-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
77 lines (74 loc) · 2.44 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from setuptools import setup, find_packages
import re
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
long_description = re.sub(r"!\[.*?\]\(.*?\)\n", "", long_description)
setup(
name="lstm_forecast",
version="0.1.5",
author="Gianluca Mazza",
author_email="[email protected]",
description="A package for LSTM-based financial time series forecasting",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/gianlucamazza/lstm_forecast",
project_urls={
"Bug Tracker": "https://github.com/gianlucamazza/lstm_forecast/issues",
"Documentation": "https://gianlucamazza.github.io/lstm_forecast/",
"Source Code": "https://github.com/gianlucamazza/lstm_forecast",
},
license="MIT",
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Operating System :: OS Independent",
],
packages=find_packages(where="src"),
package_dir={"": "src"},
python_requires=">=3.7",
install_requires=[
"pandas>=2.2.2",
"ta>=0.11.0",
"statsmodels>=0.14.2",
"numpy>=1.26.4",
"yfinance>=0.2.41",
"matplotlib>=3.9.1",
"torch>=2.4.0",
"plotly>=5.3.1",
"scikit-learn>=1.5.1",
"xgboost>=2.1.0",
"optuna>=3.6.1",
"onnxruntime>=1.18.1",
"onnx>=1.16.2",
"Flask>=3.0.3",
],
extras_require={
"dev": [
"pytest>=8.3.2",
"sphinx>=7.4.7",
"twine>=5.1.1",
"black>=24.8.0",
"flake8>=7.1.1",
"pre-commit>=3.7.1",
],
},
entry_points={
"console_scripts": [
"lstm_forecast=lstm_forecast.cli:main",
],
},
include_package_data=True,
package_data={
"": ["*.json", "*.html", "*.png"],
},
keywords="lstm forecasting finance timeseries deeplearning",
)