diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index ff4c9226faedb..7be609054d6b8 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -4102,16 +4102,45 @@ def set_gguf_parameters(self): # consistency if attention_scale := self.hparams.get("attention_multiplier"): self.gguf_writer.add_attention_scale(attention_scale) + logger.info("gguf: (granite) attention_scale = %s", attention_scale) if embedding_scale := self.hparams.get("embedding_multiplier"): self.gguf_writer.add_embedding_scale(embedding_scale) + logger.info("gguf: (granite) embedding_scale = %s", embedding_scale) if residual_scale := self.hparams.get("residual_multiplier"): self.gguf_writer.add_residual_scale(residual_scale) - if logits_scaling := self.hparams.get("logits_scaling"): - self.gguf_writer.add_logit_scale(logits_scaling) + logger.info("gguf: (granite) residual_scale = %s", residual_scale) + if logits_scale := self.hparams.get("logits_scaling"): + self.gguf_writer.add_logit_scale(logits_scale) + logger.info("gguf: (granite) logits_scale = %s", logits_scale) + + +@Model.register("GraniteMoeForCausalLM") +class GraniteMoeModel(GraniteModel): + """Conversion for IBM's GraniteMoeForCausalLM""" + model_arch = gguf.MODEL_ARCH.GRANITE_MOE + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + """In modeling_granitemoe, the JetMoe implementation of parallel experts + is used. This essentially merges w1 and w3 into a single tensor with 2x + the hidden size that is then split during forward. To keep compatibility + with existing mixtral support, we pull them apart here. + """ + + if name.endswith("block_sparse_moe.input_linear.weight"): + ffn_dim = self.hparams["intermediate_size"] + assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size" + gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :] + return [ + (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate), + (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up), + ] + + return super().modify_tensors(data_torch, name, bid) ###### CONVERSION LOGIC ###### + # tree of lazy tensors class LazyTorchTensor(gguf.LazyBase): _tensor_type = torch.Tensor diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index b36a60d497abd..560eee916f27e 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -235,6 +235,7 @@ class MODEL_ARCH(IntEnum): NEMOTRON = auto() EXAONE = auto() GRANITE = auto() + GRANITE_MOE = auto() class MODEL_TENSOR(IntEnum): @@ -392,6 +393,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.NEMOTRON: "nemotron", MODEL_ARCH.EXAONE: "exaone", MODEL_ARCH.GRANITE: "granite", + MODEL_ARCH.GRANITE_MOE: "granitemoe", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -1232,6 +1234,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.GRANITE: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, MODEL_TENSOR.ATTN_NORM, MODEL_TENSOR.ATTN_Q, MODEL_TENSOR.ATTN_K, @@ -1242,6 +1245,21 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.GRANITE_MOE: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + ], # TODO } diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 2ebfa2b43c471..4e850726e9ba4 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -251,11 +251,12 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_GATE_INP: ( - "layers.{bid}.feed_forward.gate", # mixtral - "model.layers.{bid}.block_sparse_moe.gate", # mixtral - "model.layers.{bid}.mlp.gate", # qwen2moe olmoe - "transformer.decoder_layer.{bid}.router", # Grok - "transformer.blocks.{bid}.ffn.router.layer", # dbrx + "layers.{bid}.feed_forward.gate", # mixtral + "model.layers.{bid}.block_sparse_moe.gate", # mixtral + "model.layers.{bid}.mlp.gate", # qwen2moe olmoe + "transformer.decoder_layer.{bid}.router", # Grok + "transformer.blocks.{bid}.ffn.router.layer", # dbrx + "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe ), MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( @@ -364,10 +365,11 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_DOWN_EXP: ( - "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) - "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) - "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx - "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) + "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) + "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx + "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) + "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe ), MODEL_TENSOR.FFN_DOWN_SHEXP: ( diff --git a/src/llama.cpp b/src/llama.cpp index a718de054f934..0accb1492efaa 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -215,6 +215,7 @@ enum llm_arch { LLM_ARCH_EXAONE, LLM_ARCH_RWKV6, LLM_ARCH_GRANITE, + LLM_ARCH_GRANITE_MOE, LLM_ARCH_UNKNOWN, }; @@ -266,6 +267,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_GRANITE, "granite" }, + { LLM_ARCH_GRANITE_MOE, "granitemoe" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1467,6 +1469,7 @@ static const std::map> LLM_TENSOR_NA { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, @@ -1478,6 +1481,24 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_GRANITE_MOE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -2396,7 +2417,7 @@ struct llama_hparams { float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; - // Additional scale factors (Granite) + // Additional scale factors (Granite/Granite MoE) float f_residual_scale = 0.0f; float f_embedding_scale = 0.0f; float f_attention_scale = 0.0f; @@ -6048,6 +6069,7 @@ static void llm_load_hparams( } } break; case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); @@ -6056,6 +6078,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale); switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_3B; break; case 40: model.type = e_model::MODEL_3B; break; // Add additional layer/vocab/etc checks here for other model sizes default: model.type = e_model::MODEL_UNKNOWN; @@ -6810,7 +6833,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); } - if (model.arch == LLM_ARCH_GRANITE) { + if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) { LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale); LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale); LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale); @@ -6984,6 +7007,7 @@ static bool llm_load_tensors( case LLM_ARCH_REFACT: case LLM_ARCH_MINICPM: case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -15930,6 +15954,7 @@ static struct ggml_cgraph * llama_build_graph( switch (model.arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: { result = llm.build_llama(); } break; @@ -19231,6 +19256,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_CHATGLM: case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2