-
Notifications
You must be signed in to change notification settings - Fork 2
/
alignment.py
207 lines (189 loc) · 6.81 KB
/
alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from numpy import *
from os import getenv
from ete2 import Tree
import re
from Bio import pairwise2
def match(x,y):
return [argwhere(y==z)[0][0] if z in y else None for z in x]
def nwBio(x,y,lodict,gp1,gp2):
al = pairwise2.align.globalds(x,y,lodict,gp1,gp2)[0]
return al[2],array(al[:2])
def nw(x,y,lodict,gp1,gp2):
"""
Needleman-Wunsch algorithm for pairwise string alignment
with affine gap penalties.
'lodict' must be a dictionary with all symbol pairs as keys
and match scores as values.
gp1 and gp2 are gap penalties for opening/extending a gap.
Returns the alignment score and one optimal alignment.
"""
n,m = len(x),len(y)
dp = zeros((n+1,m+1))
pointers = zeros((n+1,m+1),int)
for i in xrange(1,n+1):
dp[i,0] = dp[i-1,0]+(gp2 if i>1 else gp1)
pointers[i,0]=1
for j in xrange(1,m+1):
dp[0,j] = dp[0,j-1]+(gp2 if j>1 else gp1)
pointers[0,j]=2
for i in xrange(1,n+1):
for j in xrange(1,m+1):
match = dp[i-1,j-1]+lodict[x[i-1],y[j-1]]
insert = dp[i-1,j]+(gp2 if pointers[i-1,j]==1 else gp1)
delet = dp[i,j-1]+(gp2 if pointers[i,j-1]==2 else gp1)
dp[i,j] = max([match,insert,delet])
pointers[i,j] = argmax([match,insert,delet])
alg = []
i,j = n,m
while(i>0 or j>0):
pt = pointers[i,j]
if pt==0:
i-=1
j-=1
alg = [[x[i],y[j]]]+alg
if pt==1:
i-=1
alg = [[x[i],'-']]+alg
if pt==2:
j-=1
alg = [['-',y[j]]]+alg
return dp[-1,-1],array([''.join(x) for x in array(alg).T])
def algnMtx(al,sounds):
"""
Takes a pairwise alignment (i.e. a pair of gapped strings with identical length)
as input and returns a matrix representation M as output.
The matrix M is defined as M[i,j] = 1 if x[i] is matched with y[j]
in the alignment, 0 else (where x,y are the two ungapped strings to be aligned).
"""
w1 = ''.join(array([s for s in al[0] if s!='-']))
w2 = ''.join(array([s for s in al[1] if s!='-']))
dm = zeros((len(w1),len(w2)),int)
i,j = 0,0
for s1,s2 in array([list(w) for w in al]).T:
if s1 in sounds:
if s2 in sounds:
dm[i,j] += 1
i+=1
j+=1
else:
i+=1
else:
j+=1
return dm
def createLibrary(words,lodict,gp1,gp2,sounds):
"""
Takes a list of sequences and returns a library in the sense of the
T-Coffee algorithm. A library is a dictionary with sequence pairs
as keys and pairwise alignments in matrix format as columns.
"""
library=dict()
for w1 in words:
for w2 in words:
if (w2,w1) in library:
x = library[w2,w1]
library[w1,w2] = x[0].T,x[1]
else:
a1,a2 = nw(w1,w2,lodict,gp1,gp2)[1]
library[w1,w2] = algnMtx([a1,a2],sounds),(1-sHamming(a1,a2))
return library
def sHamming(x,y):
"""
Takes two gapped strings and returns the hamming distance between
them. Positions containing a gap in at least one string are ignored.
"""
w1,w2 = array(list(x)),array(list(y))
r= mean(w1[(w1!='-')*(w2!='-')]!=w2[(w1!='-')*(w2!='-')])
if isnan(r): r=1.
return r
def wHamming(w1,w2,m):
"""
Takes two words and an alignment matrix and returns the hamming distance
between them. Positions containing a gap in at least one string are ignored.
"""
id1,id2 = argwhere(m==1).T
return mean(array(list(w1))[id1]!=array(list(w2))[id2])
def createExtendedLibrary(words,lodict,gp1,gp2,sounds):
"""
Takes a list of sequences and returns an extended library in the
sense of the T-Coffee algorithm. An extended library is a dictionary with
sequence pairs as keys and a score matrix as values.
For a pair of sequences x,y and a corresponding score matrix M,
M[i,j] is the score for aligning x[i] with y[j].
"""
library = createLibrary(words,lodict,gp1,gp2,sounds)
extLibrary = dict()
for w1 in words:
for w2 in words:
dm = zeros((len(w1),len(w2)))
for w3 in words:
a1,s1 = library[w1,w3]
a2,s2 = library[w3,w2]
dm += (s1+s2)*dot(a1,a2)
extLibrary[w1,w2] = dm
return extLibrary
# pointers[i,j] = argmax([match,insert,delet])
def nwBlock(b1,b2,lib):
"""
Needleman-Wunsch alignment of two aligned blocks b1 and b2,
using the scores in the extended library lib.
"""
def pos(gappedString,i):
"""
Returns the index of gappedString[i] in the
ungapped version thereof.
If gappedString[i] is a gap, returns -1
"""
if gappedString[i]!='-':
return 0 if i==0 else sum(array(list(gappedString[:i]))!='-')
else:
return -1
words1 = array([re.sub("-","",w) for w in b1])
words2 = array([re.sub("-","",w) for w in b2])
n,m = len(b1[0]),len(b2[0])
dp = zeros((n+1,m+1))
pointers = zeros((n+1,m+1),int)
pointers[0,1:] = 2
pointers[1:,0] = 1
for i in xrange(1,n+1):
for j in xrange(1,m+1):
insert = dp[i-1,j]
delet = dp[i,j-1]
match = dp[i-1,j-1] + sum([0 if '-' in [gs1[i-1],gs2[j-1]]
else lib[w1,w2][pos(gs1,i-1),pos(gs2,j-1)]
for (w1,gs1) in zip(words1,b1)
for (w2,gs2) in zip(words2,b2)])
dp[i,j] = max([match,insert,delet])
pointers[i,j] = argmax([match,insert,delet])
al1 = transpose(array([list(w) for w in b1]))
al2 = transpose(array([list(w) for w in b2]))
alCombined = []
while max(i,j)>0:
p = pointers[i,j]
if p == 0:
alCombined = [list(al1[i-1]) + list(al2[j-1])] + alCombined
i-=1
j-=1
elif p==1:
alCombined = [list(al1[i-1])+['-']*len(b2)] + alCombined
i-=1
else:
alCombined = [['-']*len(b1)+list(al2[j-1])] + alCombined
j-=1
return array([''.join(x) for x in array(alCombined).T]),dp[-1,-1]
def tCoffee(wTaxa,words,tree,lodict,gp1,gp2,sounds):
"""tree must be a binary branching tree"""
lib = createExtendedLibrary(words,lodict,gp1,gp2,sounds)
wTree = Tree(tree.write(format=9))
wTree.prune([wTree&l for l in wTaxa])
wDict = dict(zip(wTaxa,words))
for nd in wTree.traverse('postorder'):
if nd.is_leaf():
nd.add_feature('algn',array([wDict[nd.name]]))
nd.add_feature('nTaxa',array([nd.name]))
else:
dl,dr = nd.get_children()
b1,b2 = dl.algn,dr.algn
a = nwBlock(b1,b2,lib)[0]
nd.add_feature('algn',a)
nd.add_feature('nTaxa',concatenate([dl.nTaxa,dr.nTaxa]))
return zip(wTree.nTaxa,wTree.algn)