-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
190 lines (159 loc) · 9.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import print_function
import time,numpy as np,sys,h5py,cPickle,argparse,subprocess
from hyperopt import Trials, STATUS_OK, tpe
from hyperas import optim
from os.path import join,dirname,basename,exists,realpath
from os import system,chdir,getcwd,makedirs
from keras.models import model_from_json
from tempfile import mkdtemp
from keras.callbacks import ModelCheckpoint,EarlyStopping
from sklearn.metrics import accuracy_score,roc_auc_score
from pprint import pprint
from hyperband import Hyperband
cwd = dirname(realpath(__file__))
def parse_args():
parser = argparse.ArgumentParser(description="Keras + Hyperband for genomics")
parser.add_argument("-y", "--hyper", dest="hyper", default=False, action='store_true',help="Perform hyper-parameter tuning")
parser.add_argument("-t", "--train", dest="train", default=False, action='store_true',help="Train on the training set with the best hyper-params")
parser.add_argument("-e", "--eval", dest="eval", default=False, action='store_true',help="Evaluate the model on the test set")
parser.add_argument("-p", "--predit", dest="infile", default='', help="Path to data to predict on (up till batch number)")
parser.add_argument("-d", "--topdir", dest="topdir", help="The data directory")
parser.add_argument("-m", "--model", dest="model", help="Path to the model file")
parser.add_argument("-o", "--outdir", dest="outdir",default='',help="Output directory for the prediction on new data")
parser.add_argument("-hi", "--hyperiter", dest="hyperiter", default=20, type=int, help="Num of max iteration for each hyper-param config")
parser.add_argument("-te", "--trainepoch", default=20, type=int, help="The number of epochs to train for")
parser.add_argument("-pa", "--patience", default=10, type=int, help="number of epochs with no improvement after which training will be stopped.")
parser.add_argument("-bs", "--batchsize", default=100, type=int,help="Batchsize in SGD-based training")
parser.add_argument("-w", "--weightfile", default=None, help="Weight file for the best model")
parser.add_argument("-l", "--lweightfile", default=None, help="Weight file after training")
parser.add_argument("-r", "--retrain", default=None, help="codename for the retrain run")
parser.add_argument("-rw", "--rweightfile", default='', help="Weight file to load for retraining")
parser.add_argument("-dm", "--datamode", default='memory', help="whether to load data into memory ('memory') or using a generator('generator')")
parser.add_argument("-ei", "--evalidx", dest='evalidx', default=0, type=int, help="which output neuron (0-based) to calculate 2-class auROC for")
parser.add_argument("--epochratio", default=1, type=float, help="when training with data generator, optionally shrink each epoch size by this factor to enable more frequen evaluation on the valid set")
parser.add_argument("-shuf", default=1, type=int, help="whether to shuffle the data at the begining of each epoch (1/0)")
return parser.parse_args()
def train_func(model, weightfile2save):
checkpointer = ModelCheckpoint(filepath=weightfile2save, verbose=1, save_best_only=True)
early_stopping = EarlyStopping( monitor = 'val_loss', patience = args.patience, verbose = 0 )
if args.datamode == 'generator':
trainbatch_num, train_size = hb.probedata(join(args.topdir, 'train.h5.batch'))
validbatch_num, valid_size = hb.probedata(join(args.topdir, 'valid.h5.batch'))
history_callback = model.fit_generator(
hb.BatchGenerator(args.batchsize, join(args.topdir, 'train.h5.batch'), shuf=args.shuf==1),
train_size / args.batchsize * args.epochratio,
args.trainepoch,
validation_data=hb.BatchGenerator(args.batchsize, join(args.topdir, 'valid.h5.batch'), shuf=args.shuf==1),
validation_steps=np.ceil(float(valid_size)/args.batchsize),
callbacks = [checkpointer, early_stopping])
else:
Y_train, traindata = hb.readdata(join(args.topdir, 'train.h5.batch'))
Y_valid, validdata = hb.readdata(join(args.topdir, 'valid.h5.batch'))
history_callback = model.fit(
traindata,
Y_train,
batch_size=args.batchsize,
epochs=args.trainepoch,
validation_data=(validdata, Y_valid),
callbacks = [checkpointer, early_stopping],
shuffle=args.shuf==1)
return model, history_callback
def load_model(weightfile2load=None):
model = model_from_json(open(architecture_file).read())
if weightfile2load:
model.load_weights(weightfile2load)
best_optim, best_optim_config, best_lossfunc = cPickle.load(open(optimizer_file, 'rb'))
model.compile(loss=best_lossfunc, optimizer = best_optim.from_config(best_optim_config), metrics=['categorical_accuracy'])
return model
if __name__ == "__main__":
args = parse_args()
model_arch = basename(args.model)
model_arch = model_arch[:-3] if model_arch[-3:] == '.py' else model_arch
outdir = join(args.topdir, model_arch)
if not exists(outdir):
makedirs(outdir)
architecture_file = join(outdir,model_arch+'_best_archit.json')
optimizer_file = join(outdir,model_arch+'_best_optimer.pkl')
weight_file = join(outdir,model_arch+'_bestmodel_weights.h5') if args.weightfile is None else args.weightfile
last_weight_file = join(outdir,model_arch+'_lastmodel_weights.h5') if args.lweightfile is None else args.lweightfile
evalout = join(outdir,model_arch+'_eval.txt')
tmpdir = mkdtemp()
system(' '.join(['cp', args.model, join(tmpdir,'mymodel.py')]))
sys.path.append(tmpdir)
import mymodel
hb = Hyperband( mymodel.get_params, mymodel.try_params, args.topdir, max_iter=args.hyperiter, datamode=args.datamode)
if args.hyper:
## Hyper-parameter tuning
results = hb.run( skip_last = 1 )
best_result = sorted( results, key = lambda x: x['loss'] )[0]
pprint(best_result['params'])
best_archit, best_optim, best_optim_config, best_lossfunc = best_result['model']
open(architecture_file, 'w').write(best_archit)
cPickle.dump((best_optim, best_optim_config, best_lossfunc),open(optimizer_file,'wb') )
if args.train:
### Training
model = load_model()
model, history_callback = train_func(model, weight_file)
model.save_weights(last_weight_file, overwrite=True)
system('touch '+join(outdir, model_arch+'.traindone'))
myhist = history_callback.history
all_hist = np.asarray([myhist["loss"], myhist["categorical_accuracy"], myhist["val_loss"], myhist["val_categorical_accuracy"]]).transpose()
np.savetxt(join(outdir, model_arch+".training_history.txt"), all_hist,delimiter = "\t", header='loss\tacc\tval_loss\tval_acc')
if args.retrain:
### Resume training
new_weight_file = weight_file + '.'+args.retrain
new_last_weight_file = last_weight_file + '.'+args.retrain
model = load_model(args.rweightfile)
model, history_callback = train_func(model, new_weight_file)
model.save_weights(new_last_weight_file, overwrite=True)
system('touch '+join(outdir, model_arch+'.traindone'))
myhist = history_callback.history
all_hist = np.asarray([myhist["loss"], myhist["categorical_accuracy"], myhist["val_loss"], myhist["val_categorical_accuracy"]]).transpose()
np.savetxt(join(outdir, model_arch+".training_history."+ args.retrain + ".txt"), all_hist, delimiter = "\t", header='loss\tacc\tval_loss\tval_acc')
if args.eval:
## Evaluate
model = load_model(weight_file)
pred_for_evalidx = []
pred_bin = []
y_true_for_evalidx = []
y_true = []
testbatch_num, _ = hb.probedata(join(args.topdir, 'test.h5.batch'))
test_generator = hb.BatchGenerator(None, join(args.topdir, 'test.h5.batch'), shuf=args.shuf==1)
for _ in range(testbatch_num):
X_test, Y_test = test_generator.next()
t_pred = model.predict(X_test)
pred_for_evalidx += [x[args.evalidx] for x in t_pred]
pred_bin += [np.argmax(x) for x in t_pred]
y_true += [np.argmax(x) for x in Y_test]
y_true_for_evalidx += [x[args.evalidx] for x in Y_test]
t_auc = roc_auc_score(y_true_for_evalidx, pred_for_evalidx)
t_acc = accuracy_score(y_true, pred_bin)
print('Test AUC for output neuron {}:'.format(args.evalidx), t_auc)
print('Test categorical accuracy:', t_acc)
np.savetxt(evalout, [t_auc, t_acc])
if args.infile != '':
## Predict on new data
model = load_model(weight_file)
predict_batch_num, _ = hb.probedata(args.infile)
print('Total number of batch to predict:', predict_batch_num)
outdir = join(dirname(args.infile), '.'.join(['pred', model_arch, basename(args.infile)])) if args.outdir == '' else args.outdir
if exists(outdir):
print('Output directory', outdir, 'exists! Overwrite? (yes/no)')
if raw_input().lower() == 'yes':
system('rm -r ' + outdir)
else:
print('Quit predicting!')
sys.exit(1)
for i in range(predict_batch_num):
print('predict on batch', i)
batch_data = h5py.File(args.infile+str(i+1), 'r')['data']
time1 = time.time()
pred = model.predict(batch_data)
time2 = time.time()
print('predict took %0.3f ms' % ((time2-time1)*1000.0))
t_outdir = join(outdir, 'batch'+str(i+1))
makedirs(t_outdir)
for label_dim in range(pred.shape[1]):
with open(join(t_outdir, str(label_dim)+'.pkl'), 'wb') as f:
cPickle.dump(pred[:, label_dim], f)
system('rm -r ' + tmpdir)