forked from jhammelman/DeepAccess
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_ensemble.py
55 lines (47 loc) · 1.51 KB
/
test_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import numpy as np
import argparse
from ensemble_utils import *
from CNN import *
import argparse
import keras
import pickle
from tensorflow.python.client import device_lib
import os
import tensorflow as tf
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
print(device_lib.list_local_devices())
parser = argparse.ArgumentParser()
parser.add_argument('testfasta')
parser.add_argument('model',help="model folder")
parser.add_argument('outfile')
parser.add_argument('-ioutfile','--ioutfile',default=None)
opts=parser.parse_args()
X = fa_to_onehot(opts.testfasta)
model_folders = [opts.model+"/"+d for d in os.listdir(opts.model) if os.path.isdir(opts.model+"/"+d)]
with open(opts.model+"/model_acc.pkl","rb") as f:
accuracies = pickle.load(f)
print(X.shape)
total_pred = []
for mi,model in enumerate(model_folders):
cnn = keras.models.load_model(model+"/model.h5")
print(cnn.summary())
pred=cnn.predict(X)
total_pred.append(pred)
if opts.ioutfile != None:
np.savetxt(model+"/"+opts.ioutfile,pred)
del cnn
pred_mat = np.zeros(total_pred[0].shape)
print(accuracies)
for mi,model in enumerate(model_folders):
pred_mat += accuracies[model]*total_pred[mi]
pred_mat = pred_mat/sum(accuracies.values())
np.savetxt(opts.outfile,pred_mat)