-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathhyperband.py
168 lines (134 loc) · 6.21 KB
/
hyperband.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np, subprocess, h5py
from os.path import join
from random import random
from math import log, ceil
from time import time, ctime
class Hyperband:
def __init__( self, get_params_function, try_params_function, datadir, max_iter=81, eta=3, datamode='memory'):
self.get_params = get_params_function
self.try_params = try_params_function
if datamode == 'memory':
Y_train, X_train = self.readdata(join(datadir, 'train.h5.batch'))
Y_test, X_test = self.readdata(join(datadir, 'valid.h5.batch'))
self.data = {'train': (X_train, Y_train), 'valid':(X_test, Y_test)}
else:
self.data = {
'train': {
'gen_func': self.BatchGenerator,
'path': join(datadir, 'train.h5.batch'),
'n_sample': self.probedata(join(datadir, 'train.h5.batch'))[1]},
'valid': {
'gen_func': self.BatchGenerator,
'path': join(datadir, 'valid.h5.batch'),
'n_sample': self.probedata(join(datadir, 'valid.h5.batch'))[1]},
}
self.datamode = datamode
self.max_iter = max_iter # maximum iterations per configuration
self.eta = eta # defines configuration downsampling rate (default = 3)
self.logeta = lambda x: log( x ) / log( self.eta )
self.s_max = int( self.logeta( self.max_iter ))
self.B = ( self.s_max + 1 ) * self.max_iter
self.results = [] # list of dicts
self.counter = 0
self.best_loss = np.inf
self.best_counter = -1
# can be called multiple times
def run( self, skip_last = 0, dry_run = False ):
for s in reversed( range( self.s_max + 1 )):
# initial number of configurations
n = int( ceil( self.B / self.max_iter / ( s + 1 ) * self.eta ** s ))
# initial number of iterations per config
r = self.max_iter * self.eta ** ( -s )
# n random configurations
T = [ self.get_params() for i in range( n )]
for i in range(( s + 1 ) - int( skip_last )): # changed from s + 1
# Run each of the n configs for <iterations>
# and keep best (n_configs / eta) configurations
n_configs = n * self.eta ** ( -i )
n_iterations = r * self.eta ** ( i )
print "\n*** {} configurations x {:.1f} iterations each".format(
n_configs, n_iterations )
val_losses = []
early_stops = []
for t in T:
self.counter += 1
print "\n{} | {} | lowest loss so far: {:.4f} (run {})\n".format(
self.counter, ctime(), self.best_loss, self.best_counter )
start_time = time()
if dry_run:
result = { 'loss': random(), 'log_loss': random(), 'auc': random()}
else:
result = self.try_params( n_iterations, t, self.data, self.datamode) # <---
assert( type( result ) == dict )
assert( 'loss' in result )
seconds = int( round( time() - start_time ))
print "\n{} seconds.".format( seconds )
loss = result['loss']
val_losses.append( loss )
early_stop = result.get( 'early_stop', False )
early_stops.append( early_stop )
# keeping track of the best result so far (for display only)
# could do it be checking results each time, but hey
if loss < self.best_loss:
self.best_loss = loss
self.best_counter = self.counter
result['counter'] = self.counter
result['seconds'] = seconds
result['params'] = t
result['iterations'] = n_iterations
self.results.append( result )
# select a number of best configurations for the next loop
# filter out early stops, if any
indices = np.argsort( val_losses )
T = [ T[i] for i in indices if not early_stops[i]]
T = T[ 0:int( n_configs / self.eta )]
return self.results
def readdata(self, dataprefix):
allfiles = subprocess.check_output('ls '+dataprefix+'*', shell=True).split('\n')[:-1]
cnt = 0
samplecnt = 0
for x in allfiles:
if x.split(dataprefix)[1].isdigit():
cnt += 1
dataall = h5py.File(x,'r')
if cnt == 1:
label = np.asarray(dataall['label'])
data = np.asarray(dataall['data'])
else:
label = np.vstack((label,dataall['label']))
data = np.vstack((data,dataall['data']))
return (label,data)
def BatchGenerator(self, mb_size, fileprefix, shuf=True):
allfiles = subprocess.check_output('ls '+fileprefix+'*', shell=True).split('\n')[:-1]
cache = []
while True:
idx2use = np.random.permutation(range(len(allfiles))) if shuf else range(len(allfiles))
for i in idx2use:
data1f = h5py.File(fileprefix+str(i+1),'r')
data1 = data1f['data'][()]
label = data1f['label'][()]
datalen = len(data1)
if shuf:
reorder = np.random.permutation(range(datalen))
data1 = data1[reorder]
label = label[reorder]
minibatch_size = mb_size or datalen
idx = 0
if len(cache)!= 0:
idx = minibatch_size - len(cache)
yield ( [np.vstack((cache[0], data1[:idx])), np.vstack((cache[1], label[:idx])) ])
while idx+minibatch_size <= datalen:
idx += minibatch_size
yield ([data1[(idx - minibatch_size):idx],label[(idx - minibatch_size):idx]])
if idx < datalen:
cache = [ data1[idx:],label[idx:] ]
def probedata(self, dataprefix):
allfiles = subprocess.check_output('ls '+dataprefix+'*', shell=True).split('\n')[:-1]
cnt = 0
samplecnt = 0
for x in allfiles:
if x.split(dataprefix)[1].isdigit():
cnt += 1
data = h5py.File(x,'r')
samplecnt += len(data['label'])
return (cnt,samplecnt)