comp.encoder.cuda()
net.decoder = image_comp.decoder.cuda()
net.hyper_dec = image_comp.hyper_dec.cuda()
net.factorized_entropy_func = image_comp.factorized_entropy_func.cuda()
net.p = image_comp.p.cuda()
net.context = context.cuda()
print('resumed from the fixed-rate model')
else:
print("fixed-rate model not found")
if args.gpu > 1:
gpu_id = [id for id in range(args.gpu)]
net = nn.DataParallel(net, device_ids=gpu_id)
opt = torch.optim.Adam(net.parameters(), lr=args.lr)
msssim_func = torch_msssim.MS_SSIM(max_val=1.).cuda()
mse_func = nn.MSELoss()
for epoch in range(20):
rec_loss_tmp = 0
last_time = time.time()
train_bpp_tmp = 0
mse_tmp=0
msssim_tmp = 0
cur_lr = adjust_learning_rate(opt, epoch, args.lr)
for step, batch_x in enumerate(train_loader):
batch_x = batch_x[0]
num_pixels = batch_x.size()[0] * \
batch_x.size()[2] * batch_x.size()[3]
batch_x = Variable(batch_x).cuda()
b = batch_x.size()[0]
lmd_info,fake,xp2,xp3=net(batch_x)
msssim = msssim_func(fake, batch_x)
if epoch<1:
delta = (fake - batch_x) ** 2
delta = delta.view(b, -1)
dloss = torch.mean(delta, dim=1, keepdim=False).cuda()
else:
dloss = 1.0 - msssim
dloss = dloss.cuda()
train_bpp_total = torch.sum(torch.log(xp2)) / (-np.log(2) * num_pixels) + torch.sum(torch.log(xp3)) / (
-np.log(2) * num_pixels)
lambda_dloss = torch.dot(lmd_info,dloss)/float(args.b_size)
if epoch<1:
l_rec = lambda_dloss + 0.01 * train_bpp_total
else :
l_rec = 0.01 * lambda_dloss + 0.01 * train_bpp_total
opt.zero_grad()
l_rec.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 5)
opt.step()
rec_loss_tmp += l_rec.item()
train_bpp_tmp += train_bpp_total.item()
mse_tmp += torch.mean((fake-batch_x)**2).item()
msssim_tmp += torch.mean(msssim).item()
if step % 100 == 0:
with open(os.path.join(args.out_dir, 'train_msssim.txt'), 'a') as fd:
time_used = time.time() - last_time
last_time = time.time()
msssim_dB = -10.0*np.log10(1-(msssim_tmp/(step+1)))
psnr = -10.0*np.log10(mse_tmp/(step+1))
bpp_total = train_bpp_tmp / (1+step)
fd.write(
'ep:%d step:%d time:%.1f lr:%.8f loss:%.6f bpp:%.4f psnr:%.2f msssim:%.2f\n'
% (epoch, step, time_used,cur_lr,rec_loss_tmp/(step+1), bpp_total ,psnr, msssim_dB))
fd.close()
if (step + 1) % 2000 == 0:
torch.save(net.module.state_dict(),
os.path.join(args.out_dir, 'Modnetmsssim.pkl'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--M", type=int, default=256, help="the value of M")
parser.add_argument("--b_size", type=int, default=12)
parser.add_argument("--N2", type=int, default=192, help="the value of N2")
parser.add_argument("--lr", type=float, default=5e-5, help="initial learning rate.")
parser.add_argument('--out_dir', type=str, default='proposed_model/')
parser.add_argument('--model', type=str, default='baseline_model/')
parser.add_argument('--data', type=str, required=True)
parser.add_argument("--gpu", type=int, default=2)
args = parser.parse_args()
print(args)
train(args)