-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
73 lines (60 loc) · 2.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# TODO: abstract all of this into a function that takes in a PDF file name
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, SummaryIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.tools import FunctionTool, QueryEngineTool
from llama_index.core.vector_stores import MetadataFilters, FilterCondition
from typing import List, Optional
def get_doc_tools(
file_path: str,
name: str,
) -> str:
"""Get vector query and summary query tools from a document."""
# load documents
documents = SimpleDirectoryReader(input_files=[file_path]).load_data()
splitter = SentenceSplitter(chunk_size=1024)
nodes = splitter.get_nodes_from_documents(documents)
vector_index = VectorStoreIndex(nodes)
def vector_query(
query: str,
page_numbers: Optional[List[str]] = None
) -> str:
"""Use to answer questions over the MetaGPT paper.
Useful if you have specific questions over the MetaGPT paper.
Always leave page_numbers as None UNLESS there is a specific page you want to search for.
Args:
query (str): the string query to be embedded.
page_numbers (Optional[List[str]]): Filter by set of pages. Leave as NONE
if we want to perform a vector search
over all pages. Otherwise, filter by the set of specified pages.
"""
page_numbers = page_numbers or []
metadata_dicts = [
{"key": "page_label", "value": p} for p in page_numbers
]
query_engine = vector_index.as_query_engine(
similarity_top_k=2,
filters=MetadataFilters.from_dicts(
metadata_dicts,
condition=FilterCondition.OR
)
)
response = query_engine.query(query)
return response
vector_query_tool = FunctionTool.from_defaults(
name=f"vector_tool_{name}",
fn=vector_query
)
summary_index = SummaryIndex(nodes)
summary_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
)
summary_tool = QueryEngineTool.from_defaults(
name=f"summary_tool_{name}",
query_engine=summary_query_engine,
description=(
"Use ONLY IF you want to get a holistic summary of MetaGPT. "
"Do NOT use if you have specific questions over MetaGPT."
),
)
return vector_query_tool, summary_tool