From 0cbdf133d2f576a3ae836031f88e3973f1b5a84c Mon Sep 17 00:00:00 2001 From: slaren Date: Tue, 1 Oct 2024 17:24:28 +0200 Subject: [PATCH] ggml-backend : add device and backend reg interfaces ggml-ci --- Makefile | 5 +- ggml/include/ggml-backend.h | 172 +++-- ggml/include/ggml-blas.h | 6 +- ggml/include/ggml-cann.h | 18 +- ggml/include/ggml-cuda.h | 32 +- ggml/include/ggml-metal.h | 6 +- ggml/include/ggml-rpc.h | 10 +- ggml/include/ggml-sycl.h | 16 +- ggml/include/ggml-vulkan.h | 14 +- ggml/include/ggml.h | 66 +- ggml/src/CMakeLists.txt | 2 +- ggml/src/ggml-backend-impl.h | 207 ++++-- ggml/src/{ggml-backend.c => ggml-backend.cpp} | 694 ++++++++++++------ ggml/src/ggml-blas.cpp | 14 +- ggml/src/ggml-cann.cpp | 112 +-- ggml/src/ggml-cuda.cu | 508 ++++++++----- ggml/src/ggml-metal.m | 44 +- ggml/src/ggml-rpc.cpp | 48 +- ggml/src/ggml-sycl.cpp | 82 +-- ggml/src/ggml-vulkan.cpp | 96 +-- ggml/src/ggml.c | 46 +- src/llama.cpp | 347 +++++---- tests/test-backend-ops.cpp | 22 +- 23 files changed, 1519 insertions(+), 1048 deletions(-) rename ggml/src/{ggml-backend.c => ggml-backend.cpp} (79%) diff --git a/Makefile b/Makefile index 8a903d7ed5914..72f1719cae00d 100644 --- a/Makefile +++ b/Makefile @@ -1055,10 +1055,11 @@ ggml/src/ggml-alloc.o: \ $(CC) $(CFLAGS) -c $< -o $@ ggml/src/ggml-backend.o: \ - ggml/src/ggml-backend.c \ + ggml/src/ggml-backend.cpp \ + ggml/src/ggml-backend-impl.h \ ggml/include/ggml.h \ ggml/include/ggml-backend.h - $(CC) $(CFLAGS) -c $< -o $@ + $(CXX) $(CXXFLAGS) -c $< -o $@ ggml/src/ggml-quants.o: \ ggml/src/ggml-quants.c \ diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h index 71c0bef8ee7ee..46a9435be5a70 100644 --- a/ggml/include/ggml-backend.h +++ b/ggml/include/ggml-backend.h @@ -12,43 +12,49 @@ extern "C" { typedef struct ggml_backend_event * ggml_backend_event_t; typedef struct ggml_backend * ggml_backend_t; typedef void * ggml_backend_graph_plan_t; + typedef struct ggml_backend_reg * ggml_backend_reg_t; + typedef struct ggml_backend_device * ggml_backend_dev_t; + // - // Backend buffer + // Backend buffer type // - // buffer type - GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); - GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); - GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); - GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft); - GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); - GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); + GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); + GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); + GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); + GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft); + GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); + GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); + GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft); + + // + // Backend buffer + // - // buffer enum ggml_backend_buffer_usage { GGML_BACKEND_BUFFER_USAGE_ANY = 0, GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2, }; - GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); - GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); - GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); - GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); - GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer); - GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); + GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); + GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); + GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); + GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer); + GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); // - // Backend + // Backend (stream) // GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend); @@ -64,9 +70,9 @@ extern "C" { GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); // "offset" refers to the offset of the tensor data for setting/getting data - GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - GGML_API GGML_CALL void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size); GGML_API void ggml_backend_synchronize(ggml_backend_t backend); @@ -76,6 +82,8 @@ extern "C" { GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan); GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); + + // NOTE: will be removed, use device version instead GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op); GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft); GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op); @@ -90,51 +98,84 @@ extern "C" { GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst); // events - GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend); - GGML_API void ggml_backend_event_free (ggml_backend_event_t event); - GGML_API void ggml_backend_event_record (ggml_backend_event_t event); - GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event); - GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); + GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_dev_t device); + GGML_API void ggml_backend_event_free (ggml_backend_event_t event); + GGML_API void ggml_backend_event_record (ggml_backend_event_t event, ggml_backend_t backend); + GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event); + GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // - // CPU backend + // Backend device // - GGML_API ggml_backend_t ggml_backend_cpu_init(void); + enum ggml_backend_device_type { + GGML_BACKEND_DEVICE_TYPE_CPU, + GGML_BACKEND_DEVICE_TYPE_GPU, + // devices with full capabilities (excludes backends such as BLAS) + GGML_BACKEND_DEVICE_TYPE_CPU_FULL, + GGML_BACKEND_DEVICE_TYPE_GPU_FULL + }; - GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend); - GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); - GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool); - GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); + GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device); + GGML_API const char * ggml_backend_dev_description(ggml_backend_dev_t device); + GGML_API void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total); + GGML_API enum ggml_backend_device_type ggml_backend_dev_type(ggml_backend_dev_t device); + GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device); + GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params); + GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device); + GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device); + GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size); - // Create a backend buffer from an existing pointer - GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); + GGML_API bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op); + GGML_API bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft); + GGML_API bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op); - GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); + GGML_API ggml_backend_event_t ggml_backend_dev_event_new(ggml_backend_dev_t device); -#ifdef GGML_USE_CPU_HBM - GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); -#endif + // + // Backend (reg) + // + + GGML_API const char * ggml_backend_reg_name(ggml_backend_reg_t reg); + GGML_API size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg); + GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index); + GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name); + GGML_API void ggml_backend_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data); + + // Functions that may be obtained using ggml_backend_reg_get_proc_address + typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(const float *); // // Backend registry // - // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way + // Backend (reg) enumeration + GGML_API size_t ggml_backend_reg_count(void); + GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index); + GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name); + + // Device enumeration + GGML_API size_t ggml_backend_dev_count(void); + GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index); + GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name); + GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_device_type type); + + // Set the log callback for all registered backends + GGML_API void ggml_backend_set_log_callback(ggml_log_callback log_callback, void * user_data); - GGML_API size_t ggml_backend_reg_get_count(void); - GGML_API size_t ggml_backend_reg_find_by_name(const char * name); // returns index of backend with name, or SIZE_MAX if not found - GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional) - GGML_API const char * ggml_backend_reg_get_name(size_t i); - GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific - GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i); - GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size); + // Direct Backend (stream) initialization + // = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params) + GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params); + // = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params) + GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_device_type type, const char * params); + // = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU_FULL) OR ggml_backend_dev_by_type(CPU_FULL), NULL) + GGML_API ggml_backend_t ggml_backend_init_best(void); // // Backend scheduler // - // The backend scheduler allows for multiple backends to be used together + // The backend scheduler allows for multiple backend devices to be used together // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends // The backends are selected based on: // - the backend that supports the operation @@ -169,9 +210,9 @@ extern "C" { } */ - struct ggml_backend_sched; typedef struct ggml_backend_sched * ggml_backend_sched_t; + // Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback) // when ask == true, the scheduler wants to know if the user wants to observe this node // this allows the scheduler to batch nodes together in order to evaluate them in a single call // @@ -226,7 +267,7 @@ extern "C" { GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph); GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy); - typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); + typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); // Compare the output of two backends GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); @@ -236,6 +277,27 @@ extern "C" { GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor); + // + // CPU backend + // + + GGML_API ggml_backend_t ggml_backend_cpu_init(void); + + GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend); + GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); + GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool); + GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); + + // Create a backend buffer from an existing pointer + GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); + GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); + + GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void); + +#ifdef GGML_USE_CPU_HBM + GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); +#endif + #ifdef __cplusplus } #endif diff --git a/ggml/include/ggml-blas.h b/ggml/include/ggml-blas.h index f2e37de06f609..dd612860d61a0 100644 --- a/ggml/include/ggml-blas.h +++ b/ggml/include/ggml-blas.h @@ -9,13 +9,13 @@ extern "C" { #endif // backend API -GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void); +GGML_API ggml_backend_t ggml_backend_blas_init(void); -GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend); +GGML_API bool ggml_backend_is_blas(ggml_backend_t backend); // number of threads used for conversion to float // for openblas and blis, this will also set the number of threads used for blas operations -GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads); +GGML_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads); #ifdef __cplusplus diff --git a/ggml/include/ggml-cann.h b/ggml/include/ggml-cann.h index 031ad1ce24e44..ba9ff2292fe59 100644 --- a/ggml/include/ggml-cann.h +++ b/ggml/include/ggml-cann.h @@ -44,7 +44,7 @@ extern "C" { * @param device The index of the device to initialize. * @return A pointer to the initialized backend instance, or nullptr on failure. */ -GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device); +GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device); /** * @brief Checks if a given backend is a CANN backend. @@ -55,7 +55,7 @@ GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device); * @param backend The backend instance to check. * @return True if the backend is a CANN backend, false otherwise. */ -GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend); +GGML_API bool ggml_backend_is_cann(ggml_backend_t backend); /** * @brief Retrieves the CANN buffer type for a specified device. @@ -67,7 +67,7 @@ GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend); * @return A pointer to the buffer type interface for the specified device, or * nullptr if the device index is out of range. */ -GGML_API GGML_CALL ggml_backend_buffer_type_t +GGML_API ggml_backend_buffer_type_t ggml_backend_cann_buffer_type(int32_t device); /** @@ -78,14 +78,14 @@ ggml_backend_cann_buffer_type(int32_t device); * * @return The number of CANN devices available. */ -GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void); +GGML_API int32_t ggml_backend_cann_get_device_count(void); /** * @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU. * * @return A pointer to the host buffer type interface. */ -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void); +GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void); /** * @brief Retrieves the description of a specific CANN device. @@ -97,7 +97,7 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type * @param description Pointer to a buffer where the description will be written. * @param description_size Size of the description buffer. */ -GGML_API GGML_CALL void ggml_backend_cann_get_device_description( +GGML_API void ggml_backend_cann_get_device_description( int32_t device, char* description, size_t description_size); /** @@ -112,9 +112,9 @@ GGML_API GGML_CALL void ggml_backend_cann_get_device_description( * @param total Pointer to a variable where the total memory size will be * stored. */ -GGML_API GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device, - size_t* free, - size_t* total); +GGML_API void ggml_backend_cann_get_device_memory(int32_t device, + size_t* free, + size_t* total); /** * @brief Set the logging callback for GGML. diff --git a/ggml/include/ggml-cuda.h b/ggml/include/ggml-cuda.h index 71bb6dcf07975..a8feddc944bbe 100644 --- a/ggml/include/ggml-cuda.h +++ b/ggml/include/ggml-cuda.h @@ -3,6 +3,10 @@ #include "ggml.h" #include "ggml-backend.h" +#ifdef __cplusplus +extern "C" { +#endif + #ifdef GGML_USE_HIPBLAS #define GGML_CUDA_NAME "ROCm" #define GGML_CUBLAS_NAME "hipBLAS" @@ -13,35 +17,33 @@ #define GGML_CUDA_NAME "CUDA" #define GGML_CUBLAS_NAME "cuBLAS" #endif - -#ifdef __cplusplus -extern "C" { -#endif - #define GGML_CUDA_MAX_DEVICES 16 // backend API -GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device); +GGML_API ggml_backend_t ggml_backend_cuda_init(int device); -GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend); +GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend); // device buffer -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); +GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); // split tensor buffer that splits matrices by rows across multiple devices -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); +GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); +GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); -GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void); -GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); -GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); +GGML_API int ggml_backend_cuda_get_device_count(void); +GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); +GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); -GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size); -GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer); +GGML_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size); +GGML_API void ggml_backend_cuda_unregister_host_buffer(void * buffer); GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data); + +GGML_API ggml_backend_reg_t ggml_backend_cuda_reg(void); + #ifdef __cplusplus } #endif diff --git a/ggml/include/ggml-metal.h b/ggml/include/ggml-metal.h index 4d416532449e0..55e6ecd84f00d 100644 --- a/ggml/include/ggml-metal.h +++ b/ggml/include/ggml-metal.h @@ -1,3 +1,5 @@ +// Note: this description is outdated +// // An interface allowing to compute ggml_cgraph with Metal // // This is a fully functional interface that extends ggml with GPU support for Apple devices. @@ -43,11 +45,11 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void); GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); -GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size); +GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size); GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data); -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); +GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); // helper to check if the device supports a specific family // ideally, the user code should be doing these checks diff --git a/ggml/include/ggml-rpc.h b/ggml/include/ggml-rpc.h index aa144832a6e1e..64cde7f13d391 100644 --- a/ggml/include/ggml-rpc.h +++ b/ggml/include/ggml-rpc.h @@ -10,14 +10,14 @@ extern "C" { #define GGML_RPC_MAX_SERVERS 16 // backend API -GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint); -GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend); +GGML_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint); +GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend); -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint); +GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint); -GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total); +GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total); -GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem); +GGML_API void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem); #ifdef __cplusplus } diff --git a/ggml/include/ggml-sycl.h b/ggml/include/ggml-sycl.h index 43ab1519cd05d..03b698e61b9d4 100644 --- a/ggml/include/ggml-sycl.h +++ b/ggml/include/ggml-sycl.h @@ -23,20 +23,20 @@ GGML_API ggml_backend_t ggml_backend_sycl_init(int device); GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device); // split tensor buffer that splits matrices by rows across multiple devices -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split); +GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split); // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void); -GGML_API void ggml_backend_sycl_print_sycl_devices(void); -GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len); -GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size); -GGML_API GGML_CALL int ggml_backend_sycl_get_device_count(); -GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total); +GGML_API void ggml_backend_sycl_print_sycl_devices(void); +GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len); +GGML_API void ggml_sycl_get_device_description(int device, char *description, size_t description_size); +GGML_API int ggml_backend_sycl_get_device_count(); +GGML_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total); // SYCL doesn't support registering host memory, keep here for reference -// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size); -// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer); +// GGML_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size); +// GGML_API void ggml_backend_sycl_unregister_host_buffer(void * buffer); #ifdef __cplusplus } #endif diff --git a/ggml/include/ggml-vulkan.h b/ggml/include/ggml-vulkan.h index af661c2d7d563..e074042efae1a 100644 --- a/ggml/include/ggml-vulkan.h +++ b/ggml/include/ggml-vulkan.h @@ -13,16 +13,16 @@ extern "C" { GGML_API void ggml_vk_instance_init(void); // backend API -GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num); +GGML_API ggml_backend_t ggml_backend_vk_init(size_t dev_num); -GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend); -GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void); -GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size); -GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total); +GGML_API bool ggml_backend_is_vk(ggml_backend_t backend); +GGML_API int ggml_backend_vk_get_device_count(void); +GGML_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size); +GGML_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total); -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num); +GGML_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num); // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void); +GGML_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void); #ifdef __cplusplus } diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index ce3d92cb2e0f0..6f89041644baf 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -187,16 +187,6 @@ # define GGML_API #endif -#ifdef GGML_MULTIPLATFORM -# if defined(_WIN32) -# define GGML_CALL -# else -# define GGML_CALL __attribute__((__ms_abi__)) -# endif -#else -# define GGML_CALL -#endif - // TODO: support for clang #ifdef __GNUC__ # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint))) @@ -340,7 +330,7 @@ extern "C" { }; // get ggml_status name string - GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status); + GGML_API const char * ggml_status_to_string(enum ggml_status status); // ieee 754-2008 half-precision float16 // todo: make this not an integral type @@ -716,46 +706,46 @@ extern "C" { GGML_API void ggml_print_object (const struct ggml_object * obj); GGML_API void ggml_print_objects(const struct ggml_context * ctx); - GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor); - GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor); - GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor); + GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor); + GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor); + GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN - GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type); - GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block - GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row + GGML_API int64_t ggml_blck_size(enum ggml_type type); + GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block + GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row GGML_DEPRECATED( GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float "use ggml_row_size() instead"); - GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type); - GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op); - GGML_API const char * ggml_op_symbol(enum ggml_op op); + GGML_API const char * ggml_type_name(enum ggml_type type); + GGML_API const char * ggml_op_name (enum ggml_op op); + GGML_API const char * ggml_op_symbol(enum ggml_op op); - GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op); - GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name + GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op); + GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name - GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor); + GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor); - GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type); + GGML_API bool ggml_is_quantized(enum ggml_type type); // TODO: temporary until model loading of ggml examples is refactored GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype); - GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor); - GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor); - GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor); - GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars + GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor); + GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor); + GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars - GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor); - GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous() - GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1 - GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2 + GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous() + GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1 + GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2 GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1); GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1); @@ -847,7 +837,7 @@ extern "C" { GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); - GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor); + GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor); GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name); @@ -1561,7 +1551,7 @@ extern "C" { "use ggml_rope_ext_inplace instead"); // compute correction dims for YaRN RoPE scaling - GGML_CALL void ggml_rope_yarn_corr_dims( + void ggml_rope_yarn_corr_dims( int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]); // rotary position embedding backward, i.e compute dx from dy diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index cbc349500728b..3b8eecf1c6852 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -1310,7 +1310,7 @@ add_library(ggml ../include/ggml-backend.h ggml.c ggml-alloc.c - ggml-backend.c + ggml-backend.cpp ggml-quants.c ggml-quants.h ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} diff --git a/ggml/src/ggml-backend-impl.h b/ggml/src/ggml-backend-impl.h index b0d4141cc4363..fb6d88e785a1a 100644 --- a/ggml/src/ggml-backend-impl.h +++ b/ggml/src/ggml-backend-impl.h @@ -13,141 +13,210 @@ extern "C" { // // buffer type - typedef void * ggml_backend_buffer_type_context_t; - struct ggml_backend_buffer_type_i { - const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft); + const char * (*get_name) (ggml_backend_buffer_type_t buft); // allocate a buffer of this type - ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); + ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); // tensor alignment - size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); - // max buffer size that can be allocated - size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); - // data size needed to allocate the tensor, including padding - size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); - // check if tensor data is in host memory - bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft); + size_t (*get_alignment) (ggml_backend_buffer_type_t buft); + // (optional) max buffer size that can be allocated (defaults to SIZE_MAX) + size_t (*get_max_size) (ggml_backend_buffer_type_t buft); + // (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes) + size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); + // (optional) check if tensor data is in host memory (defaults to false) + bool (*is_host) (ggml_backend_buffer_type_t buft); }; struct ggml_backend_buffer_type { struct ggml_backend_buffer_type_i iface; - ggml_backend_buffer_type_context_t context; + ggml_backend_dev_t device; + void * context; }; // buffer - typedef void * ggml_backend_buffer_context_t; - struct ggml_backend_buffer_i { - const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer); - void (*GGML_CALL free_buffer) (ggml_backend_buffer_t buffer); - void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer); - void (*GGML_CALL init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - void (*GGML_CALL memset_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size); - void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer - void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value); - void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras + const char * (*get_name) (ggml_backend_buffer_t buffer); + // (optional) free the buffer + void (*free_buffer) (ggml_backend_buffer_t buffer); + // base address of the buffer + void * (*get_base) (ggml_backend_buffer_t buffer); + // (optional) initialize a tensor in the buffer (eg. add tensor extras) + void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + // tensor data access + void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size); + void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + // (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported) + bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); + // clear the entire buffer + void (*clear) (ggml_backend_buffer_t buffer, uint8_t value); + // (optional) reset any internal state due to tensor initialization, such as tensor extras + void (*reset) (ggml_backend_buffer_t buffer); }; struct ggml_backend_buffer { struct ggml_backend_buffer_i iface; ggml_backend_buffer_type_t buft; - ggml_backend_buffer_context_t context; + void * context; size_t size; enum ggml_backend_buffer_usage usage; }; - GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( - ggml_backend_buffer_type_t buft, - struct ggml_backend_buffer_i iface, - ggml_backend_buffer_context_t context, - size_t size); + ggml_backend_buffer_t ggml_backend_buffer_init( + ggml_backend_buffer_type_t buft, + struct ggml_backend_buffer_i iface, + void * context, + size_t size); // do not use directly, use ggml_backend_tensor_copy instead bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst); + // multi-buffer // buffer that contains a collection of buffers - GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers); - GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer); - GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); + ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers); + bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer); + void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); // - // Backend + // Backend (stream) // - typedef void * ggml_backend_context_t; - struct ggml_backend_i { - const char * (*GGML_CALL get_name)(ggml_backend_t backend); + const char * (*get_name)(ggml_backend_t backend); - void (*GGML_CALL free)(ggml_backend_t backend); + void (*free)(ggml_backend_t backend); // buffer allocation - ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend); + ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend); // (optional) asynchronous tensor data access - void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst); + void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst); // (optional) complete all pending operations - void (*GGML_CALL synchronize)(ggml_backend_t backend); + void (*synchronize)(ggml_backend_t backend); - // compute graph with a plan (not used currently) - // create a new plan for a graph - ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); - void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + // (optional) compute graph with a plan (not used currently) + ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); + void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); // update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology - void (*GGML_CALL graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph); + void (*graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph); // compute the graph with the plan - enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + enum ggml_status (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); - // compute graph without a plan (async) - enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph); + // compute graph (always async if supported by the backend) + enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph); + // IMPORTANT: these functions have been moved to the device interfance and will be removed from the backend interface + // new backends should implement the device interface instead + + // These functions are being moved to the device interface // check if the backend can compute an operation - bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); + bool (*supports_op) (ggml_backend_t backend, const struct ggml_tensor * op); // check if the backend can use tensors allocated in a buffer type - bool (*GGML_CALL supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft); + bool (*supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft); // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer // these should be expensive operations with large batch sizes that may benefit from running on this backend // even if the weight has to be copied from the CPU temporarily - bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op); + bool (*offload_op) (ggml_backend_t backend, const struct ggml_tensor * op); // (optional) event synchronization - // create a new event that can record events on this backend instance - ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend); - void (*GGML_CALL event_free) (ggml_backend_event_t event); - // record an event on the backend instance that created it - void (*GGML_CALL event_record) (ggml_backend_event_t event); - // wait for an event on on a different backend instance - void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event); - // block until an event is recorded - void (*GGML_CALL event_synchronize) (ggml_backend_event_t event); + // record an event on this stream + void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event); + // wait for an event on on a different stream + void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event); }; struct ggml_backend { ggml_guid_t guid; - struct ggml_backend_i iface; - ggml_backend_context_t context; + ggml_backend_dev_t device; + void * context; }; struct ggml_backend_event { - ggml_backend_t backend; + struct ggml_backend_device * device; void * context; }; // - // Backend registry + // Backend registry v2 // - typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data); + struct ggml_backend_device_i { + // device properties + const char * (*get_name)(ggml_backend_dev_t dev); + const char * (*get_description)(ggml_backend_dev_t dev); + void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total); + enum ggml_backend_device_type (*get_type)(ggml_backend_dev_t dev); + + // get the backend (reg) associated with this device + ggml_backend_reg_t (*get_backend_reg)(ggml_backend_dev_t dev); + + // backend (stream) initialization + ggml_backend_t (*init_backend)(ggml_backend_dev_t dev, const char * params); + + // preferred buffer type + ggml_backend_buffer_type_t (*buffer_type)(ggml_backend_dev_t dev); + + // (optional) host buffer type (in system memory, typically this is a pinned memory buffer for faster transfers between host and device) + ggml_backend_buffer_type_t (*host_buffer_type)(ggml_backend_dev_t dev); + + // (optional) buffer from pointer: create a buffer from a host pointer (useful for memory mapped models and importing data from other libraries) + ggml_backend_buffer_t (*buffer_from_host_ptr)(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size); + + // check if the backend can compute an operation + bool (*supports_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op); + + // check if the backend can use tensors allocated in a buffer type + bool (*supports_buft)(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft); + + // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer + // these should be expensive operations with large batch sizes that may benefit from running on this backend + // even if the weight has to be copied from the CPU temporarily + bool (*offload_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op); + + // (optional) event synchronization + ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev); + void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event); + void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event); + }; + + struct ggml_backend_device { + struct ggml_backend_device_i iface; + void * context; + }; + + struct ggml_backend_reg_i { + const char * (*get_name)(ggml_backend_reg_t reg); + + // enumerate available devices + size_t (*device_count)(ggml_backend_reg_t reg); + ggml_backend_dev_t (*device_get)(ggml_backend_reg_t reg, size_t index); + + // (optional) get a pointer to a function in the backend + // backends can add custom functions that are not part of the standard ggml-backend interface + void * (*get_proc_address)(ggml_backend_reg_t reg, const char * name); + + // (optional) set the log callback for the backend + void (*set_log_callback)(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data); + }; + + struct ggml_backend_reg { + // int api_version; // TODO: for dynamic loading + struct ggml_backend_reg_i iface; + void * context; + }; + - GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data); + // Internal API + void ggml_backend_register(ggml_backend_reg_t reg); + void ggml_backend_device_register(ggml_backend_dev_t device); + // TODO: backends can be loaded as a dynamic library, in which case it needs to export this function + // typedef ggml_backend_register_t * (*ggml_backend_init)(void); #ifdef __cplusplus } diff --git a/ggml/src/ggml-backend.c b/ggml/src/ggml-backend.cpp similarity index 79% rename from ggml/src/ggml-backend.c rename to ggml/src/ggml-backend.cpp index ba280e064141f..2ccd8dba719d6 100644 --- a/ggml/src/ggml-backend.c +++ b/ggml/src/ggml-backend.cpp @@ -1,3 +1,5 @@ +// Note: porting this file to C++ is a work in progress + #include "ggml-backend-impl.h" #include "ggml-alloc.h" #include "ggml-impl.h" @@ -9,8 +11,7 @@ #include #include - -#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#include // backend buffer type @@ -18,7 +19,7 @@ const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { return buft->iface.get_name(buft); } -GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { return buft->iface.alloc_buffer(buft, size); } @@ -34,7 +35,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { return SIZE_MAX; } -GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) { +size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) { // get_alloc_size is optional, defaults to ggml_nbytes if (buft->iface.get_alloc_size) { size_t size = buft->iface.get_alloc_size(buft, tensor); @@ -51,16 +52,18 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { return false; } -// backend buffer +ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) { + return buft->device; +} -GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( - ggml_backend_buffer_type_t buft, - struct ggml_backend_buffer_i iface, - ggml_backend_buffer_context_t context, - size_t size) { - ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); +// backend buffer - (*buffer) = (struct ggml_backend_buffer) { +ggml_backend_buffer_t ggml_backend_buffer_init( + ggml_backend_buffer_type_t buft, + struct ggml_backend_buffer_i iface, + void * context, + size_t size) { + ggml_backend_buffer_t buffer = new ggml_backend_buffer { /* .interface = */ iface, /* .buft = */ buft, /* .context = */ context, @@ -83,7 +86,7 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { if (buffer->iface.free_buffer != NULL) { buffer->iface.free_buffer(buffer); } - free(buffer); + delete buffer; } size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { @@ -98,14 +101,14 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { return base; } -GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { +void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { // init_tensor is optional if (buffer->iface.init_tensor) { buffer->iface.init_tensor(buffer, tensor); } } -size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) { +size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) { return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer)); } @@ -218,7 +221,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten } } -GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(buf != NULL && "tensor buffer not set"); @@ -232,7 +235,7 @@ GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * buf->iface.set_tensor(buf, tensor, data, offset, size); } -GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { +void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(buf != NULL && "tensor buffer not set"); @@ -246,7 +249,7 @@ GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * buf->iface.get_tensor(buf, tensor, data, offset, size); } -GGML_API GGML_CALL void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { +GGML_API void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(buf != NULL && "tensor buffer not set"); @@ -299,14 +302,29 @@ enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct } bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + // helper to ease transition to device interface + if (backend->device) { + return ggml_backend_dev_supports_op(backend->device, op); + } + return backend->iface.supports_op(backend, op); } bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { + // helper to ease transition to device interface + if (backend->device) { + return ggml_backend_dev_supports_buft(backend->device, buft); + } + return backend->iface.supports_buft(backend, buft); } bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) { + // helper to ease transition to device interface + if (backend->device) { + return ggml_backend_dev_offload_op(backend->device, op); + } + if (backend->iface.offload_op != NULL) { return backend->iface.offload_op(backend, op); } @@ -375,30 +393,31 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b // events -ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) { - if (backend->iface.event_new == NULL) { +ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) { + // null device is allowed for the transition period to the device interface + if (device == NULL || device->iface.event_new == NULL) { return NULL; } - return backend->iface.event_new(backend); + return device->iface.event_new(device); } void ggml_backend_event_free(ggml_backend_event_t event) { if (event == NULL) { return; } - event->backend->iface.event_free(event); + event->device->iface.event_free(event->device, event); } -void ggml_backend_event_record(ggml_backend_event_t event) { - GGML_ASSERT(event->backend->iface.event_record != NULL); +void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) { + GGML_ASSERT(backend->iface.event_record != NULL); - event->backend->iface.event_record(event); + backend->iface.event_record(backend, event); } void ggml_backend_event_synchronize(ggml_backend_event_t event) { - GGML_ASSERT(event->backend->iface.event_synchronize != NULL); + GGML_ASSERT(event->device->iface.event_synchronize); - event->backend->iface.event_synchronize(event); + event->device->iface.event_synchronize(event->device, event); } void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { @@ -407,170 +426,239 @@ void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) backend->iface.event_wait(backend, event); } -// backend registry +// Backend device -#define GGML_REG_MAX_BACKENDS 64 +const char * ggml_backend_dev_name(ggml_backend_dev_t device) { + return device->iface.get_name(device); +} -struct ggml_backend_reg { - char name[128]; - ggml_backend_init_fn init_fn; - ggml_backend_buffer_type_t default_buffer_type; - void * user_data; -}; +const char * ggml_backend_dev_description(ggml_backend_dev_t device) { + return device->iface.get_description(device); +} -static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS]; -static size_t ggml_backend_registry_count = 0; +void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) { + device->iface.get_memory(device, free, total); +} -GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data); +enum ggml_backend_device_type ggml_backend_dev_type(ggml_backend_dev_t device) { + return device->iface.get_type(device); +} -GGML_CALL static void ggml_backend_registry_init(void) { - static bool initialized = false; +ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) { + return device->iface.get_backend_reg(device); +} - if (initialized) { - return; - } +ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) { + return device->iface.init_backend(device, params); +} - initialized = true; +ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) { + return device->iface.buffer_type(device); +} - ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL); +ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) { + return device->iface.host_buffer_type(device); +} - // add forward decls here to avoid including the backend headers -#ifdef GGML_USE_CUDA - extern GGML_CALL void ggml_backend_cuda_reg_devices(void); - ggml_backend_cuda_reg_devices(); -#endif +ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) { + return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size); +} -#ifdef GGML_USE_SYCL - extern void ggml_backend_sycl_reg_devices(void); - ggml_backend_sycl_reg_devices(); -#endif +bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { + return device->iface.supports_op(device, op); +} -#ifdef GGML_USE_METAL - extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); - extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); - ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL); -#endif +bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) { + return device->iface.supports_buft(device, buft); +} -#ifdef GGML_USE_VULKAN - extern GGML_CALL int ggml_backend_vk_reg_devices(void); - ggml_backend_vk_reg_devices(); -#endif +bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { + return device->iface.offload_op(device, op); +} -#ifdef GGML_USE_KOMPUTE - extern GGML_CALL void ggml_backend_kompute_reg_devices(void); - ggml_backend_kompute_reg_devices(); -#endif +ggml_backend_event_t ggml_backend_dev_event_new(ggml_backend_dev_t device) { + if (!device->iface.event_new) { + return NULL; + } + return device->iface.event_new(device); +} -#ifdef GGML_USE_CANN - extern GGML_CALL int ggml_backend_cann_reg_devices(void); - ggml_backend_cann_reg_devices(); -#endif +// Backend (reg) + +const char * ggml_backend_reg_name(ggml_backend_reg_t reg) { + return reg->iface.get_name(reg); } -GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { - GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS); +size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) { + return reg->iface.device_count(reg); +} - size_t id = ggml_backend_registry_count; +ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) { + return reg->iface.device_get(reg, index); +} - ggml_backend_registry[id] = (struct ggml_backend_reg) { - /* .name = */ {0}, - /* .fn = */ init_fn, - /* .default_buffer_type = */ default_buffer_type, - /* .user_data = */ user_data, - }; +void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) { + if (!reg->iface.get_proc_address) { + return NULL; + } + return reg->iface.get_proc_address(reg, name); +} - snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name); +void ggml_backend_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data) { + if (reg->iface.set_log_callback) { + reg->iface.set_log_callback(reg, log_callback, user_data); + } +} -#ifndef NDEBUG - fprintf(stderr, "%s: registered backend %s\n", __func__, name); +// Backend registry + +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" #endif - ggml_backend_registry_count++; -} +struct ggml_backend_registry { + std::vector backends; + std::vector devices; -size_t ggml_backend_reg_get_count(void) { - ggml_backend_registry_init(); + ggml_backend_registry() { +#ifdef GGML_USE_CUDA + register_backend(ggml_backend_cuda_reg()); +#endif - return ggml_backend_registry_count; -} + register_backend(ggml_backend_cpu_reg()); -size_t ggml_backend_reg_find_by_name(const char * name) { - ggml_backend_registry_init(); + // TODO: sycl, metal, vulkan, kompute, cann + } - for (size_t i = 0; i < ggml_backend_registry_count; i++) { - // TODO: case insensitive in a portable way - if (strcmp(ggml_backend_registry[i].name, name) == 0) { - return i; + void register_backend(ggml_backend_reg_t reg) { +#ifndef NDEBUG + fprintf(stderr, "%s: registered backend %s (%zu devices)\n", + __func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg)); +#endif + backends.push_back(reg); + for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) { + register_device(ggml_backend_reg_dev_get(reg, i)); } } - // not found - return SIZE_MAX; + void register_device(ggml_backend_dev_t device) { +#ifndef NDEBUG + fprintf(stderr, "%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device)); +#endif + devices.push_back(device); + } +}; + +static ggml_backend_registry & get_reg() { + static ggml_backend_registry reg; + return reg; } -// init from backend:params string -ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) { - ggml_backend_registry_init(); +// Internal API +void ggml_backend_register(ggml_backend_reg_t reg) { + get_reg().register_backend(reg); +} - const char * params = strchr(backend_str, ':'); - char backend_name[128]; - if (params == NULL) { - snprintf(backend_name, sizeof(backend_name), "%s", backend_str); - params = ""; - } else { - snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str); - params++; - } +void ggml_backend_device_register(ggml_backend_dev_t device) { + get_reg().register_device(device); +} - size_t backend_i = ggml_backend_reg_find_by_name(backend_name); +// Backend (reg) enumeration +size_t ggml_backend_reg_count() { + return get_reg().backends.size(); +} - if (backend_i == SIZE_MAX) { - fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name); - return NULL; - } +ggml_backend_reg_t ggml_backend_reg_get(size_t index) { + GGML_ASSERT(index < ggml_backend_reg_count()); + return get_reg().backends[index]; +} - return ggml_backend_reg_init_backend(backend_i, params); +ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) { + for (size_t i = 0; i < ggml_backend_reg_count(); i++) { + ggml_backend_reg_t reg = ggml_backend_reg_get(i); + if (strcmp(ggml_backend_reg_name(reg), name) == 0) { + return reg; + } + } + return NULL; } -const char * ggml_backend_reg_get_name(size_t i) { - ggml_backend_registry_init(); +// Device enumeration +size_t ggml_backend_dev_count() { + return get_reg().devices.size(); +} - GGML_ASSERT(i < ggml_backend_registry_count); - return ggml_backend_registry[i].name; +ggml_backend_dev_t ggml_backend_dev_get(size_t index) { + GGML_ASSERT(index < ggml_backend_dev_count()); + return get_reg().devices[index]; } -ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) { - ggml_backend_registry_init(); +ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) { + for (size_t i = 0; i < ggml_backend_dev_count(); i++) { + ggml_backend_dev_t dev = ggml_backend_dev_get(i); + if (strcmp(ggml_backend_dev_name(dev), name) == 0) { + return dev; + } + } + return NULL; +} - GGML_ASSERT(i < ggml_backend_registry_count); - return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data); +ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_device_type type) { + for (size_t i = 0; i < ggml_backend_dev_count(); i++) { + ggml_backend_dev_t dev = ggml_backend_dev_get(i); + if (ggml_backend_dev_type(dev) == type) { + return dev; + } + } + return NULL; } -ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) { - ggml_backend_registry_init(); +void ggml_backend_set_log_callback(ggml_log_callback log_callback, void * user_data) { + for (size_t i = 0; i < ggml_backend_reg_count(); i++) { + ggml_backend_reg_t reg = ggml_backend_reg_get(i); + ggml_backend_reg_set_log_callback(reg, log_callback, user_data); + } +} - GGML_ASSERT(i < ggml_backend_registry_count); - return ggml_backend_registry[i].default_buffer_type; +// Convenience functions +ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) { + ggml_backend_dev_t dev = ggml_backend_dev_by_name(name); + if (!dev) { + return NULL; + } + return ggml_backend_dev_init(dev, params); } -ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) { - ggml_backend_registry_init(); +ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_device_type type, const char * params) { + ggml_backend_dev_t dev = ggml_backend_dev_by_type(type); + if (!dev) { + return NULL; + } + return ggml_backend_dev_init(dev, params); +} - GGML_ASSERT(i < ggml_backend_registry_count); - return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size); +ggml_backend_t ggml_backend_init_best(void) { + ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL); + if (!dev) { + dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU_FULL); + } + if (!dev) { + return NULL; + } + return ggml_backend_dev_init(dev, NULL); } // backend CPU static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment -GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { return "CPU"; GGML_UNUSED(buffer); } -GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { +static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { uintptr_t data = (uintptr_t)buffer->context; // align the buffer @@ -581,29 +669,29 @@ GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t b return (void *)data; } -GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { free(buffer->context); } -GGML_CALL static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { +static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { memset((char *)tensor->data + offset, value, size); GGML_UNUSED(buffer); } -GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } -GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } -GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { +static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; @@ -613,7 +701,7 @@ GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t b GGML_UNUSED(buffer); } -GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { memset(buffer->context, value, buffer->size); } @@ -644,13 +732,13 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { /* .reset = */ NULL, }; -GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU"; GGML_UNUSED(buft); } -GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h) if (data == NULL) { @@ -661,21 +749,21 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size); } -GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return TENSOR_ALIGNMENT; GGML_UNUSED(buft); } -GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { +static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; GGML_UNUSED(buft); } -GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { +ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { - /* .iface = */ { + /* .iface = */ { /* .get_name = */ ggml_backend_cpu_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, @@ -683,6 +771,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .is_host = */ ggml_backend_cpu_buffer_type_is_host, }, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), /* .context = */ NULL, }; @@ -695,23 +784,23 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { #include -GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU_HBM"; GGML_UNUSED(buft); } -GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) { +static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) { return "CPU_HBM"; GGML_UNUSED(buf); } -GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { hbw_free(buffer->context); } -GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { //void * ptr = hbw_malloc(size); void * ptr; int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size); @@ -749,27 +838,27 @@ struct ggml_backend_cpu_context { int n_threads; ggml_threadpool_t threadpool; - void * work_data; + uint8_t * work_data; size_t work_size; ggml_abort_callback abort_callback; void * abort_callback_data; }; -GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) { +static const char * ggml_backend_cpu_name(ggml_backend_t backend) { return "CPU"; GGML_UNUSED(backend); } -GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) { +static void ggml_backend_cpu_free(ggml_backend_t backend) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; - free(cpu_ctx->work_data); - free(cpu_ctx); - free(backend); + delete[] cpu_ctx->work_data; + delete cpu_ctx; + delete backend; } -GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) { +static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(backend); @@ -780,18 +869,18 @@ struct ggml_backend_plan_cpu { struct ggml_cgraph cgraph; }; -GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) { +static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; - struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); + struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu; cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool); cpu_plan->cgraph = *cgraph; // FIXME: deep copy if (cpu_plan->cplan.work_size > 0) { - cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); + cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size]; if (cpu_plan->cplan.work_data == NULL) { - free(cpu_plan); + delete cpu_plan; return NULL; } } @@ -802,16 +891,16 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg return cpu_plan; } -GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { +static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; - free(cpu_plan->cplan.work_data); - free(cpu_plan); + delete[] cpu_plan->cplan.work_data; + delete cpu_plan; GGML_UNUSED(backend); } -GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { +static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); @@ -819,21 +908,21 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe GGML_UNUSED(backend); } -GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { +static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool); if (cpu_ctx->work_size < cplan.work_size) { - free(cpu_ctx->work_data); - cpu_ctx->work_data = malloc(cplan.work_size); + delete[] cpu_ctx->work_data; + cpu_ctx->work_data = new uint8_t[cplan.work_size]; if (cpu_ctx->work_data == NULL) { cpu_ctx->work_size = 0; return GGML_STATUS_ALLOC_FAILED; } cpu_ctx->work_size = cplan.work_size; } - cplan.work_data = cpu_ctx->work_data; + cplan.work_data = (uint8_t *)cpu_ctx->work_data; cplan.abort_callback = cpu_ctx->abort_callback; cplan.abort_callback_data = cpu_ctx->abort_callback_data; @@ -841,33 +930,6 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t return ggml_graph_compute(cgraph, &cplan); } -GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { - switch (op->op) { - case GGML_OP_CPY: - return - op->type != GGML_TYPE_IQ2_XXS && - op->type != GGML_TYPE_IQ2_XS && - op->type != GGML_TYPE_IQ1_S && - op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float - case GGML_OP_MUL_MAT: - return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; - case GGML_OP_ROPE_BACK: - return op->src[2] == NULL && (op->op_params[2] & 4) == 0; - case GGML_OP_IM2COL_BACK: - return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; - default: - return true; - } - - GGML_UNUSED(backend); -} - -GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { - return ggml_backend_buft_is_host(buft); - - GGML_UNUSED(backend); -} - static struct ggml_backend_i cpu_backend_i = { /* .get_name = */ ggml_backend_cpu_name, /* .free = */ ggml_backend_cpu_free, @@ -881,14 +943,11 @@ static struct ggml_backend_i cpu_backend_i = { /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, /* .graph_compute = */ ggml_backend_cpu_graph_compute, - /* .supports_op = */ ggml_backend_cpu_supports_op, - /* .supports_buft = */ ggml_backend_cpu_supports_buft, + /* .supports_op = */ NULL, + /* .supports_buft = */ NULL, /* .offload_op = */ NULL, - /* .event_new = */ NULL, - /* .event_free = */ NULL, /* .event_record = */ NULL, /* .event_wait = */ NULL, - /* .event_synchronize = */ NULL, }; static ggml_guid_t ggml_backend_cpu_guid(void) { @@ -897,7 +956,7 @@ static ggml_guid_t ggml_backend_cpu_guid(void) { } ggml_backend_t ggml_backend_cpu_init(void) { - struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); + struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context; if (ctx == NULL) { return NULL; } @@ -909,21 +968,22 @@ ggml_backend_t ggml_backend_cpu_init(void) { ctx->abort_callback = NULL; ctx->abort_callback_data = NULL; - ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); + ggml_backend_t cpu_backend = new ggml_backend { + /* .guid = */ ggml_backend_cpu_guid(), + /* .interface = */ cpu_backend_i, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), + /* .context = */ ctx, + }; + if (cpu_backend == NULL) { - free(ctx); + delete ctx; return NULL; } - *cpu_backend = (struct ggml_backend) { - /* .guid = */ ggml_backend_cpu_guid(), - /* .interface = */ cpu_backend_i, - /* .context = */ ctx - }; return cpu_backend; } -GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) { +bool ggml_backend_is_cpu(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid()); } @@ -954,18 +1014,165 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_ ctx->abort_callback_data = abort_callback_data; } -GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { +ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned"); return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size); } -GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) { +static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) { return ggml_backend_cpu_init(); GGML_UNUSED(params); GGML_UNUSED(user_data); } +//////////////////////// + +static const char * ggml_backend_cpu_device_name(ggml_backend_dev_t device) { + return "CPU"; + + GGML_UNUSED(device); +} + +static const char * ggml_backend_cpu_device_description(ggml_backend_dev_t device) { + // TODO + return "CPU"; + + GGML_UNUSED(device); +} + +static void ggml_backend_cpu_device_memory(ggml_backend_dev_t device, size_t * free, size_t * total) { + // TODO + *free = 0; + *total = 0; + + GGML_UNUSED(device); +} + +static enum ggml_backend_device_type ggml_backend_cpu_device_type(ggml_backend_dev_t device) { + return GGML_BACKEND_DEVICE_TYPE_CPU_FULL; + + GGML_UNUSED(device); +} + +static ggml_backend_reg_t ggml_backend_cpu_device_reg(ggml_backend_dev_t device) { + return ggml_backend_cpu_reg(); + + GGML_UNUSED(device); +} + +static ggml_backend_t ggml_backend_cpu_device_init(ggml_backend_dev_t device, const char * params) { + return ggml_backend_cpu_init(); + + GGML_UNUSED(device); + GGML_UNUSED(params); +} + +static ggml_backend_buffer_type_t ggml_backend_cpu_device_buffer_type(ggml_backend_dev_t device) { + return ggml_backend_cpu_buffer_type(); + + GGML_UNUSED(device); +} + +static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) { + return ggml_backend_cpu_buffer_from_ptr(ptr, size); + + GGML_UNUSED(device); + GGML_UNUSED(max_tensor_size); +} + +static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { + switch (op->op) { + case GGML_OP_CPY: + return + op->type != GGML_TYPE_IQ2_XXS && + op->type != GGML_TYPE_IQ2_XS && + op->type != GGML_TYPE_IQ1_S && + op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float + case GGML_OP_MUL_MAT: + return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; + case GGML_OP_ROPE_BACK: + return op->src[2] == NULL && (op->op_params[2] & 4) == 0; + case GGML_OP_IM2COL_BACK: + return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; + case GGML_OP_OUT_PROD: + return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32; + default: + return true; + } + + GGML_UNUSED(device); +} + +static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) { + return ggml_backend_buft_is_host(buft); + + GGML_UNUSED(device); +} + +struct ggml_backend_device_i ggml_backend_cpu_device_i = { + /* .get_name = */ ggml_backend_cpu_device_name, + /* .get_description = */ ggml_backend_cpu_device_description, + /* .get_memory = */ ggml_backend_cpu_device_memory, + /* .get_type = */ ggml_backend_cpu_device_type, + /* .get_backend_reg = */ ggml_backend_cpu_device_reg, + /* .init_backend = */ ggml_backend_cpu_device_init, + /* .buffer_type = */ ggml_backend_cpu_device_buffer_type, + /* .host_buffer_type = */ NULL, + /* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_ptr, + /* .supports_op = */ ggml_backend_cpu_device_supports_op, + /* .supports_buft = */ ggml_backend_cpu_device_supports_buft, + /* .offload_op = */ NULL, + /* .event_new = */ NULL, + /* .event_free = */ NULL, + /* .event_synchronize = */ NULL, +}; + +//////////////////////// + +static const char * ggml_backend_cpu_reg_name(ggml_backend_reg_t reg) { + return "CPU"; + + GGML_UNUSED(reg); +} + +static size_t ggml_backend_cpu_reg_device_count(ggml_backend_reg_t reg) { + return 1; + + GGML_UNUSED(reg); +} + +static ggml_backend_dev_t ggml_backend_cpu_reg_device_get(ggml_backend_reg_t reg, size_t index) { + GGML_ASSERT(index == 0); + + static ggml_backend_device ggml_backend_cpu_device = { + /* .iface = */ ggml_backend_cpu_device_i, + /* .context = */ NULL, + }; + + return &ggml_backend_cpu_device; + + GGML_UNUSED(reg); + GGML_UNUSED(index); +} + +struct ggml_backend_reg_i ggml_backend_cpu_reg_i = { + /* .get_name = */ ggml_backend_cpu_reg_name, + /* .device_count = */ ggml_backend_cpu_reg_device_count, + /* .device_get = */ ggml_backend_cpu_reg_device_get, + /* .get_proc_address = */ NULL, + /* .set_log_callback = */ NULL, +}; + +ggml_backend_reg_t ggml_backend_cpu_reg(void) { + static struct ggml_backend_reg ggml_backend_cpu_reg = { + /* .iface = */ ggml_backend_cpu_reg_i, + /* .context = */ NULL, + }; + + return &ggml_backend_cpu_reg; +} + // multi-buffer buffer struct ggml_backend_multi_buffer_context { @@ -973,16 +1180,14 @@ struct ggml_backend_multi_buffer_context { size_t n_buffers; }; -typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t; - -GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) { - ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; +static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) { + ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; return ctx->buffers[0]->iface.get_name(ctx->buffers[0]); } -GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { - ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; +static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_free(ctx->buffers[i]); } @@ -991,8 +1196,8 @@ GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_ free(ctx); } -GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { - ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; +static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_clear(ctx->buffers[i], value); } @@ -1015,8 +1220,8 @@ static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface( return multi_backend_buffer_i; } -GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) { - ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context)); +ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) { + ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context)); ctx->n_buffers = n_buffers; ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t)); @@ -1031,13 +1236,13 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_back return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size); } -GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { +bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_multi_buffer_get_name; } -GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { +void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer)); - ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; + ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_set_usage(ctx->buffers[i], usage); } @@ -1592,7 +1797,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg i_split++; if (i_split >= sched->splits_capacity) { sched->splits_capacity *= 2; - sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); + sched->splits = (ggml_backend_sched_split *) + realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); GGML_ASSERT(sched->splits != NULL); } split = &sched->splits[i_split]; @@ -1678,11 +1884,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg sched->prev_leaf_backend_ids = tmp; } - int graph_size = MAX(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies; + int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies; if (sched->graph.size < graph_size) { sched->graph.size = graph_size; - sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *)); - sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *)); + sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *)); + sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *)); GGML_ASSERT(sched->graph.nodes != NULL); GGML_ASSERT(sched->graph.leafs != NULL); } @@ -1881,7 +2087,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s // record the event of this copy if (split->n_inputs > 0) { if (sched->events[split_backend_id][sched->cur_copy] != NULL) { - ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]); + ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend); } } } @@ -1901,7 +2107,7 @@ ggml_backend_sched_t ggml_backend_sched_new( GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS); GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU - struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched)); + struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched)); sched->debug = getenv("GGML_SCHED_DEBUG") != NULL; sched->n_backends = n_backends; @@ -1910,21 +2116,21 @@ ggml_backend_sched_t ggml_backend_sched_new( // initialize hash table // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead) sched->hash_set = ggml_hash_set_new(graph_size); - sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); - sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *)); + sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); + sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *)); const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2; - sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0])); - sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0])); - sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0])); - sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0])); + sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0])); + sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0])); + sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0])); + sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0])); sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false); - sched->context_buffer = malloc(sched->context_buffer_size); + sched->context_buffer = (char *) malloc(sched->context_buffer_size); const int initial_splits_capacity = 16; - sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0])); + sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0])); sched->splits_capacity = initial_splits_capacity; for (int b = 0; b < n_backends; b++) { @@ -1933,7 +2139,7 @@ ggml_backend_sched_t ggml_backend_sched_new( GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b])); if (sched->n_copies > 1) { for (int c = 0; c < sched->n_copies; c++) { - sched->events[b][c] = ggml_backend_event_new(backends[b]); + sched->events[b][c] = ggml_backend_event_new(backends[b]->device); } } } @@ -2169,8 +2375,8 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size); - struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT - bool * node_init = calloc(hash_set.size, sizeof(node_init[0])); + struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT + bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0])); struct ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false), @@ -2188,7 +2394,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s free(node_init); ggml_free(ctx_allocated); ggml_free(ctx_unallocated); - return (struct ggml_backend_graph_copy) { + return { /* .buffer = */ NULL, /* .ctx_allocated = */ NULL, /* .ctx_unallocated = */ NULL, @@ -2211,7 +2417,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s free(node_init); ggml_free(ctx_allocated); ggml_free(ctx_unallocated); - return (struct ggml_backend_graph_copy) { + return { /* .buffer = */ NULL, /* .ctx_allocated = */ NULL, /* .ctx_unallocated = */ NULL, @@ -2240,7 +2446,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s free(node_copies); free(node_init); - return (struct ggml_backend_graph_copy) { + return { /* .buffer = */ buffer, /* .ctx_allocated = */ ctx_allocated, /* .ctx_unallocated = */ ctx_unallocated, diff --git a/ggml/src/ggml-blas.cpp b/ggml/src/ggml-blas.cpp index 6d99c6beaeeea..14c5a68bbe299 100644 --- a/ggml/src/ggml-blas.cpp +++ b/ggml/src/ggml-blas.cpp @@ -235,25 +235,25 @@ static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct g // backend interface -GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) { +static const char * ggml_backend_blas_name(ggml_backend_t backend) { return "BLAS"; GGML_UNUSED(backend); } -GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) { +static void ggml_backend_blas_free(ggml_backend_t backend) { ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; delete ctx; delete backend; } -GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) { +static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(backend); } -GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { +static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { @@ -285,7 +285,7 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t GGML_UNUSED(backend); } -GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { +static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; @@ -300,7 +300,7 @@ GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, cons GGML_UNUSED(backend); } -GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { +static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { return ggml_backend_buft_is_host(buft); GGML_UNUSED(backend); @@ -356,7 +356,7 @@ ggml_backend_t ggml_backend_blas_init(void) { return backend; } -GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) { +bool ggml_backend_is_blas(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid()); } diff --git a/ggml/src/ggml-cann.cpp b/ggml/src/ggml-cann.cpp index d3ab78006ee23..4084a83b42753 100644 --- a/ggml/src/ggml-cann.cpp +++ b/ggml/src/ggml-cann.cpp @@ -560,7 +560,7 @@ struct ggml_backend_cann_buffer_context { * @return A pointer to a C-string containing the name of the buffer. */ -GGML_CALL static const char* ggml_backend_cann_buffer_get_name( +static const char* ggml_backend_cann_buffer_get_name( ggml_backend_buffer_t buffer) { return "CANN"; @@ -576,7 +576,7 @@ GGML_CALL static const char* ggml_backend_cann_buffer_get_name( * @param buffer The buffer to check. * @return true if the buffer is a CANN buffer, false otherwise. */ -GGML_CALL static bool ggml_backend_buffer_is_cann( +static bool ggml_backend_buffer_is_cann( ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_cann_buffer_get_name; } @@ -589,7 +589,7 @@ GGML_CALL static bool ggml_backend_buffer_is_cann( * * @param buffer The CANN buffer to free. */ -GGML_CALL static void ggml_backend_cann_buffer_free_buffer( +static void ggml_backend_cann_buffer_free_buffer( ggml_backend_buffer_t buffer) { ggml_backend_cann_buffer_context* ctx = (ggml_backend_cann_buffer_context*)buffer->context; @@ -605,7 +605,7 @@ GGML_CALL static void ggml_backend_cann_buffer_free_buffer( * @param buffer The CANN buffer whose base pointer is to be retrieved. * @return A pointer to the base of the device memory allocated for the buffer. */ -GGML_CALL static void* ggml_backend_cann_buffer_get_base( +static void* ggml_backend_cann_buffer_get_base( ggml_backend_buffer_t buffer) { ggml_backend_cann_buffer_context* ctx = (ggml_backend_cann_buffer_context*)buffer->context; @@ -625,9 +625,9 @@ GGML_CALL static void* ggml_backend_cann_buffer_get_base( * @param dst Pointer to the destination buffer where transformed data will be * stored. */ -GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor, - const void* src, - void* dst) { +static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor, + const void* src, + void* dst) { int64_t n_elems = ggml_nelements(tensor); int64_t groups = n_elems / QK4_0; @@ -677,7 +677,7 @@ GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor, * @param dst Pointer to the destination buffer where the Q4.0 formatted data * will be stored. */ -GGML_CALL static void ggml_backend_cann_transform_back_q4_0( +static void ggml_backend_cann_transform_back_q4_0( const ggml_tensor* tensor, void* src, void* dst) { int64_t n_elems = ggml_nelements(tensor); @@ -726,9 +726,9 @@ GGML_CALL static void ggml_backend_cann_transform_back_q4_0( * @param dst Pointer to the destination buffer where transformed data will be * stored. */ -GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor, - const void* src, - void* dst) { +static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor, + const void* src, + void* dst) { int64_t n_elems = ggml_nelements(tensor); int64_t groups = n_elems / QK8_0; size_t quant_bytes = n_elems * sizeof(uint8_t); @@ -760,7 +760,7 @@ GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor, * @param dst Pointer to the destination buffer where the Q8.0 formatted data * will be stored. */ -GGML_CALL static void ggml_backend_cann_transform_back_q8_0( +static void ggml_backend_cann_transform_back_q8_0( const ggml_tensor* tensor, const void* src, void* dst) { int64_t n_elems = ggml_nelements(tensor); int64_t groups = n_elems / QK8_0; @@ -792,8 +792,8 @@ GGML_CALL static void ggml_backend_cann_transform_back_q8_0( * @param dst Pointer to the destination buffer where transformed data will be * stored. */ -GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor, - const void* src, void* dst) { +static void ggml_backend_cann_transform(ggml_tensor* tensor, + const void* src, void* dst) { switch (tensor->type) { case GGML_TYPE_Q4_0: ggml_backend_cann_transform_q4_0(tensor, src, dst); @@ -818,7 +818,7 @@ GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor, * @param dst Pointer to the destination buffer where transformed tensor data * will be stored. */ -GGML_CALL static void ggml_backend_cann_transform_back( +static void ggml_backend_cann_transform_back( const ggml_tensor* tensor, void* src, void* dst) { switch (tensor->type) { case GGML_TYPE_Q4_0: @@ -841,7 +841,7 @@ GGML_CALL static void ggml_backend_cann_transform_back( * @param type The tensor type to check. * @return true if transformation is needed, false otherwise. */ -GGML_CALL static bool need_transform(ggml_type type) { +static bool need_transform(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: @@ -860,7 +860,7 @@ GGML_CALL static bool need_transform(ggml_type type) { * @param buffer The CANN buffer from which to initialize the tensor. * @param tensor Pointer to the tensor to be initialized. */ -GGML_CALL static void ggml_backend_cann_buffer_init_tensor( +static void ggml_backend_cann_buffer_init_tensor( ggml_backend_buffer_t buffer, ggml_tensor* tensor) { if (tensor->view_src != NULL && tensor->view_offs == 0) { GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft); @@ -896,7 +896,7 @@ GGML_CALL static void ggml_backend_cann_buffer_init_tensor( * @param offset Offset in the source data from where to start copying. * @param size Size of the data to be copied, in bytes. */ -GGML_CALL static void ggml_backend_cann_buffer_set_tensor( +static void ggml_backend_cann_buffer_set_tensor( ggml_backend_buffer_t buffer, ggml_tensor *tensor, const void *data, size_t offset, size_t size) { ggml_backend_cann_buffer_context *ctx = @@ -941,7 +941,7 @@ GGML_CALL static void ggml_backend_cann_buffer_set_tensor( * @param offset Offset in the destination buffer where to start copying. * @param size Size of the data to be copied, in bytes. */ -GGML_CALL static void ggml_backend_cann_buffer_get_tensor( +static void ggml_backend_cann_buffer_get_tensor( ggml_backend_buffer_t buffer, const ggml_tensor* tensor, void* data, size_t offset, size_t size) { ggml_backend_cann_buffer_context* ctx = @@ -975,7 +975,7 @@ GGML_CALL static void ggml_backend_cann_buffer_get_tensor( * @param dst Pointer to the destination tensor where the data will be copied. * @return true if the copy operation succeeded, false otherwise. */ -GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor( +static bool ggml_backend_cann_buffer_cpy_tensor( ggml_backend_buffer_t buffer, const ggml_tensor* src, ggml_tensor* dst) { if (ggml_backend_buffer_is_cann(src->buffer)) { ggml_backend_cann_buffer_context* src_ctx = @@ -1017,7 +1017,7 @@ GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor( * @param buffer The CANN buffer to be cleared. * @param value The value to which each byte in the buffer will be set. */ -GGML_CALL static void ggml_backend_cann_buffer_clear( +static void ggml_backend_cann_buffer_clear( ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_cann_buffer_context* ctx = (ggml_backend_cann_buffer_context*)buffer->context; @@ -1065,7 +1065,7 @@ struct ggml_backend_cann_buffer_type_context { * @param buft Pointer to the buffer type context. * @return Const pointer to the C-style string containing the name. */ -GGML_CALL static const char* ggml_backend_cann_buffer_type_name( +static const char* ggml_backend_cann_buffer_type_name( ggml_backend_buffer_type_t buft) { return "CANN"; @@ -1082,7 +1082,7 @@ GGML_CALL static const char* ggml_backend_cann_buffer_type_name( * @param size Size in bytes of the buffer to allocate. * @return Pointer to the allocated buffer, or nullptr if allocation fails. */ -GGML_CALL static ggml_backend_buffer_t +static ggml_backend_buffer_t ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_cann_buffer_type_context* buft_ctx = @@ -1121,7 +1121,7 @@ ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, * @return The alignment requirement in bytes (fixed at 128 bytes for CANN * buffers). */ -GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment( +static size_t ggml_backend_cann_buffer_type_get_alignment( ggml_backend_buffer_type_t buft) { return 128; @@ -1142,7 +1142,7 @@ GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment( * @return The total allocation size in bytes required for the tensor in the * CANN buffer. */ -GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alloc_size( +static size_t ggml_backend_cann_buffer_type_get_alloc_size( ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) { size_t size = ggml_nbytes(tensor); int64_t ne0 = tensor->ne[0]; @@ -1193,7 +1193,7 @@ static ggml_backend_buffer_type_i ggml_backend_cann_buffer_type_interface = { * @return A pointer to the buffer type interface for the specified device, or * nullptr if the device index is out of range. */ -GGML_CALL ggml_backend_buffer_type_t +ggml_backend_buffer_type_t ggml_backend_cann_buffer_type(int32_t device) { static std::mutex mutex; std::lock_guard lock(mutex); @@ -1231,7 +1231,7 @@ ggml_backend_cann_buffer_type(int32_t device) { * @param buft Pointer to the host buffer type context. * @return Const pointer to the C-style string containing the name. */ -GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return "CANN_Host"; GGML_UNUSED(buft); @@ -1246,7 +1246,7 @@ GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backe * @param buft Pointer to the host buffer context. * @return Const pointer to the C-style string containing the name. */ -GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) { return "CANN_Host"; GGML_UNUSED(buffer); @@ -1260,7 +1260,7 @@ GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_bu * * @param buffer The CANN host buffer to free. */ -GGML_CALL static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) { +static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) { ACL_CHECK(aclrtFreeHost(buffer->context)); } @@ -1294,7 +1294,7 @@ static void * ggml_cann_host_malloc(size_t size) { * @param size Size in bytes of the host buffer to allocate. * @return Pointer to the allocated host buffer, or CPU buffer pointer if allocation fails. */ -GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { void * hostPtr = ggml_cann_host_malloc(size); if (hostPtr == nullptr) { @@ -1316,7 +1316,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_ * Provides function pointers for allocating, querying properties, and managing * memory for CANN buffer types in the GGML backend. */ -GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() { +ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_cann_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_cann_host_buffer_type_name, @@ -1495,7 +1495,7 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx, * @param backend Pointer to the CANN backend structure. * @return A pointer to a constant string representing the backend name. */ -GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) { +static const char* ggml_backend_cann_name(ggml_backend_t backend) { ggml_backend_cann_context* cann_ctx = (ggml_backend_cann_context*)backend->context; @@ -1510,7 +1510,7 @@ GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) { * * @param backend Pointer to the CANN backend structure to be freed. */ -GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) { +static void ggml_backend_cann_free(ggml_backend_t backend) { ggml_backend_cann_context* cann_ctx = (ggml_backend_cann_context*)backend->context; ACL_CHECK(aclrtSynchronizeDevice()); @@ -1535,7 +1535,7 @@ GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) { * @param backend Pointer to the CANN backend structure. * @return Pointer to the buffer type structure for the CANN backend. */ -GGML_CALL static ggml_backend_buffer_type_t +static ggml_backend_buffer_type_t ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_cann_context* cann_ctx = (ggml_backend_cann_context*)backend->context; @@ -1556,11 +1556,11 @@ ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) { * @param offset Offset in bytes within the host data. * @param size Size of the data to copy in bytes. */ -GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend, - ggml_tensor *tensor, - const void *data, - size_t offset, - size_t size) { +static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend, + ggml_tensor *tensor, + const void *data, + size_t offset, + size_t size) { ggml_backend_cann_context *cann_ctx = (ggml_backend_cann_context *)backend->context; @@ -1587,7 +1587,7 @@ GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend, } } -GGML_CALL static void ggml_backend_cann_get_tensor_async( +static void ggml_backend_cann_get_tensor_async( ggml_backend_t backend, const ggml_tensor *tensor, void *data, size_t offset, size_t size) { ggml_backend_cann_context *cann_ctx = @@ -1626,7 +1626,7 @@ GGML_CALL static void ggml_backend_cann_get_tensor_async( * @param dst Pointer to the destination tensor to copy data to. * @return true if the copy operation succeeds, false otherwise. */ -GGML_CALL static bool ggml_backend_cann_cpy_tensor_async( +static bool ggml_backend_cann_cpy_tensor_async( ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor* src, ggml_tensor* dst) { GGML_ASSERT(ggml_backend_is_cann(backend_src) || @@ -1694,7 +1694,7 @@ GGML_CALL static bool ggml_backend_cann_cpy_tensor_async( * * @param backend Pointer to the CANN backend structure to synchronize. */ -GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) { +static void ggml_backend_cann_synchronize(ggml_backend_t backend) { ggml_backend_cann_context* cann_ctx = (ggml_backend_cann_context*)backend->context; @@ -1715,7 +1715,7 @@ GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) { * @return enum ggml_status Returns GGML_STATUS_SUCCESS if computation * completes successfully, otherwise an appropriate error status. */ -GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute( +static enum ggml_status ggml_backend_cann_graph_compute( ggml_backend_t backend, ggml_cgraph* cgraph) { ggml_backend_cann_context* cann_ctx = (ggml_backend_cann_context*)backend->context; @@ -1753,7 +1753,7 @@ GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute( * @return bool Returns true if the operation is supported by the backend, * otherwise false. */ -GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend, +static bool ggml_backend_cann_supports_op(ggml_backend_t backend, const ggml_tensor* op) { switch (op->op) { case GGML_OP_UNARY: @@ -1875,7 +1875,7 @@ static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) { * @return bool Returns true if the CANN backend supports the buffer type, * otherwise false. */ -GGML_CALL static bool ggml_backend_cann_supports_buft( +static bool ggml_backend_cann_supports_buft( ggml_backend_t backend, ggml_backend_buffer_type_t buft) { if (ggml_backend_buft_is_cann(buft)) { ggml_backend_cann_context * cann_ctx = @@ -1901,7 +1901,7 @@ GGML_CALL static bool ggml_backend_cann_supports_buft( * @return bool Returns true if the operation should be offloaded, otherwise * false. */ -GGML_CALL static bool ggml_backend_cann_offload_op(ggml_backend_t backend, +static bool ggml_backend_cann_offload_op(ggml_backend_t backend, const ggml_tensor* op) { const int min_batch_size = 32; GGML_UNUSED(backend); @@ -2042,7 +2042,7 @@ static ggml_guid_t ggml_backend_cann_guid() { return &guid; } -GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) { +ggml_backend_t ggml_backend_cann_init(int32_t device) { aclInit(nullptr); if (device < 0 || device >= ggml_backend_cann_get_device_count()) { GGML_CANN_LOG_ERROR("%s: error: invalid device %d\n", __func__, device); @@ -2063,24 +2063,24 @@ GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) { return cann_backend; } -GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend) { +bool ggml_backend_is_cann(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cann_guid()); } -GGML_CALL int32_t ggml_backend_cann_get_device_count() { +int32_t ggml_backend_cann_get_device_count() { return ggml_cann_info().device_count; } -GGML_CALL void ggml_backend_cann_get_device_description( +void ggml_backend_cann_get_device_description( int32_t device, char* description, size_t description_size) { ggml_cann_set_device(device); const char* soc_name = aclrtGetSocName(); snprintf(description, description_size, "%s", soc_name); } -GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device, size_t* free, - size_t* total) { +void ggml_backend_cann_get_device_memory(int32_t device, size_t* free, + size_t* total) { ggml_cann_set_device(device); ACL_CHECK(aclrtGetMemInfo(ACL_HBM_MEM, free, total)); } @@ -2097,8 +2097,8 @@ GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device, size_t* free, * backend. * @return ggml_backend_t The initialized CANN backend. */ -GGML_CALL static ggml_backend_t ggml_backend_reg_cann_init(const char* params, - void* user_data) { +static ggml_backend_t ggml_backend_reg_cann_init(const char* params, + void* user_data) { ggml_backend_t cann_backend = ggml_backend_cann_init((int)(intptr_t)user_data); return cann_backend; @@ -2106,7 +2106,7 @@ GGML_CALL static ggml_backend_t ggml_backend_reg_cann_init(const char* params, GGML_UNUSED(params); } -extern "C" GGML_CALL int ggml_backend_cann_reg_devices(); +extern "C" int ggml_backend_cann_reg_devices(); /** * @brief Registers CANN (Ascend) devices as backend options. @@ -2118,7 +2118,7 @@ extern "C" GGML_CALL int ggml_backend_cann_reg_devices(); * * @return int The number of CANN devices registered. */ -GGML_CALL int ggml_backend_cann_reg_devices() { +int ggml_backend_cann_reg_devices() { uint32_t device_count = ggml_backend_cann_get_device_count(); // initialization for (uint32_t i = 0; i < device_count; i++) { diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 6efdab14c3619..ed8e43323d2a2 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -99,11 +99,11 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in int id = -1; // in case cudaGetDevice fails cudaGetDevice(&id); - GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg); + GGML_CUDA_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg); GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line); GGML_CUDA_LOG_ERROR(" %s\n", stmt); - // abort with GGML_ASSERT to get a stack trace - GGML_ABORT("CUDA error"); + // abort with GGML_ABORT to get a stack trace + GGML_ABORT(GGML_CUDA_NAME " error"); } // this is faster on Windows @@ -327,7 +327,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool { return; } } - GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); + GGML_CUDA_LOG_WARN(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n"); ggml_cuda_set_device(device); CUDA_CHECK(cudaFree(ptr)); pool_size -= size; @@ -457,26 +457,26 @@ struct ggml_backend_cuda_buffer_context { } }; -GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; return ctx->name.c_str(); } -GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { +static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name; } -GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; delete ctx; } -GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { +static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; return ctx->dev_ptr; } -GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { +static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; if (tensor->view_src != NULL) { @@ -496,7 +496,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t } } -GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { +static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); @@ -504,7 +504,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); } -GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); @@ -512,7 +512,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); } -GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); @@ -520,7 +520,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); } -GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { +static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { if (ggml_backend_buffer_is_cuda(src->buffer)) { ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context; ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context; @@ -541,7 +541,7 @@ GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t GGML_UNUSED(buffer); } -GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); @@ -569,7 +569,7 @@ struct ggml_backend_cuda_buffer_type_context { std::string name; }; -GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; return ctx->name.c_str(); @@ -579,7 +579,7 @@ static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_cuda_buffer_type_name; } -GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; ggml_cuda_set_device(buft_ctx->device); @@ -600,13 +600,13 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffe return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size); } -GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; GGML_UNUSED(buft); } -GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { size_t size = ggml_nbytes(tensor); int64_t ne0 = tensor->ne[0]; @@ -630,7 +630,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { /* .is_host = */ NULL, }; -GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { +ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { static std::mutex mutex; std::lock_guard lock(mutex); @@ -643,9 +643,10 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { static bool ggml_backend_cuda_buffer_type_initialized = false; if (!ggml_backend_cuda_buffer_type_initialized) { - for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) { + for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) { ggml_backend_cuda_buffer_types[i] = { /* .iface = */ ggml_backend_cuda_buffer_type_interface, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i), /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)}, }; } @@ -715,7 +716,7 @@ struct ggml_backend_cuda_split_buffer_context { std::vector tensor_extras; }; -GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) { return GGML_CUDA_NAME "_Split"; GGML_UNUSED(buffer); @@ -726,19 +727,19 @@ static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) { GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds } -GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; delete ctx; } -GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { +static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced return (void *)0x1000; GGML_UNUSED(buffer); } -GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { +static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; @@ -786,7 +787,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu tensor->extra = extra; } -GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { // split tensors must always be set in their entirety at once GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); @@ -824,7 +825,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buf } } -GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { // split tensors must always be set in their entirety at once GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); @@ -862,7 +863,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buf } } -GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { GGML_UNUSED(buffer); GGML_UNUSED(value); } @@ -882,7 +883,7 @@ static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = { // cuda split buffer type -GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_CUDA_NAME "_Split"; GGML_UNUSED(buft); @@ -892,7 +893,7 @@ static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name; } -GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point // instead, we allocate them for each tensor separately in init_tensor // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, @@ -902,13 +903,13 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size); } -GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; GGML_UNUSED(buft); } -GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context; size_t total_size = 0; @@ -935,7 +936,7 @@ GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_ return total_size; } -GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { +static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return false; GGML_UNUSED(buft); @@ -950,7 +951,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host, }; -GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { +ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { static std::mutex mutex; std::lock_guard lock(mutex); @@ -979,6 +980,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const f struct ggml_backend_buffer_type buft { /* .iface = */ ggml_backend_cuda_split_buffer_type_interface, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0), /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr}, }; @@ -988,19 +990,19 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const f // host buffer type -GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_CUDA_NAME "_Host"; GGML_UNUSED(buft); } -GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) { return GGML_CUDA_NAME "_Host"; GGML_UNUSED(buffer); } -GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { CUDA_CHECK(cudaFreeHost(buffer->context)); } @@ -1022,7 +1024,7 @@ static void * ggml_cuda_host_malloc(size_t size) { return ptr; } -GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { void * ptr = ggml_cuda_host_malloc(size); if (ptr == nullptr) { @@ -1038,7 +1040,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_ return buffer; } -GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { +ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_cuda_host_buffer_type_name, @@ -1048,6 +1050,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, }, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0), /* .context = */ nullptr, }; @@ -2375,26 +2378,26 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg // backend -GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) { +static const char * ggml_backend_cuda_name(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; return cuda_ctx->name.c_str(); } -GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) { +static void ggml_backend_cuda_free(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; delete cuda_ctx; delete backend; } -GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) { +static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; return ggml_backend_cuda_buffer_type(cuda_ctx->device); } -GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; @@ -2403,7 +2406,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream())); } -GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; @@ -2412,7 +2415,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream())); } -GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { +static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; @@ -2467,7 +2470,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_ return true; } -GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { +static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream())); @@ -2526,7 +2529,7 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra return true; } -GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { +static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_cuda_set_device(cuda_ctx->device); @@ -2798,8 +2801,172 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t return GGML_STATUS_SUCCESS; } -GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) { - ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context; +static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream())); +} + +static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + if (ggml_backend_is_cuda(backend)) { + CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0)); + } else { +#if 0 + // untested + auto wait_fn = [](void * user_data) { + ggml_backend_event_t event = (ggml_backend_event_t)user_data; + ggml_backend_event_synchronize(event); + }; + + CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event)); +#endif + GGML_ABORT("fatal error"); + } +} + +static ggml_backend_i ggml_backend_cuda_interface = { + /* .get_name = */ ggml_backend_cuda_name, + /* .free = */ ggml_backend_cuda_free, + /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type, + /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, + /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async, + /* .synchronize = */ ggml_backend_cuda_synchronize, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_update = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_cuda_graph_compute, + /* .supports_op = */ NULL, // moved to device + /* .supports_buft = */ NULL, // moved to device + /* .offload_op = */ NULL, // moved to device + /* .event_record = */ ggml_backend_cuda_event_record, + /* .event_wait = */ ggml_backend_cuda_event_wait, +}; + +static ggml_guid_t ggml_backend_cuda_guid() { + static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 }; + return &guid; +} + +bool ggml_backend_is_cuda(ggml_backend_t backend) { + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid()); +} + +int ggml_backend_cuda_get_device_count() { + return ggml_cuda_info().device_count; +} + +void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); + snprintf(description, description_size, "%s", prop.name); +} + +void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { + ggml_cuda_set_device(device); + + CUDA_CHECK(cudaMemGetInfo(free, total)); +} + +bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { + if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { + return false; + } + +#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA) + cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + + GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__, + size / 1024.0 / 1024.0, cudaGetErrorString(err)); + return false; + } + return true; +#else + return false; +#endif +} + +void ggml_backend_cuda_unregister_host_buffer(void * buffer) { + if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { + return; + } + + cudaError_t err = cudaHostUnregister(buffer); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + } +} + + +// backend device + +struct ggml_backend_cuda_device_context { + int device; + std::string name; + std::string description; +}; + +static const char * ggml_backend_cuda_device_name(ggml_backend_dev_t dev) { + ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; + return ctx->name.c_str(); +} + +static const char * ggml_backend_cuda_device_description(ggml_backend_dev_t dev) { + ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; + return ctx->description.c_str(); +} + +static void ggml_backend_cuda_device_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { + ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaMemGetInfo(free, total)); +} + +static enum ggml_backend_device_type ggml_backend_cuda_device_type(ggml_backend_dev_t dev) { + GGML_UNUSED(dev); + return GGML_BACKEND_DEVICE_TYPE_GPU_FULL; +} + +static ggml_backend_reg_t ggml_backend_cuda_device_reg(ggml_backend_dev_t dev) { + GGML_UNUSED(dev); + return ggml_backend_cuda_reg(); +} + +static ggml_backend_t ggml_backend_cuda_device_init(ggml_backend_dev_t dev, const char * params) { + GGML_UNUSED(params); + ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; + return ggml_backend_cuda_init(ctx->device); +} + +static ggml_backend_buffer_type_t ggml_backend_cuda_device_buffer_type(ggml_backend_dev_t dev) { + ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context; + return ggml_backend_cuda_buffer_type(ctx->device); +} + +static ggml_backend_buffer_type_t ggml_backend_cuda_device_host_buffer_type(ggml_backend_dev_t dev) { + GGML_UNUSED(dev); + return ggml_backend_cuda_host_buffer_type(); +} + +static ggml_backend_buffer_t ggml_backend_cuda_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { + GGML_UNUSED(dev); + GGML_UNUSED(ptr); + GGML_UNUSED(size); + GGML_UNUSED(max_tensor_size); + return nullptr; +} + +// TODO: move these functions here +static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { + ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context; + switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { @@ -3004,7 +3171,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) { return true; } - const int cc = ggml_cuda_info().devices[cuda_ctx->device].cc; + const int cc = ggml_cuda_info().devices[dev_ctx->device].cc; return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; } case GGML_OP_CROSS_ENTROPY_LOSS: @@ -3014,115 +3181,167 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons default: return false; } - - GGML_UNUSED(backend); } -GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { +static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { if (ggml_backend_buft_is_cuda_split(buft)) { return true; } if (ggml_backend_buft_is_cuda(buft)) { - ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context; ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; - return buft_ctx->device == cuda_ctx->device; + return buft_ctx->device == dev_ctx->device; } return false; } -GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) { +static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) { const int min_batch_size = 32; return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) || (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID); - GGML_UNUSED(backend); + GGML_UNUSED(dev); } -static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) { + +static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) { #ifdef GGML_CUDA_NO_PEER_COPY return nullptr; #else - ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context; - ggml_cuda_set_device(cuda_ctx->device); + ggml_cuda_set_device(dev_ctx->device); cudaEvent_t event; CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming)); return new ggml_backend_event { - /* .backend = */ backend, + /* .device = */ dev, /* .context = */ event, }; #endif } -static void ggml_backend_cuda_event_free(ggml_backend_event_t event) { - CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context)); +static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) { + GGML_UNUSED(dev); + CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context)); delete event; } -static void ggml_backend_cuda_event_record(ggml_backend_event_t event) { - ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context; +static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) { + GGML_UNUSED(dev); + CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context)); +} - CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream())); +static ggml_backend_device_i ggml_backend_cuda_device_interface = { + /* .get_name = */ ggml_backend_cuda_device_name, + /* .get_description = */ ggml_backend_cuda_device_description, + /* .get_memory = */ ggml_backend_cuda_device_memory, + /* .get_type = */ ggml_backend_cuda_device_type, + /* .get_backend_reg = */ ggml_backend_cuda_device_reg, + /* .init_backend = */ ggml_backend_cuda_device_init, + /* .buffer_type = */ ggml_backend_cuda_device_buffer_type, + /* .host_buffer_type = */ ggml_backend_cuda_device_host_buffer_type, + /* .buffer_from_host_ptr = */ ggml_backend_cuda_device_buffer_from_host_ptr, + /* .supports_op = */ ggml_backend_cuda_device_supports_op, + /* .supports_buft = */ ggml_backend_cuda_device_supports_buft, + /* .offload_op = */ ggml_backend_cuda_device_offload_op, + /* .event_new = */ ggml_backend_cuda_device_event_new, + /* .event_free = */ ggml_backend_cuda_device_event_free, + /* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize, +}; + +// backend reg + +struct ggml_backend_cuda_reg_context { + std::vector devices; +}; + +static const char * ggml_backend_cuda_reg_name(ggml_backend_reg_t reg) { + GGML_UNUSED(reg); + return GGML_CUDA_NAME; } -static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { - ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; +static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) { + ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context; + return ctx->devices.size(); +} - if (ggml_backend_is_cuda(event->backend)) { - CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0)); - } else { -#if 0 - // untested - auto wait_fn = [](void * user_data) { - ggml_backend_event_t event = (ggml_backend_event_t)user_data; - ggml_backend_event_synchronize(event); - }; +static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) { + ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context; + GGML_ASSERT(index < ctx->devices.size()); + return ctx->devices[index]; +} - CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event)); -#endif - GGML_ABORT("fatal error"); +static void * ggml_backend_cuda_get_proc_address(ggml_backend_reg_t reg, const char * name) { + GGML_UNUSED(reg); + if (strcmp(name, "ggml_backend_split_buffer_type") == 0) { + return (void *)ggml_backend_cuda_split_buffer_type; + } + if (strcmp(name, "ggml_backend_register_host_buffer") == 0) { + return (void *)ggml_backend_cuda_register_host_buffer; + } + if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) { + return (void *)ggml_backend_cuda_unregister_host_buffer; } + return nullptr; } -static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) { - CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context)); +static void ggml_backend_cuda_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data) { + GGML_UNUSED(reg); + ggml_backend_cuda_log_set_callback(log_callback, user_data); } -static ggml_backend_i ggml_backend_cuda_interface = { - /* .get_name = */ ggml_backend_cuda_name, - /* .free = */ ggml_backend_cuda_free, - /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type, - /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, - /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, - /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async, - /* .synchronize = */ ggml_backend_cuda_synchronize, - /* .graph_plan_create = */ NULL, - /* .graph_plan_free = */ NULL, - /* .graph_plan_update = */ NULL, - /* .graph_plan_compute = */ NULL, - /* .graph_compute = */ ggml_backend_cuda_graph_compute, - /* .supports_op = */ ggml_backend_cuda_supports_op, - /* .supports_buft = */ ggml_backend_cuda_supports_buft, - /* .offload_op = */ ggml_backend_cuda_offload_op, - /* .event_new = */ ggml_backend_cuda_event_new, - /* .event_free = */ ggml_backend_cuda_event_free, - /* .event_record = */ ggml_backend_cuda_event_record, - /* .event_wait = */ ggml_backend_cuda_event_wait, - /* .event_synchronize = */ ggml_backend_cuda_event_synchronize, +static ggml_backend_reg_i ggml_backend_cuda_reg_interface = { + /* .get_name = */ ggml_backend_cuda_reg_name, + /* .device_count = */ ggml_backend_cuda_reg_get_device_count, + /* .device_get = */ ggml_backend_cuda_reg_get_device, + /* .get_proc_address = */ ggml_backend_cuda_get_proc_address, + /* .set_log_callback = */ ggml_backend_cuda_reg_set_log_callback, }; -static ggml_guid_t ggml_backend_cuda_guid() { - static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 }; - return &guid; +// backend registry +ggml_backend_reg_t ggml_backend_cuda_reg() { + static ggml_backend_reg_t reg = nullptr; + + { + static std::mutex mutex; + std::lock_guard lock(mutex); + if (!reg) { + ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context; + + for (int i = 0; i < ggml_cuda_info().device_count; i++) { + ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context; + dev_ctx->device = i; + dev_ctx->name = GGML_CUDA_NAME + std::to_string(i); + + ggml_cuda_set_device(i); + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, i)); + dev_ctx->description = prop.name; + + ggml_backend_dev_t dev = new ggml_backend_device { + /* .interface = */ ggml_backend_cuda_device_interface, + /* .context = */ dev_ctx + }; + ctx->devices.push_back(dev); + } + + reg = new ggml_backend_reg { + /* .interface = */ ggml_backend_cuda_reg_interface, + /* .context = */ ctx + }; + } + } + + return reg; } -GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { +ggml_backend_t ggml_backend_cuda_init(int device) { if (device < 0 || device >= ggml_backend_cuda_get_device_count()) { GGML_CUDA_LOG_ERROR("%s: invalid device %d\n", __func__, device); return nullptr; @@ -3137,82 +3356,9 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { ggml_backend_t cuda_backend = new ggml_backend { /* .guid = */ ggml_backend_cuda_guid(), /* .interface = */ ggml_backend_cuda_interface, - /* .context = */ ctx + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device), + /* .context = */ ctx, }; return cuda_backend; } - -GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) { - return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid()); -} - -GGML_CALL int ggml_backend_cuda_get_device_count() { - return ggml_cuda_info().device_count; -} - -GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { - cudaDeviceProp prop; - CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); - snprintf(description, description_size, "%s", prop.name); -} - -GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { - ggml_cuda_set_device(device); - - CUDA_CHECK(cudaMemGetInfo(free, total)); -} - -GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { - if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { - return false; - } - -#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA) - cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); - if (err != cudaSuccess) { - // clear the error - cudaGetLastError(); - - GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__, - size / 1024.0 / 1024.0, cudaGetErrorString(err)); - return false; - } - return true; -#else - return false; -#endif -} - -GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) { - if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { - return; - } - - cudaError_t err = cudaHostUnregister(buffer); - if (err != cudaSuccess) { - // clear the error - cudaGetLastError(); - } -} - -// backend registry -GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { - ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data); - return cuda_backend; - - GGML_UNUSED(params); -} - -extern "C" GGML_CALL int ggml_backend_cuda_reg_devices(); - -GGML_CALL int ggml_backend_cuda_reg_devices() { - int device_count = ggml_backend_cuda_get_device_count(); - //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization - for (int i = 0; i < device_count; i++) { - char name[128]; - snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i); - ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i); - } - return device_count; -} diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m index 9da08fe2e9771..389ae9e7c21ac 100644 --- a/ggml/src/ggml-metal.m +++ b/ggml/src/ggml-metal.m @@ -3202,13 +3202,13 @@ static void ggml_backend_metal_free_device(void) { } } -GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) { return "Metal"; UNUSED(buffer); } -GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; for (int i = 0; i < ctx->n_buffers; i++) { @@ -3227,25 +3227,25 @@ GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_ free(ctx); } -GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { +static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; return ctx->all_data; } -GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { memcpy((char *)tensor->data + offset, data, size); UNUSED(buffer); } -GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { memcpy(data, (const char *)tensor->data + offset, size); UNUSED(buffer); } -GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { +static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; @@ -3255,7 +3255,7 @@ GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t UNUSED(buffer); } -GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; memset(ctx->all_data, value, ctx->all_size); @@ -3276,7 +3276,7 @@ GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buff // default buffer type -GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "Metal"; UNUSED(buft); @@ -3307,7 +3307,7 @@ static void ggml_backend_metal_log_allocated_size(id device, size_t s UNUSED(size_aligned); } -GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); const size_t size_page = sysconf(_SC_PAGESIZE); @@ -3349,12 +3349,12 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); } -GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 32; UNUSED(buft); } -GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { id device = ggml_backend_metal_get_device(); size_t max_size = device.maxBufferLength; ggml_backend_metal_free_device(); @@ -3364,13 +3364,13 @@ GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend UNUSED(buft); } -GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) { +static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; UNUSED(buft); } -GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { +ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = { /* .iface = */ { /* .get_name = */ ggml_backend_metal_buffer_type_get_name, @@ -3388,7 +3388,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { // buffer from ptr -GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) { +ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) { struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); ctx->all_data = data; @@ -3468,37 +3468,37 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, // backend -GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) { +static const char * ggml_backend_metal_name(ggml_backend_t backend) { return "Metal"; UNUSED(backend); } -GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) { +static void ggml_backend_metal_free(ggml_backend_t backend) { struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; ggml_metal_free(ctx); free(backend); } -GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) { +static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_metal_buffer_type(); UNUSED(backend); } -GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { +static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context; return ggml_metal_graph_compute(metal_ctx, cgraph); } -GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { +static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context; return ggml_metal_supports_op(metal_ctx, op); } -GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { +static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name; UNUSED(backend); @@ -3604,9 +3604,9 @@ void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) { ctx->capture_next_compute = true; } -GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning +ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning -GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) { +ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) { return ggml_backend_metal_init(); GGML_UNUSED(params); diff --git a/ggml/src/ggml-rpc.cpp b/ggml/src/ggml-rpc.cpp index 49b3fa91174e2..2cda0cf9da09f 100644 --- a/ggml/src/ggml-rpc.cpp +++ b/ggml/src/ggml-rpc.cpp @@ -319,12 +319,12 @@ static std::shared_ptr get_socket(const std::string & endpoint) { return sock; } -GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; return ctx->name.c_str(); } -GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // input serialization format: | remote_ptr (8 bytes) | std::vector input(sizeof(uint64_t), 0); @@ -337,7 +337,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t delete ctx; } -GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) { +static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) { return ctx->base_cache[buffer]; @@ -388,7 +388,7 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) { return result; } -GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { +static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { UNUSED(buffer); if (ggml_is_quantized(tensor->type)) { // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized @@ -396,7 +396,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t } } -GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) | size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size; @@ -410,7 +410,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t b GGML_ASSERT(status); } -GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) | int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t); @@ -427,7 +427,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t b memcpy(data, output.data(), size); } -GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { +static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { // check if src and dst are on the same server ggml_backend_buffer_t src_buffer = src->buffer; ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context; @@ -452,7 +452,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t b return output[0]; } -GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // serialization format: | bufptr (8 bytes) | value (1 byte) | int input_size = sizeof(uint64_t) + sizeof(uint8_t); @@ -477,12 +477,12 @@ static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = { /* .reset = */ NULL, }; -GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; return buft_ctx->name.c_str(); } -GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; // input serialization format: | size (8 bytes) | int input_size = sizeof(uint64_t); @@ -522,7 +522,7 @@ static size_t get_alignment(const std::shared_ptr & sock) { return alignment; } -GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; return buft_ctx->alignment; } @@ -540,12 +540,12 @@ static size_t get_max_size(const std::shared_ptr & sock) { return max_size; } -GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; return buft_ctx->max_size; } -GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { UNUSED(buft); return ggml_nbytes(tensor); } @@ -559,24 +559,24 @@ static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = { /* .is_host = */ NULL, }; -GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) { +static const char * ggml_backend_rpc_name(ggml_backend_t backend) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; return rpc_ctx->name.c_str(); } -GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) { +static void ggml_backend_rpc_free(ggml_backend_t backend) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; delete rpc_ctx; delete backend; } -GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) { +static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str()); } -GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) { +static void ggml_backend_rpc_synchronize(ggml_backend_t backend) { UNUSED(backend); // this is no-op because we don't have any async operations } @@ -618,7 +618,7 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector & o memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor)); } -GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { +static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; std::vector input; serialize_graph(cgraph, input); @@ -630,14 +630,14 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t return (enum ggml_status)output[0]; } -GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) { +static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) { UNUSED(backend); UNUSED(op); //TODO: call the remote backend and cache the results return true; } -GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { +static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) { return false; } @@ -669,7 +669,7 @@ static ggml_backend_i ggml_backend_rpc_interface = { /* .event_synchronize = */ NULL, }; -GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) { +GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) { static std::mutex mutex; std::lock_guard lock(mutex); // NOTE: buffer types are allocated and never freed; this is by design @@ -700,7 +700,7 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const return buft; } -GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { +ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context { /* .endpoint = */ endpoint, /* .name = */ "RPC[" + std::string(endpoint) + "]", @@ -714,7 +714,7 @@ GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { return backend; } -GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) { +GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid()); } @@ -734,7 +734,7 @@ static void get_device_memory(const std::shared_ptr & sock, size_t * f *total = total_mem; } -GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) { +GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) { auto sock = get_socket(endpoint); if (sock == nullptr) { *free = 0; diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp index 6978a31924d5f..2c0f49f601739 100644 --- a/ggml/src/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl.cpp @@ -4038,7 +4038,7 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens return true; } -GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try { +GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len) try { GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n"); for(int i=0;icontext; return ctx->name.c_str(); } -GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) { +static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name; } @@ -4162,7 +4162,7 @@ static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) { return ctx->dev_ptr; } -GGML_CALL static void +static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor *tensor) try { ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context; @@ -4237,7 +4237,7 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static bool +static bool ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor *src, ggml_tensor *dst) try { @@ -4339,12 +4339,12 @@ struct ggml_backend_sycl_buffer_type_context { queue_ptr stream = nullptr; }; -GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context; return ctx->name.c_str(); } -GGML_CALL static ggml_backend_buffer_t +static ggml_backend_buffer_t ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) try { ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context; @@ -4368,7 +4368,7 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; UNUSED(buft); } @@ -4379,7 +4379,7 @@ static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_typ UNUSED(buft); } -GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { size_t size = ggml_nbytes(tensor); int64_t ne0 = tensor->ne[0]; @@ -4513,7 +4513,7 @@ struct ggml_backend_sycl_split_buffer_context { std::vector streams; }; -GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) { return GGML_SYCL_NAME "_Split"; UNUSED(buffer); @@ -4523,19 +4523,19 @@ static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name; } -GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context; delete ctx; } -GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) { +static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) { // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced return (void *)0x1000; UNUSED(buffer); } -GGML_CALL static void +static void ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor *tensor) try { GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported @@ -4618,7 +4618,7 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static void +static void ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor *tensor, const void *data, size_t offset, size_t size) try { @@ -4671,7 +4671,7 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static void +static void ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor *tensor, void *data, size_t offset, size_t size) try { @@ -4724,7 +4724,7 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { UNUSED(buffer); UNUSED(value); } @@ -4742,13 +4742,13 @@ static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = { /* .reset = */ NULL, }; -GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_SYCL_NAME "_Split"; UNUSED(buft); } -GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point // instead, we allocate them for each tensor separately in init_tensor // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, @@ -4758,12 +4758,12 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size); } -GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; UNUSED(buft); } -GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context; size_t total_size = 0; @@ -4790,7 +4790,7 @@ GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_ return total_size; } -GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { +static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return false; UNUSED(buft); @@ -4805,7 +4805,7 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface /* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host, }; -GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) { +ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) { static std::mutex mutex; std::lock_guard lock(mutex); @@ -4846,13 +4846,13 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const f // host buffer type -GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_SYCL_NAME "_Host"; UNUSED(buft); } -GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) { return GGML_SYCL_NAME "_Host"; UNUSED(buffer); @@ -4898,14 +4898,14 @@ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() { // backend -GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) { +static const char * ggml_backend_sycl_name(ggml_backend_t backend) { ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; return sycl_ctx->name.c_str(); } -GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) { +static void ggml_backend_sycl_free(ggml_backend_t backend) { ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; delete sycl_ctx; @@ -4913,12 +4913,12 @@ GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) { } -GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) { +static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; return ggml_backend_sycl_buffer_type(sycl_ctx->device); } -GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend, +static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend, ggml_tensor *tensor, const void *data, size_t offset, size_t size) try { @@ -4936,7 +4936,7 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend, +static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend, const ggml_tensor *tensor, void *data, size_t offset, size_t size) try { @@ -4954,9 +4954,9 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend, - const ggml_tensor *src, - ggml_tensor *dst) try { +static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend, + const ggml_tensor *src, + ggml_tensor *dst) try { ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) { /* @@ -4991,7 +4991,7 @@ catch (sycl::exception const &exc) { std::exit(1); } -GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { +static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; ggml_sycl_set_main_device(sycl_ctx->device); @@ -5019,7 +5019,7 @@ GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t back return GGML_STATUS_SUCCESS; } -GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) { +static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) { switch (op->op) { case GGML_OP_CONV_TRANSPOSE_1D: { @@ -5166,13 +5166,13 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons UNUSED(backend); } -GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) { +static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) { const int min_batch_size = 32; return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID; GGML_UNUSED(backend); } -GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { +static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) { return false; } @@ -5209,7 +5209,7 @@ static ggml_guid_t ggml_backend_sycl_guid() { return &guid; } -GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) { +ggml_backend_t ggml_backend_sycl_init(int device) { GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n"); ggml_check_sycl(); @@ -5234,12 +5234,12 @@ bool ggml_backend_is_sycl(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid()); } -GGML_CALL int ggml_backend_sycl_get_device_count() { +int ggml_backend_sycl_get_device_count() { GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n"); return ggml_sycl_info().device_count; } -GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) { +static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) { ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data); return sycl_backend; diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp index 00ad13bb9567b..e9e42502300a9 100644 --- a/ggml/src/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan.cpp @@ -119,11 +119,11 @@ struct ggml_backend_vk_buffer_type_context { vk_device device; }; -GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft); -GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size); -GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft); -GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft); -GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor); +static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft); +static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size); +static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft); +static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft); +static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor); static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = { /* .get_name = */ ggml_backend_vk_buffer_type_name, /* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer, @@ -607,7 +607,7 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor); typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); -GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend); +static void ggml_backend_vk_free(ggml_backend_t backend); // variables to track number of compiles in progress static uint32_t compile_count = 0; @@ -6144,13 +6144,13 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) { ctx->device->device.destroyFence(ctx->fence); } -GGML_CALL static int ggml_vk_get_device_count() { +static int ggml_vk_get_device_count() { ggml_vk_instance_init(); return vk_instance.device_indices.size(); } -GGML_CALL static void ggml_vk_get_device_description(int device, char * description, size_t description_size) { +static void ggml_vk_get_device_description(int device, char * description, size_t description_size) { ggml_vk_instance_init(); std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); @@ -6203,29 +6203,29 @@ struct ggml_backend_vk_buffer_context { } }; -GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; return ctx->name.c_str(); } -GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) { +static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_vk_buffer_get_name; } -GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) { VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()"); ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_vk_destroy_buffer(ctx->dev_buffer); delete ctx; } -GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) { +static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) { return vk_ptr_base; UNUSED(buffer); } -GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { +static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")"); ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; @@ -6241,7 +6241,7 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b } } -GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; @@ -6252,7 +6252,7 @@ GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t bu GGML_UNUSED(buffer); } -GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; @@ -6263,7 +6263,7 @@ GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t bu GGML_UNUSED(buffer); } -GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { +static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { if (ggml_backend_buffer_is_vk(src->buffer)) { ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; @@ -6280,7 +6280,7 @@ GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t bu UNUSED(buffer); } -GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size); @@ -6300,13 +6300,13 @@ static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = { }; // vk buffer type -GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context; return ctx->name.c_str(); } -GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")"); ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; @@ -6322,23 +6322,23 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer( return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size); } -GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; return ctx->device->properties.limits.minStorageBufferOffsetAlignment; } -GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context; return ctx->device->max_memory_allocation_size; } -GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { return ggml_nbytes(tensor); UNUSED(buft); } -GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) { +ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) { ggml_vk_instance_init(); VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")"); @@ -6350,24 +6350,24 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) // host buffer type -GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) { +static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_VK_NAME "_Host"; UNUSED(buft); } -GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) { +static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) { return GGML_VK_NAME "_Host"; UNUSED(buffer); } -GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { +static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()"); ggml_vk_host_free(vk_instance.devices[0], buffer->context); } -GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")"); size += 32; // Behave like the CPU buffer type @@ -6391,7 +6391,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_bu UNUSED(buft); } -GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment; UNUSED(buft); @@ -6399,7 +6399,7 @@ GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_back // Should be changed to return device-specific host buffer type // but that probably requires changes in llama.cpp -GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() { +ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_vk_host_buffer_type_name, @@ -6422,13 +6422,13 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() { // backend -GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) { +static const char * ggml_backend_vk_name(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; return ctx->name.c_str(); } -GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) { +static void ggml_backend_vk_free(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")"); @@ -6438,13 +6438,13 @@ GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) { delete backend; } -GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) { +static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; return &ctx->device->buffer_type; } -GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); @@ -6467,7 +6467,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g ggml_vk_buffer_write_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size); } -GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); @@ -6490,7 +6490,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c ggml_vk_buffer_read_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size); } -GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { +static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) { @@ -6518,7 +6518,7 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c return false; } -GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) { +static void ggml_backend_vk_synchronize(ggml_backend_t backend) { VK_LOG_DEBUG("ggml_backend_vk_synchronize()"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; if(ctx->transfer_ctx.expired()) { @@ -6548,7 +6548,7 @@ static bool ggml_vk_is_empty(ggml_tensor * node) { return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE; } -GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { +static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)"); ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; @@ -6611,7 +6611,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen UNUSED(backend); } -GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) { +static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) { // ggml_backend_vk_context * ctx = (ggml_backend_vk_context *) backend->context; switch (op->op) { @@ -6734,7 +6734,7 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const UNUSED(backend); } -GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) { +static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) { const int min_batch_size = 32; return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) || @@ -6743,7 +6743,7 @@ GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const g UNUSED(backend); } -GGML_CALL static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { +static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) { return false; } @@ -6783,7 +6783,7 @@ static ggml_guid_t ggml_backend_vk_guid() { return &guid; } -GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num) { +ggml_backend_t ggml_backend_vk_init(size_t dev_num) { VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")"); ggml_backend_vk_context * ctx = new ggml_backend_vk_context; @@ -6798,19 +6798,19 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num) { return vk_backend; } -GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) { +bool ggml_backend_is_vk(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid()); } -GGML_CALL int ggml_backend_vk_get_device_count() { +int ggml_backend_vk_get_device_count() { return ggml_vk_get_device_count(); } -GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) { +void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) { ggml_vk_get_device_description(device, description, description_size); } -GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) { +void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) { GGML_ASSERT(device < (int) vk_instance.device_indices.size()); vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]]; @@ -6827,16 +6827,16 @@ GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size } // backend registry -GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) { +static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) { ggml_backend_t vk_backend = ggml_backend_vk_init((int) (intptr_t) user_data); return vk_backend; UNUSED(params); } -extern "C" GGML_CALL int ggml_backend_vk_reg_devices(); +extern "C" int ggml_backend_vk_reg_devices(); -GGML_CALL int ggml_backend_vk_reg_devices() { +int ggml_backend_vk_reg_devices() { ggml_vk_instance_init(); for (size_t i = 0; i < vk_instance.device_indices.size(); i++) { diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index bcbc32d913dec..e740e58b2877d 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -461,7 +461,7 @@ struct ggml_arm_arch_features_type { } ggml_arm_arch_features = {-1, -1, -1, 0}; #endif -GGML_CALL const char * ggml_status_to_string(enum ggml_status status) { +const char * ggml_status_to_string(enum ggml_status status) { switch (status) { case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)"; case GGML_STATUS_FAILED: return "GGML status: error (operation failed)"; @@ -3382,19 +3382,19 @@ void ggml_print_objects(const struct ggml_context * ctx) { GGML_PRINT("%s: --- end ---\n", __func__); } -GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) { +int64_t ggml_nelements(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; } -GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) { +int64_t ggml_nrows(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; } -GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) { +size_t ggml_nbytes(const struct ggml_tensor * tensor) { size_t nbytes; size_t blck_size = ggml_blck_size(tensor->type); if (blck_size == 1) { @@ -3417,15 +3417,15 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN); } -GGML_CALL int64_t ggml_blck_size(enum ggml_type type) { +int64_t ggml_blck_size(enum ggml_type type) { return type_traits[type].blck_size; } -GGML_CALL size_t ggml_type_size(enum ggml_type type) { +size_t ggml_type_size(enum ggml_type type) { return type_traits[type].type_size; } -GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) { +size_t ggml_row_size(enum ggml_type type, int64_t ne) { assert(ne % ggml_blck_size(type) == 0); return ggml_type_size(type)*ne/ggml_blck_size(type); } @@ -3434,15 +3434,15 @@ double ggml_type_sizef(enum ggml_type type) { return ((double)(type_traits[type].type_size))/type_traits[type].blck_size; } -GGML_CALL const char * ggml_type_name(enum ggml_type type) { +const char * ggml_type_name(enum ggml_type type) { return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE"; } -GGML_CALL bool ggml_is_quantized(enum ggml_type type) { +bool ggml_is_quantized(enum ggml_type type) { return type_traits[type].is_quantized; } -GGML_CALL const char * ggml_op_name(enum ggml_op op) { +const char * ggml_op_name(enum ggml_op op) { return GGML_OP_NAME[op]; } @@ -3454,7 +3454,7 @@ const char * ggml_unary_op_name(enum ggml_unary_op op) { return GGML_UNARY_OP_NAME[op]; } -GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) { +const char * ggml_op_desc(const struct ggml_tensor * t) { if (t->op == GGML_OP_UNARY) { enum ggml_unary_op uop = ggml_get_unary_op(t); return ggml_unary_op_name(uop); @@ -3462,7 +3462,7 @@ GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) { return ggml_op_name(t->op); } -GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) { +size_t ggml_element_size(const struct ggml_tensor * tensor) { return ggml_type_size(tensor->type); } @@ -3555,7 +3555,7 @@ size_t ggml_tensor_overhead(void) { return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE; } -GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) { +bool ggml_is_transposed(const struct ggml_tensor * tensor) { return tensor->nb[0] > tensor->nb[1]; } @@ -3581,23 +3581,23 @@ static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) { return true; } -GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) { +bool ggml_is_contiguous(const struct ggml_tensor * tensor) { return ggml_is_contiguous_0(tensor); } -GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) { +bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) { return ggml_is_contiguous_n(tensor, 0); } -GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) { +bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) { return ggml_is_contiguous_n(tensor, 1); } -GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) { +bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) { return ggml_is_contiguous_n(tensor, 2); } -GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) { +bool ggml_is_permuted(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3]; @@ -3612,7 +3612,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } -GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) { +bool ggml_is_empty(const struct ggml_tensor * tensor) { for (int i = 0; i < GGML_MAX_DIMS; ++i) { if (tensor->ne[i] == 0) { // empty if any dimension has no elements @@ -4628,7 +4628,7 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) { return (float *)(tensor->data); } -GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) { +enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) { GGML_ASSERT(tensor->op == GGML_OP_UNARY); return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0); } @@ -12731,6 +12731,10 @@ static void ggml_compute_forward_out_prod_f32( GGML_TENSOR_BINARY_OP_LOCALS + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + const int ith = params->ith; const int nth = params->nth; @@ -14060,7 +14064,7 @@ static void ggml_rope_cache_init( } } -GGML_CALL void ggml_rope_yarn_corr_dims( +void ggml_rope_yarn_corr_dims( int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2] ) { // start and end correction dims diff --git a/src/llama.cpp b/src/llama.cpp index 4c0a1bb618277..406d0f5b3b204 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -12,9 +12,7 @@ # include "ggml-rpc.h" #endif -#ifdef GGML_USE_CUDA -# include "ggml-cuda.h" -#elif defined(GGML_USE_VULKAN) +#if defined(GGML_USE_VULKAN) # include "ggml-vulkan.h" #elif defined(GGML_USE_SYCL) # include "ggml-sycl.h" @@ -2264,51 +2262,13 @@ static std::string llama_token_to_piece(const struct llama_model * model, llama_ return piece; } -static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { - ggml_backend_buffer_type_t buft = nullptr; - -#if defined(GGML_USE_CUDA) - // host buffers should only be used when data is expected to be copied to/from the GPU - if (host_buffer) { - buft = ggml_backend_cuda_host_buffer_type(); - } -#elif defined(GGML_USE_SYCL) - if (host_buffer) { - buft = ggml_backend_sycl_host_buffer_type(); - } -#elif defined(GGML_USE_CANN) - if (host_buffer) { - buft = ggml_backend_cann_host_buffer_type(); - } -#elif defined(GGML_USE_CPU_HBM) - buft = ggml_backend_cpu_hbm_buffer_type(); -#elif defined(GGML_USE_VULKAN) - if (host_buffer) { - buft = ggml_backend_vk_host_buffer_type(); - } -#endif - - if (buft == nullptr) { - buft = ggml_backend_cpu_buffer_type(); - } - return buft; - - GGML_UNUSED(host_buffer); -} - // // globals // struct llama_state { llama_state() { -#ifdef GGML_USE_METAL - ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); -#elif defined(GGML_USE_CUDA) - ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data); -#elif defined(GGML_USE_CANN) - ggml_backend_cann_log_set_callback(log_callback, log_callback_user_data); -#endif + llama_log_set(log_callback, log_callback_user_data); } // We save the log callback globally @@ -2920,14 +2880,17 @@ struct llama_model { std::vector layers; + // gguf metadata + std::unordered_map gguf_kv; + llama_split_mode split_mode; int main_gpu; int n_gpu_layers; - std::vector rpc_servers; + // list of devices used in this model + std::vector devices; - // gguf metadata - std::unordered_map gguf_kv; + std::vector rpc_servers; // layer -> buffer type mapping struct layer_buft { @@ -2970,11 +2933,6 @@ struct llama_model { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { -#ifdef GGML_USE_CUDA - if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { - ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); - } -#endif ggml_backend_buffer_free(buf); } while (!lora_adapters.empty()) { @@ -3462,9 +3420,10 @@ struct llama_lora_adapter { static size_t llama_get_device_count(const llama_model & model) { size_t count = 1; -#if defined(GGML_USE_CUDA) - count = ggml_backend_cuda_get_device_count(); -#elif defined(GGML_USE_SYCL) + + count = model.devices.size(); + +#if defined(GGML_USE_SYCL) count = ggml_backend_sycl_get_device_count(); #elif defined(GGML_USE_VULKAN) count = ggml_backend_vk_get_device_count(); @@ -3478,54 +3437,93 @@ static size_t llama_get_device_count(const llama_model & model) { GGML_UNUSED(model); } -static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { +static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(const llama_model & model, bool host_buffer) { ggml_backend_buffer_type_t buft = nullptr; -#ifdef GGML_USE_RPC - int rpc_count = (int)model.rpc_servers.size(); -#else - int rpc_count = 0; + if (host_buffer) { + for (auto * dev : model.devices) { + buft = ggml_backend_dev_host_buffer_type(dev); + if (buft != nullptr) { + break; + } + } + } + +#if defined(GGML_USE_SYCL) + if (host_buffer) { + buft = ggml_backend_sycl_host_buffer_type(); + } +#elif defined(GGML_USE_CANN) + if (host_buffer) { + buft = ggml_backend_cann_host_buffer_type(); + } +#elif defined(GGML_USE_CPU_HBM) + buft = ggml_backend_cpu_hbm_buffer_type(); +#elif defined(GGML_USE_VULKAN) + if (host_buffer) { + buft = ggml_backend_vk_host_buffer_type(); + } #endif - int local_gpu = gpu - rpc_count; + + if (buft == nullptr) { + buft = ggml_backend_cpu_buffer_type(); + } + return buft; + + GGML_UNUSED(host_buffer); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int device) { + ggml_backend_buffer_type_t buft = nullptr; + #if defined(GGML_USE_RPC) - if (gpu < rpc_count) { - const char * endpoint = model.rpc_servers[gpu].c_str(); + int rpc_count = (int)model.rpc_servers.size(); + if (device < rpc_count) { + const char * endpoint = model.rpc_servers[device].c_str(); return ggml_backend_rpc_buffer_type(endpoint); } + device = device - rpc_count; #endif + + if (device < (int)model.devices.size()) { + buft = ggml_backend_dev_buffer_type(model.devices[device]); + } + #if defined(GGML_USE_METAL) buft = ggml_backend_metal_buffer_type(); -#elif defined(GGML_USE_CUDA) - buft = ggml_backend_cuda_buffer_type(local_gpu); #elif defined(GGML_USE_VULKAN) - buft = ggml_backend_vk_buffer_type(local_gpu); + buft = ggml_backend_vk_buffer_type(device); #elif defined(GGML_USE_SYCL) - buft = ggml_backend_sycl_buffer_type(local_gpu); + buft = ggml_backend_sycl_buffer_type(device); #elif defined(GGML_USE_KOMPUTE) - buft = ggml_backend_kompute_buffer_type(local_gpu); - if (buft == nullptr) { - LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, local_gpu); - } + buft = ggml_backend_kompute_buffer_type(device); #elif defined(GGML_USE_CANN) - buft = ggml_backend_cann_buffer_type(local_gpu); + buft = ggml_backend_cann_buffer_type(device); #endif if (buft == nullptr) { - buft = llama_default_buffer_type_cpu(true); + buft = llama_default_buffer_type_cpu(model, true); } return buft; + GGML_UNUSED(model); - GGML_UNUSED(local_gpu); } static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) { ggml_backend_buffer_type_t buft = nullptr; -#ifdef GGML_USE_CUDA - if (ggml_backend_cuda_get_device_count() > 1) { - buft = ggml_backend_cuda_split_buffer_type(tensor_split); + // find a backend that supports split buffers + for (size_t i = 0; i < ggml_backend_reg_count(); ++i) { + ggml_backend_reg_t reg = ggml_backend_reg_get(i); + + auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type"); + if (ggml_backend_split_buffer_type_fn) { + buft = ggml_backend_split_buffer_type_fn(tensor_split); + if (buft != nullptr) { + break; + } + } } -#endif #ifdef GGML_USE_SYCL if (ggml_backend_sycl_get_device_count() > 1) { @@ -3542,13 +3540,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_mo } static size_t llama_get_device_memory(const llama_model & model, int device) { -#ifdef GGML_USE_RPC - int rpc_count = (int)model.rpc_servers.size(); -#else - int rpc_count = 0; -#endif - int local_device = device - rpc_count; #if defined(GGML_USE_RPC) + int rpc_count = (int)model.rpc_servers.size(); if (device < rpc_count) { size_t total; size_t free; @@ -3556,32 +3549,37 @@ static size_t llama_get_device_memory(const llama_model & model, int device) { ggml_backend_rpc_get_device_memory(endpoint, &free, &total); return free; } + device = device - rpc_count; #endif -#if defined(GGML_USE_CUDA) - size_t total; - size_t free; - ggml_backend_cuda_get_device_memory(local_device, &free, &total); - return free; -#elif defined(GGML_USE_SYCL) + + if (device < (int)model.devices.size()) { + ggml_backend_dev_t dev = model.devices[device]; + size_t total; + size_t free; + ggml_backend_dev_memory(dev, &free, &total); + return free; + } + +#if defined(GGML_USE_SYCL) size_t total; size_t free; - ggml_backend_sycl_get_device_memory(local_device, &free, &total); + ggml_backend_sycl_get_device_memory(device, &free, &total); return free; #elif defined(GGML_USE_VULKAN) size_t total; size_t free; - ggml_backend_vk_get_device_memory(local_device, &free, &total); + ggml_backend_vk_get_device_memory(device, &free, &total); return free; #elif defined(GGML_USE_CANN) size_t total; size_t free; - ggml_backend_cann_get_device_memory(local_device, &free, &total); + ggml_backend_cann_get_device_memory(device, &free, &total); return free; #else return 1; #endif GGML_UNUSED(model); - GGML_UNUSED(local_device); + GGML_UNUSED(device); } // @@ -3624,7 +3622,7 @@ static bool llama_kv_cache_init( buft_layer_count[model.buft_layer[i].buft]++; } } else { - buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer; + buft_layer_count[llama_default_buffer_type_cpu(model, true)] = n_layer; } // create a context for each buffer type @@ -5046,43 +5044,37 @@ struct llama_model_loader { std::vector> read_buf; std::vector>> validation_result; -#if defined(GGML_USE_CUDA) + // TODO: adapt to ggml-backend // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives. // NVMe raid configurations might require more / larger buffers. constexpr size_t n_buffers = 4; constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB std::vector host_buffers; - std::vector host_ptrs; std::vector events; + std::vector host_ptrs; size_t buffer_idx = 0; // buffer to use for async loads - ggml_backend_t cuda_backend = nullptr; + // TODO: only do this if the backend supports all the required features: async, events, pinned memory + // it also must be avoided for split buffers and other buffers that require the entire tensor to be loaded at once + ggml_backend_t upload_backend = nullptr; if (!use_mmap && !check_tensors) { // When not using mmaped io use async uploads from pinned memory to GPU memory. // First determine if the CUDA backend is active, and if so, determine the device ID. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr; - if (buf) { - ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf); - for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { - auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i); - if (buffer_type == cuda_buffer_type) { - cuda_backend = ggml_backend_cuda_init(i); - break; - } - } - } + ggml_backend_dev_t dev = buf ? ggml_backend_buft_get_device(ggml_backend_buffer_get_type(buf)) : nullptr; + ggml_backend_buffer_type_t host_buft = dev ? ggml_backend_dev_host_buffer_type(dev) : nullptr; + upload_backend = host_buft ? ggml_backend_dev_init(dev, nullptr) : nullptr; - // If the cuda backend is active create pinned memory buffers and events for synchronisation. - if (cuda_backend) { + // If the cuda is active create pinned memory buffers and events for synchronisation. + if (upload_backend) { for (size_t idx = 0; idx < n_buffers; ++idx) { - host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size)); + host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(host_buft, buffer_size)); host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx])); - events.emplace_back(ggml_backend_event_new(cuda_backend)); + events.emplace_back(ggml_backend_dev_event_new(dev)); } } } -#endif for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { const auto * weight = get_weight(ggml_get_name(cur)); @@ -5139,9 +5131,8 @@ struct llama_model_loader { })); } } else { -#if defined(GGML_USE_CUDA) // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU. - if (cuda_backend) { + if (upload_backend) { file->seek(weight->offs, SEEK_SET); size_t bytes_read = 0; @@ -5151,17 +5142,14 @@ struct llama_model_loader { ggml_backend_event_synchronize(events[buffer_idx]); file->read_raw(host_ptrs[buffer_idx], read_iteration); - ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); - ggml_backend_event_record(events[buffer_idx]); + ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); + ggml_backend_event_record(events[buffer_idx], upload_backend); bytes_read += read_iteration; ++buffer_idx; buffer_idx %= n_buffers; } - } - else -#endif - { + } else { read_buf.resize(n_size); file->seek(weight->offs, SEEK_SET); file->read_raw(read_buf.data(), n_size); @@ -5176,17 +5164,15 @@ struct llama_model_loader { size_done += n_size; } -#if defined(GGML_USE_CUDA) - // free temporary resources used for async cuda uploads - if (cuda_backend) { - for (size_t idx = 0; idx < n_buffers;++idx) { - ggml_backend_event_synchronize(events[idx]); - ggml_backend_event_free(events[idx]); - ggml_backend_buffer_free(host_buffers[idx]); - } - ggml_backend_free(cuda_backend); + // free temporary resources used for async uploads + for (auto * event : events) { + ggml_backend_event_synchronize(event); + ggml_backend_event_free(event); } -#endif + for (auto * buf : host_buffers) { + ggml_backend_buffer_free(buf); + } + ggml_backend_free(upload_backend); // check validation results bool validation_failed = false; @@ -6931,14 +6917,14 @@ static bool llm_load_tensors( bool use_mmap_buffer = true; // there is very little benefit to offloading the input layer, so always keep it on the CPU - model.buft_input = llama_default_buffer_type_cpu(true); + model.buft_input = llama_default_buffer_type_cpu(model, true); //model.buft_input = llama_default_buffer_type_offload(main_gpu); model.buft_layer.resize(n_layer); // assign cpu layers for (int i = 0; i < i_gpu_start; ++i) { - model.buft_layer[i] = llama_default_buffer_type_cpu(true); + model.buft_layer[i] = llama_default_buffer_type_cpu(model, true); } if (split_mode == LLAMA_SPLIT_MODE_LAYER) { @@ -6976,7 +6962,7 @@ static bool llm_load_tensors( int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin(); model.buft_output = llama_default_buffer_type_offload(model, layer_gpu); } else { - model.buft_output = llama_default_buffer_type_cpu(true); + model.buft_output = llama_default_buffer_type_cpu(model, true); } } else { ggml_backend_buffer_type_t split_buft; @@ -7000,7 +6986,7 @@ static bool llm_load_tensors( llama_default_buffer_type_offload(model, main_gpu) }; } else { - model.buft_output = llama_default_buffer_type_cpu(true); + model.buft_output = llama_default_buffer_type_cpu(model, true); } } @@ -8872,7 +8858,7 @@ static bool llm_load_tensors( // only the mmap region containing the tensors in the model is mapped to the backend buffer // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size - if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) { + if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(model, true)) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { void * addr = nullptr; size_t first, last; @@ -8886,13 +8872,6 @@ static bool llm_load_tensors( } model.bufs.push_back(buf); bufs.emplace(idx, buf); -#ifdef GGML_USE_CUDA - if (n_layer >= n_gpu_layers) { - ggml_backend_cuda_register_host_buffer( - ggml_backend_buffer_get_base(buf), - ggml_backend_buffer_get_size(buf)); - } -#endif } } #ifdef GGML_USE_METAL @@ -16956,7 +16935,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { lctx.embd = nullptr; } - lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size); + lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(lctx.model, true), new_size); if (lctx.buf_output == nullptr) { LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); return 0; @@ -18987,21 +18966,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() { } size_t llama_max_devices(void) { -#if defined(GGML_USE_RPC) - return GGML_RPC_MAX_SERVERS; -#elif defined(GGML_USE_METAL) - return 1; -#elif defined(GGML_USE_CUDA) - return GGML_CUDA_MAX_DEVICES; -#elif defined(GGML_USE_SYCL) - return GGML_SYCL_MAX_DEVICES; -#elif defined(GGML_USE_VULKAN) - return GGML_VK_MAX_DEVICES; -#elif defined(GGML_USE_CANN) - return GGML_CANN_MAX_DEVICES; -#else - return 1; -#endif + return 16; } bool llama_supports_mmap(void) { @@ -19013,12 +18978,13 @@ bool llama_supports_mlock(void) { } bool llama_supports_gpu_offload(void) { -#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ +#if defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. return true; #else - return false; + return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr || + ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL) != nullptr; #endif } @@ -19083,17 +19049,30 @@ struct llama_model * llama_load_model_from_file( return true; }; } + if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') { // split the servers set them into model->rpc_servers std::string servers(params.rpc_servers); size_t pos = 0; - while ((pos = servers.find(",")) != std::string::npos) { + while ((pos = servers.find(',')) != std::string::npos) { std::string server = servers.substr(0, pos); model->rpc_servers.push_back(server); servers.erase(0, pos + 1); } model->rpc_servers.push_back(servers); } + + // create list of devices to use with this model + // currently, we use all available devices + // TODO: rework API to give user more control over device selection + for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { + ggml_backend_dev_t dev = ggml_backend_dev_get(i); + // skip the CPU backend since it is handled separately + if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU_FULL) { + model->devices.push_back(dev); + } + } + int status = llama_model_load(path_model, *model, params); GGML_ASSERT(status <= 0); if (status < 0) { @@ -19269,38 +19248,39 @@ struct llama_context * llama_new_context_with_model( } #endif -#if defined(GGML_USE_METAL) - if (model->n_gpu_layers > 0) { - ctx->backend_metal = ggml_backend_metal_init(); - if (ctx->backend_metal == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(ctx->backend_metal); - } -#elif defined(GGML_USE_CUDA) - if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { - // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used - ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu); + if (model->split_mode == LLAMA_SPLIT_MODE_NONE) { + // with split_mode LLAMA_SPLIT_MODE_NONE, only the main GPU backend is used + ggml_backend_dev_t main_dev = model->devices[model->main_gpu]; + ggml_backend_t backend = ggml_backend_dev_init(main_dev, nullptr); if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu); + LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(main_dev)); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } else { // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU - for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { - ggml_backend_t backend = ggml_backend_cuda_init(device); + for (auto * dev : model->devices) { + ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device); + LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } } + +#if defined(GGML_USE_METAL) + if (model->n_gpu_layers > 0) { + ctx->backend_metal = ggml_backend_metal_init(); + if (ctx->backend_metal == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(ctx->backend_metal); + } #elif defined(GGML_USE_VULKAN) if (model->split_mode == LLAMA_SPLIT_MODE_ROW) { LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__); @@ -19446,7 +19426,7 @@ struct llama_context * llama_new_context_with_model( for (auto * backend : ctx->backends) { if (ggml_backend_is_cpu(backend)) { // use host buffers for the CPU backend compute buffer - backend_buft.push_back(llama_default_buffer_type_cpu(true)); + backend_buft.push_back(llama_default_buffer_type_cpu(*model, true)); } else { backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); } @@ -19463,7 +19443,9 @@ struct llama_context * llama_new_context_with_model( model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER && params.offload_kqv; -#ifndef GGML_USE_CUDA + + // FIXME +#if !defined(GGML_USE_CUDA) && false // pipeline parallelism requires support for async compute and events // currently this is only implemented in the CUDA backend pipeline_parallel = false; @@ -21774,10 +21756,11 @@ const std::vector> & llama_internal void llama_log_set(ggml_log_callback log_callback, void * user_data) { g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; g_state.log_callback_user_data = user_data; + + ggml_backend_set_log_callback(log_callback, user_data); + #ifdef GGML_USE_METAL ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); -#elif defined(GGML_USE_CUDA) - ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); #elif defined(GGML_USE_CANN) ggml_backend_cann_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); #endif diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 95d983aa083c3..e12ecf5586512 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -3723,20 +3723,22 @@ int main(int argc, char ** argv) { } // enumerate backends - printf("Testing %zu backends\n\n", ggml_backend_reg_get_count()); + printf("Testing %zu devices\n\n", ggml_backend_dev_count()); size_t n_ok = 0; - for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) { - printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i)); + for (size_t i = 0; i < ggml_backend_dev_count(); i++) { + ggml_backend_dev_t dev = ggml_backend_dev_get(i); - if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) { + printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev)); + + if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) { printf(" Skipping\n"); n_ok++; continue; } - ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL); + ggml_backend_t backend = ggml_backend_dev_init(dev, NULL); GGML_ASSERT(backend != NULL); if (backend_filter == NULL && ggml_backend_is_cpu(backend) && mode != MODE_GRAD) { @@ -3751,7 +3753,11 @@ int main(int argc, char ** argv) { ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2); } - printf(" Backend name: %s\n", ggml_backend_name(backend)); + printf(" Device description: %s\n", ggml_backend_dev_description(dev)); + size_t free, total; // NOLINT + ggml_backend_dev_memory(dev, &free, &total); + printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024); + printf("\n"); bool ok = test_backend(backend, mode, op_name_filter); @@ -3768,9 +3774,9 @@ int main(int argc, char ** argv) { ggml_backend_free(backend); } - printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count()); + printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count()); - if (n_ok != ggml_backend_reg_get_count()) { + if (n_ok != ggml_backend_dev_count()) { printf("\033[1;31mFAIL\033[0m\n"); return 1; }